Customer Ratings, Letter Grades, and Other Rankings

Using Deep Learning When Class Labels Have A Natural Order

Sebastian Raschka

Lead AI Educator @ Grid.ai

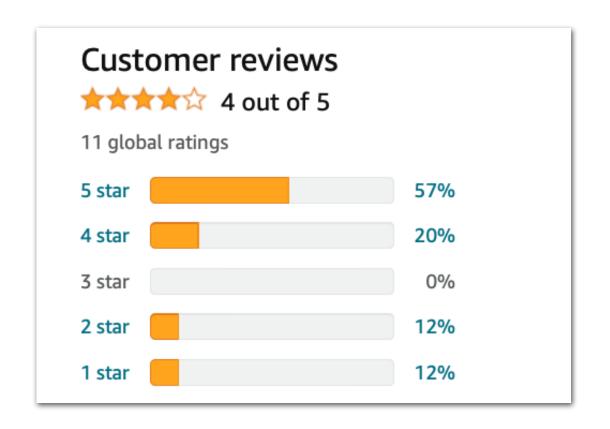
Asst. Prof. of Statistics @ University of Wisconsin

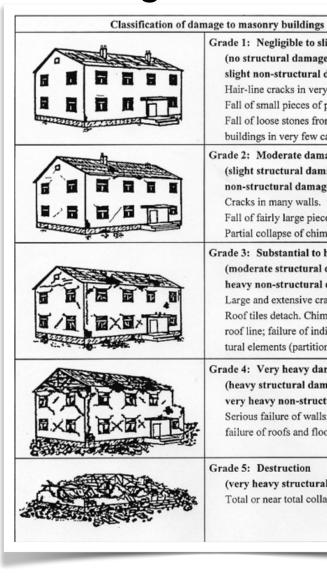
https://sebastianraschka.com

M sebastian@grid.ai

Deep Learning Summit 17 Feb, 2022

Many Real-World Predictions Problems Have Ordered Labels





Credit risk rating

PASS				SPECIAL MENTION	SUB- STANDARD	DOUBTFUL	LOSS	
1	2	3	4	5	6	7	8	9
Largely risk free	Minimal risk	Modest risk	Bankable	Addition- al review	Criticized	Classified	Classified	Classified

https://www.abrigo.com/blog/how-to-create-a-credit-risk-rating-system/

https://emergency.copernicus.eu/mapping/ems/damage-assessment

Damage assessment

Grade 1: Negligible to slight damage (no structural damage, slight non-structural damage) Hair-line cracks in very few walls. Fall of small pieces of plaster only.

Fall of loose stones from upper parts of buildings in very few cases.

Grade 2: Moderate damage (slight structural damage, moderate non-structural damage) Cracks in many walls. Fall of fairly large pieces of plaster.

Partial collapse of chimneys.

Grade 3: Substantial to heavy damage (moderate structural damage, heavy non-structural damage) Large and extensive cracks in most walls Roof tiles detach. Chimneys fracture at the roof line; failure of individual non-structural elements (partitions, gable walls).

Grade 4: Very heavy damage (heavy structural damage, very heavy non-structural damage) Serious failure of walls; partial structural failure of roofs and floors.

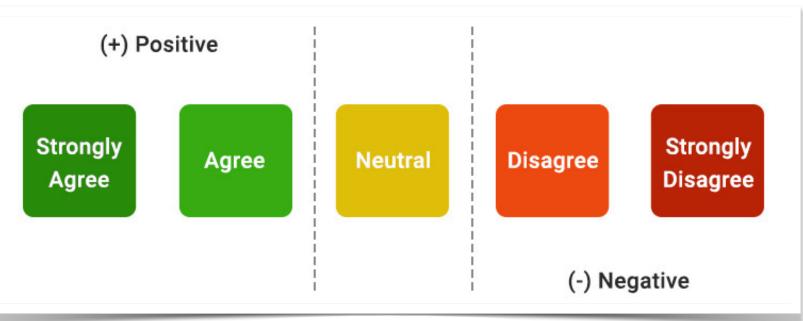
Grade 5: Destruction (very heavy structural damage) Total or near total collapse.

Plant disease

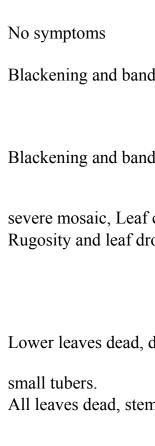
Index	Reaction	PLRV	
0	HighlyNo visible symptoms.Resistance		No visible symptoms.
1	Resistance	Rolling of leaves in case of primary infection and lower leaves in case of secondary infection, erect growth	Mild mottling on
2	Moderately ResistanceRolling of leaves extending, leaves become stiff and leathery, stunting of plants and erect growth		Inter venial mosaic
3	Moderately Susceptible Short internodes, papery sound of leathery leaves, rolling and stunting of whole plants. Young buds are slightly yellowish and purplish		Mosaic symptoms
4	Susceptible	Clear rolling of leaves, severe stunting, few tubers and tuber necrosis	Distinct mosaic leaves.
5	Highly Susceptible	All above symptoms and small number of small sized tubers.	All above
			small sized tubers

Islam, M. U., et al. "Screening of potato germplasm against RNA viruses and their identification through ELISA." J Green Physiol Genet Genom 1 (2015): 22-31.

Likert scale for customer satisfaction



https://www.questionpro.com/blog/ordinal-scale/



How do ordered (ordinal) labels differ from conventional class labels

Classification

Versicolor

Virginica

No ordering

1 Setosa **2** Versicolor **3** Virginica

Classification

No ordering

Classification

1 Setosa **2** Versicolor **3** Virginica

No ordering

1

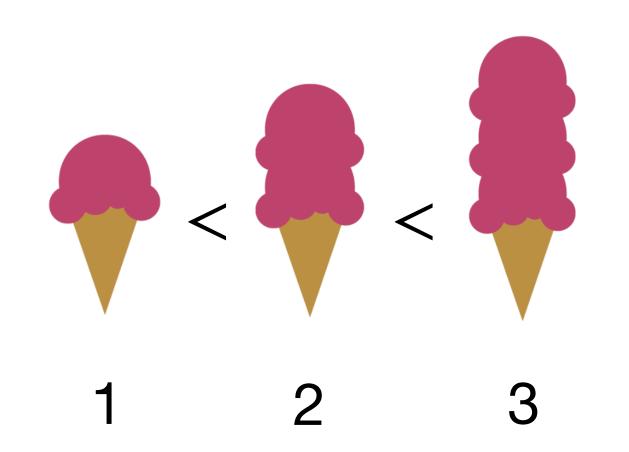
Regression

Classification

1 Setosa **2** Versicolor **3** Virginica

No ordering

Regression



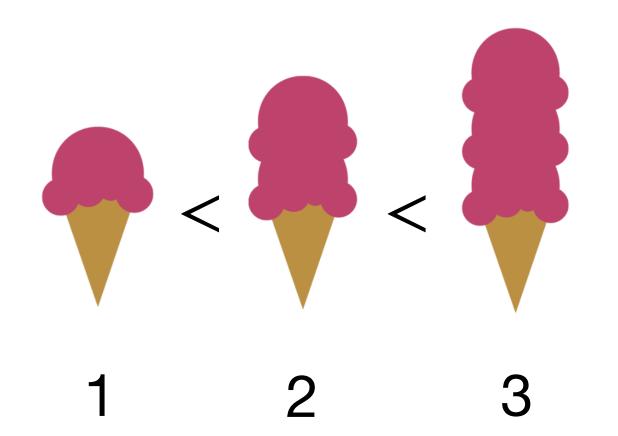
1

Classification

1 Setosa **2** Versicolor **3** Virginica 1

No ordering

Regression



Classification

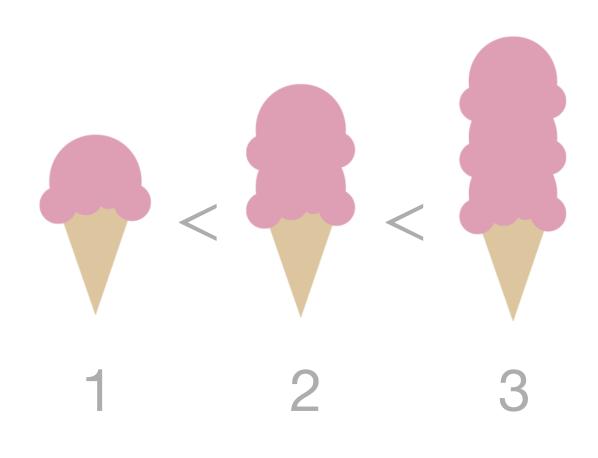
Ordinal Regression / Ordinal Classification

No ordering

....



Regression

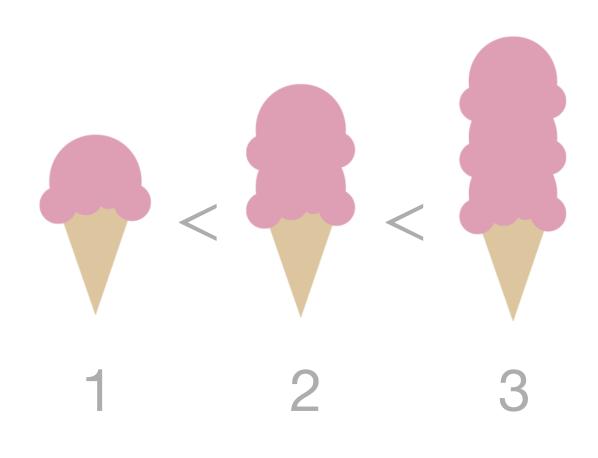


Classification

Ordinal Regression / Ordinal Classification

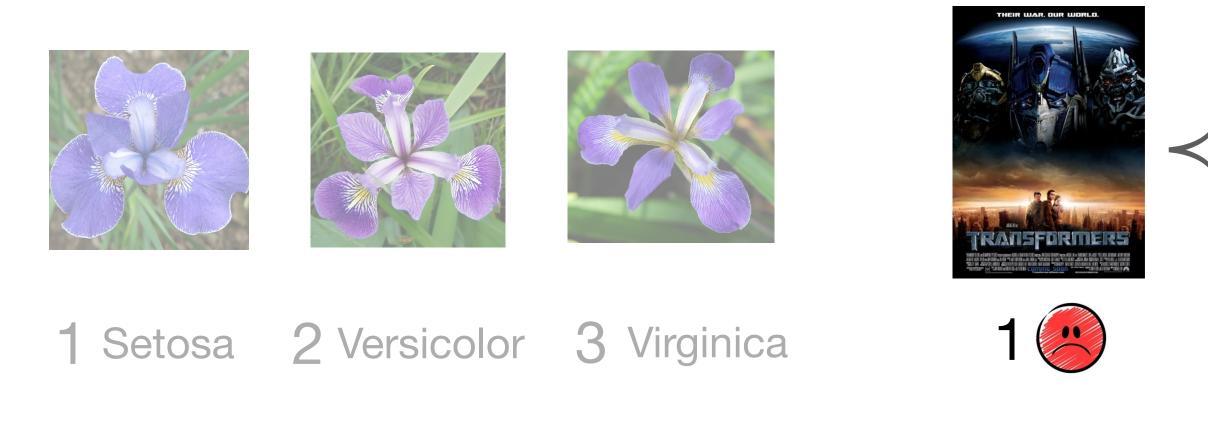
No ordering

Regression

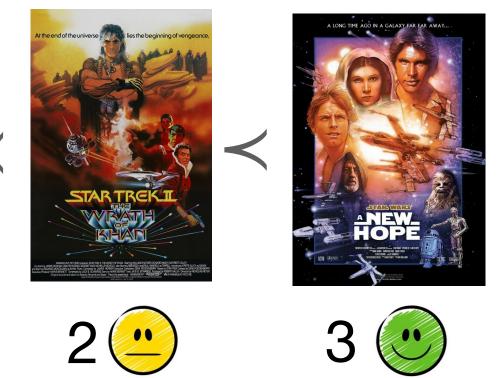


Classification

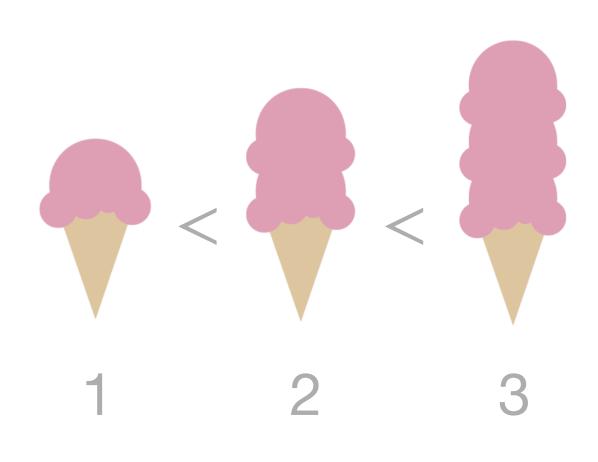
Ordinal Regression / Ordinal Classification



No ordering

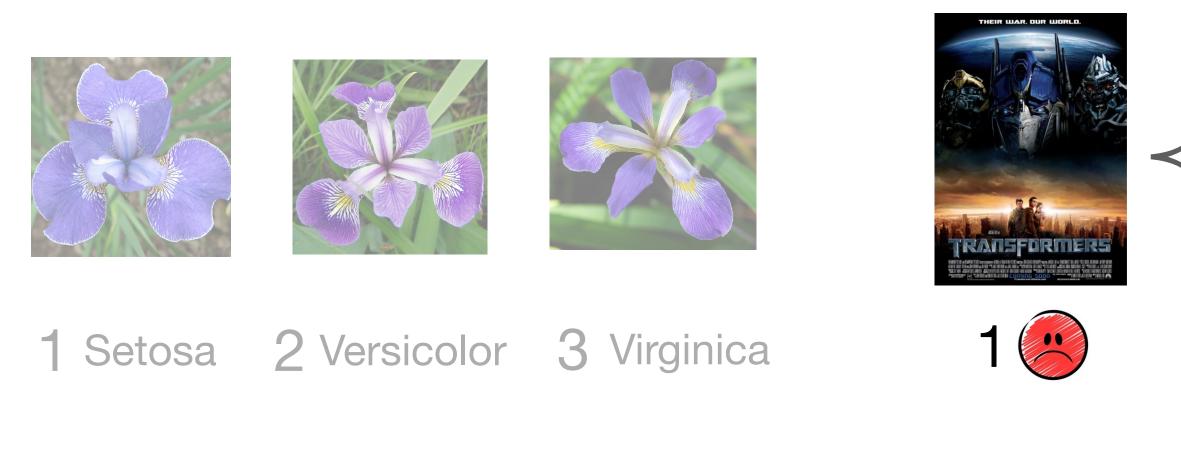


Regression

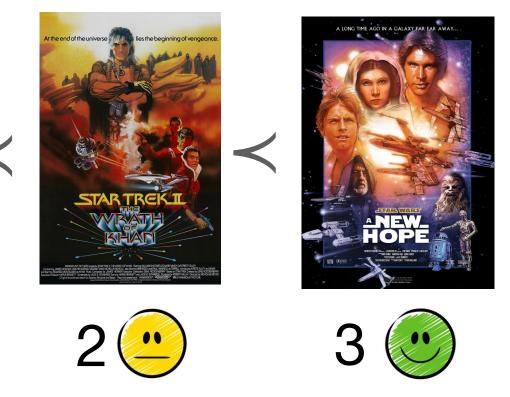


Classification

Ordinal Regression / Ordinal Classification



No ordering



Class labelsbut with order infoand arbitrary distances

Regression



Can't we just use regular classifiers for ordered labels?

Can't we just use regular classifiers for ordered labels?

Yes, but it is not ideal

15

Assume this is the true label

Assume this is the true label

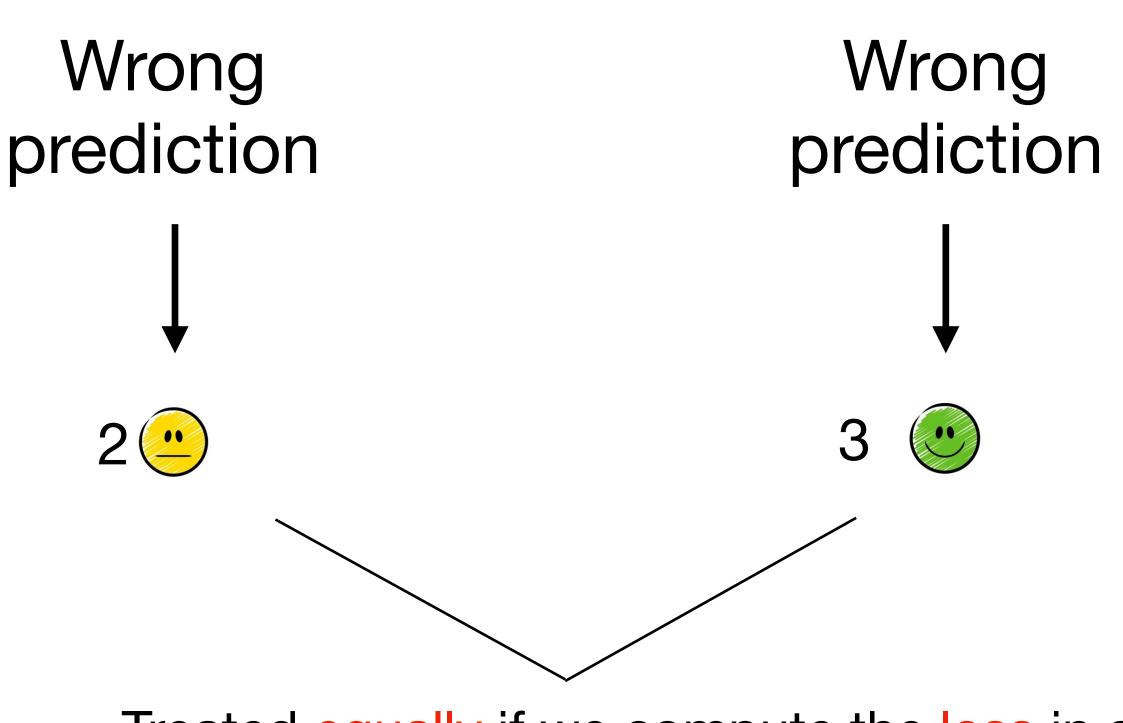
Wrong prediction

Assume this is the true label

Wrong prediction

Wrong prediction

Assume this is the true label



Treated equally if we compute the loss in a regular classifier

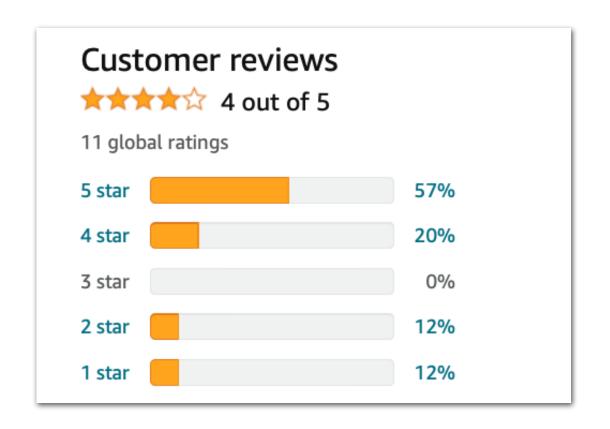
Assume this is the true label

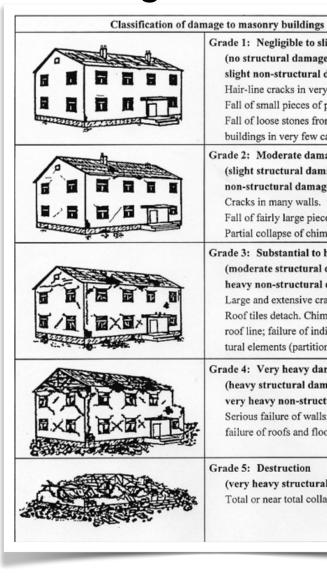
Wrong prediction

Wrong prediction

But this should be "more wrong"

Many Real-World Predictions Problems Have Ordered Labels





Credit risk rating

PASS				SPECIAL MENTION	SUB- STANDARD	DOUBTFUL	LOSS	
1	2	3	4	5	6	7	8	9
Largely risk free	Minimal risk	Modest risk	Bankable	Addition- al review	Criticized	Classified	Classified	Classified

https://www.abrigo.com/blog/how-to-create-a-credit-risk-rating-system/

https://emergency.copernicus.eu/mapping/ems/damage-assessment

Damage assessment

Grade 1: Negligible to slight damage (no structural damage, slight non-structural damage) Hair-line cracks in very few walls. Fall of small pieces of plaster only.

Fall of loose stones from upper parts of buildings in very few cases.

Grade 2: Moderate damage (slight structural damage, moderate non-structural damage) Cracks in many walls. Fall of fairly large pieces of plaster.

Partial collapse of chimneys.

Grade 3: Substantial to heavy damage (moderate structural damage, heavy non-structural damage) Large and extensive cracks in most walls Roof tiles detach. Chimneys fracture at the roof line; failure of individual non-structural elements (partitions, gable walls).

Grade 4: Very heavy damage (heavy structural damage, very heavy non-structural damage) Serious failure of walls; partial structural failure of roofs and floors.

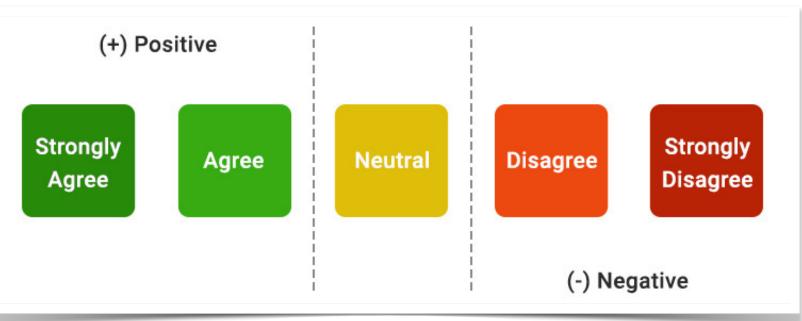
Grade 5: Destruction (very heavy structural damage) Total or near total collapse.

Plant disease

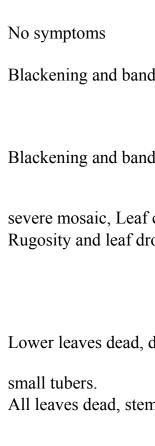
Index	Reaction	PLRV	
0	HighlyNo visible symptoms.Resistance		No visible symptoms.
1	Resistance	Rolling of leaves in case of primary infection and lower leaves in case of secondary infection, erect growth	Mild mottling on
2	Moderately Resistance	Rolling of leaves extending, leaves become stiff and leathery, stunting of plants and erect growth	Inter venial mosaic
3	Moderately Susceptible Short internodes, papery sound of leathery leaves, rolling and stunting of whole plants. Young buds are slightly yellowish and purplish		Mosaic symptoms
4	Susceptible	Clear rolling of leaves, severe stunting, few tubers and tuber necrosis	Distinct mosaic leaves.
5	Highly Susceptible	All above symptoms and small number of small sized tubers.	All above
			small sized tubers

Islam, M. U., et al. "Screening of potato germplasm against RNA viruses and their identification through ELISA." J Green Physiol Genet Genom 1 (2015): 22-31.

Likert scale for customer satisfaction



https://www.guestionpro.com/blog/ordinal-scale/



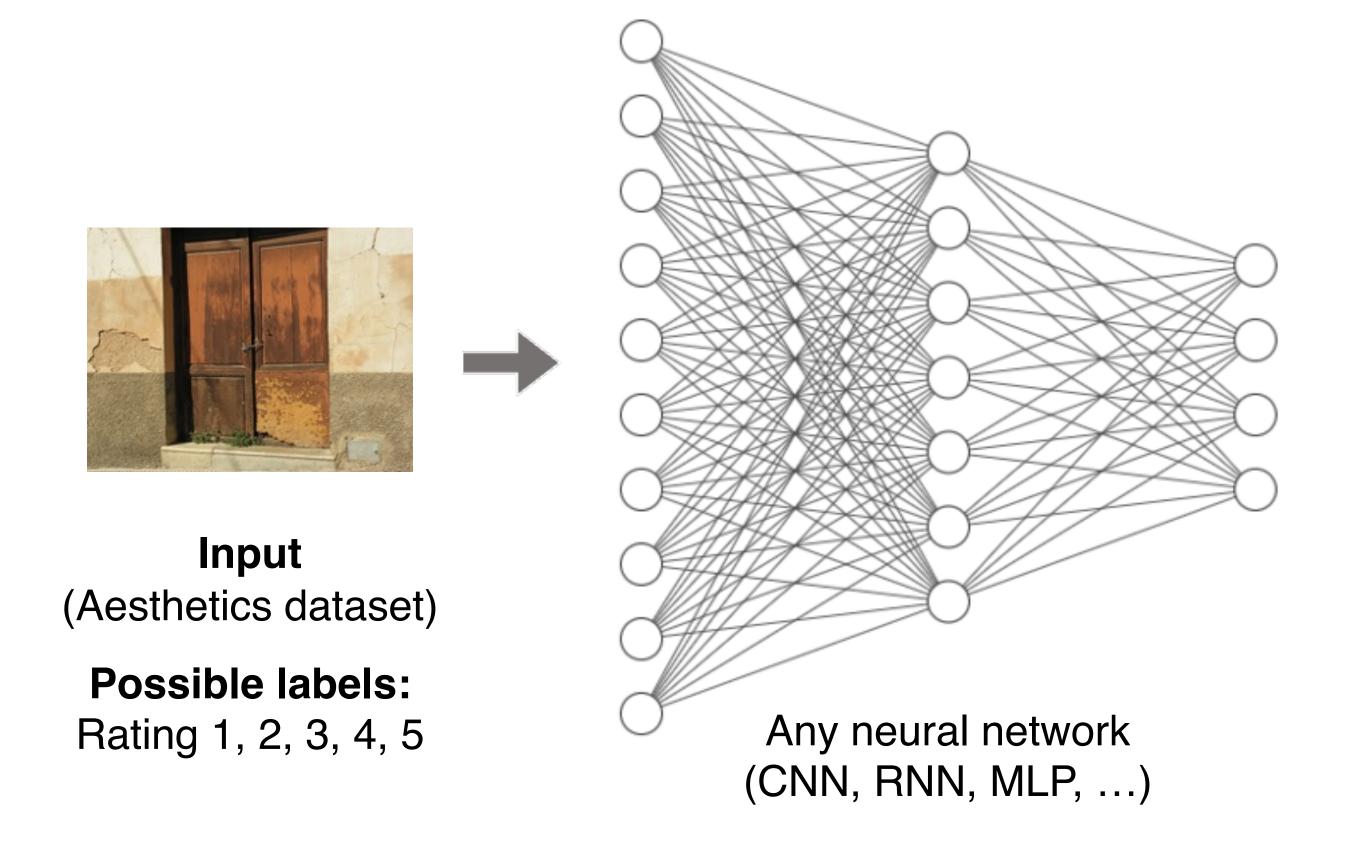
Many Real-World Predictions Problems Have Ordered Labels

And we can get much better performance using ordinal regression models rather than regular classifiers

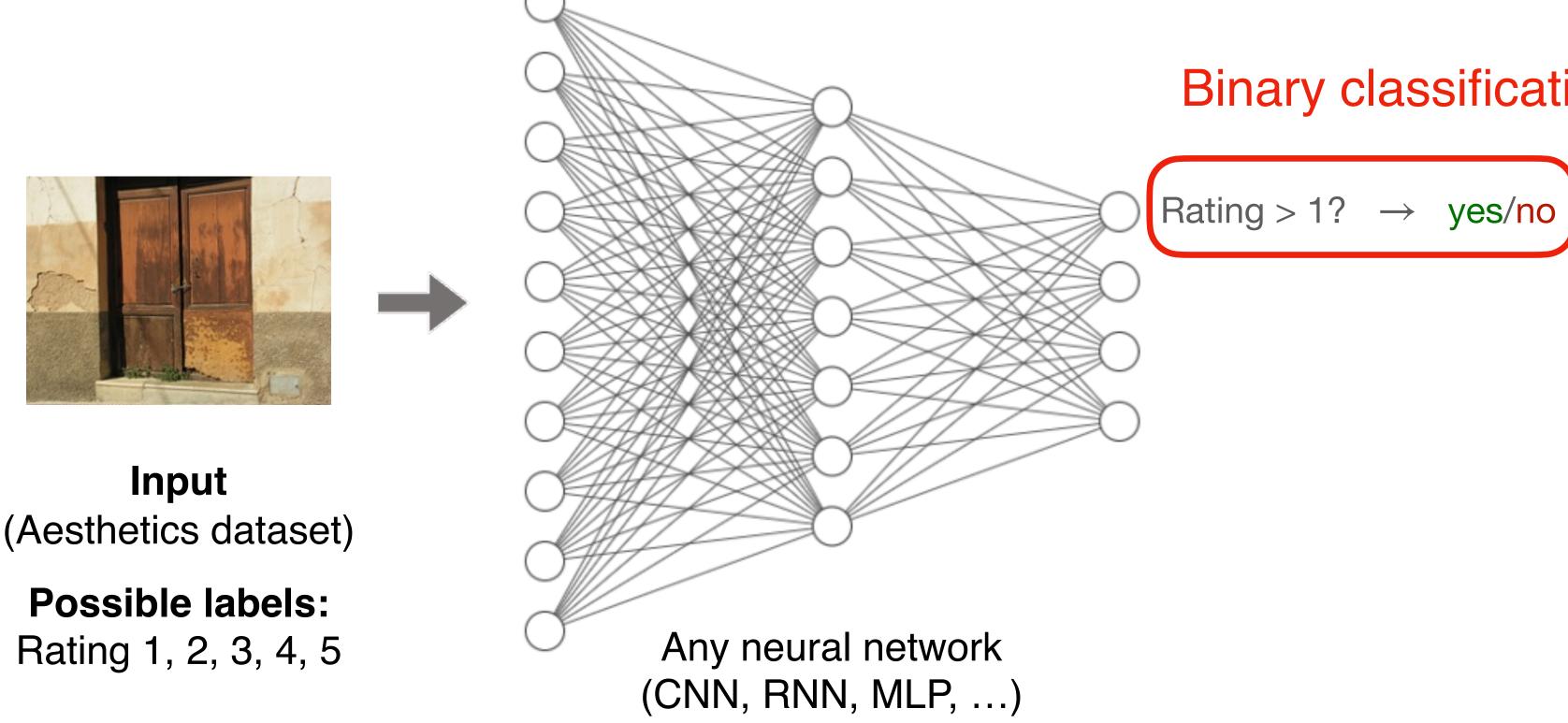
Input (Aesthetics dataset)

Possible labels: Rating 1, 2, 3, 4, 5

Niu Z, Zhou M, Wang L, Gao X, Hua G. Ordinal regression with multiple output CNN for age estimation. CVPR 2016

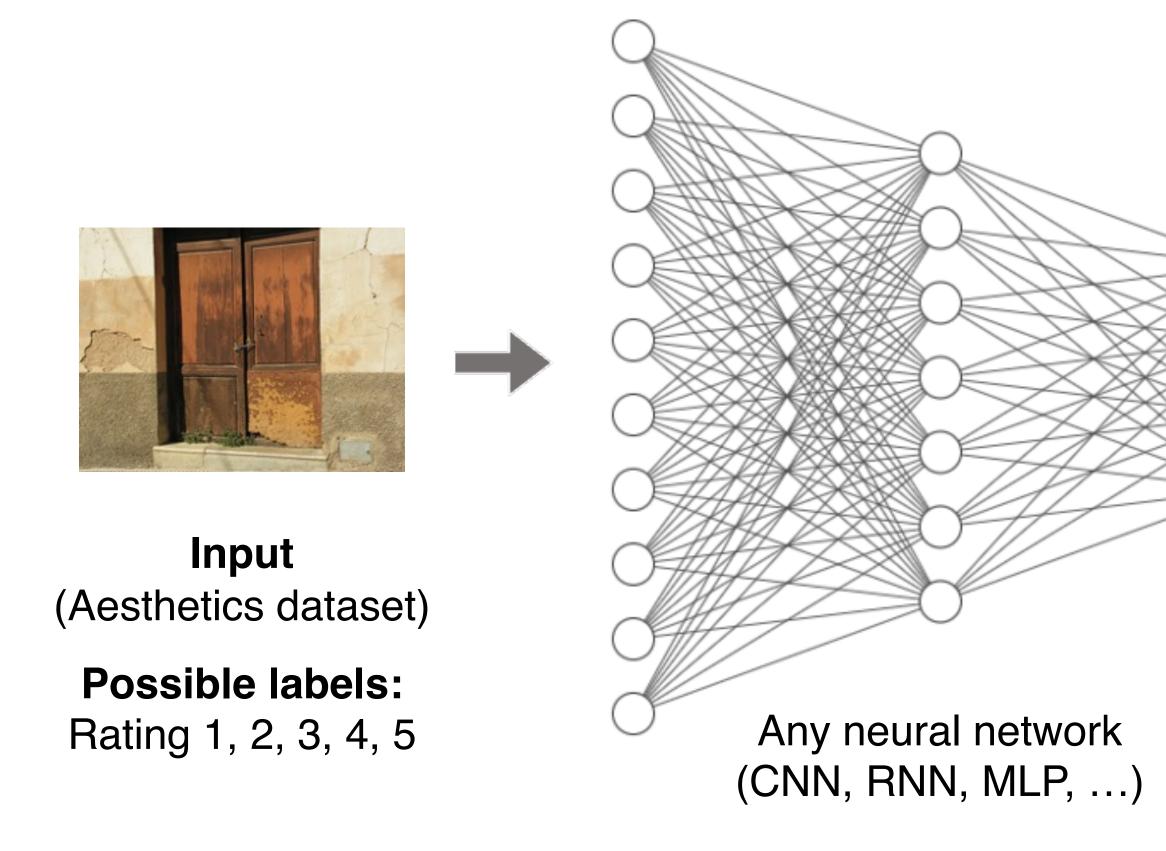


Niu Z, Zhou M, Wang L, Gao X, Hua G. Ordinal regression with multiple output CNN for age estimation. CVPR 2016



Niu Z, Zhou M, Wang L, Gao X, Hua G. Ordinal regression with multiple output CNN for age estimation. CVPR 2016

Binary classification task



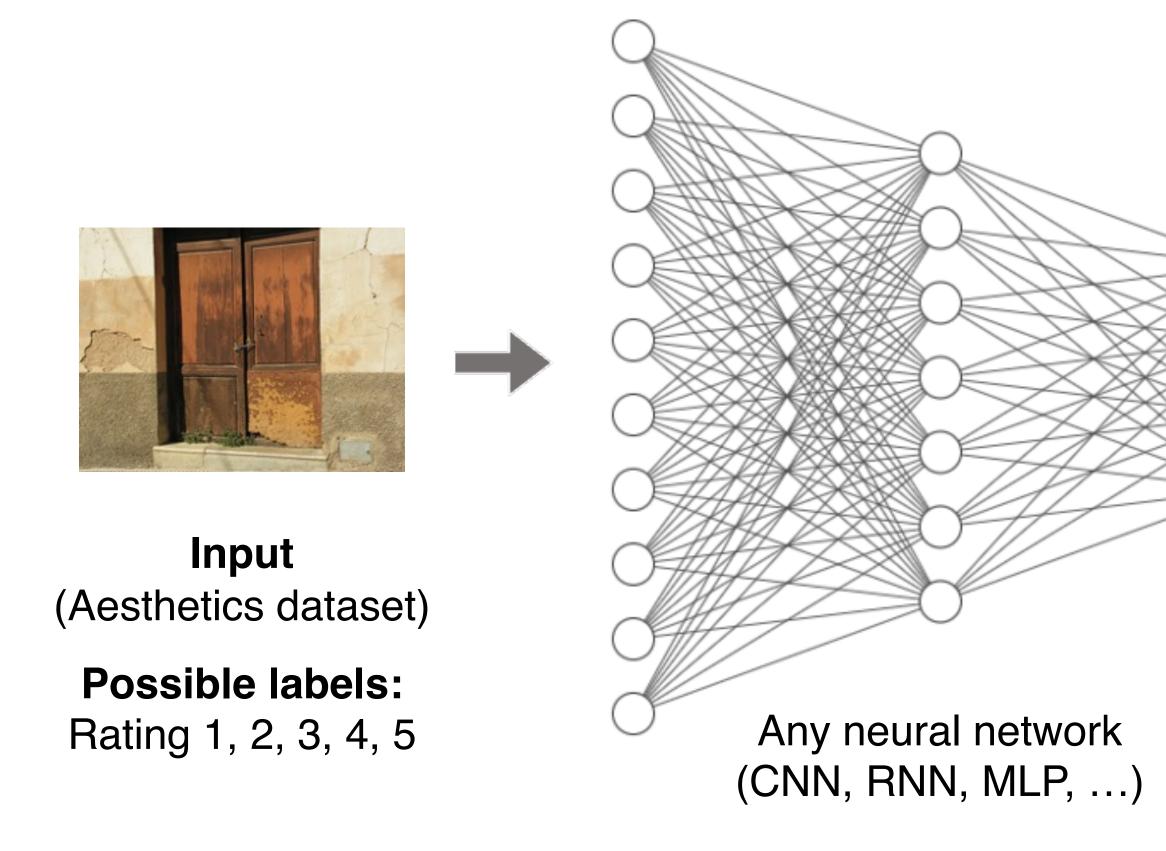
Niu Z, Zhou M, Wang L, Gao X, Hua G. Ordinal regression with multiple output CNN for age estimation. CVPR 2016

Rating > 2? \rightarrow yes/no

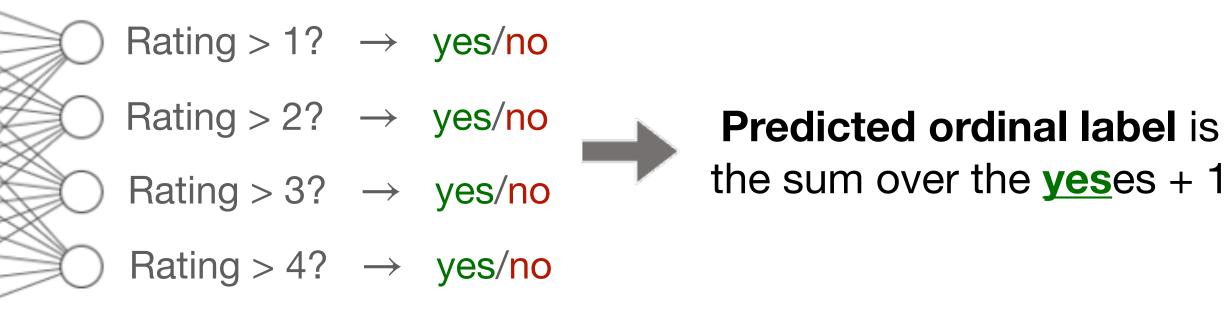
Rating > 3? \rightarrow yes/no

Rating > 4? \rightarrow yes/no

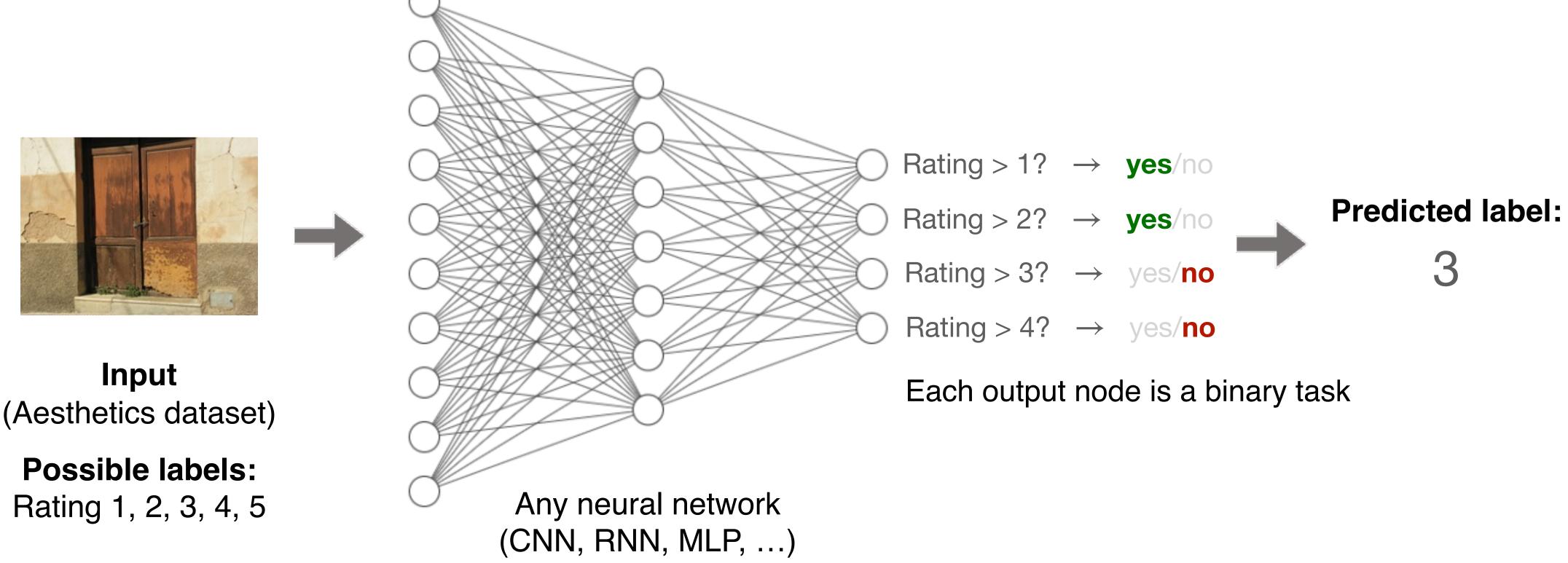
Each output node is a binary task



Niu Z, Zhou M, Wang L, Gao X, Hua G. Ordinal regression with multiple output CNN for age estimation. CVPR 2016



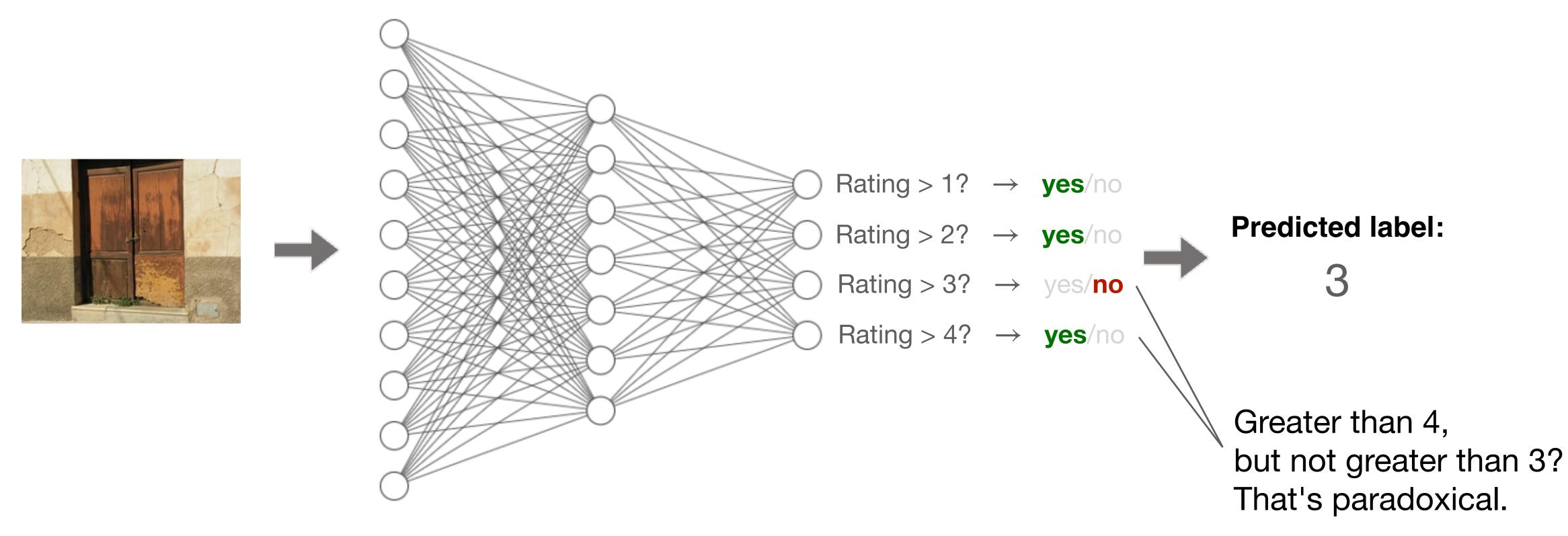
Each output node is a binary task



Niu Z, Zhou M, Wang L, Gao X, Hua G. Ordinal regression with multiple output CNN for age estimation. CVPR 2016

Problem: rank inconsistency

Problem: rank inconsistency



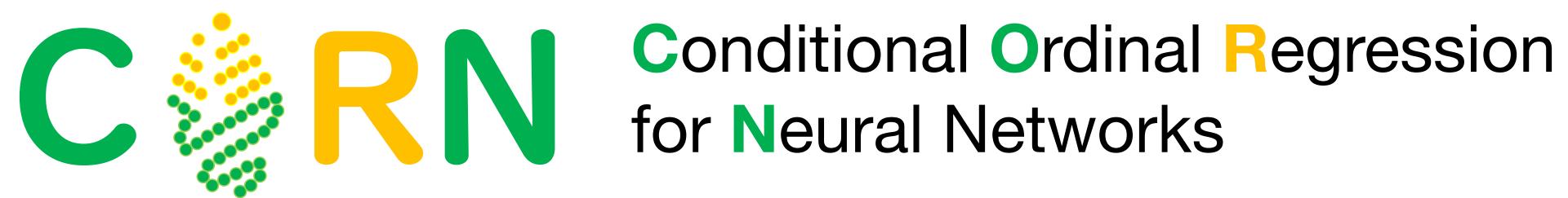
Addressing the rank inconsistency issue leads to better predictive performance

Cao, Mirjalili, Raschka (2020) *Rank Consistent Ordinal Regression for Neural Networks with Application to Age Estimation* Pattern Recognition Letters. 140, 325-331, <u>https://www.sciencedirect.com/science/article/pii/S016786552030413X</u>

Shi, Cao, Raschka (2021) Deep Neural Networks for Rank-Consistent Ordinal Regression Based On Conditional Probabilities. Arxiv preprint, <u>https://arxiv.org/abs/2111.08851</u>

COnsistent RAnk Logits

Cao, Mirjalili, Raschka (2020) Rank Consistent Ordinal Regression for Neural Networks with Application to Age Estimation Pattern Recognition Letters. 140, 325-331, https://www.sciencedirect.com/science/article/pii/S016786552030413X



Shi, Cao, Raschka (2021) Deep Neural Networks for Rank-Consistent Ordinal Regression Based On Conditional Probabilities. Arxiv preprint, https://arxiv.org/abs/2111.08851

How?

Weight-sharing in output layer (mathematical proof in paper)

How?

Weight-sharing in output layer (mathematical proof in paper)

Chain rule for probabilities & conditional training sets

How?

Weight-sharing in output lay (mathematical proof in pape

Chain rule for probabilitie & conditional training set

	Advantages
yer Ər)	 Easy to implement Reduced overfitting Fast
es ts	

How?

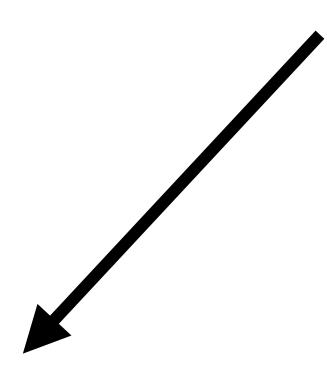
Weight-sharing in output lay (mathematical proof in pape

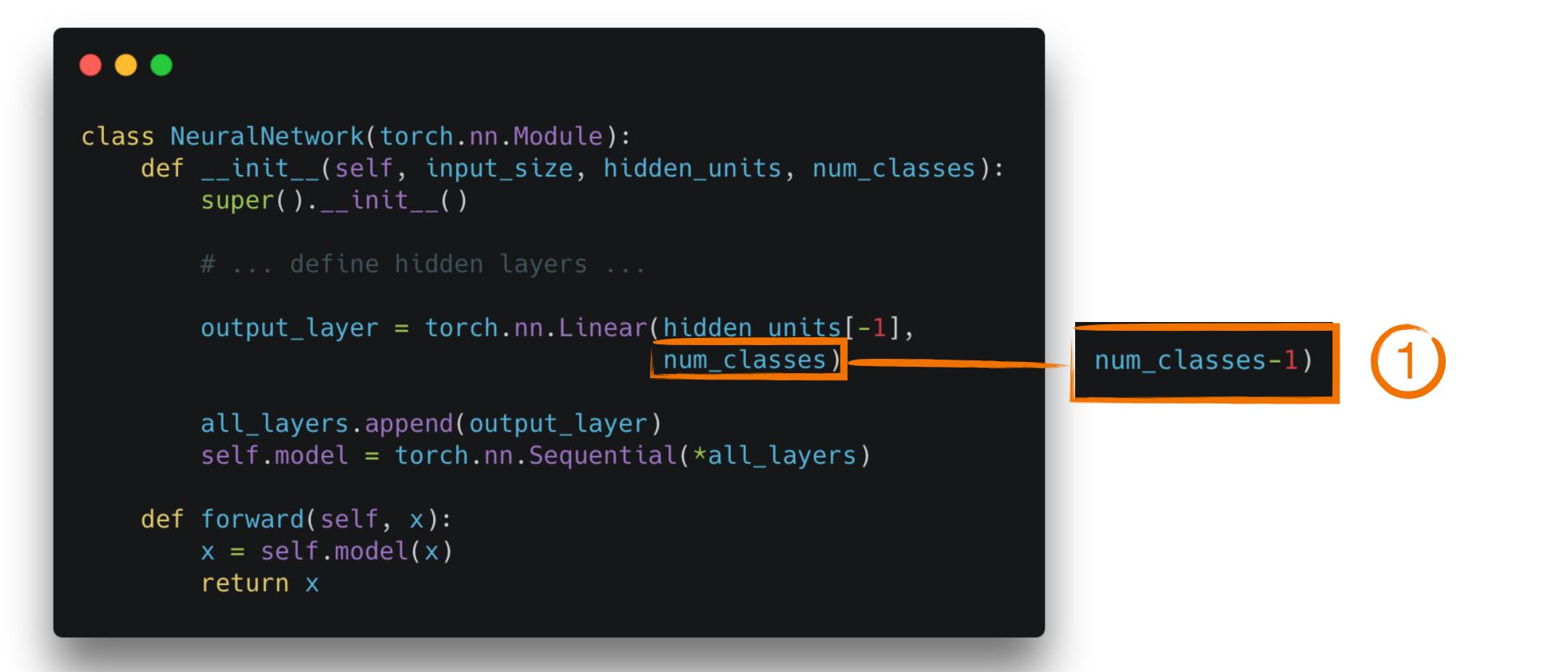
Chain rule for probabilitie & conditional training set

	Advantages
yer ər)	 Easy to implement Reduced overfitting Fast
es ts	 Easy to implement Higher capacity Better predictive performance

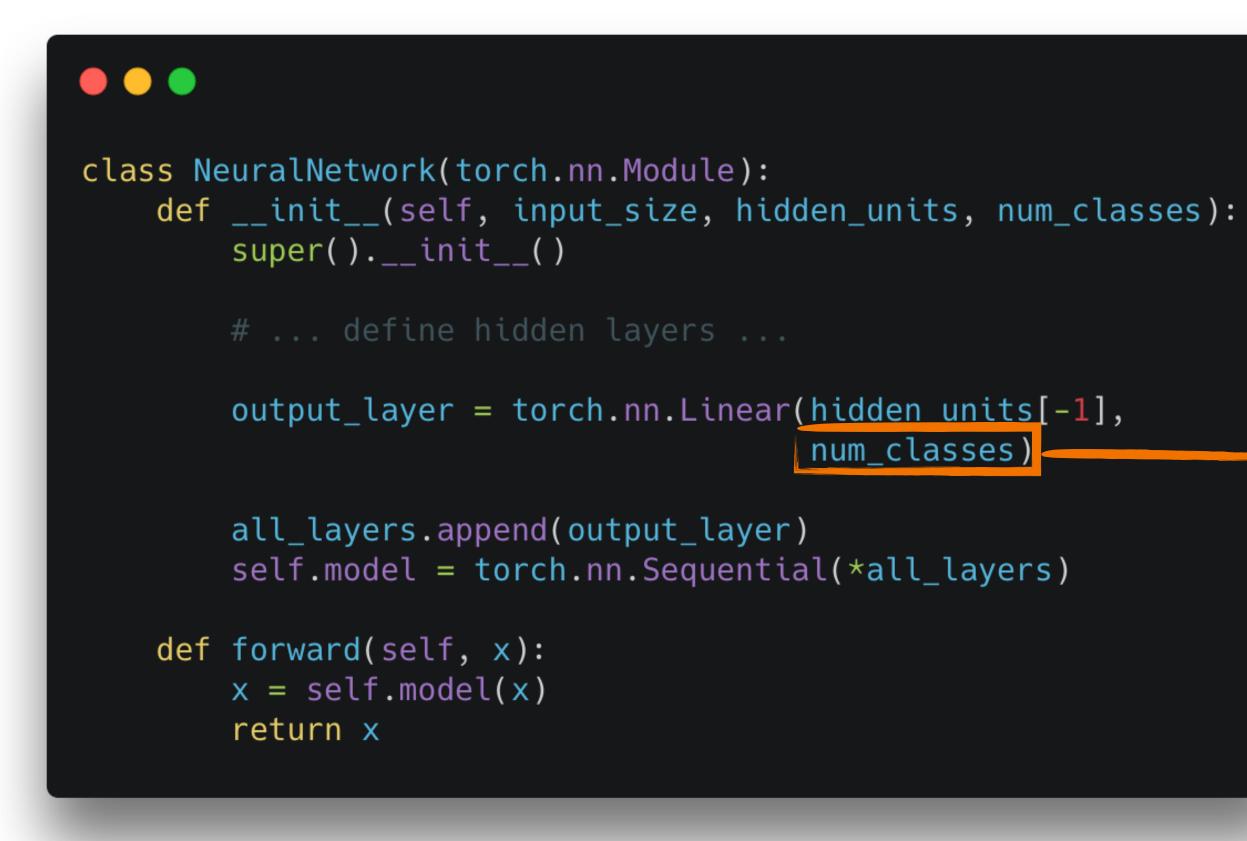
Skipping over the mathematical details ... How do we use this in practice?

Full code examples for tabular, text, and image data





PyTorch Lightning



PyTorch Lightning

Full examples: <u>https://raschka-research-group.github.io/coral-pytorch/</u>



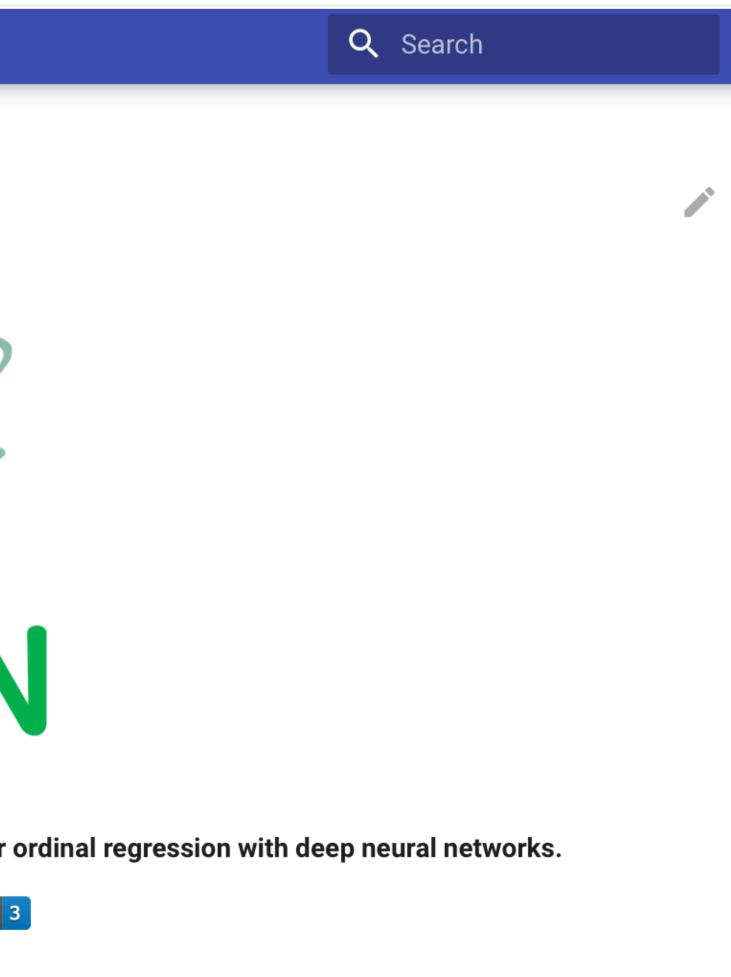
num_classes-1)

coral_pytorch

coral_pytorch		Home
Home		
Tutorials	~	
PyTorch Lightning Example	s >	
Pure PyTorch Examples	>	
API	>	=00
Installation		
Changelog		0
Citing		X
License		
		C
		CORAL & CORN implementations for o
		pypi package 1.2.0 license MIT python 3

More examples:

https://raschka-research-group.github.io/coral-pytorch/



Acknowledgements

Wenzhi Cao Xintong Shi Vahid Mirjalili

- William Falcon
- Adrian Waechtli
- Jirka Borovec
- Alex Rose
- Thomas Chaton
- Marc Ferradou

EXPERT INSIGHT 👌 python™ Machine Learning with PyTorch and Scikit-Learn

Develop machine learning and deep learning models with Python

PyTorch book of the bestselling and widely acclaimed Python Machine Learning series

Foreword by: Dmytro Dzhulgakov PyTorch Core Maintainer

Sebastian Raschka Yuxi (Hayden) Liu Vahid Mirjalili

Packt>

Feb 25

https://sebastianraschka.com/books/

https://github.com/rasbt/machine-learning-book

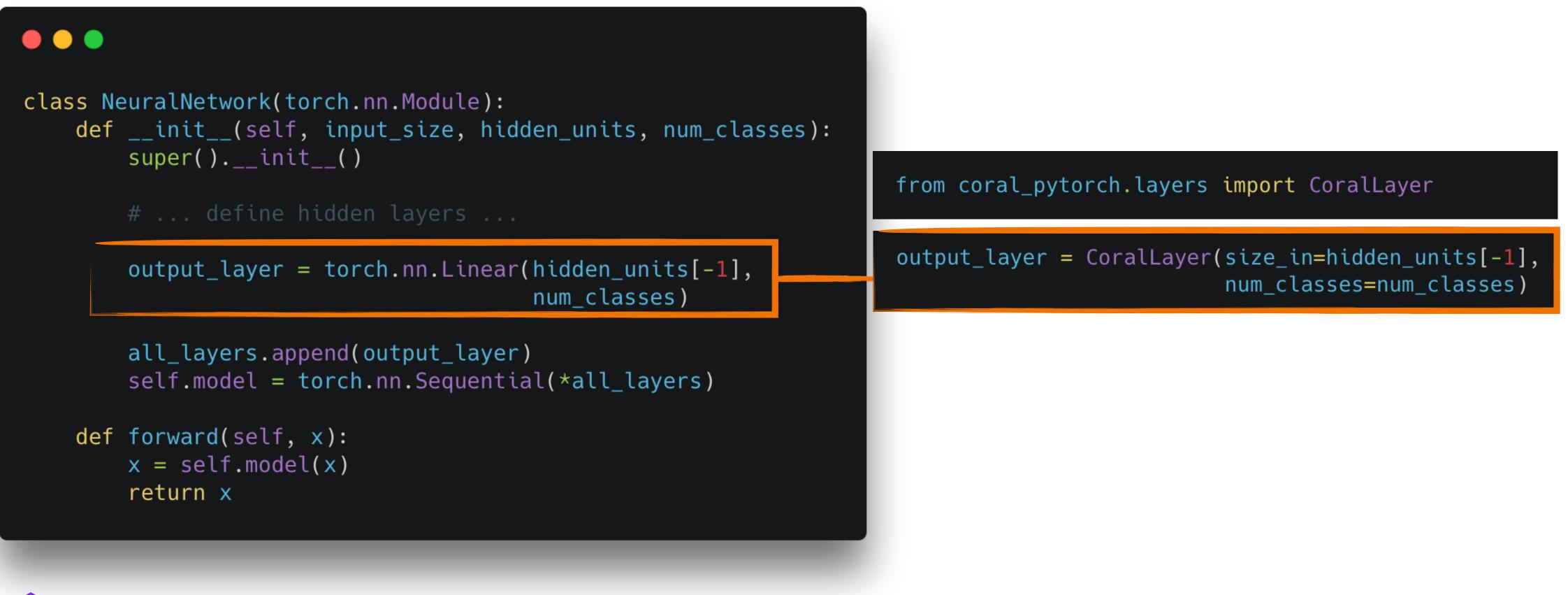
Contact

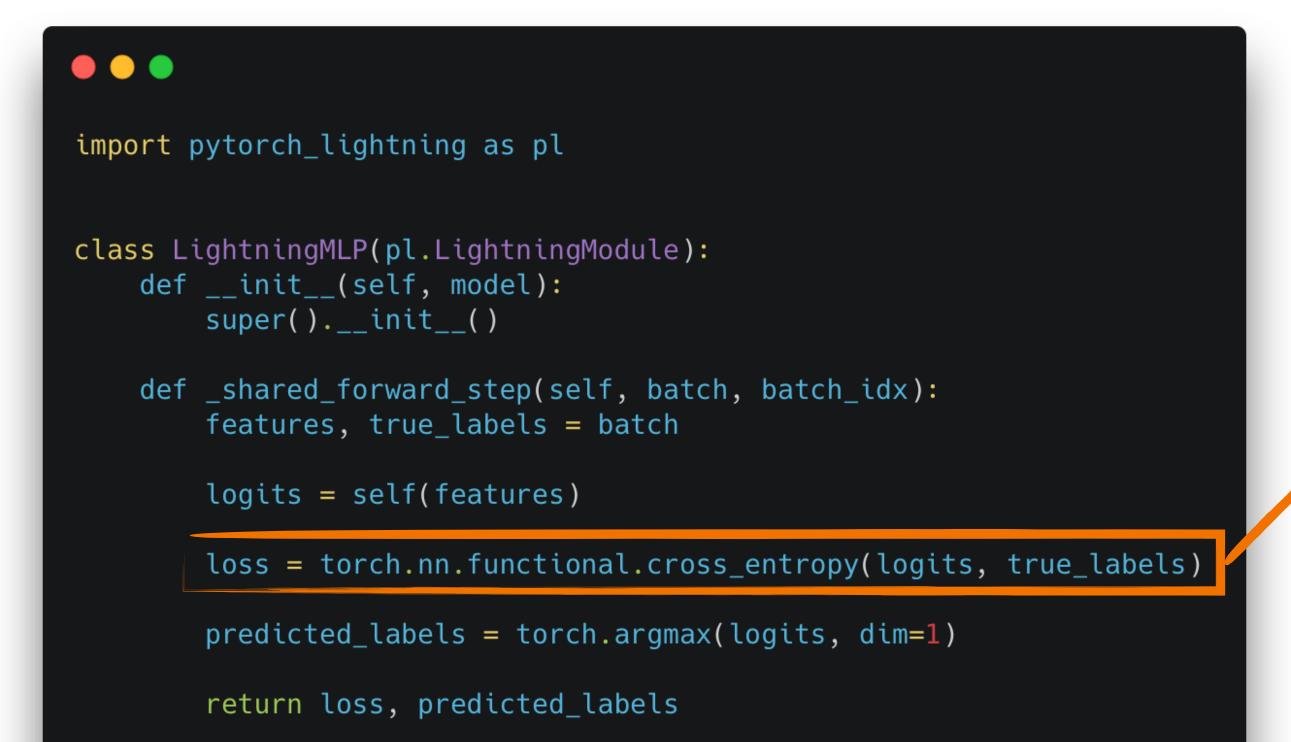
https://sebastianraschka.com

Additional Slides for Q&A

PyTorch Lightning

PyTorch Lightning

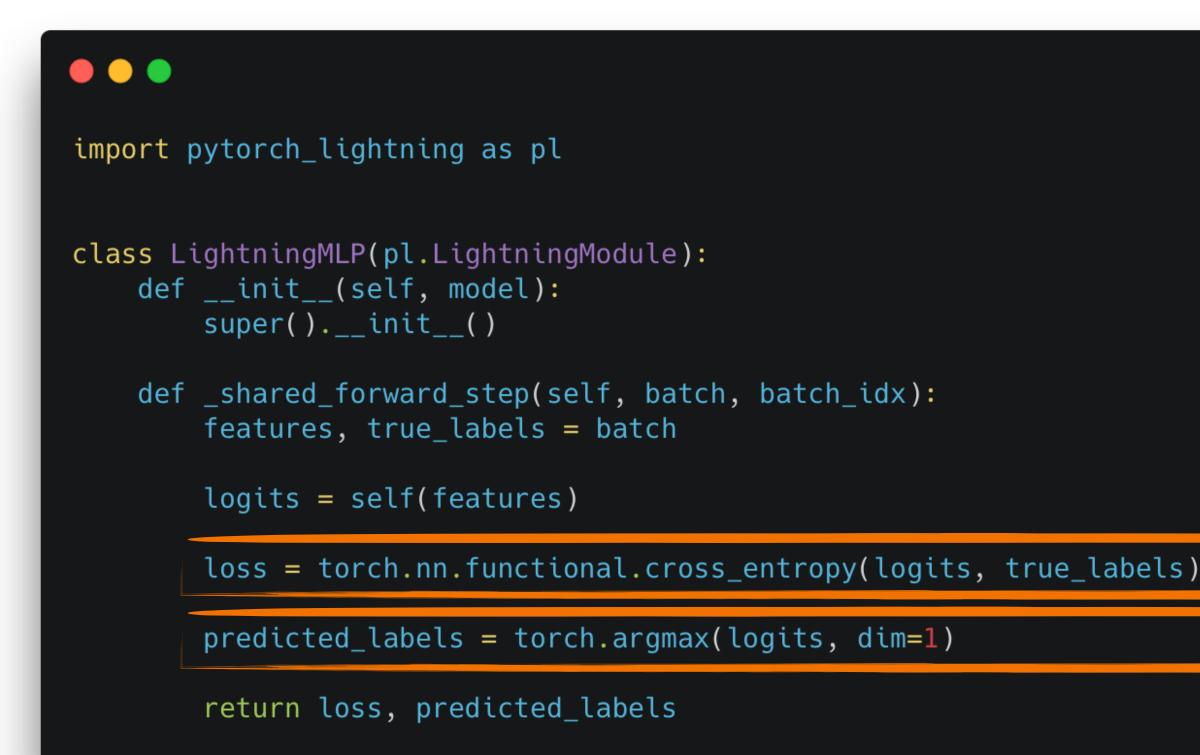




Full examples: <u>https://raschka-research-group.github.io/coral-pytorch/</u>

from coral_pytorch.losses import coral_loss
from coral_pytorch.dataset import levels_from_labelbatch
from coral_pytorch.dataset import proba_to_label

levels = levels_from_labelbatch(
 true_labels, num_classes=self.model.num_classes)
loss = coral_loss(logits, levels)



Full examples: <u>https://raschka-research-group.github.io/coral-pytorch/</u>

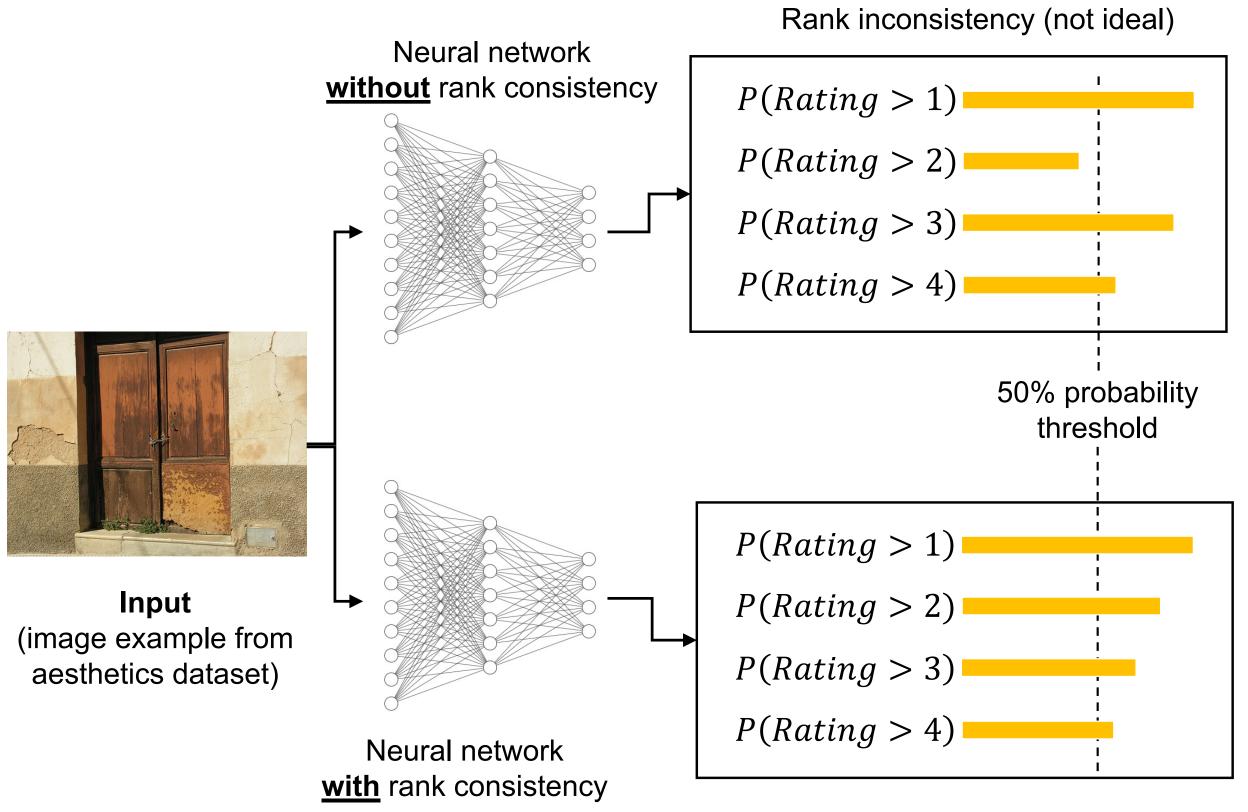
from coral_pytorch.losses import coral_loss
from coral_pytorch.dataset import levels_from_labelbatch
from coral_pytorch.dataset import proba_to_label

levels = levels_from_labelbatch(
 true_labels, num_classes=self.model.num_classes)
loss = coral_loss(logits, levels)

predicted_labels = proba_to_label(torch.sigmoid(logits))

CORAL Performance

Table 1. Age prediction errors on the test sets. All models are based on the ResNet-34 architecture.								
Method	Random	MORPH-2		AF	AD	CACD		
Method	Seed	MAE	RMSE	MAE	RMSE	MAE	RMSE	
	0	3.26	4.62	3.58	5.01	5.74	8.20	
CE-CNN	1	3.36	4.77	3.58	5.01	5.68	8.09	
CE-CININ	2	3.39	4.84	3.62	5.06	5.53	7.92	
	$AVG \pm SD$	3.34 ± 0.07	4.74 ± 0.11	3.60 ± 0.02	5.03 ± 0.03	5.65 ± 0.11	8.07 ± 0.14	
	0	2.87	4.08	3.56	4.80	5.36	7.61	
OR-CNN	1	2.81	3.97	3.48	4.68	5.40	7.78	
(Niu et al., 2016)	2	2.82	3.87	3.50	4.78	5.37	7.70	
	$AVG \pm SD$	2.83 ± 0.03	3.97 ± 0.11	3.51 ± 0.04	4.75 ± 0.06	5.38 ± 0.02	7.70 ± 0.09	
	0	2.66	3.69	3.42	4.65	5.25	7.41	
CORAL-CNN	1	2.64	3.64	3.51	4.76	5.25	7.50	
(ours)	2	2.62	3.62	3.48	4.73	5.24	7.52	
	$AVG \pm SD$	$\textbf{2.64} \pm \textbf{0.02}$	3.65 ± 0.04	$\textbf{3.47} \pm \textbf{0.05}$	$\textbf{4.71} \pm \textbf{0.06}$	5.25 ± 0.01	$\textbf{7.48} \pm \textbf{0.06}$	



Cao, Mirjalili, Raschka (2020)

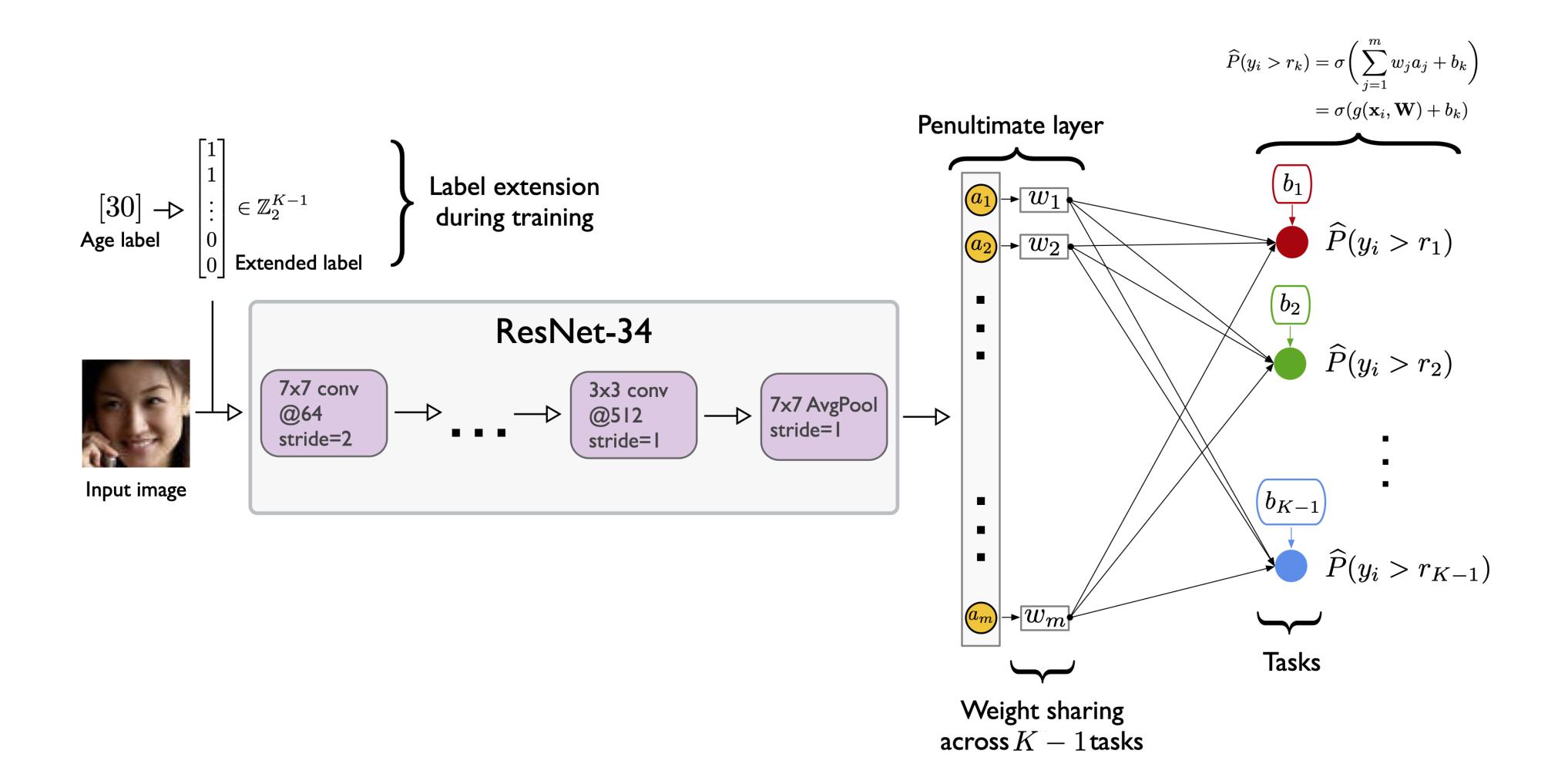
Rank Consistent Ordinal Regression for Neural Networks with Application to Age Estimation Pattern Recognition Letters. 140, 325-331, https://www.sciencedirect.com/science/article/pii/S016786552030413X

Prev. ordinal regression network

CORAL

Rank consistency (ideal)

CORAL Architecture



CORAL Theorem

Theorem 1 (Ordered bias units). By minimizing the loss function defined in Eq. 4, the optimal solution $(\mathbf{W}^*, \mathbf{b}^*)$ satisfies $b_1^* \ge b_2^* \ge \ldots \ge b_{K-1}^*$.

Proof. Suppose (**W**, *b*) is an optimal solution and $b_k < b_{k+1}$ for some *k*. Claim: replacing b_k with b_{k+1} , or replacing b_{k+1} with b_k , decreases the objective value *L*. Let

$$A_{1} = \{n : y_{n}^{(k)} = y_{n}^{(k+1)} = 1\},\$$

$$A_{2} = \{n : y_{n}^{(k)} = y_{n}^{(k+1)} = 0\},\$$

$$A_{3} = \{n : y_{n}^{(k)} = 1, y_{n}^{(k+1)} = 0\}.$$

By the ordering relationship, we have

$$A_1 \cup A_2 \cup A_3 = \{1, 2, \dots, N\}.$$

Denote $p_n(b_k) = \sigma(g(\mathbf{x}_n, \mathbf{W}) + b_k)$ and

$$\delta_n = \log(p_n(b_{k+1})) - \log(p_n(b_k)),$$

$$\delta'_n = \log(1 - p_n(b_k)) - \log(1 - p_n(b_{k+1})).$$

Since $p_n(b_k)$ is increasing in b_k , we have $\delta_n > 0$ and $\delta'_n > 0$. If we replace b_k with b_{k+1} , the loss terms related to the *k*-th task are updated. The change of loss *L* (Eq. 4) is given as

$$\Delta_1 L = \lambda^{(k)} \left[-\sum_{n \in A_1} \delta_n + \sum_{n \in A_2} \delta'_n - \sum_{n \in A_3} \delta_n \right].$$

Accordingly, if we replace b_{k+1} with b_k , the change of *L* is given as

$$\Delta_2 L = \lambda^{(k+1)} \left[\sum_{n \in A_1} \delta_n - \sum_{n \in A_2} \delta'_n - \sum_{n \in A_3} \delta'_n \right].$$

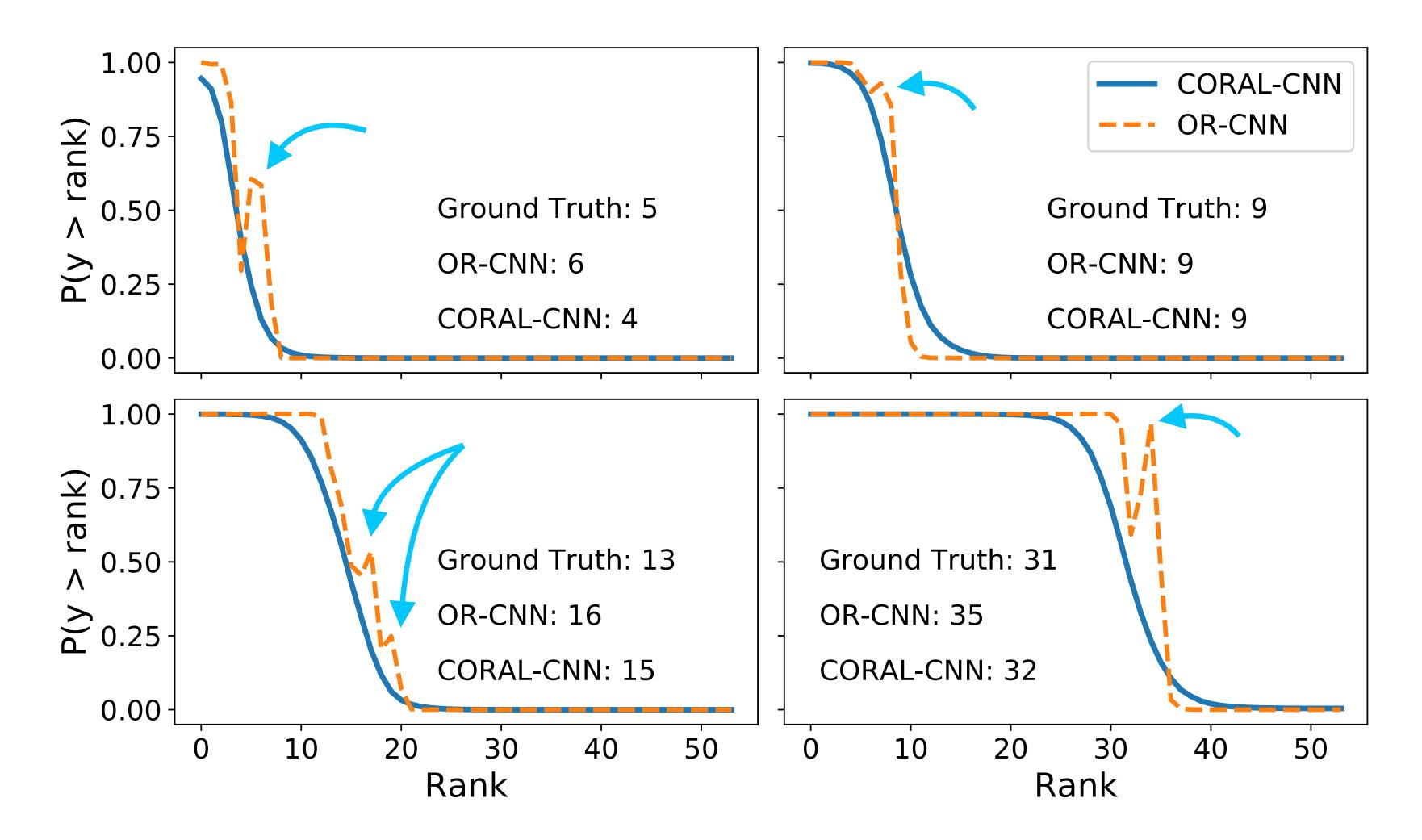
By adding $\frac{1}{\lambda^{(k)}}\Delta_1 L$ and $\frac{1}{\lambda^{(k+1)}}\Delta_2 L$, we have

$$\frac{1}{\lambda^{(k)}}\Delta_1 L + \frac{1}{\lambda^{(k+1)}}\Delta_2 L = -\sum_{n \in A_3} (\delta_n + \delta'_n) < 0,$$

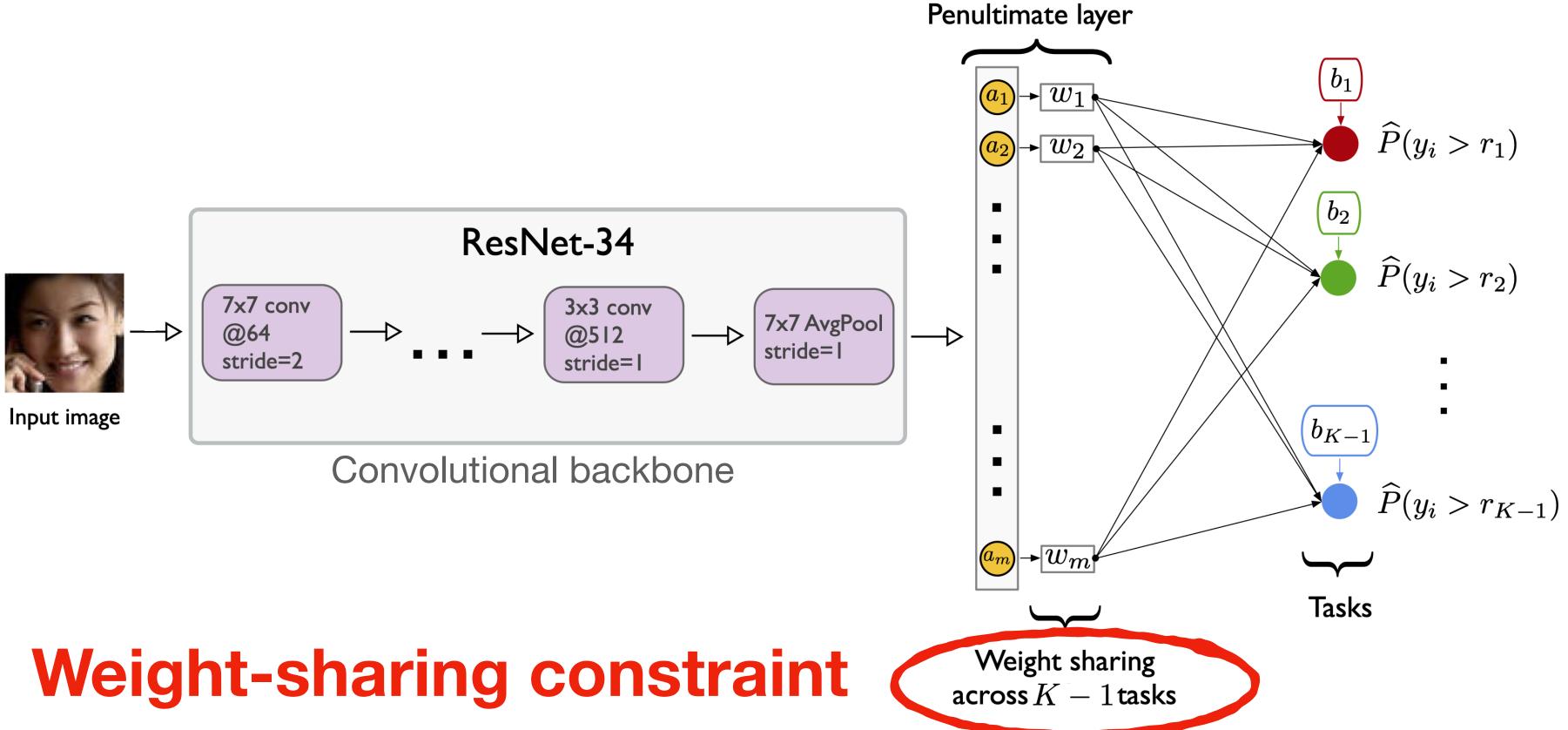
and know that either $\Delta_1 L < 0$ or $\Delta_2 L < 0$. Thus, our claim is justified. We conclude that any optimal solution (\mathbf{W}^*, b^*) that minimizes *L* satisfies

$$b_1^* \ge b_2^* \ge \ldots \ge b_{K-1}^*.$$

CORAL Rank Consistency



Fixing rank inconsistency introduced a limitation: weight-sharing constraint restricts the network's capacity



Cao, Mirjalili, Raschka (2020) Rank Consistent Ordinal Regression for Neural Networks with Application to Age Estimation Pattern Recognition Letters. 140, 325-331, https://www.sciencedirect.com/science/article/pii/S016786552030413X Fully connected output layer

Removing the weight-sharing constraint (while maintaining rank consistency) leads to even better performance

Shi, Cao, Raschka (2021) Deep Neural Networks for Rank-Consistent Ordinal Regression Based On Conditional Probabilities. Arxiv preprint, <u>https://arxiv.org/abs/2111.08851</u>

CORN Method 1/3

 f_k

 \hat{P}

 \hat{P}

3.3. Rank-consistent Ordinal Regression based on Conditional **Probabilities**

Given a training set $D = \left\{ \mathbf{x}^{[i]}, y^{[i]} \right\}_{i=1}^{N}$, CORN applies a label extension to the rank labels $y^{[i]}$ similar to CORAL, such that the resulting binary label $y_k^{[i]} \in \{0, 1\}$ indicates whether $y^{[i]}$ exceeds rank r_k . Similar to CORAL, CORN also uses K - 1 learning tasks associated with ranks $r_1, r_2, ..., r_K$ in the output layer as illustrated in Fig. 2.

However, in contrast to CORAL, CORN estimates a series of conditional probabilities using conditional training subsets (described in Section 3.4) such that the output of the k-th binary task $f_k(\mathbf{x}^{[i]})$ represents the conditional probability¹

$$\left(\mathbf{x}^{[i]}\right) = \hat{P}\left(y^{[i]} > r_k \,|\, y^{[i]} > r_{k-1}\right),\tag{2}$$

where the events are nested: $\{y^{[i]} > r_k\} \subseteq \{y^{[i]} > r_{k-1}\}.$ The transformed, unconditional probabilities can then be computed by applying the chain rule for probabilities to the model outputs:

$$\left(y^{[i]} > r_k\right) = \prod_{j=1}^k f_j\left(\mathbf{x}^{[i]}\right).$$
(3)

Since $\forall j, 0 \leq f_j(\mathbf{x}^{[i]}) \leq 1$, we have

$$(y^{[i]} > r_1) \ge \hat{P}(y^{[i]} > r_2) \ge \dots \ge \hat{P}(y^{[i]} > r_{K-1}),$$
 (4)

which guarantees rank consistency among the K - 1 binary tasks. 67

CORN Method 2/3

3.4. Conditional Training Subsets

Our model aims to estimate $f_1(\mathbf{x}^{[i]})$ and the conditional probabilities $f_2(\mathbf{x}^{[i]}), ..., f_{K-1}(\mathbf{x}^{[i]})$. Estimating $f_1(\mathbf{x}^{[i]})$ is a classic binary classification task under the extended binary classification framework with the binary labels $y_1^{[i]}$. To estimate the conditional probabilities such as $\hat{P}(y^{[i]} > r_2 | y^{[i]} > r_1)$, we focus only on the subset of the training data where $y^{[i]} > r_1$. As a result, when we minimize the binary cross-entropy loss on these conditional subsets, for each binary task, the estimated output probability has a proper conditional probability interpretation².

In order to model the conditional probabilities in Eq. 3, we construct conditional training subsets for training, which are used in the loss function (Section 3.5) that is minimized via backpropagation. The conditional training subsets are obtained from the original training set as follows:

$$S_{1}: \text{ all } \left\{ \left(\mathbf{x}^{[i]}, y^{[i]} \right) \right\}, \text{ for } i \in \{1, ..., N\},$$
$$S_{2}: \left\{ \left(\mathbf{x}^{[i]}, y^{[i]} \right) \mid y^{[i]} > r_{1} \right\},$$
$$\dots$$
$$S_{K-1}: \left\{ \left(\mathbf{x}^{[i]}, y^{[i]} \right) \mid y^{[i]} > r_{k-2} \right\},$$

where $N = |S_1| \ge |S_2| \ge ... \ge |S_{K-1}|$, and $|S_k|$ denotes the size of S_k . Note that the labels $y^{[i]}$ are subject to the binary label extension as described in Section 3.3. Each conditional training subset S_k is used for training the conditional probability prediction $\hat{P}(y^{[i]} > r_k | y^{[i]} > r_{k-1})$ for $k \ge 2$.

CORN Method 3/3

3.5. Loss Function

Let $f_j(\mathbf{x}^{[i]})$ denote the predicted value of the *j*-th node in the output layer of the network (Fig. 2), and let $|S_j|$ denote the size of the *j*-th conditional training set. To train a CORN neural network using backpropagation, we minimize the following loss function:

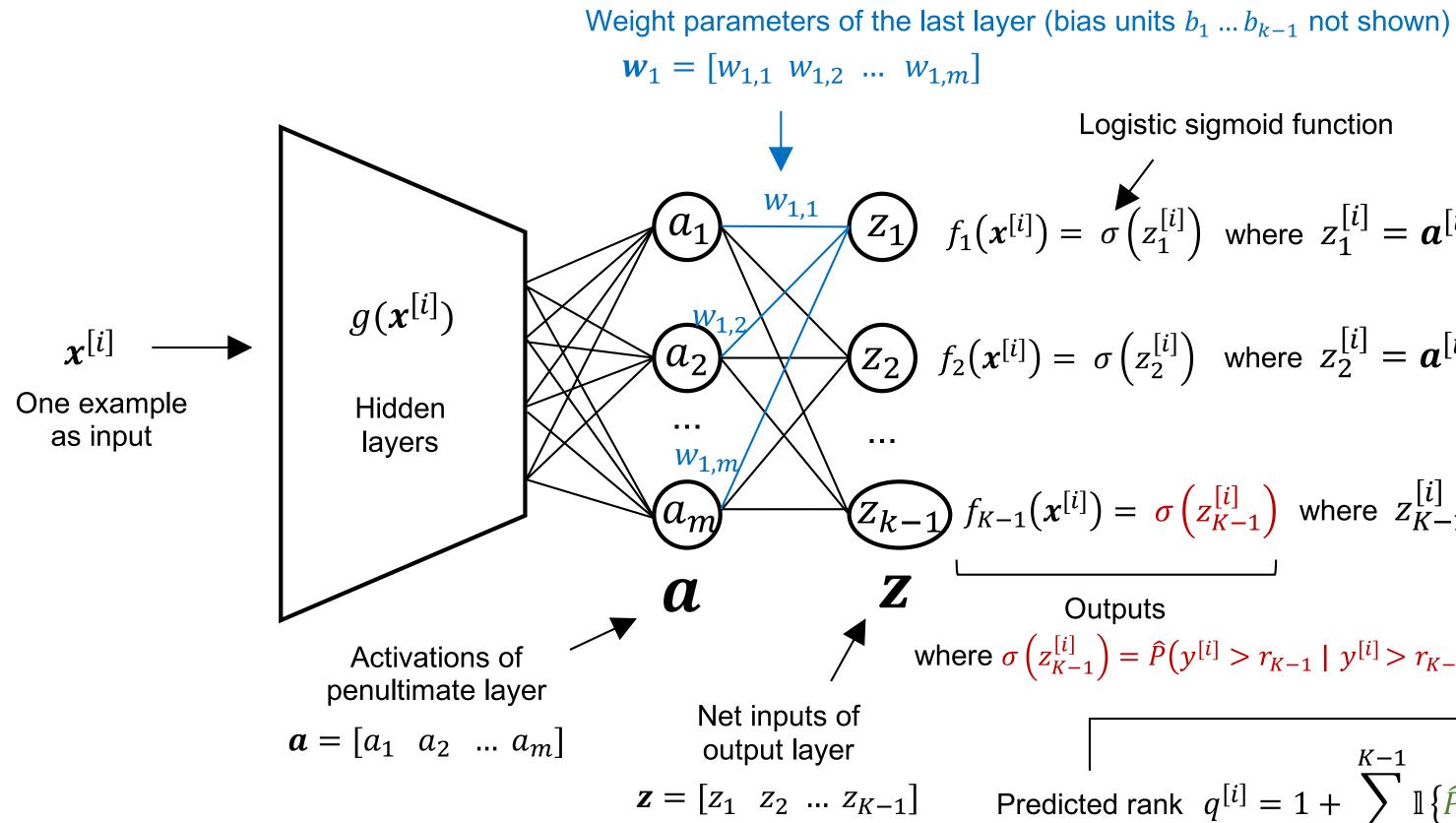
$$L(\mathbf{X}, \mathbf{y}) = -\frac{1}{\sum_{j=1}^{K-1} |S_j|} \sum_{j=1}^{K-1} \sum_{i=1}^{|S_j|} \left[\log \left(f_j(\mathbf{x}^{[i]}) \right) \cdot \mathbb{1} \left\{ y^{[i]} > r_j \right\} + \log \left(1 - f_j\left(\mathbf{x}^{[i]}\right) \right) \cdot \mathbb{1} \left\{ y^{[i]} \le r_j \right\} \right], \quad (5)$$

We note that in $f_j(\mathbf{x}^{[i]})$, $\mathbf{x}^{[i]}$ represents the *i*-th training example in S_j . To simplify the notation, we omit an additional index *j* to distinguish between $\mathbf{x}^{[i]}$ in different conditional training sets.

To improve the numerical stability of the loss gradients during training, we implement the following alternative formulation of the loss, where **Z** are the net inputs of the last layer (aka logits), as shown in Fig. 2, and $\log (\sigma(\mathbf{z}^{[i]})) = \log (f_j(\mathbf{x}^{[i]}))$:

$$L(\mathbf{Z}, \mathbf{y}) = -\frac{1}{\sum_{j=1}^{K-1} |S_j|} \sum_{j=1}^{K-1} \sum_{i=1}^{|S_j|} \left[\log \left(\sigma \left(\mathbf{z}^{[i]} \right) \right) \cdot \mathbb{1} \left\{ y^{[i]} > r_j \right\} + \left(\log \left(\sigma \left(\mathbf{z}^{[i]} \right) \right) - \mathbf{z}^{[i]} \right) \cdot \mathbb{1} \left\{ y^{[i]} \le r_j \right\} \right].$$
(6)

CORN Architecture



W

$$\begin{array}{l} \text{redicted rank} \quad q^{[i]} = 1 + \sum_{k=1}^{K-1} \mathbb{I}\left\{ \widehat{P}\left(y^{[i]} > r_k\right) > 0.5\right\} \\ \text{rhere} \quad \widehat{P}\left(y^{[i]} > r_k\right) = \widehat{P}\left(y^{[i]} > r_1\right) \cdot \widehat{P}\left(y^{[i]} > r_2 \mid y^{[i]} > r_1\right) \cdots \widehat{P}\left(y^{[i]} > r_k \mid y^{[i]} > r_{k-1}\right) \end{array}$$

CORN Performance 1/2

Table 1. Prediction errors on the test sets. Best results are highlighted in hold

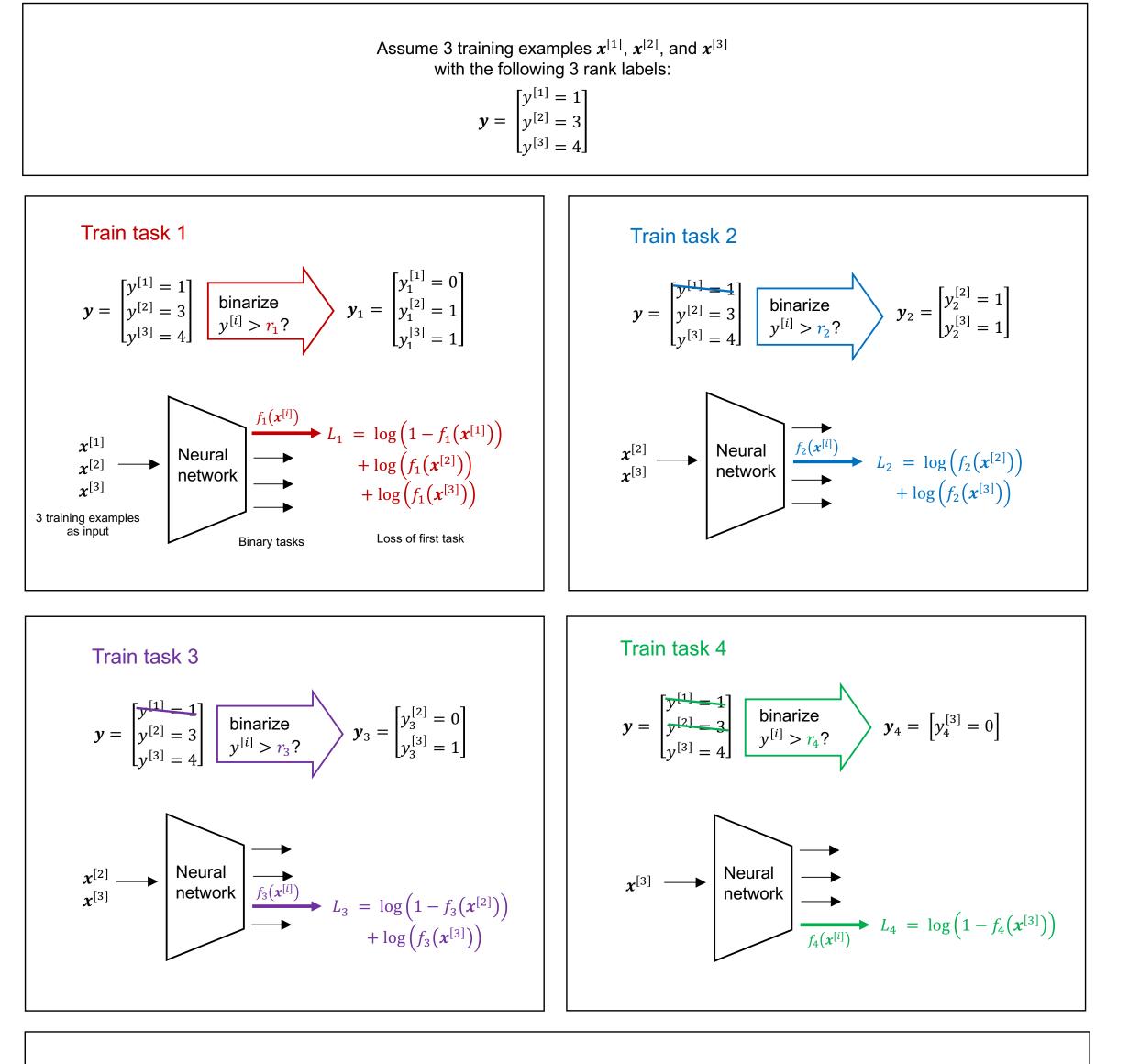
Table 1. Prediction errors on the test sets. Best results are highlighted in bold.									
Method	Seed	MORPH-2 (Balanced)		AFAD (Balanced)		AES		FIREMAN	
wiethou	Seeu	MAE	RMSE	MAE	RMSE	MAE	RMSE	MAE	RMSE
	0	3.81	5.19	3.31	4.27	0.43	0.68	0.80	1.14
CE-NN	1	3.60	4.8	3.28	4.19	0.43	0.69	0.80	1.14
CE-ININ	2	3.61	4.84	3.32	4.22	0.45	0.71	0.79	1.13
	3	3.85	5.21	3.24	4.15	0.43	0.70	0.80	1.16
	4	3.80	5.14	3.24	4.13	0.42	0.68	0.80	1.15
	AVG±SD	3.73 ± 0.12	5.04 ± 0.20	3.28 ± 0.04	4.19 ± 0.06	$\textbf{0.43} \pm \textbf{0.01}$	0.69 ± 0.01	0.80 ± 0.01	1.14 ± 0.01
	0	3.21	4.25	2.81	3.45	0.44	0.70	0.75	1.07
OR-NN	1	3.16	4.25	2.87	3.54	0.43	0.69	0.76	1.08
[11]	2	3.16	4.31	2.82	3.46	0.43	0.69	0.77	1.10
	3	2.98	4.05	2.89	3.49	0.44	0.70	0.76	1.08
	4	3.13	4.27	2.86	3.45	0.43	0.69	0.74	1.07
	AVG±SD	3.13 ± 0.09	4.23 ± 0.10	2.85 ± 0.03	3.48 ± 0.04	$\textbf{0.43} \pm \textbf{0.01}$	0.69 ± 0.01	$\textbf{0.76} \pm \textbf{0.01}$	1.08 ± 0.01
	0	2.94	3.98	2.95	3.60	0.47	0.72	0.82	1.14
CORAL	1	2.97	4.03	2.99	3.69	0.47	0.72	0.83	1.16
[1]	2	3.01	3.98	2.98	3.70	0.48	0.73	0.81	1.13
	3	2.98	4.01	3.00	3.78	0.44	0.70	0.82	1.16
	4	3.03	4.06	3.04	3.75	0.46	0.72	0.82	1.15
	AVG±SD	2.99 ± 0.04	4.01 ± 0.03	2.99 ± 0.03	3.70 ± 0.07	0.46 ± 0.02	0.72 ± 0.01	0.82 ± 0.01	1.15 ± 0.01
	0	2.98	4	2.80	3.45	0.41	0.67	0.75	1.07
CORN	1	2.99	4.01	2.81	3.44	0.44	0.69	0.76	1.08
(ours)	2	2.97	3.97	2.84	3.48	0.42	0.68	0.77	1.10
	3	3.00	4.06	2.80	3.48	0.43	0.69	0.76	1.08
	4	2.95	3.92	2.79	3.45	0.43	0.69	0.74	1.07
	AVG±SD	$\textbf{2.98} \pm \textbf{0.02}$	3.99 ± 0.05	$\textbf{2.81} \pm \textbf{0.02}$	3.46 ± 0.02	$\textbf{0.43} \pm \textbf{0.01}$	$\textbf{0.68} \pm \textbf{0.01}$	0.76 ± 0.01	1.08 ± 0.01

CORN Performance 2/2

Table S1. Prediction errors on the test sets. Best results are highlighted in bold.

			(Balanced)	Coursera (Balanced)		
Method	Seed	MAE	RMSE	MAE	RMSE	
	0	1.13	1.56	1.01	1.48	
CE-RNN	1	1.04	1.53	0.97	1.05	
CE-MININ	2	1.05	1.54	1.12	1.65	
	3	1.23	1.81	1.18	1.76	
	4	1.03	1.52	0.84	1.26	
	AVG±SD	1.10 ± 0.09	1.59 ± 0.12	1.02 ± 0.13	1.53 ± 0.19	
	0	1.06	1.53	0.98	1.34	
OR-RNN	1	1.09	1.50	0.93	1.24	
[11]	2	1.11	1.53	1.12	1.47	
	3	1.23	1.52	1.11	1.53	
	4	1.07	1.40	0.85	1.16	
	AVG±SD	1.11 ± 0.07	1.50 ± 0.06	1.00 ± 0.12	1.35 ± 0.15	
	0	1.15	1.58	0.99	1.29	
CORAL	1	1.14	1.49	1.03	1.39	
[1]	2	1.16	1.46	1.14	1.40	
	3	1.19	1.41	1.20	1.40	
	4	1.13	1.47	0.82	1.11	
	AVG±SD	1.15 ± 0.02	1.48 ± 0.06	1.04 ± 0.15	1.33 ± 0.13	
	0	1.09	1.55	0.95	1.37	
CORN	1	1.09	1.53	0.90	1.32	
(ours)	2	1.01	1.45	1.07	1.49	
	3	1.12	1.51	1.05	1.47	
	4	1.03	1.46	0.78	1.14	
	AVG±SD	1.07 ± 0.05	1.50 ± 0.04	$\textbf{0.95} \pm \textbf{0.12}$	1.36 ± 0.14	

CORN LOSS



Overall loss:
$$L(X, y) = \frac{1}{\sum_{i} |y_{i}|} \sum_{i} L_{i}$$

= $\frac{1}{3+2+2+1} L_{1} + L_{2} + L_{3} + L_{4}$