Using Deep Learning When Class Labels Have A Natural Order

Predicting Ratings And Rankings Using PyTorch Lightning

Sebastian Raschka

Lead Al Educator @ Lightning Al

Asst. Prof. of Statistics @ University of Wisconsin

https://sebastianraschka.com

https://lightning.ai

Code & slides

https://github.com/rasbt/scipy2022-talk

Many real-world predictions problems

have ordered labels

Credit risk rating

		PASS			SPECIAL MENTION	SUB- STANDARD	DOUBTFUL	LOSS
1	2	3	4	5	6	7	8	9
Largely risk free	Minimal risk	Modest risk	Bankable	Addition- al review	Criticized	Classified	Classified	Classified

https://www.abrigo.com/blog/how-to-create-a-credit-risk-rating-system/

Damage assessment

Grade 1: Negligible to slight damage (no structural damage, slight non-structural damage) Hair-line cracks in very few walls. Fall of small pieces of plaster only. Fall of loose stones from upper parts of buildings in very few cases.
Grade 2: Moderate damage (slight structural damage, moderate non-structural damage) Cracks in many walls. Fall of fairly large pieces of plaster. Partial collapse of chimneys.
Grade 3: Substantial to heavy damage (moderate structural damage, heavy non-structural damage) Large and extensive cracks in most walls. Roof tiles detach. Chimneys fracture at the roof line; failure of individual non-structural elements (partitions, gable walls).
Grade 4: Very heavy damage (heavy structural damage, very heavy non-structural damage) Serious failure of walls; partial structural failure of roofs and floors.
Grade 5: Destruction (very heavy structural damage) Total or near total collapse.

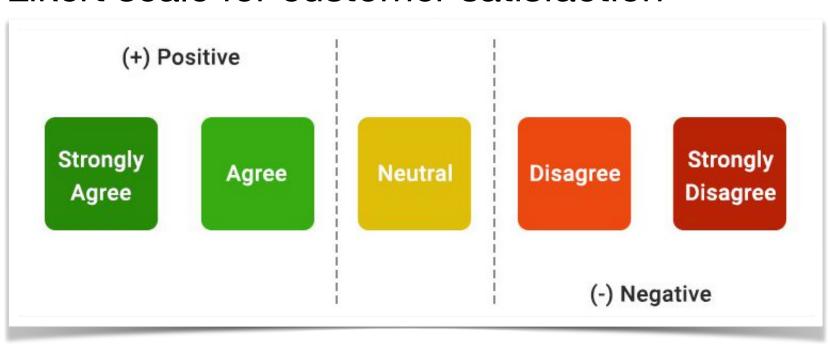
https://emergency.copernicus.eu/mapping/ems/damage-assessmen

Plant disease

Index	Reaction	PLRV		
0	Highly	No visible symptoms.	No visible	No symptoms
	Resistance		symptoms.	
1	Resistance	Rolling of leaves in case of primary infection and lower leaves in case of secondary infection, erect growth	Mild mottling on	Blackening and band
2	Moderately Resistance	Rolling of leaves extending, leaves become stiff and leathery, stunting of plants and erect	Inter venial mosaic	Blackening and band
	3 - 1 . 1	growth		severe mosaic, Leaf
	Moderately Susceptible	Short internodes, papery sound of leathery leaves, rolling and stunting of whole plants. Young buds are slightly yellowish and purplish	Mosaic symptoms	Rugosity and leaf dro
4	Susceptible	Clear rolling of leaves, severe stunting, few tubers and tuber necrosis	Distinct mosaic leaves.	Lower leaves dead, d small tubers.
5	Highly Susceptible	All above symptoms and small number of small sized tubers.	All above	All leaves dead, stem
			small sized tubers	

Islam, M. U., et al. "Screening of potato germplasm against RNA viruses and their identification through ELISA." J Green Physiol Genet Genom 1 (2015): 22-31.

Likert scale for customer satisfaction



https://www.questionpro.com/blog/ordinal-scale/

How do ordered (ordinal) labels differ from conventional class labels

Classification

Setosa

Versicolor

Virginica

No ordering

Classification

1 Setosa 2 Versicolor 3 Virginica

No ordering

Classification

1 Setosa 2 Versicolor 3 Virginica

No ordering

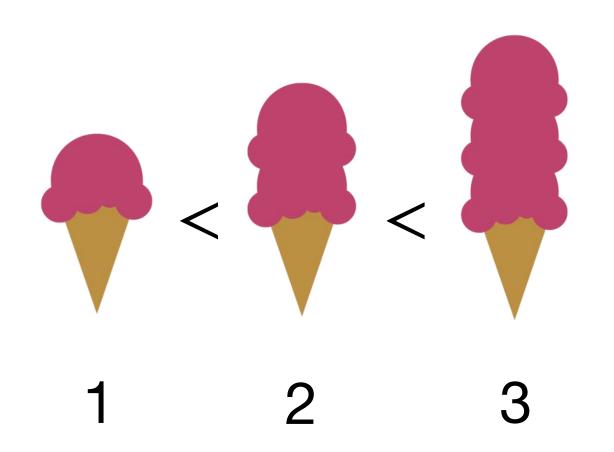
Regression

Classification

1 Setosa 2 Versicolor 3 Virginica

No ordering

Regression

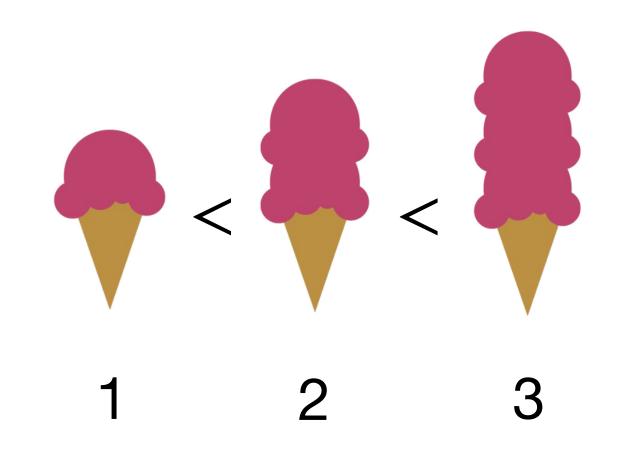


Classification

1 Setosa 2 Versicolor 3 Virginica

No ordering

Regression



Identical distances

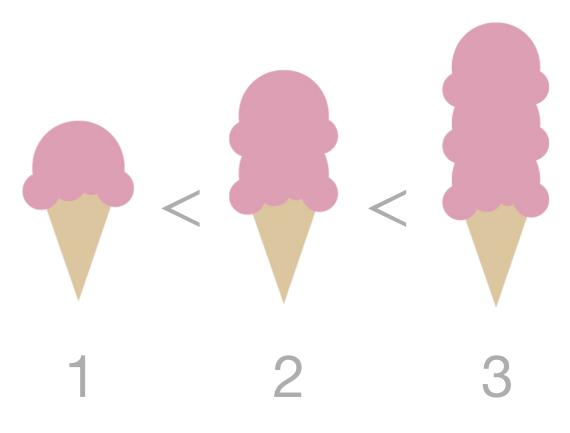
Classification

1 Setosa 2 Versicolor 3 Virginica

No ordering

Ordinal regression / ordinal classification

Regression



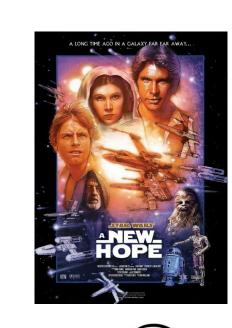
Identical distances

Classification

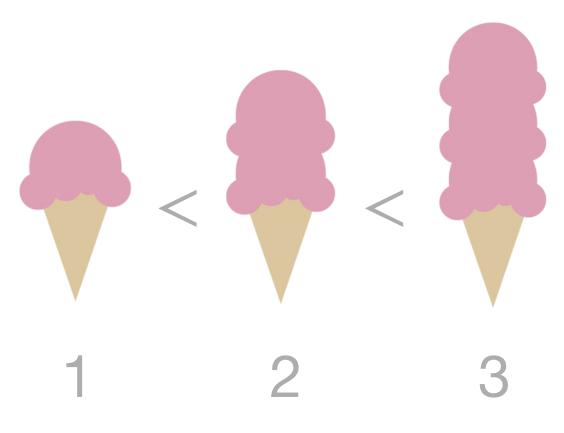
1 Setosa 2 Versicolor 3 Virginica

No ordering

Ordinal regression / ordinal classification



Regression



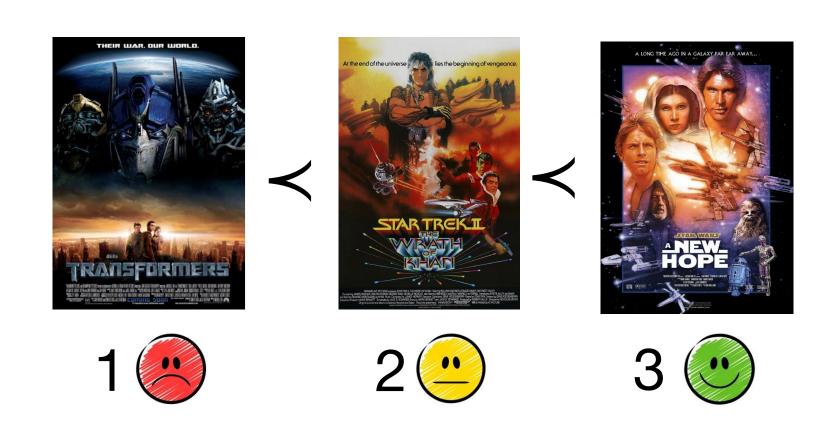
Identical distances

Classification

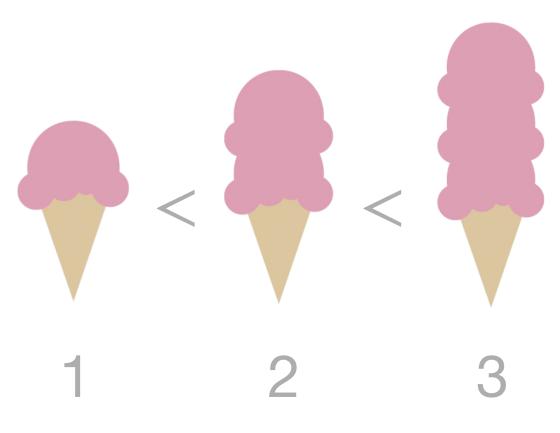
1 Setosa 2 Versicolor 3 Virginica

No ordering

Ordinal regression / ordinal classification



Regression



Identical distances

Classification

1 Setosa 2 Versicolor

3 Virginica

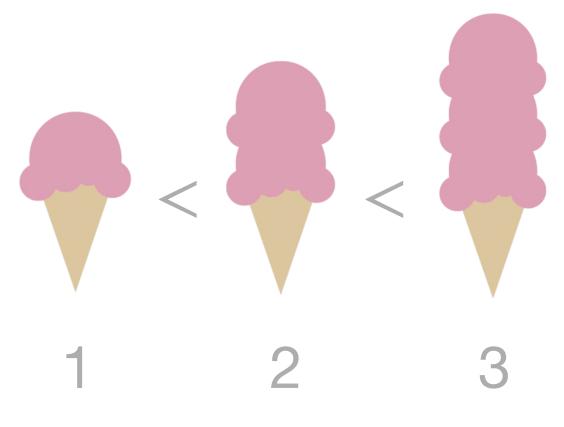
No ordering

Ordinal regression / ordinal classification

Class labels

- but with ordering info
- and arbitrary distances

Regression



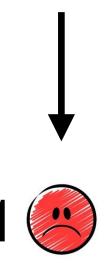
Identical distances

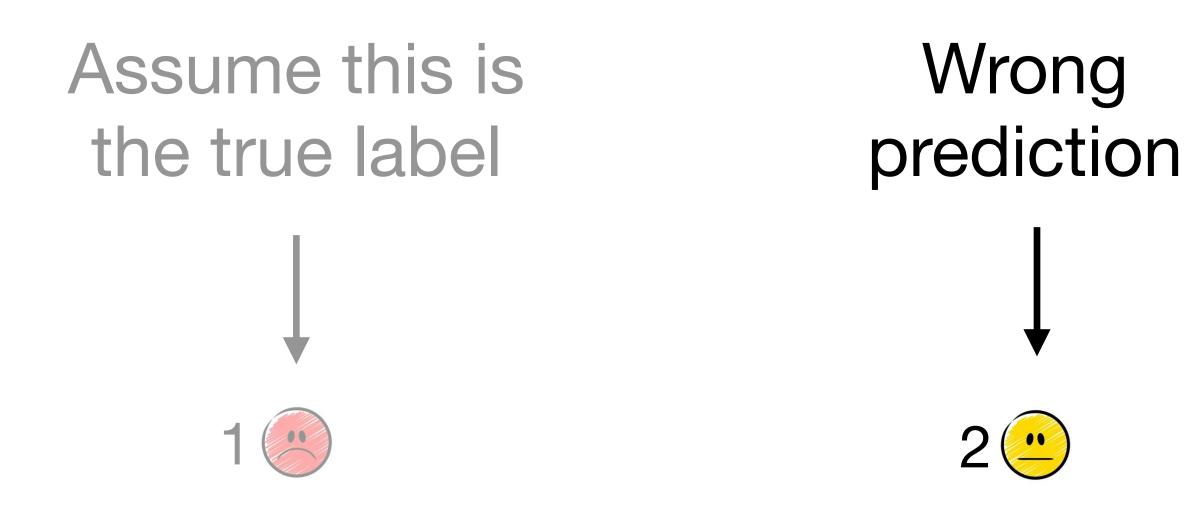
Can't we just use regular classifiers for ordered labels?

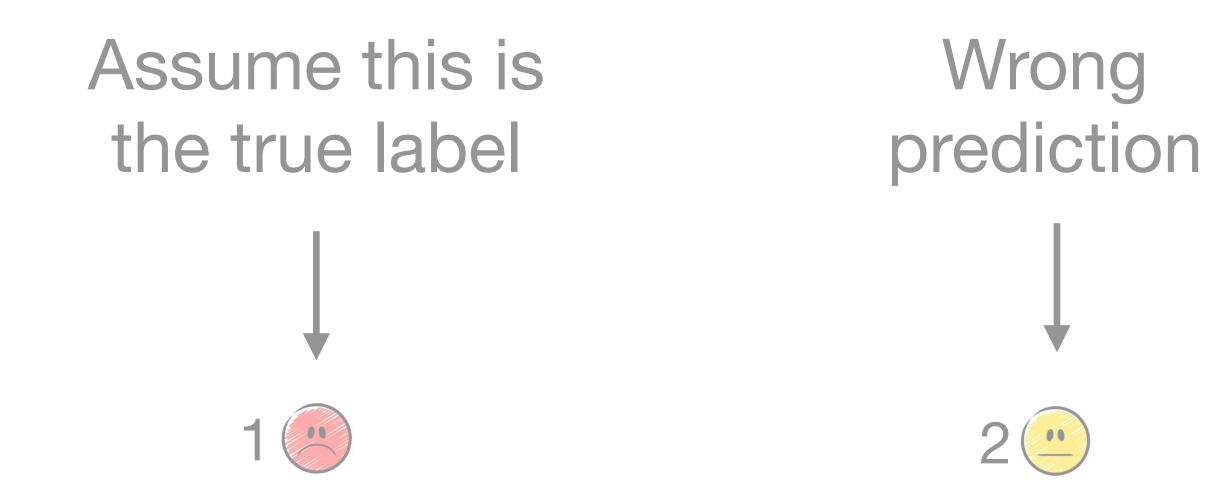
Can't we just use regular classifiers for ordered labels?

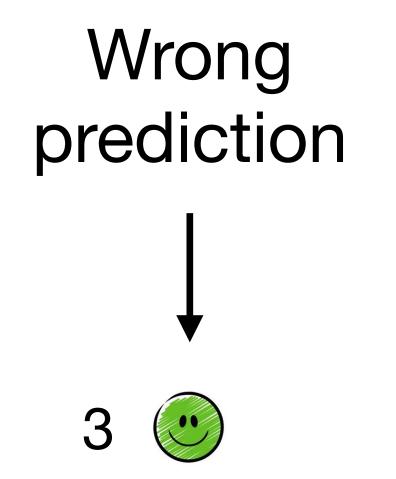
Yes, but it is not ideal

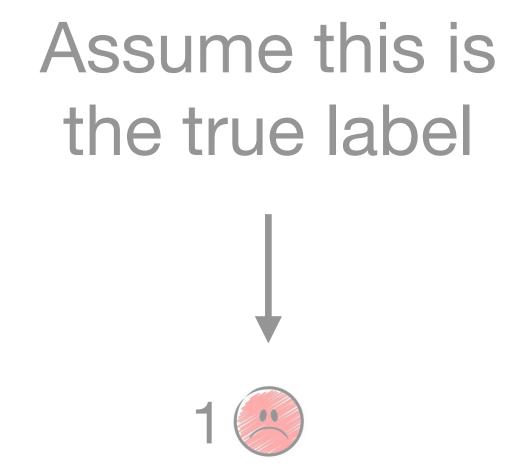
Assume this is the true label

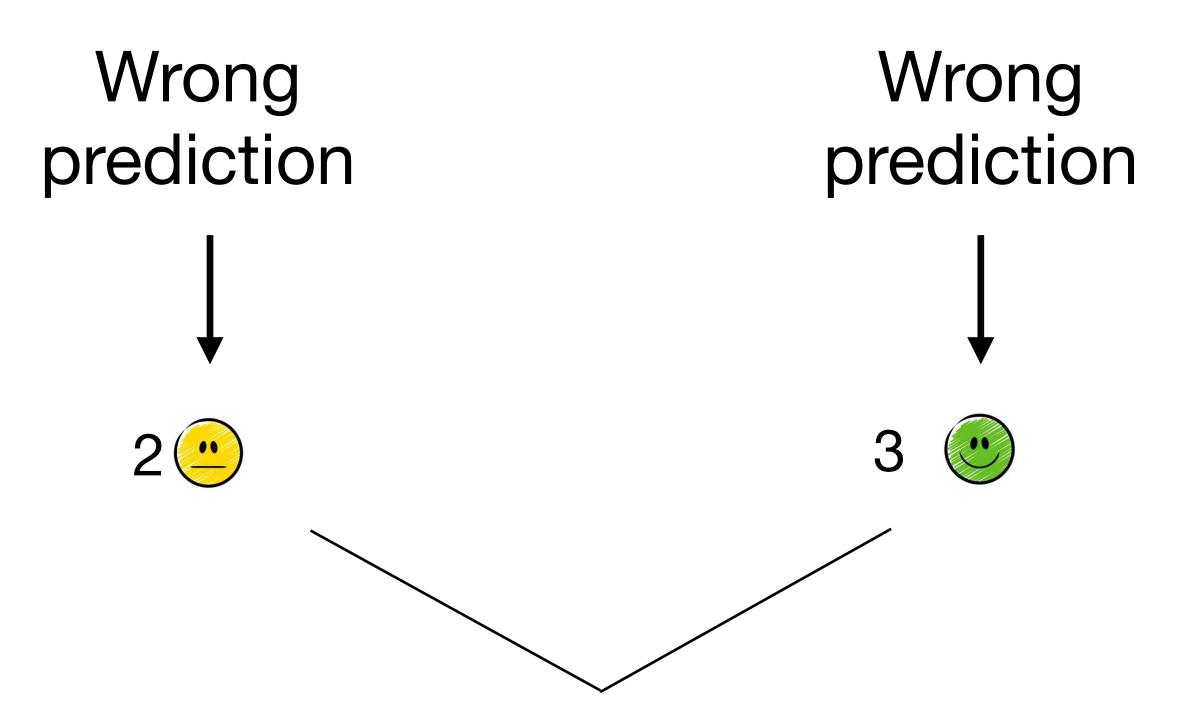




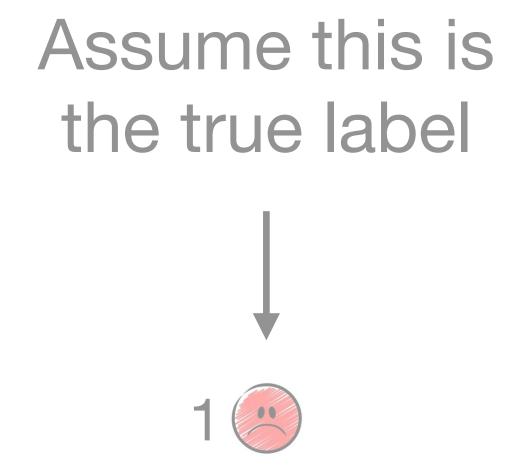


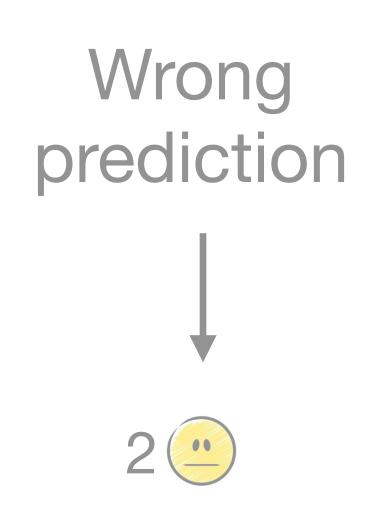


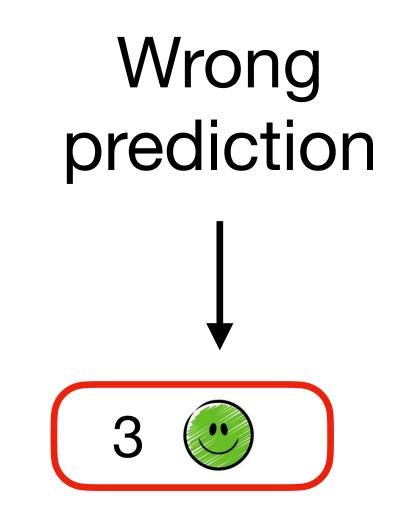




Treated equally if we compute the loss in a regular classifier







But this should be "more wrong"

Many real-world predictions problems

have ordered labels

Credit risk rating

PASS				SPECIAL MENTION	SUB- STANDARD	DOUBTFUL	LOSS	
1	2	3	4	5	6	7	8	9
Largely risk free	Minimal risk	Modest risk	Bankable	Addition- al review	Criticized	Classified	Classified	Classified

https://www.abrigo.com/blog/how-to-create-a-credit-risk-rating-system/

Damage assessment

	Grade 1: Negligible to slight damage (no structural damage, slight non-structural damage) Hair-line cracks in very few walls. Fall of small pieces of plaster only. Fall of loose stones from upper parts of buildings in very few cases.
	Grade 2: Moderate damage (slight structural damage, moderate non-structural damage) Cracks in many walls. Fall of fairly large pieces of plaster. Partial collapse of chimneys.
	Grade 3: Substantial to heavy damage (moderate structural damage, heavy non-structural damage) Large and extensive cracks in most walls. Roof tiles detach. Chimneys fracture at the roof line; failure of individual non-struc- tural elements (partitions, gable walls).
DATE DATE OF THE PARTY OF THE P	Grade 4: Very heavy damage (heavy structural damage, very heavy non-structural damage) Serious failure of walls; partial structural failure of roofs and floors.
	Grade 5: Destruction (very heavy structural damage) Total or near total collapse.

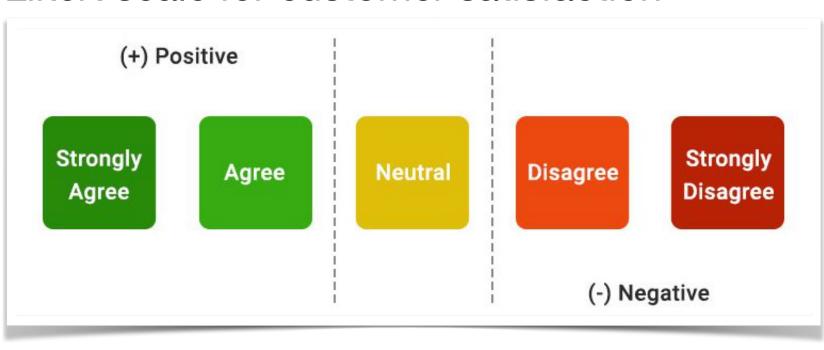
https://emergency.copernicus.eu/mapping/ems/damage-assessment

Plant disease

Reaction	PLRV		
Highly Resistance	No visible symptoms.	No visible symptoms.	No symptoms
Resistance	Rolling of leaves in case of primary infection and lower leaves in case of secondary infection, erect growth	Mild mottling on	Blackening and band
Moderately Resistance	Rolling of leaves extending, leaves become stiff and leathery, stunting of plants and erect growth	Inter venial mosaic	Blackening and band severe mosaic, Leaf
Moderately Susceptible	Short internodes, papery sound of leathery leaves, rolling and stunting of whole plants. Young buds are slightly yellowish and purplish	Mosaic symptoms	Rugosity and leaf dro
Susceptible	Clear rolling of leaves, severe stunting, few tubers and tuber necrosis	Distinct mosaic leaves.	Lower leaves dead, d small tubers.
Highly Susceptible	All above symptoms and small number of small sized tubers.	All above	All leaves dead, stem
	Highly Resistance Resistance Moderately Resistance Moderately Susceptible Susceptible Highly	Highly Resistance Resistance Resistance Rolling of leaves in case of primary infection and lower leaves in case of secondary infection, erect growth Moderately Resistance Rolling of leaves extending, leaves become stiff and leathery, stunting of plants and erect growth Moderately Short internodes, papery sound of leathery leaves, rolling and stunting of whole plants. Young buds are slightly yellowish and purplish Susceptible Clear rolling of leaves, severe stunting, few tubers and tuber necrosis Highly All above symptoms and small	Resistance Resistance Resistance Resistance Rolling of leaves in case of primary infection and lower leaves in case of secondary infection, erect growth Moderately Resistance Rolling of leaves extending, Resistance Rolling of leaves extending, leaves become stiff and leathery, stunting of plants and erect growth Moderately Short internodes, papery sound of leathery leaves, rolling and stunting of whole plants. Young buds are slightly yellowish and purplish Susceptible Clear rolling of leaves, severe stunting, few tubers and tuber necrosis Highly All above symptoms No visible symptoms. Mild mottling on Mosaic symptoms Distinct mosaic

Islam, M. U., et al. "Screening of potato germplasm against RNA viruses and their identification through ELISA." J Green Physiol Genet Genom 1 (2015): 22-31.

Likert scale for customer satisfaction



https://www.questionpro.com/blog/ordinal-scale/

Many real-world predictions problems have ordered labels

And we can get much better performance using ordinal regression models rather than regular classifiers

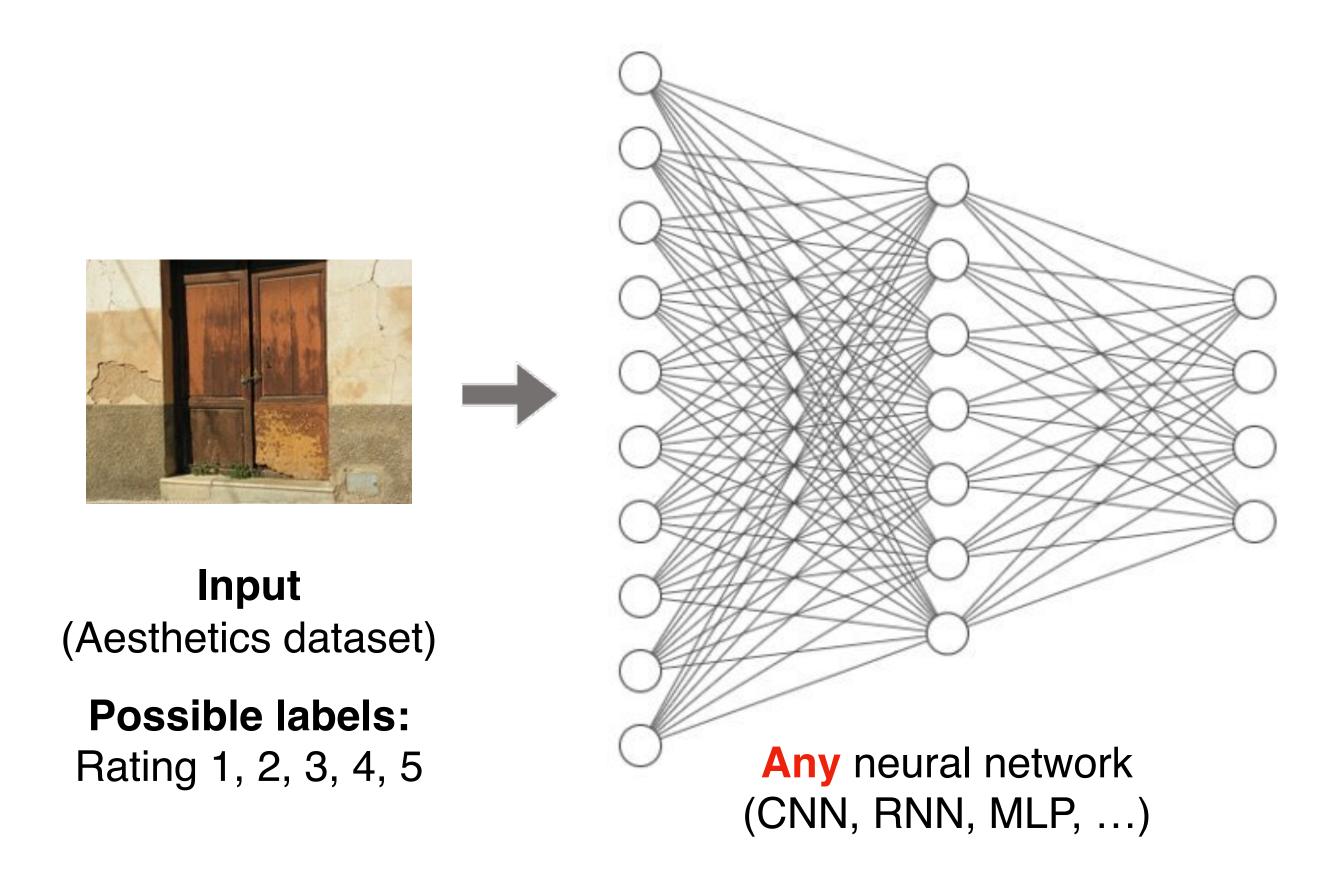
How? Let's (re)use what we already know:
An extended binary classification framework

How? Let's (re)use what we already know: An extended binary classification framework

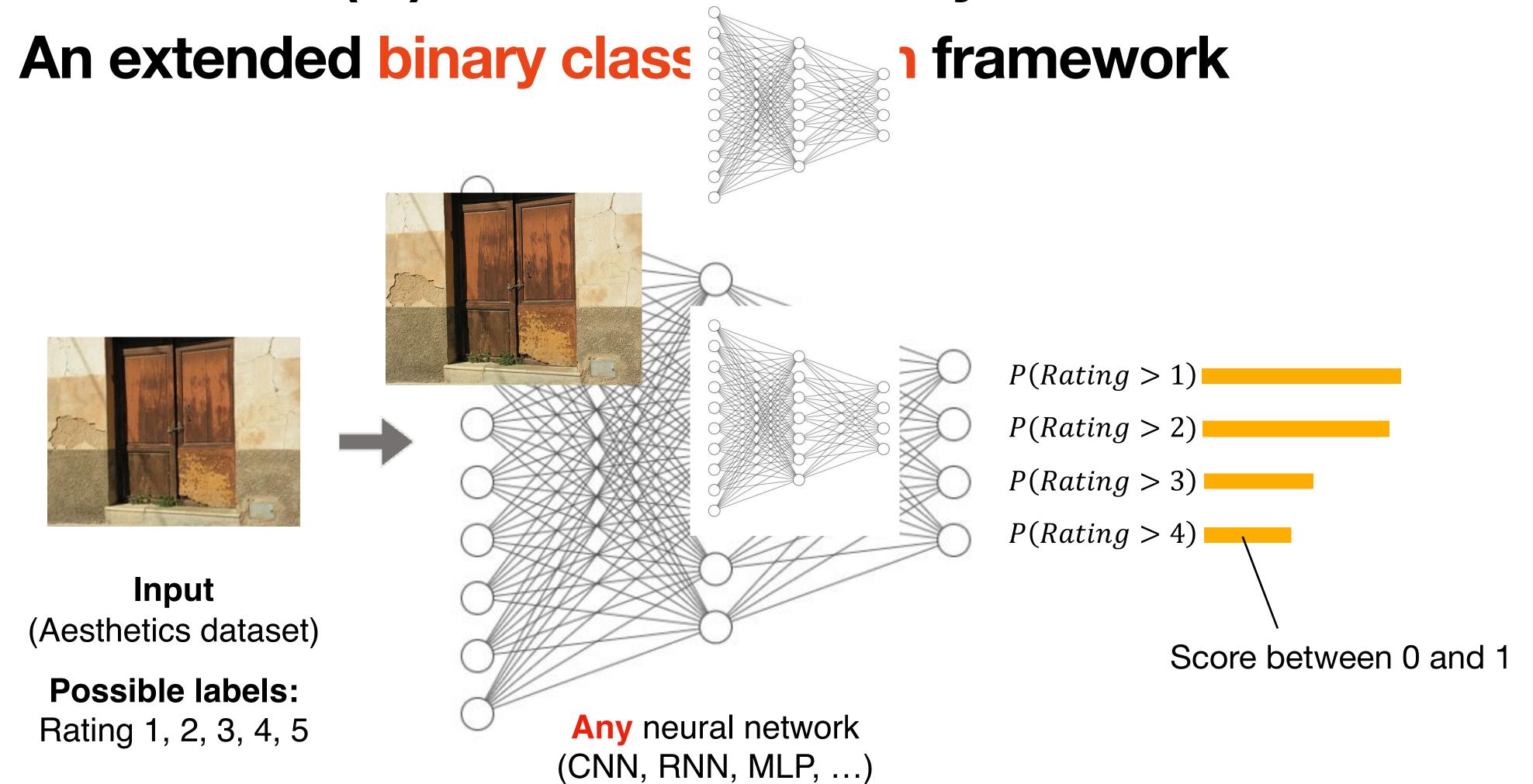
Input (Aesthetics dataset)

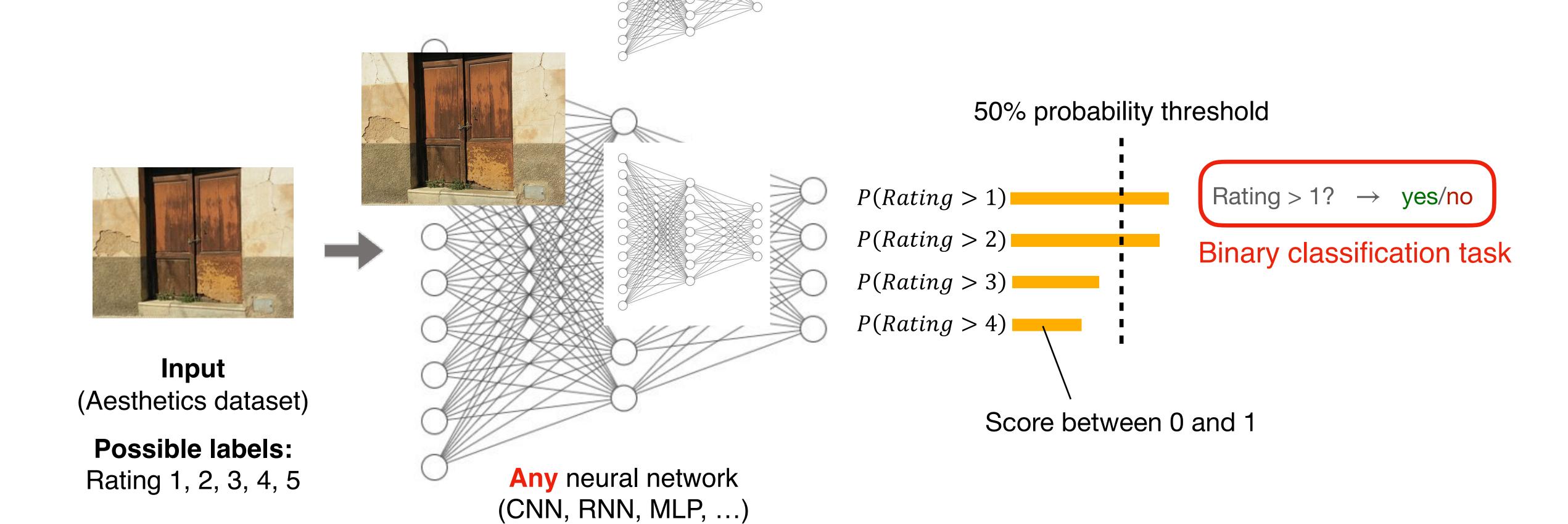
Possible labels: Rating 1, 2, 3, 4, 5

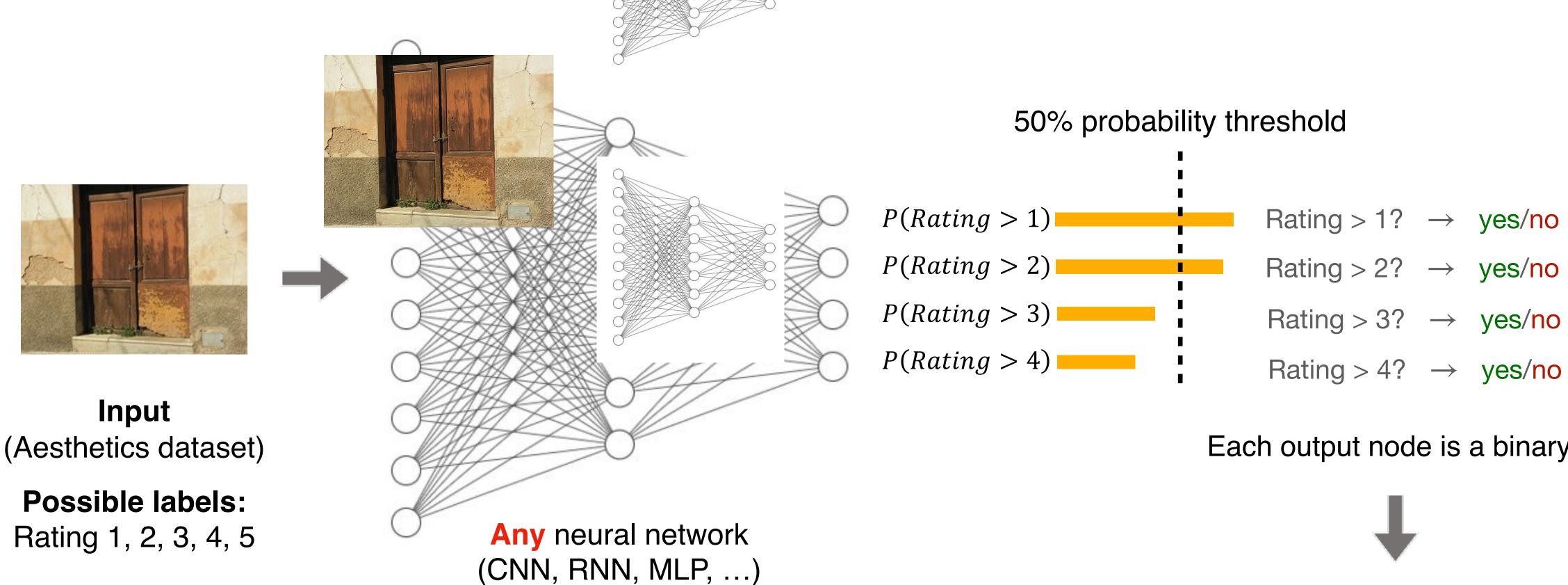
How? Let's (re)use what we already know: An extended binary classification framework



How? Let's (re)use what we already know:

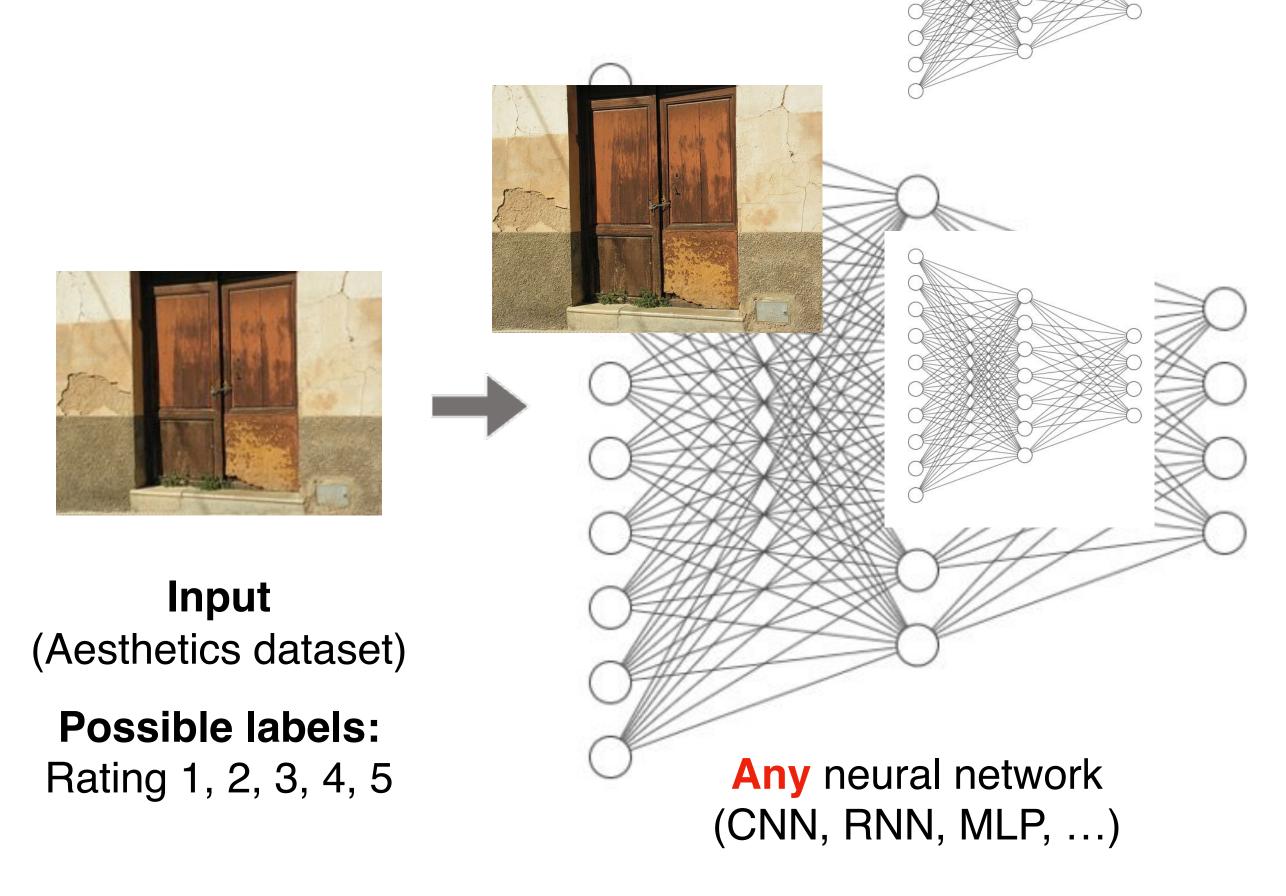






Each output node is a binary task

Predicted ordinal label is the sum over the **yes**es + 1



P(Rating > 1) Rating > 1? \rightarrow yes/no P(Rating > 2) Rating > 2? \rightarrow yes/no P(Rating > 3) Rating > 3? \rightarrow yes/no P(Rating > 4) Rating > 4? \rightarrow yes/no

Each output node is a binary task

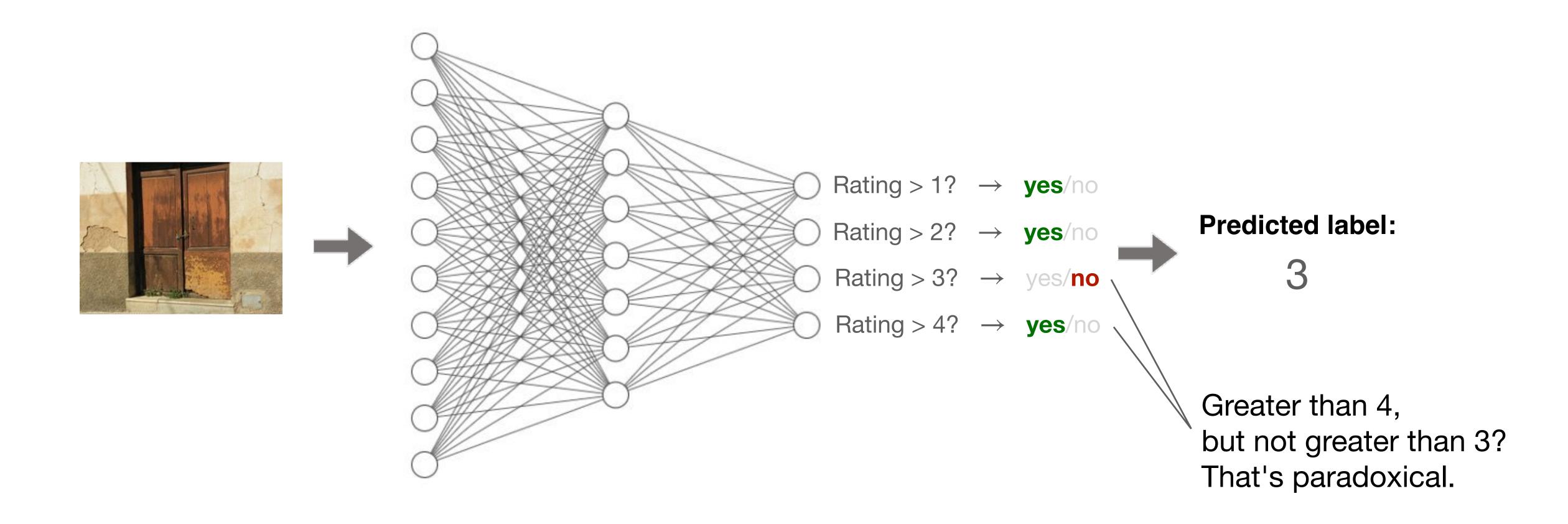
Predicted ordinal label is the sum over the <u>yes</u>es + 1

Predicted label:

3

Problem: rank inconsistency

Problem: rank inconsistency

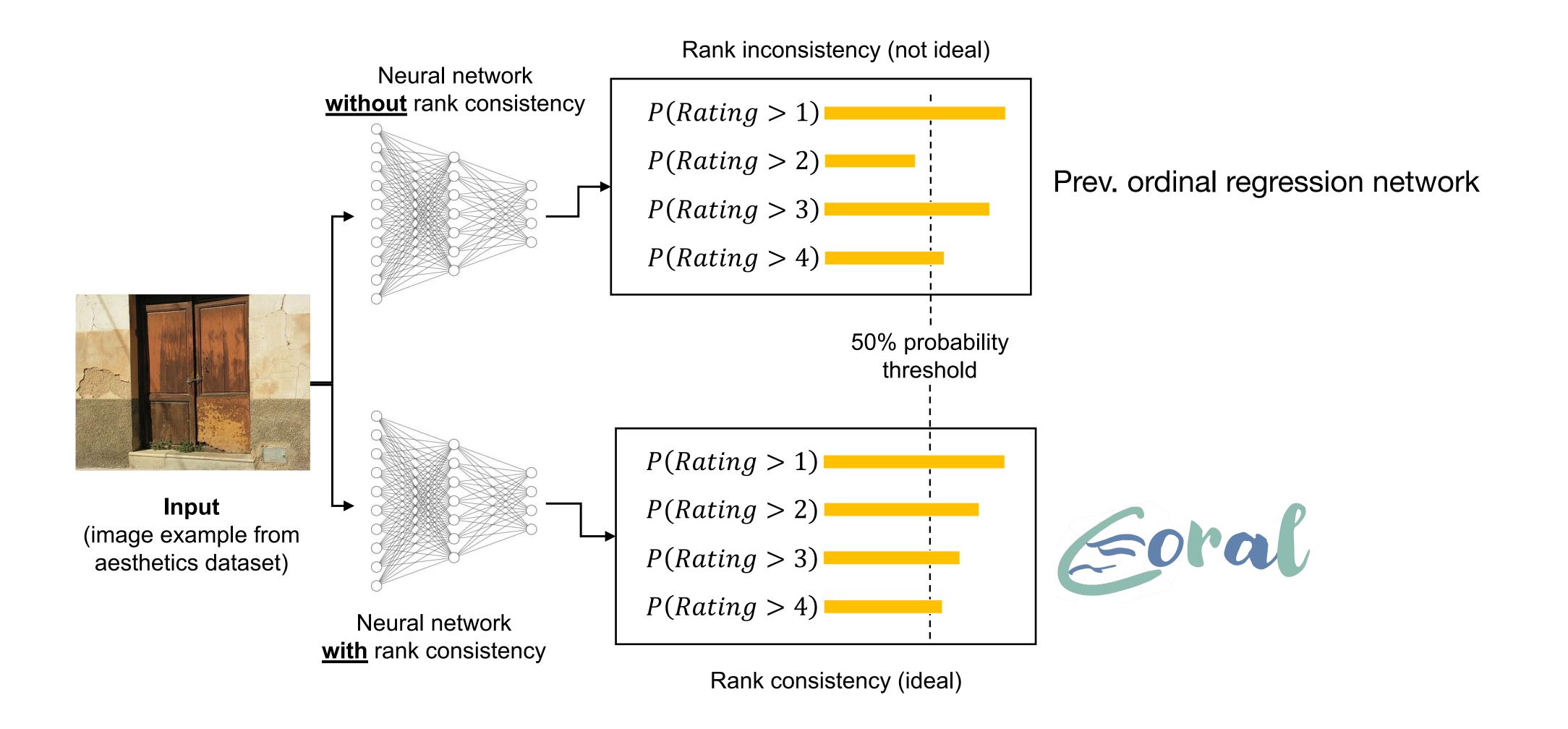


Addressing the rank inconsistency issue leads to better predictive performance

Cao, Mirjalili, Raschka (2020)

Rank Consistent Ordinal Regression for Neural Networks with Application to Age Estimation

Pattern Recognition Letters. 140, 325-331, https://www.sciencedirect.com/science/article/pii/S016786552030413X



Cao, Mirjalili, Raschka (2020)

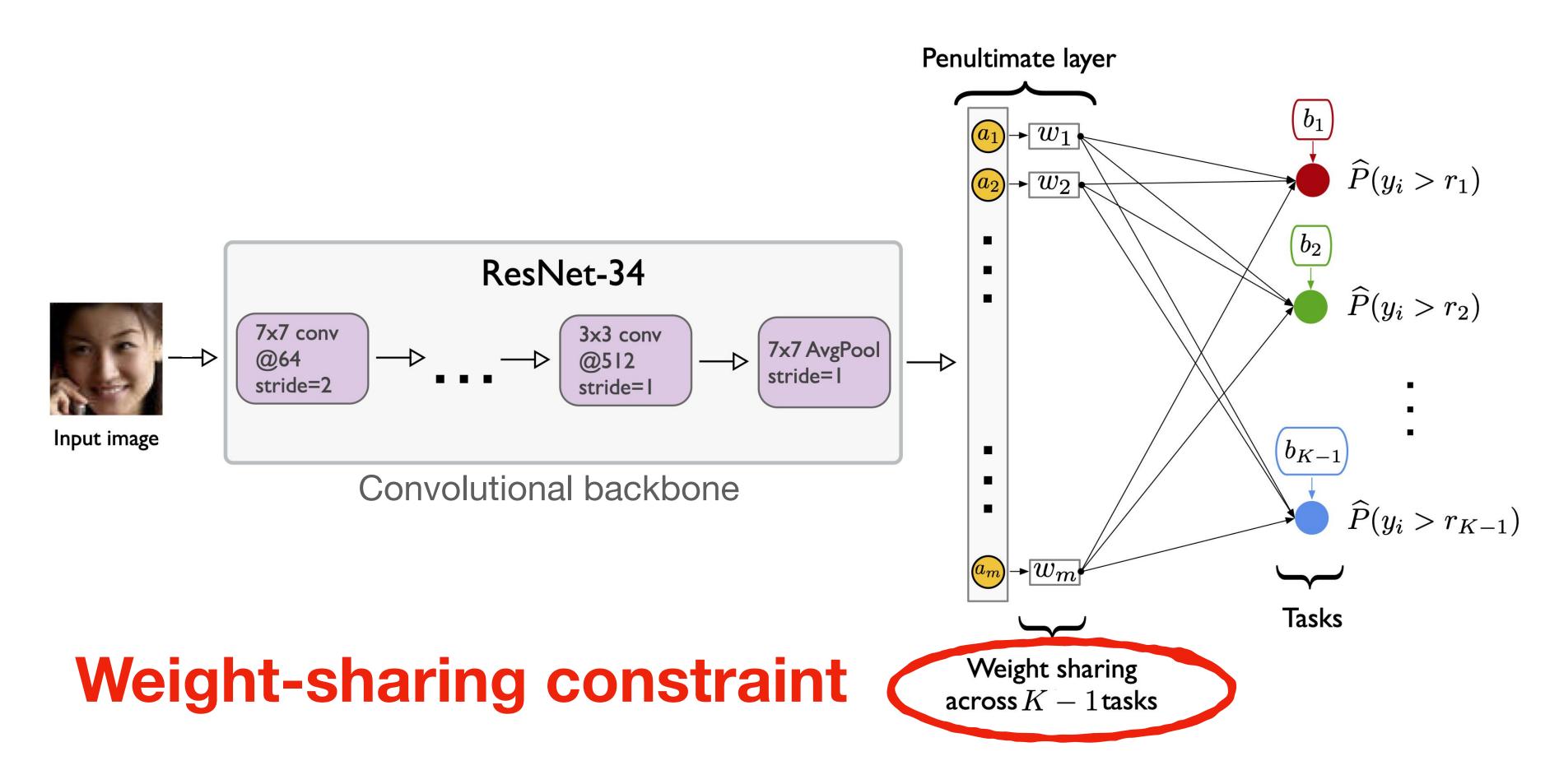
Rank Consistent Ordinal Regression for Neural Networks with Application to Age Estimation

Pattern Recognition Letters. 140, 325-331, https://www.sciencedirect.com/science/article/pii/S016786552030413X

Fixing rank inconsistency introduced a limitation:

weight-sharing constraint restricts the network's capacity

Fully connected output layer



Cao, Mirjalili, Raschka (2020)

Rank Consistent Ordinal Regression for Neural Networks with Application to Age Estimation

Pattern Recognition Letters. 140, 325-331, https://www.sciencedirect.com/science/article/pii/S016786552030413X

Removing the weight-sharing constraint

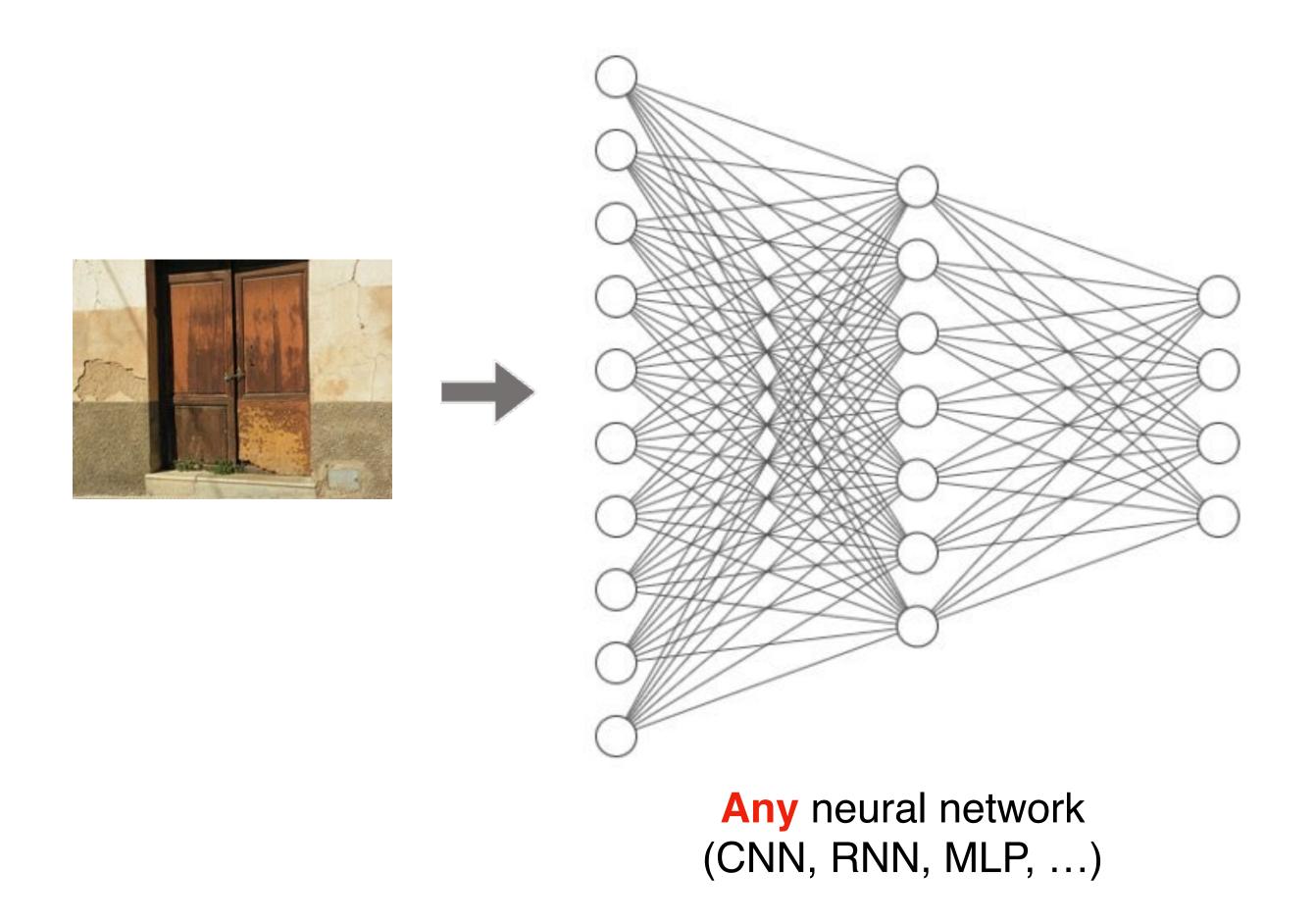
(while maintaining rank consistency)

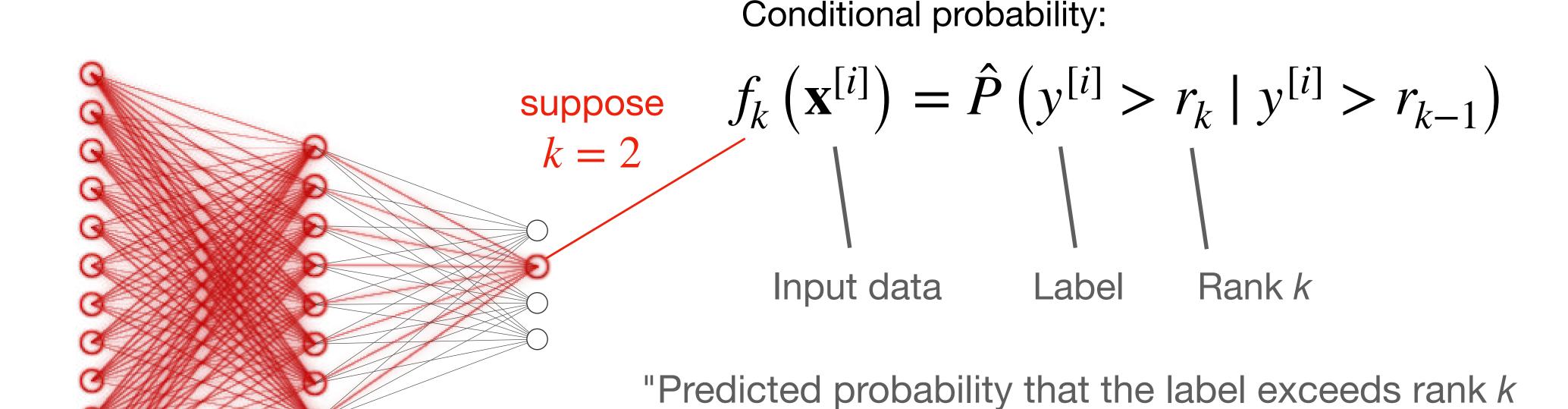
leads to even better performance

Shi, Cao, Raschka

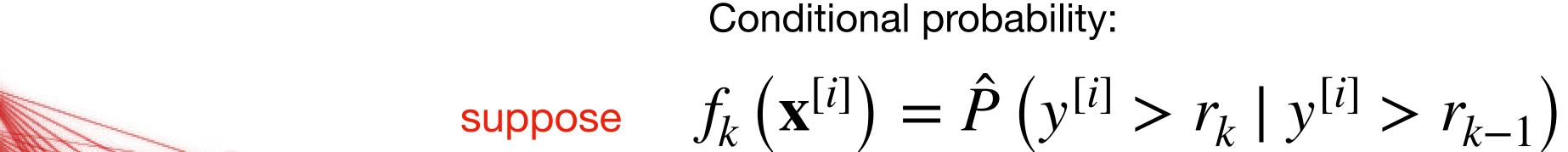
Deep Neural Networks for Rank-Consistent Ordinal Regression Based On Conditional Probabilities.

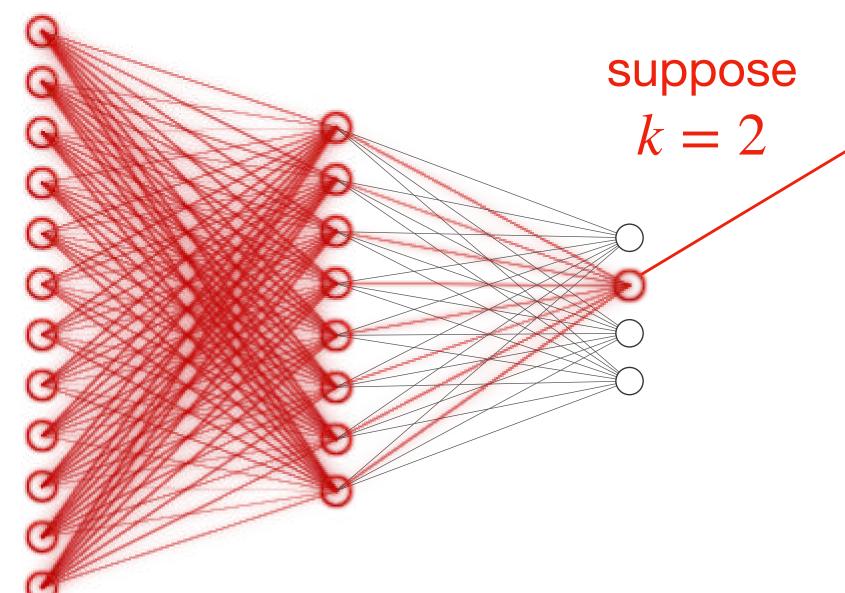
Arxiv preprint, https://arxiv.org/abs/2111.08851



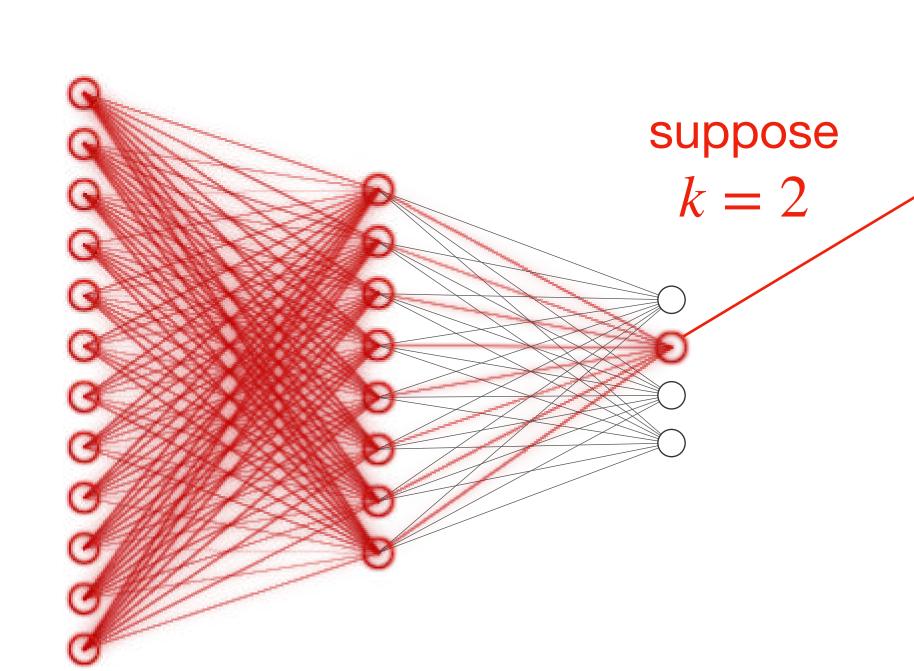


given that it exceed rank k-1"





(Learned via conditional training subsets; more details in paper)

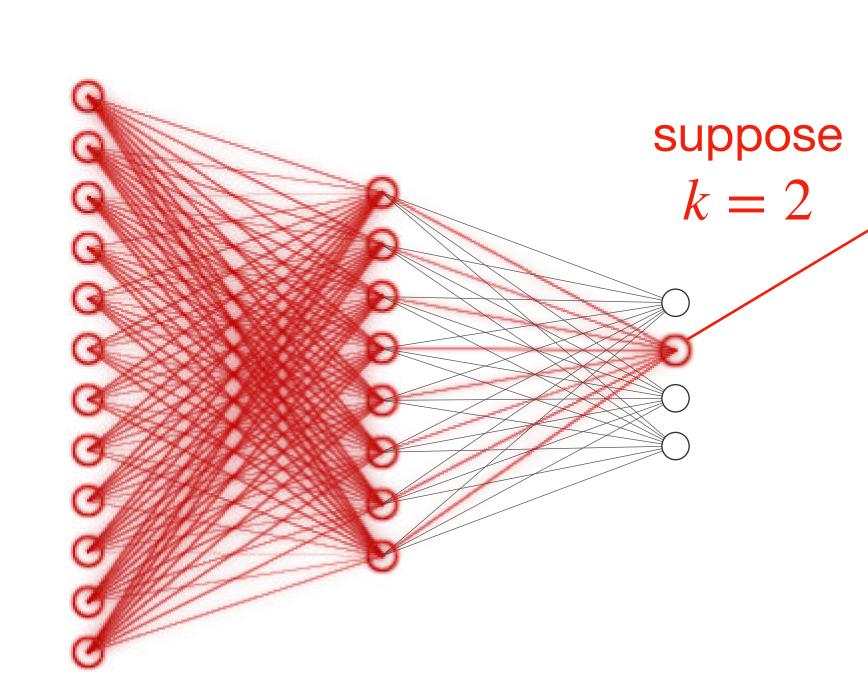


Conditional probability:

$$f_k(\mathbf{x}^{[i]}) = \hat{P}(y^{[i]} > r_k \mid y^{[i]} > r_{k-1})$$

Apply chain rule for probabilities to obtain unconditional probability:

$$\hat{P}\left(y^{[i]} > r_k\right) = \prod_{j=1}^{k} f_j\left(\mathbf{x}^{[i]}\right)$$



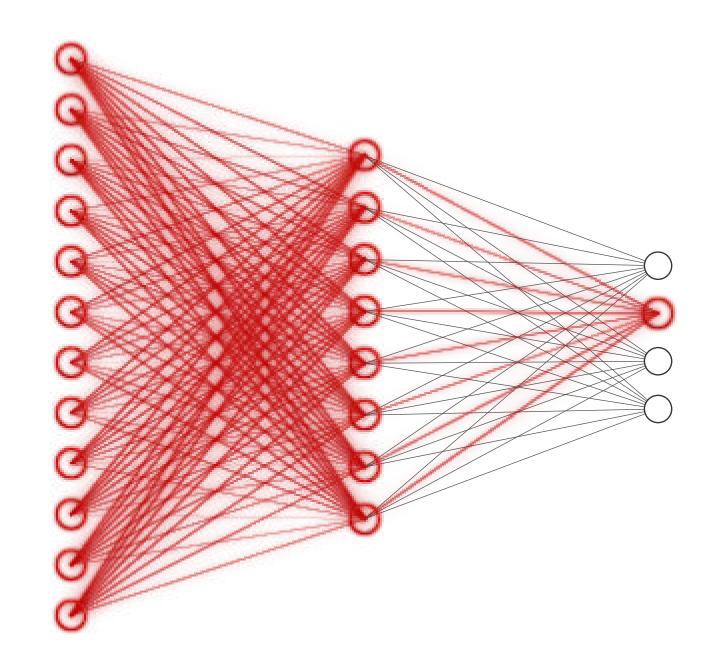
Conditional probability:

$$f_k(\mathbf{x}^{[i]}) = \hat{P}(y^{[i]} > r_k \mid y^{[i]} > r_{k-1})$$

Apply chain rule for probabilities to obtain unconditional probability:

$$\hat{P}\left(y^{[i]} > r_k\right) = \prod_{j=1}^{k} f_j\left(\mathbf{x}^{[i]}\right)$$

$$\hat{P}(y^{[i]} > r_2) = \hat{P}(y^{[i]} > r_2 \mid y^{[i]} > r_1) \cdot \hat{P}(y^{[i]} > r_1)$$



Left side guaranteed to be equal or less than right side

(Rank consistency: Rank probabilities are decreasing)



Cao, Mirjalili, Raschka (2020) Rank Consistent Ordinal Regression for Neural Networks with Application to Age Estimation Pattern Recognition Letters. 140, 325-331, https://www.sciencedirect.com/science/article/pii/S016786552030413X

Conditional Ordinal Regression for Neural Networks

Shi, Cao, Raschka Deep Neural Networks for Rank-Consistent Ordinal Regression Based On Conditional Probabilities. Arxiv preprint, https://arxiv.org/abs/2111.08851

How do these methods compare?

How?

Weight-sharing in output layer (mathematical proof in paper)

How?

Weight-sharing in output layer (mathematical proof in paper)

Chain rule for probabilities & conditional training sets

	How?	Advantages
	Weight-sharing in output layer (mathematical proof in paper)	Easy to implementReduced overfittingFast
C & RN	Chain rule for probabilities & conditional training sets	

	How?	Advantages
	Weight-sharing in output layer (mathematical proof in paper)	Easy to implementReduced overfittingFast
CIRN	Chain rule for probabilities & conditional training sets	 Easy to implement Higher capacity Better predictive performance

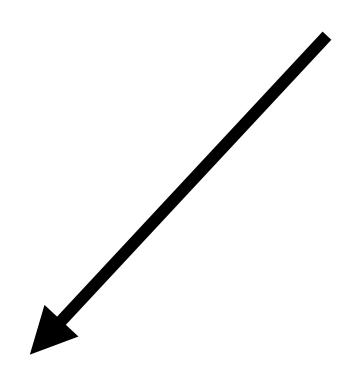
Skipping over further mathematical details ... How do we use this in practice?

in 3 lines of code

Full examples: https://raschka-research-group.github.io/coral-pytorch/

in 3 lines of code

More code examples for tabular, text, and image data



Full examples: https://raschka-research-group.github.io/coral-pytorch/

in 3 lines of code

```
class NeuralNetwork(torch.nn.Module):
    def __init__(self, input_size, hidden_units, num_classes):
        super().__init__()
       # ... define hidden layers ...
        output_layer = torch.nn.Linear(hidden_units[-1],
                                      num_classes)
        all_layers.append(output_layer)
        self.model = torch.nn.Sequential(*all_layers)
    def forward(self, x):
        x = self.model(x)
       return x
```

- **Any** neural network (CNN, RNN, MLP, ...)

Full examples:

in 3 lines of code

```
class NeuralNetwork(torch.nn.Module):
    def __init__(self, input_size, hidden_units, num_classes):
        super().__init__()
       # ... define hidden layers ...
        output_layer = torch.nn.Linear(hidden units[-1],
                                      num_classes)
        all_layers.append(output_layer)
        self.model = torch.nn.Sequential(*all_layers)
    def forward(self, x):
        x = self.model(x)
        return x
```


Update the number of classes

Full examples:

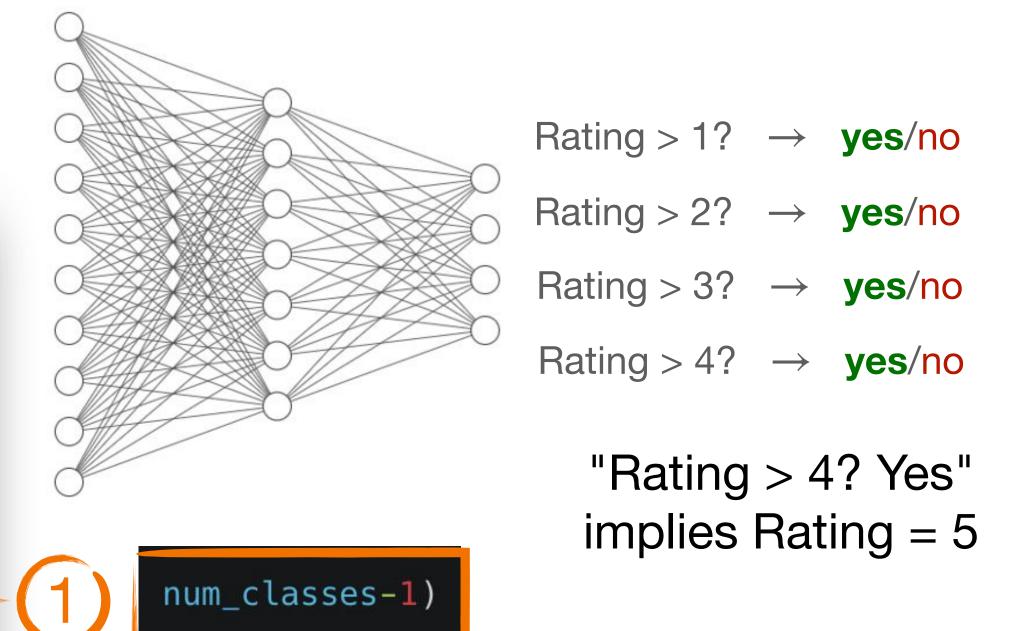
in 3 lines of code

```
class NeuralNetwork(torch.nn.Module):
   def __init__(self, input_size, hidden_units, num_classes):
       super().__init__()
       # ... define hidden layers ...
       output_layer = torch.nn.Linear(hidden units[-1],
                                                                       num_classes-1)
                                     num_classes)
       all_layers.append(output_layer)
       self.model = torch.nn.Sequential(*all_layers)
                                                                 Why -1
   def forward(self, x):
       x = self.model(x)
       return x
```


Full examples:

in 3 lines of code

```
. .
class NeuralNetwork(torch.nn.Module):
    def __init__(self, input_size, hidden_units, num_classes):
        super().__init__()
        # ... define hidden layers ...
        output_layer = torch.nn.Linear(hidden units[-1],
                                       num_classes)
        all_layers.append(output_layer)
        self.model = torch.nn.Sequential(*all_layers)
    def forward(self, x):
        x = self.model(x)
        return x
```



Full examples:

in 3 lines of code

```
import pytorch_lightning as pl
class LightningMLP(pl.LightningModule):
    def __init__(self, model):
        super().__init__()
    def _shared_forward_step(self, batch, batch_idx):
        features, true_labels = batch
        logits = self(features)
        loss = torch.nn.functional.cross_entropy(logits, true_labels)
        predicted_labels = torch.argmax(logits, dim=1)
        return loss, predicted_labels
```

2) Replace the standard cross entropy loss

Full examples:

in 3 Lines of Code

```
import pytorch_lightning as pl
class LightningMLP(pl.LightningModule):
    def __init__(self, model):
        super().__init__()
    def _shared_forward_step(self, batch, batch_idx):
        features, true_labels = batch
        logits = self(features)
        loss = torch.nn.functional.cross_entropy(logits, true_labels)
        predicted_labels = torch.argmax(logits, dim=1)
        return loss, predicted_labels
```

from coral_pytorch.losses import corn_loss

2)

Full examples:

in 3 lines of code

```
import pytorch_lightning as pl
class LightningMLP(pl.LightningModule):
    def __init__(self, model):
        super().__init__()
    def _shared_forward_step(self, batch, batch_idx):
        features, true_labels = batch
        logits = self(features)
        loss = torch.nn.functional.cross_entropy(logits, true_labels)
        predicted_labels = torch.argmax(logits, dim=1)
        return loss, predicted_labels
```

Convert logits to classes

Full examples:

in 3 Lines of Code

```
import pytorch_lightning as pl
class LightningMLP(pl.LightningModule):
    def __init__(self, model):
        super().__init__()
    def _shared_forward_step(self, batch, batch_idx):
        features, true_labels = batch
        logits = self(features)
        loss = torch.nn.functional.cross_entropy(logits, true_labels)
        predicted_labels = torch.argmax(logits, dim=1)
        return loss, predicted_labels
```

from coral_pytorch.dataset import corn_label_from_logits

3)

predicted_labels = corn_label_from_logits(logits)

Full examples:

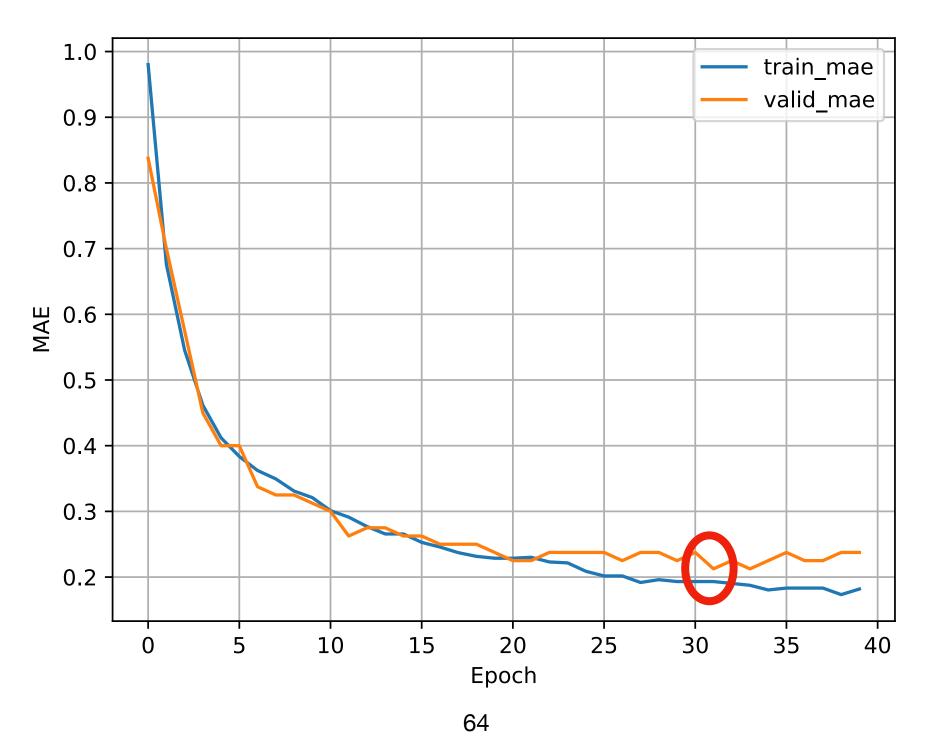
Code

https://github.com/rasbt/scipy2022-talk

```
Desktop—grid session ssh scipy2022-talk—grid—ssh python3.9 ~/miniforge3/bin/grid session ssh scipy2022-talk—99×28

(coral—pytorch) gridai@session:~/scipy2022-talk/src → python main_mlp.py \
> --batch_size 16 \
> --data_path ../datasets/ \
> --learning_rate 0.005 \
> --mixed_precision true \
> --num_epochs 40 \
> --num_workers 3 \
> --output_path ./cement_strength \
> --loss_mode crossentropy
```

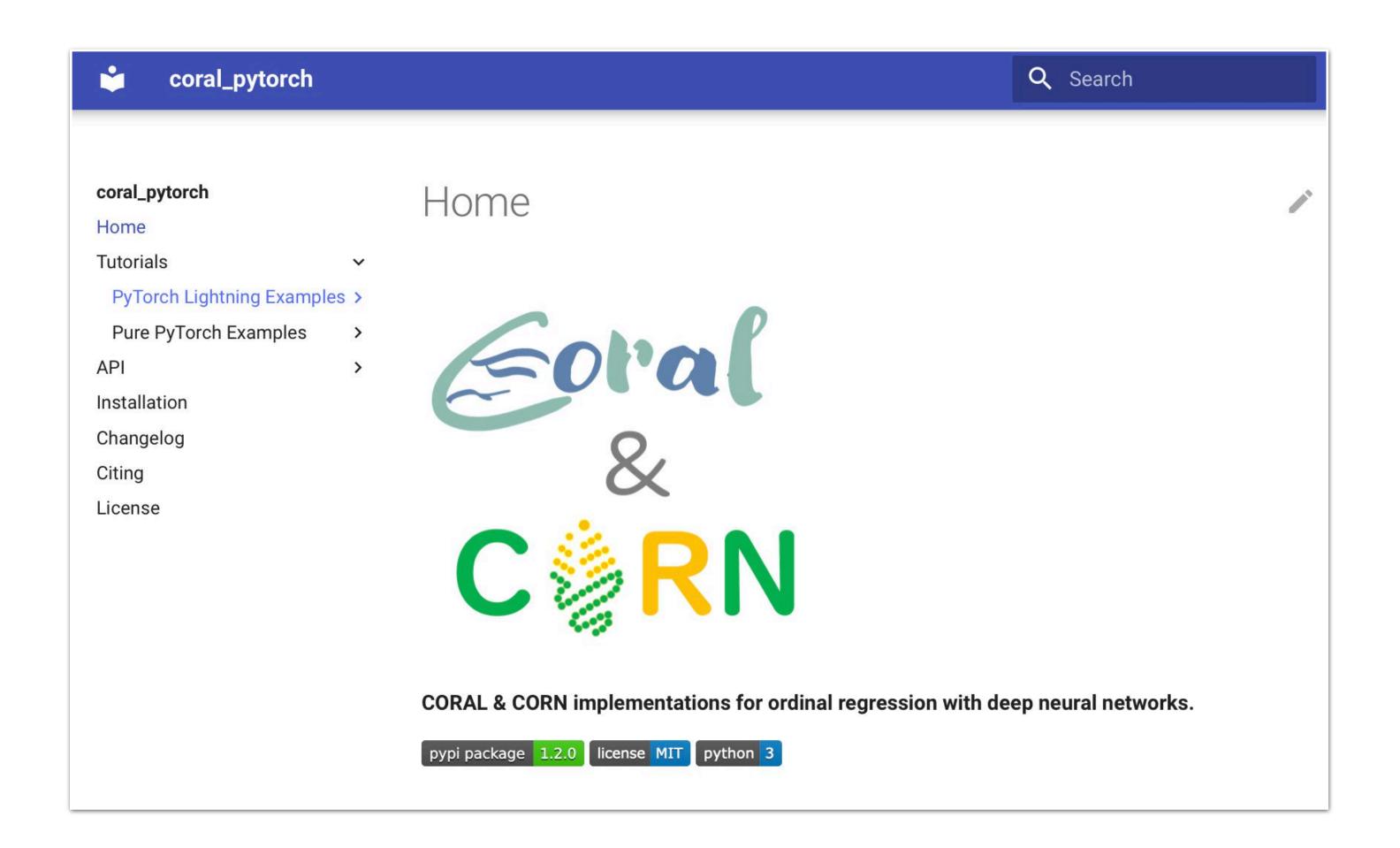
```
python main_mlp.py \
   --batch_size 16 \
   --data_path ../datasets/ \
   --learning_rate 0.005 \
   --mixed_precision true \
   --num_epochs 40 \
   --num_workers 3 \
   --output_path ./cement_strength \
   --loss_mode corn
```



≡ Examples

Code

https://github.com/rasbt/scipy2022-talk



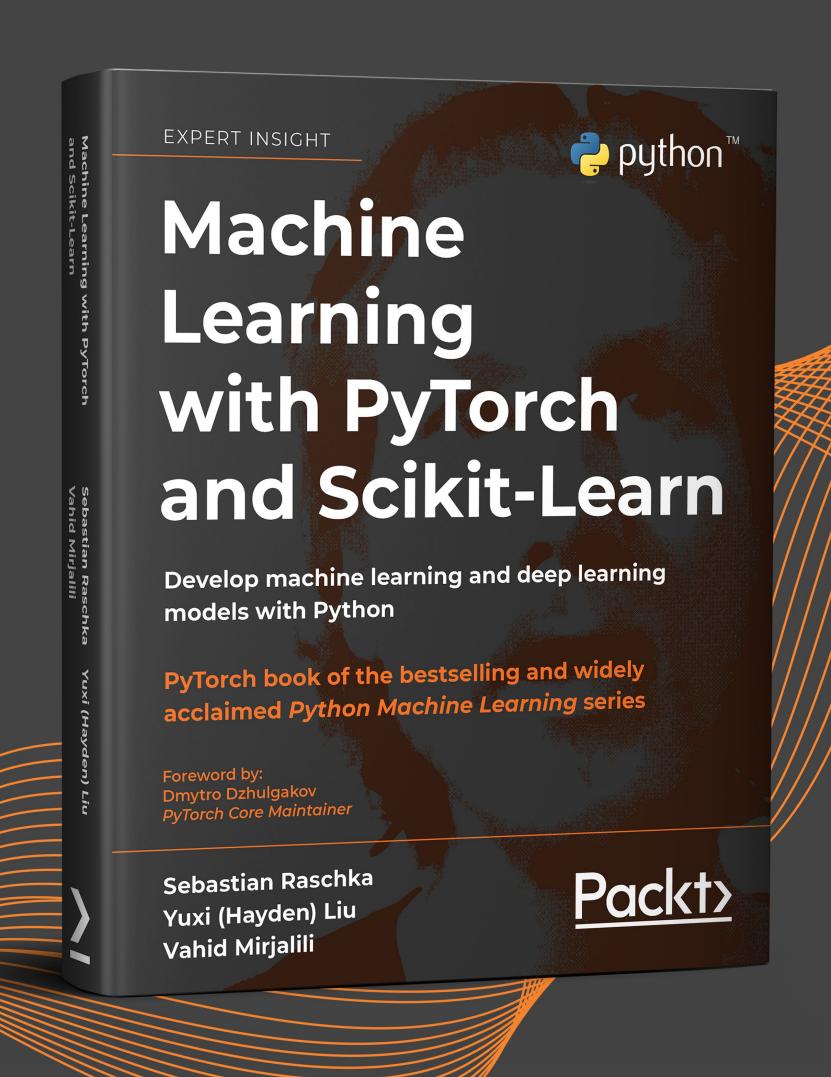
More examples (CNN, RNN, MLP):

Acknowledgements

Wenzhi Cao Xintong Shi Vahid Mirjalili

William Falcon
Adrian Wälchli
Jirka Borovec

Marc Ferradou



Feb 25

https://sebastianraschka.com/books/

https://github.com/rasbt/machine-learning-book

Contact

- @rasbt
- sebastian@lightning.ai
- https://sebastianraschka.com

Code & slides

https://github.com/rasbt/scipy2022-talk

Additional Slides for Q&A

in 4 Lines of Code

Full examples: https://raschka-research-group.github.io/coral-pytorch/

in 4 Lines of Code

```
class NeuralNetwork(torch.nn.Module):
    def __init__(self, input_size, hidden_units, num_classes):
        super().__init__()
        # ... define hidden layers ...
        output_layer = torch.nn.Linear(hidden_units[-1],
                                      num_classes)
        all_layers.append(output_layer)
        self.model = torch.nn.Sequential(*all_layers)
    def forward(self, x):
        x = self.model(x)
        return x
```


Full examples:

in 4 Lines of Code

```
class NeuralNetwork(torch.nn.Module):
    def __init__(self, input_size, hidden_units, num_classes):
        super().__init__()
        # ... define hidden layers ...
        output_layer = torch.nn.Linear(hidden_units[-1],
                                      num_classes)
        all_layers.append(output_layer)
        self.model = torch.nn.Sequential(*all_layers)
    def forward(self, x):
        x = self.model(x)
        return x
```


Full examples:

in 4 Lines of Code

```
class NeuralNetwork(torch.nn.Module):
   def __init__(self, input_size, hidden_units, num_classes):
       super().__init__()
       # ... define hidden layers ...
       output_layer = torch.nn.Linear(hidden_units[-1],
                                      num_classes)
       all_layers.append(output_layer)
       self.model = torch.nn.Sequential(*all_layers)
   def forward(self, x):
       x = self.model(x)
       return x
```


Full examples:

in 4 Lines of Code

```
import pytorch_lightning as pl
class LightningMLP(pl.LightningModule):
    def __init__(self, model):
        super().__init__()
    def _shared_forward_step(self, batch, batch_idx):
        features, true_labels = batch
        logits = self(features)
        loss = torch.nn.functional.cross_entropy(logits, true_labels)
        predicted_labels = torch.argmax(logits, dim=1)
        return loss, predicted_labels
```

```
from coral_pytorch.losses import coral_loss
from coral_pytorch.dataset import levels_from_labelbatch
from coral_pytorch.dataset import proba_to_label
```


PyTorch Lightning

Full examples:

in 4 Lines of Code

```
import pytorch_lightning as pl
class LightningMLP(pl.LightningModule):
    def __init__(self, model):
        super().__init__()
    def _shared_forward_step(self, batch, batch_idx):
        features, true_labels = batch
        logits = self(features)
        loss = torch.nn.functional.cross_entropy(logits, true_labels)
        predicted_labels = torch.argmax(logits, dim=1)
        return loss, predicted_labels
```

```
from coral_pytorch.losses import coral_loss
from coral_pytorch.dataset import levels_from_labelbatch
from coral_pytorch.dataset import proba_to_label
```

```
levels = levels_from_labelbatch(
          true_labels, num_classes=self.model.num_classes)
loss = coral_loss(logits, levels)
```

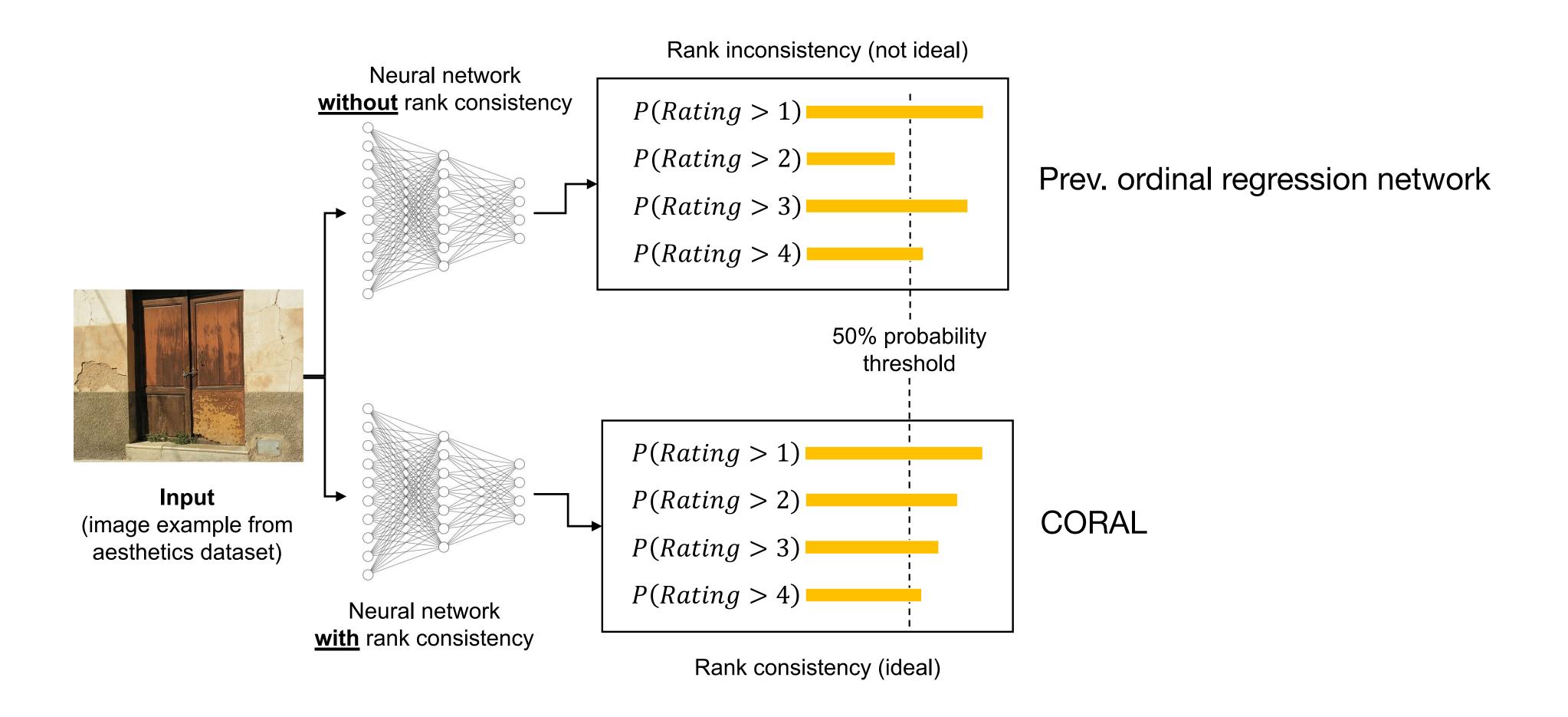

predicted_labels = proba_to_label(torch.sigmoid(logits))

Full examples:

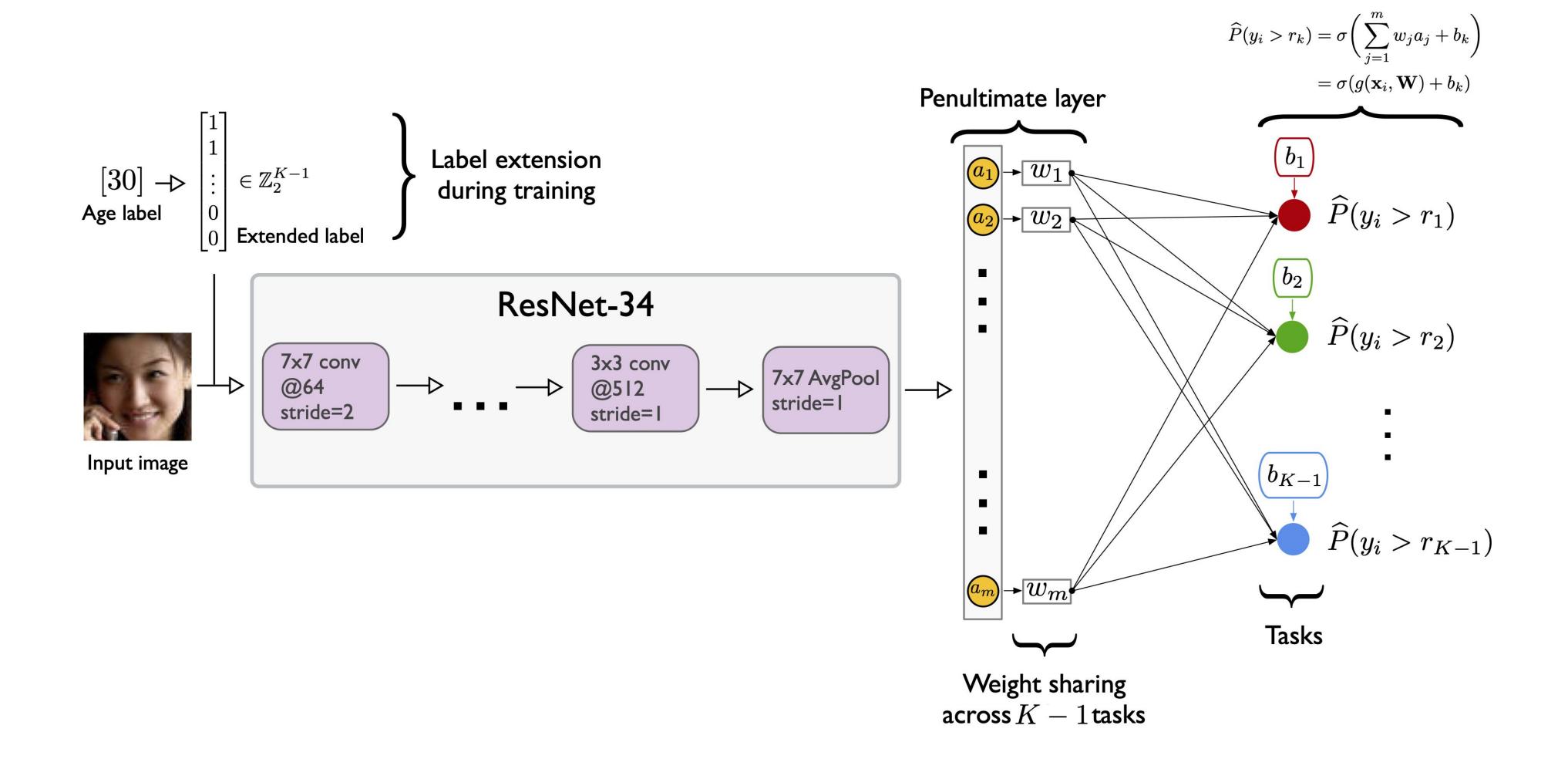
CORAL Performance

Table 1. Age prediction errors on the test sets. All models are based on the ResNet-34 architecture.

Method	Random	MORPH-2		AFAD		CACD	
Wiethou	Seed	MAE	RMSE	MAE	RMSE	MAE	RMSE
CE-CNN	0	3.26	4.62	3.58	5.01	5.74	8.20
	1	3.36	4.77	3.58	5.01	5.68	8.09
	2	3.39	4.84	3.62	5.06	5.53	7.92
	$AVG \pm SD$	3.34 ± 0.07	4.74 ± 0.11	3.60 ± 0.02	5.03 ± 0.03	5.65 ± 0.11	8.07 ± 0.14
	0	2.87	4.08	3.56	4.80	5.36	7.61
OR-CNN	1	2.81	3.97	3.48	4.68	5.40	7.78
(Niu et al., 2016)	2	2.82	3.87	3.50	4.78	5.37	7.70
	$AVG \pm SD$	2.83 ± 0.03	3.97 ± 0.11	3.51 ± 0.04	4.75 ± 0.06	5.38 ± 0.02	7.70 ± 0.09
	0	2.66	3.69	3.42	4.65	5.25	7.41
CORAL-CNN	1	2.64	3.64	3.51	4.76	5.25	7.50
(ours)	2	2.62	3.62	3.48	4.73	5.24	7.52
	$AVG \pm SD$	2.64 ± 0.02	3.65 ± 0.04	3.47 ± 0.05	4.71 ± 0.06	5.25 ± 0.01	7.48 ± 0.06



CORAL Architecture



CORAL Theorem

Theorem 1 (Ordered bias units). By minimizing the loss function defined in Eq. 4, the optimal solution $(\mathbf{W}^*, \mathbf{b}^*)$ satisfies $b_1^* \geq b_2^* \geq \ldots \geq b_{K-1}^*$.

Proof. Suppose (**W**, b) is an optimal solution and $b_k < b_{k+1}$ for some k. Claim: replacing b_k with b_{k+1} , or replacing b_{k+1} with b_k , decreases the objective value L. Let

$$A_1 = \{n : y_n^{(k)} = y_n^{(k+1)} = 1\},\$$

$$A_2 = \{n : y_n^{(k)} = y_n^{(k+1)} = 0\},\$$

$$A_3 = \{n : y_n^{(k)} = 1, y_n^{(k+1)} = 0\}.$$

By the ordering relationship, we have

$$A_1 \cup A_2 \cup A_3 = \{1, 2, \dots, N\}.$$

Denote $p_n(b_k) = \sigma(g(\mathbf{x}_n, \mathbf{W}) + b_k)$ and

$$\delta_n = \log(p_n(b_{k+1})) - \log(p_n(b_k)),$$

$$\delta'_n = \log(1 - p_n(b_k)) - \log(1 - p_n(b_{k+1})).$$

Since $p_n(b_k)$ is increasing in b_k , we have $\delta_n > 0$ and $\delta'_n > 0$. If we replace b_k with b_{k+1} , the loss terms related to the k-th task are updated. The change of loss L (Eq. 4) is given as

$$\Delta_1 L = \lambda^{(k)} \left[-\sum_{n \in A_1} \delta_n + \sum_{n \in A_2} \delta'_n - \sum_{n \in A_3} \delta_n \right].$$

Accordingly, if we replace b_{k+1} with b_k , the change of L is given as

$$\Delta_2 L = \lambda^{(k+1)} \left[\sum_{n \in A_1} \delta_n - \sum_{n \in A_2} \delta'_n - \sum_{n \in A_3} \delta'_n \right].$$

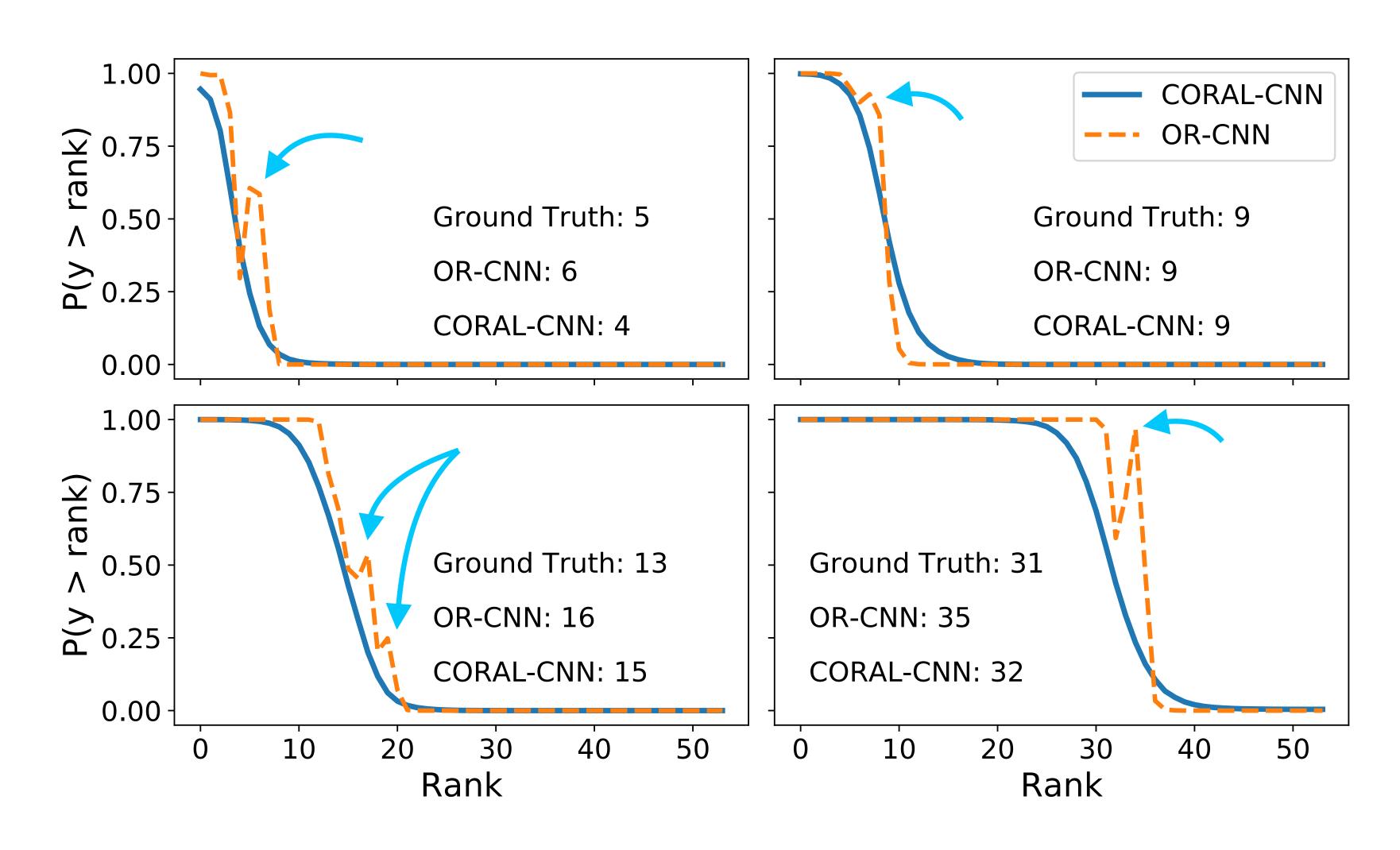
By adding $\frac{1}{\lambda^{(k)}}\Delta_1 L$ and $\frac{1}{\lambda^{(k+1)}}\Delta_2 L$, we have

$$\frac{1}{\lambda^{(k)}}\Delta_1 L + \frac{1}{\lambda^{(k+1)}}\Delta_2 L = -\sum_{n \in A_3} (\delta_n + \delta'_n) < 0,$$

and know that either $\Delta_1 L < 0$ or $\Delta_2 L < 0$. Thus, our claim is justified. We conclude that any optimal solution (\mathbf{W}^*, b^*) that minimizes L satisfies

$$b_1^* \ge b_2^* \ge \ldots \ge b_{K-1}^*.$$

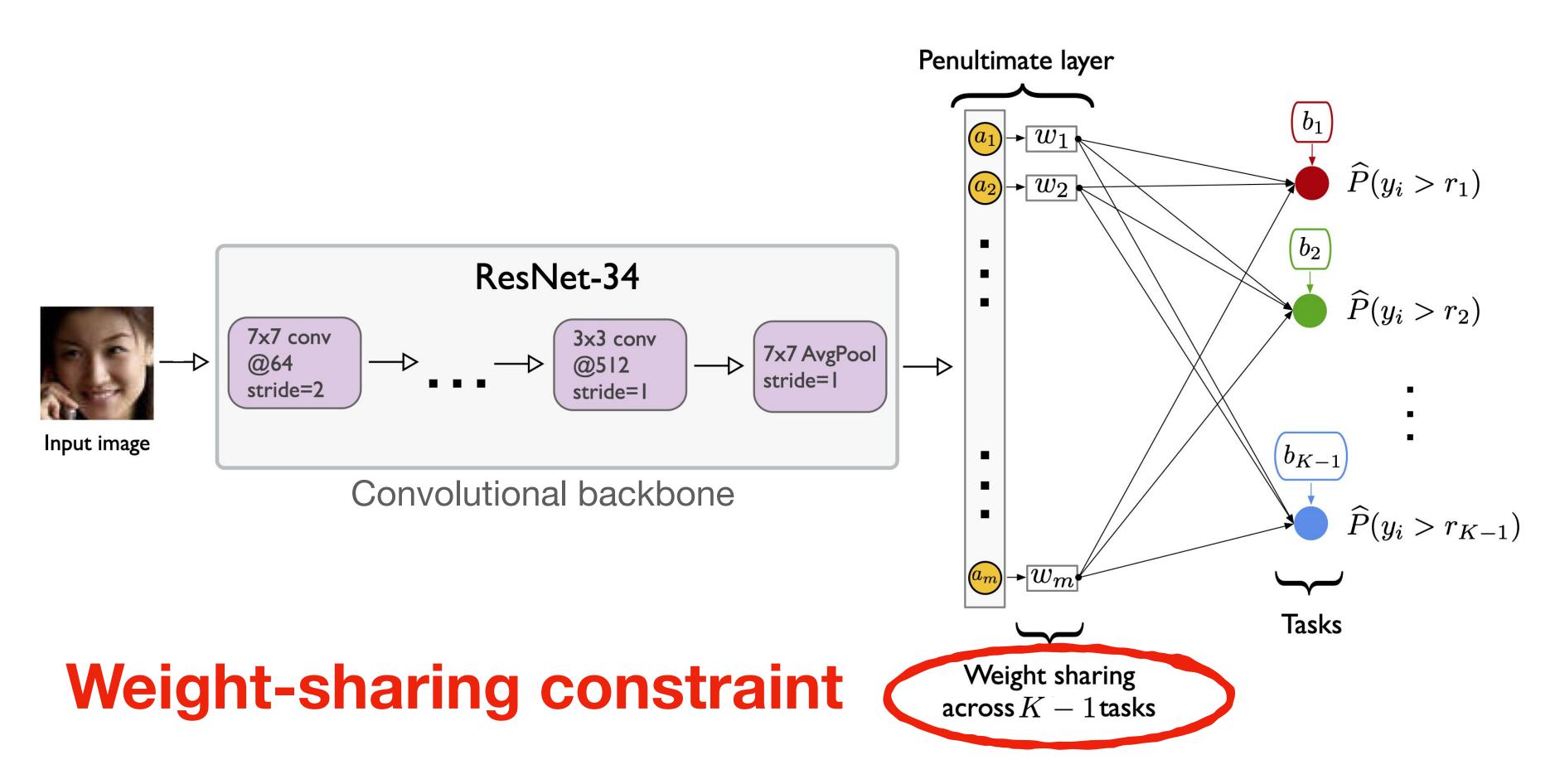
CORAL Rank Consistency



Fixing rank inconsistency introduced a limitation:

weight-sharing constraint restricts the network's capacity

Fully connected output layer



Removing the weight-sharing constraint

(while maintaining rank consistency)

leads to even better performance

Shi, Cao, Raschka (2021)

Deep Neural Networks for Rank-Consistent Ordinal Regression Based On Conditional Probabilities. Arxiv preprint, https://arxiv.org/abs/2111.08851

CORN Method 1/3

3.3. Rank-consistent Ordinal Regression based on Conditional Probabilities

Given a training set $D = \{\mathbf{x}^{[i]}, y^{[i]}\}_{i=1}^{N}$, CORN applies a label extension to the rank labels $y^{[i]}$ similar to CORAL, such that the resulting binary label $y_k^{[i]} \in \{0, 1\}$ indicates whether $y^{[i]}$ exceeds rank r_k . Similar to CORAL, CORN also uses K-1 learning tasks associated with ranks $r_1, r_2, ..., r_K$ in the output layer as illustrated in Fig. 2.

However, in contrast to CORAL, CORN estimates a series of conditional probabilities using conditional training subsets (described in Section 3.4) such that the output of the k-th binary task $f_k(\mathbf{x}^{[i]})$ represents the conditional probability¹

$$f_k\left(\mathbf{x}^{[i]}\right) = \hat{P}\left(y^{[i]} > r_k \mid y^{[i]} > r_{k-1}\right),$$
 (2)

where the events are nested: $\{y^{[i]} > r_k\} \subseteq \{y^{[i]} > r_{k-1}\}.$

The transformed, unconditional probabilities can then be computed by applying the chain rule for probabilities to the model outputs:

$$\hat{P}\left(y^{[i]} > r_k\right) = \prod_{j=1}^k f_j\left(\mathbf{x}^{[i]}\right). \tag{3}$$

Since $\forall j, \ 0 \le f_j(\mathbf{x}^{[i]}) \le 1$, we have

$$\hat{P}\left(y^{[i]} > r_1\right) \ge \hat{P}\left(y^{[i]} > r_2\right) \ge \dots \ge \hat{P}\left(y^{[i]} > r_{K-1}\right),$$
 (4)

which guarantees rank consistency among the K-1 binary tasks.

CORN Method 2/3

3.4. Conditional Training Subsets

Our model aims to estimate $f_1(\mathbf{x}^{[i]})$ and the conditional probabilities $f_2(\mathbf{x}^{[i]})$, ..., $f_{K-1}(\mathbf{x}^{[i]})$. Estimating $f_1(\mathbf{x}^{[i]})$ is a classic binary classification task under the extended binary classification framework with the binary labels $y_1^{[i]}$. To estimate the conditional probabilities such as $\hat{P}(y^{[i]} > r_2 \mid y^{[i]} > r_1)$, we focus only on the subset of the training data where $y^{[i]} > r_1$. As a result, when we minimize the binary cross-entropy loss on these

conditional subsets, for each binary task, the estimated output probability has a proper conditional probability interpretation².

In order to model the conditional probabilities in Eq. 3, we construct conditional training subsets for training, which are used in the loss function (Section 3.5) that is minimized via backpropagation. The conditional training subsets are obtained from the original training set as follows:

$$S_1$$
: all $\{(\mathbf{x}^{[i]}, y^{[i]})\}$, for $i \in \{1, ..., N\}$, S_2 : $\{(\mathbf{x}^{[i]}, y^{[i]}) \mid y^{[i]} > r_1\}$, ... S_{K-1} : $\{(\mathbf{x}^{[i]}, y^{[i]}) \mid y^{[i]} > r_{k-2}\}$,

where $N = |S_1| \ge |S_2| \ge ... \ge |S_{K-1}|$, and $|S_k|$ denotes the size of S_k . Note that the labels $y^{[i]}$ are subject to the binary label extension as described in Section 3.3. Each conditional training subset S_k is used for training the conditional probability prediction $\hat{P}(y^{[i]} > r_k | y^{[i]} > r_{k-1})$ for $k \ge 2$.

CORN Method 3/3

3.5. Loss Function

Let $f_j(\mathbf{x}^{[i]})$ denote the predicted value of the j-th node in the output layer of the network (Fig. 2), and let $|S_j|$ denote the size of the j-th conditional training set. To train a CORN neural network using backpropagation, we minimize the following loss function:

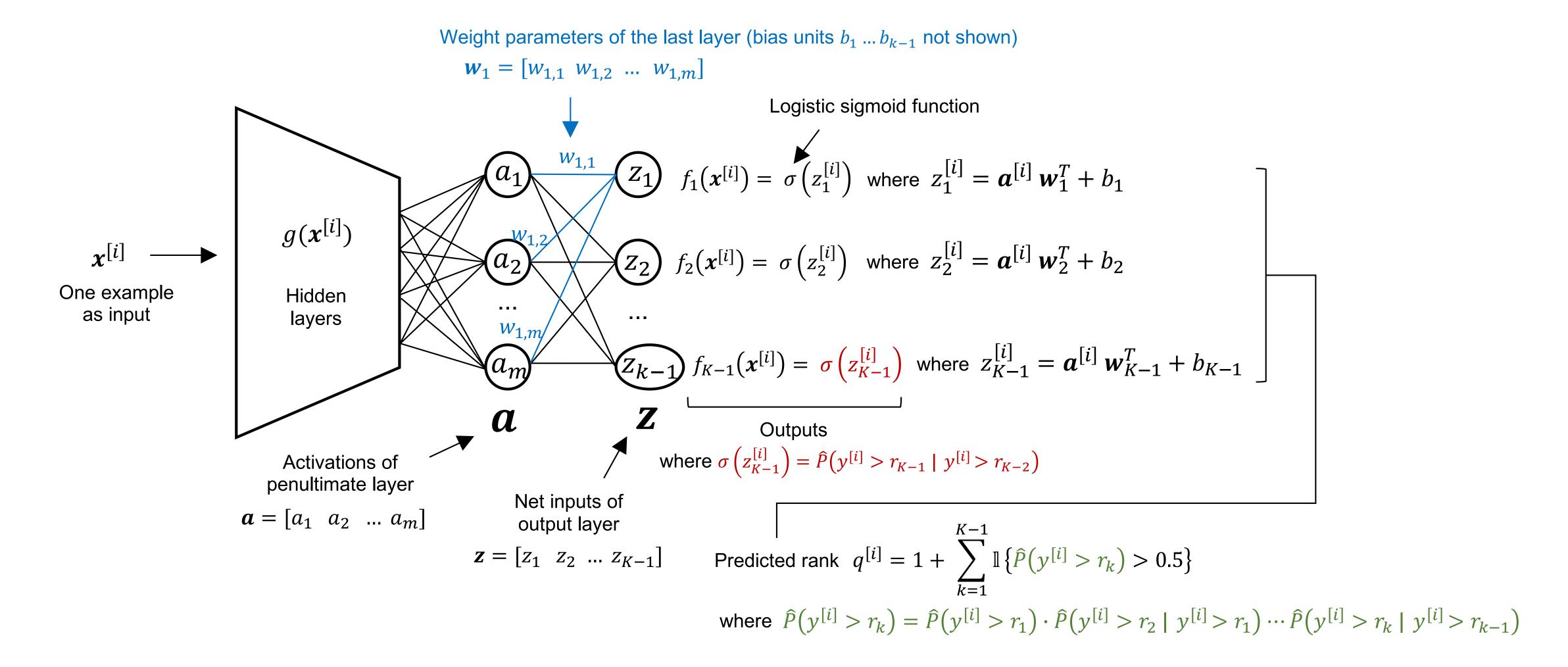
$$L(\mathbf{X}, \mathbf{y}) = -\frac{1}{\sum_{j=1}^{K-1} |S_{j}|} \sum_{j=1}^{K-1} \sum_{i=1}^{|S_{j}|} \left[\log \left(f_{j}(\mathbf{x}^{[i]}) \right) \cdot \mathbb{1} \left\{ y^{[i]} > r_{j} \right\} + \log \left(1 - f_{j} \left(\mathbf{x}^{[i]} \right) \right) \cdot \mathbb{1} \left\{ y^{[i]} \leq r_{j} \right\} \right], \quad (5)$$

We note that in $f_j(\mathbf{x}^{[i]})$, $\mathbf{x}^{[i]}$ represents the *i*-th training example in S_j . To simplify the notation, we omit an additional index j to distinguish between $\mathbf{x}^{[i]}$ in different conditional training sets.

To improve the numerical stability of the loss gradients during training, we implement the following alternative formulation of the loss, where **Z** are the net inputs of the last layer (aka logits), as shown in Fig. 2, and $\log \left(\sigma\left(\mathbf{z}^{[i]}\right)\right) = \log \left(f_j\left(\mathbf{x}^{[i]}\right)\right)$:

$$L(\mathbf{Z}, \mathbf{y}) = \frac{1}{\sum_{j=1}^{K-1} |S_{j}|} \sum_{j=1}^{K-1} \sum_{i=1}^{|S_{j}|} \left[\log \left(\sigma \left(\mathbf{z}^{[i]} \right) \right) \cdot \mathbb{1} \left\{ y^{[i]} > r_{j} \right\} + \left(\log \left(\sigma \left(\mathbf{z}^{[i]} \right) \right) - \mathbf{z}^{[i]} \right) \cdot \mathbb{1} \left\{ y^{[i]} \leq r_{j} \right\} \right]. \quad (6)$$

CORN Architecture



CORN Performance 1/2

Table 1. Prediction errors on the test sets. Best results are highlighted in bold.

Ma41a a 1 C 1		MORPH-2 (Balanced)		AFAD (Balanced)		AES AES		FIREMAN	
Method	Seed	MAE	RMSE	MAE	RMSE	MAE	RMSE	MAE	RMSE
CE-NN	0	3.81	5.19	3.31	4.27	0.43	0.68	0.80	1.14
	1	3.60	4.8	3.28	4.19	0.43	0.69	0.80	1.14
	2	3.61	4.84	3.32	4.22	0.45	0.71	0.79	1.13
	3	3.85	5.21	3.24	4.15	0.43	0.70	0.80	1.16
	4	3.80	5.14	3.24	4.13	0.42	0.68	0.80	1.15
	AVG±SD	3.73 ± 0.12	5.04 ± 0.20	3.28 ± 0.04	4.19 ± 0.06	0.43 ± 0.01	0.69 ± 0.01	0.80 ± 0.01	1.14 ± 0.01
	0	3.21	4.25	2.81	3.45	0.44	0.70	0.75	1.07
OR-NN	1	3.16	4.25	2.87	3.54	0.43	0.69	0.76	1.08
[11]	2	3.16	4.31	2.82	3.46	0.43	0.69	0.77	1.10
	3	2.98	4.05	2.89	3.49	0.44	0.70	0.76	1.08
	4	3.13	4.27	2.86	3.45	0.43	0.69	0.74	1.07
	AVG±SD	3.13 ± 0.09	4.23 ± 0.10	2.85 ± 0.03	3.48 ± 0.04	0.43 ± 0.01	0.69 ± 0.01	$\textbf{0.76} \pm \textbf{0.01}$	1.08 ± 0.01
	0	2.94	3.98	2.95	3.60	0.47	0.72	0.82	1.14
CORAL	1	2.97	4.03	2.99	3.69	0.47	0.72	0.83	1.16
[1]	2	3.01	3.98	2.98	3.70	0.48	0.73	0.81	1.13
	3	2.98	4.01	3.00	3.78	0.44	0.70	0.82	1.16
	4	3.03	4.06	3.04	3.75	0.46	0.72	0.82	1.15
	AVG±SD	2.99 ± 0.04	4.01 ± 0.03	2.99 ± 0.03	3.70 ± 0.07	0.46 ± 0.02	0.72 ± 0.01	0.82 ± 0.01	1.15 ± 0.01
	0	2.98	4	2.80	3.45	0.41	0.67	0.75	1.07
CORN	1	2.99	4.01	2.81	3.44	0.44	0.69	0.76	1.08
(ours)	2	2.97	3.97	2.84	3.48	0.42	0.68	0.77	1.10
	3	3.00	4.06	2.80	3.48	0.43	0.69	0.76	1.08
	4	2.95	3.92	2.79	3.45	0.43	0.69	0.74	1.07
	AVG±SD	2.98 ± 0.02	3.99 ± 0.05	2.81 ± 0.02	3.46 ± 0.02	$\textbf{0.43} \pm \textbf{0.01}$	$\textbf{0.68} \pm \textbf{0.01}$	$\textbf{0.76} \pm \textbf{0.01}$	1.08 ± 0.01

CORN Performance 2/2

Table S1. Prediction errors on the test sets. Best results are highlighted in bold.

			r (Balanced)	Coursera (Balanced)		
Method	Seed	MAE	RMSE	MAE	RMSE	
	0	1.13	1.56	1.01	1.48	
CE-RNN	1	1.04	1.53	0.97	1.05	
CE-KININ	2	1.05	1.54	1.12	1.65	
	3	1.23	1.81	1.18	1.76	
	4	1.03	1.52	0.84	1.26	
	AVG±SD	1.10 ± 0.09	1.59 ± 0.12	1.02 ± 0.13	1.53 ± 0.19	
	0	1.06	1.53	0.98	1.34	
OR-RNN	1	1.09	1.50	0.93	1.24	
[11]	2	1.11	1.53	1.12	1.47	
	3	1.23	1.52	1.11	1.53	
	4	1.07	1.40	0.85	1.16	
	AVG±SD	1.11 ± 0.07	1.50 ± 0.06	1.00 ± 0.12	1.35 ± 0.15	
	0	1.15	1.58	0.99	1.29	
CORAL	1	1.14	1.49	1.03	1.39	
[1]	2	1.16	1.46	1.14	1.40	
	3	1.19	1.41	1.20	1.40	
	4	1.13	1.47	0.82	1.11	
	AVG±SD	1.15 ± 0.02	1.48 ± 0.06	1.04 ± 0.15	1.33 ± 0.13	
	0	1.09	1.55	0.95	1.37	
CORN	1	1.09	1.53	0.90	1.32	
(ours)	2	1.01	1.45	1.07	1.49	
	3	1.12	1.51	1.05	1.47	
	4	1.03	1.46	0.78	1.14	
	AVG±SD	1.07 ± 0.05	1.50 ± 0.04	0.95 ± 0.12	1.36 ± 0.14	

CORN Loss

Assume 3 training examples $x^{[1]}$, $x^{[2]}$, and $x^{[3]}$ with the following 3 rank labels:

$$\mathbf{y} = \begin{bmatrix} y^{[1]} = 1 \\ y^{[2]} = 3 \\ y^{[3]} = 4 \end{bmatrix}$$

$$y = \begin{bmatrix} y^{[1]} = 1 \\ y^{[2]} = 3 \\ y^{[3]} = 4 \end{bmatrix} \quad \text{binarize} \quad y_1 = \begin{bmatrix} y_1^{[1]} = 0 \\ y_1^{[2]} = 1 \\ y_1^{[3]} = 1 \end{bmatrix}$$

$$x^{[1]}$$

$$x^{[2]}$$

$$x^{[3]}$$

3 training examples as input

Neural network

$$x^{[1]}$$

$$x^{[2]}$$

$$x^{[3]}$$

Binary tasks

$$x^{[1]}$$

$$x^{[1]}$$

$$x^{[2]}$$

$$x^{[1]}$$

$$x^{[2]}$$

$$x^{[1]}$$

$$x^{[2]}$$

$$x^{[3]}$$

Loss of first task

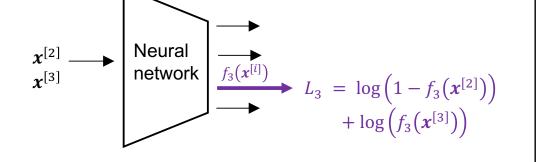
Train task 2

$$y = \begin{bmatrix} y^{[1]} = 1 \\ y^{[2]} = 3 \\ y^{[3]} = 4 \end{bmatrix} \quad \text{binarize} \quad y_2 = \begin{bmatrix} y_2^{[2]} = 1 \\ y_2^{[3]} = 1 \end{bmatrix}$$

$$\begin{array}{c}
x^{[2]} \\
x^{[3]}
\end{array}$$
Neural network
$$\begin{array}{c}
f_2(x^{[i]}) \\
+ \log(f_2(x^{[3]}))
\end{array}$$

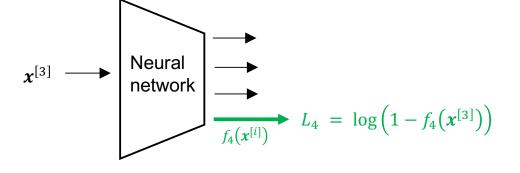
Train task 3

$$\mathbf{y} = \begin{bmatrix} y^{[1]} = 1 \\ y^{[2]} = 3 \\ y^{[3]} = 4 \end{bmatrix} \quad \text{binarize} \\ y^{[i]} > r_3? \quad \mathbf{y}_3 = \begin{bmatrix} y_3^{[2]} = 0 \\ y_3^{[3]} = 1 \end{bmatrix}$$



Train task 4

$$y = \begin{bmatrix} y^{[1]} = 1 \\ y^{[2]} = 3 \\ y^{[3]} = 4 \end{bmatrix} \quad \text{binarize} \quad y_4 = \begin{bmatrix} y_4^{[3]} = 0 \end{bmatrix}$$



Overall loss:
$$L(X, y) = \frac{1}{\sum_{i} |y_{i}|} \sum_{i} L_{i}$$

= $\frac{1}{3+2+2+1} L_{1} + L_{2} + L_{3} + L_{4}$