Transformers from the Ground Up

Sebastian Raschka https://sebastianraschka.com

PyData Jeddah August 5th, 2021

The latest from Google Research

Recent Advances in Google Translate

Monday, June 8, 2020

Posted by Isaac Caswell and Bowen Liang, Software Engineers, Google Research

Sebastian Raschka

https://ai.googleblog.com/2020/06/recent-advances-in-google-translate.html

Edited by David T. Jones, University College London, London, United Kingdom, and accepted by Editorial Board

Sebastian Raschka

https://www.pnas.org/content/118/15/e2016239118.short

Your Al pair programmer

With GitHub Copilot, get suggestions for whole lines or entire functions right inside your editor.

	315					
TS SE	entiment.ts	~ co wri	te_sql.go	¢	parse_expe	ense
	#!/usr/bi	.n/env t	s-node			
	import {	fetch }	from "	fetc	h-h2" ;	
4 5	// Determ	ine whe	ther th	e sei	ntiment	of
	// Use a			<i>c</i> .		
7	async fun const r				ext: str tch(`htt	
9			сτ",			
10	body :	`text=	\${text}			
11	heade	rs: {				
12		ntent-1	ype": "	appl	ication/	x-w
13	},					
14	});					
15	-				se. <mark>json</mark> ();
16	return	json.la	ıbel ===	"po	s";	
17	}					
	🔀 Copilot					

https://github.blog/2021-06-29-introducing-github-copilot-ai-pair-programmer/

Sebastian Raschka

Sign up >			
es.py 🛃 addresses.rb			
	1		
text is positive			
g): Promise <boolean> {</boolean>			
<pre>//text-processing.com/api/sentiment/`, {</pre>			
www-form-urlencoded",			
🕄 Replay			
Powered by			
\$0penAI			

PyData Jeddah

Topics

- 1. Augmenting RNNs with attention
- 2. Self-attention
- 3. The original transformer architecture
- 4. Large-scale language models
- 5. Fine-tuning a pre-trained BERT model in PyTorch
- 6. Quo vadis, transformers?

Think of this talk as a conceptual overview

That may help to navigate the transformer jungle if you are interested

Please don't worry so much about the mathematical or conceptual details in this talk. These details would take many, many hours to talk about and digest.

Sebastian Raschka

Topics

1. Augmenting RNNs with attention

- 2. Self-attention
- 3. The original transformer architecture
- 4. Large-scale language models
- 5. Fine-tuning a pre-trained BERT model in PyTorch
- 6. Quo vadis, transformers?

Regular encoder-decoder RNN for seq2seq tasks

RNN = Recurrent neural network

Seq2seq = sequence-to-sequence (e.g., translation, summarization, ...)

Input sequence

Sebastian Raschka

Why parsing all the input before attempting translation?

Because we can't just translate word by word

Sebastian Raschka

Problem: RNN has to remember a lot in 1 hidden state

How can we deal with long-range dependencies better and improve language translation?

Sebastian Raschka

Idea: attention mechanism that lets each decoder step

Bahdanau, D., Cho, K., & Bengio, Y. (2014). Neural Machine Translation by Jointly Learning to Align and Translate https://arxiv.org/abs/1409.0473

ata Jeddah

An RNN with attention mechanism

Output sequence:

Hidden states (with context information):

Context vector:

Attention weights:

Concatenated hidden states:

Hidden states from • reverse direction:

• forward direction:

Input sequence:

Sebastian Raschka

PyData Jeddah

Topics

1. Augmenting RNNs with attention

2. Self-attention

- 3. The original transformer architecture
- 4. Large-scale language models
- 5. Fine-tuning a pre-trained BERT model in PyTorch
- 6. Quo vadis, transformers?

PyData Jeddah

*Minor detail: "self"-attention, because in the attention-based RNN, attention weights are derived from the connection between input & output elements, while self-attention mechanism only focuses on the inputs

A simple form of self-attention*

$$\mathbf{z}^{(i)} = \sum_{j=1}^{T} \alpha_{ij} \mathbf{x}^{(j)}$$

Data Jeddah

Self-attention with learnable weights

Where we have three weight matrices U_q, U_k, U_v

• Query:
$$oldsymbol{q}^{(i)} = oldsymbol{U}_q oldsymbol{x}^{(i)}$$

• Key: $\boldsymbol{k}^{(i)} = \boldsymbol{U}_k \boldsymbol{x}^{(i)}$

• Value:
$$\boldsymbol{v}^{(i)} = \boldsymbol{U}_{v} \boldsymbol{x}^{(i)}$$

14

Topics

- 1. Augmenting RNNs with attention
- 2. Self-attention

3. The original transformer architecture

- 4. Large-scale language models
- 5. Fine-tuning a pre-trained BERT model in PyTorch
- 6. Quo vadis, transformers?

Attention Is All You Need

by A. Vaswani and colleagues (2017), https://arxiv.org/abs/1706.03762

- A deep learning architecture for language translation centered around self-attention
- Without any RNN parts

Sebastian Raschka

The original transformer architecture

Sebastian Raschka

^{Dy}Data Jeddah

What is multi-head attention?

Multiple matrices U to stack the following multiple time (like kernels/ channels in a CNN):

a Jeddah

Sebastian Raschka

- Query: $q^{(i)} = U_q x^{(i)}$ Key: $k^{(i)} = U_k x^{(i)}$
- Value: $\boldsymbol{v}^{(i)} = \boldsymbol{U}_{v} \boldsymbol{x}^{(i)}$

Image credit: Jitian Zhao

h heads

What is "masked" multi-head attention?

Sebastian Raschka

It masks out words after the current position (those words that the decoder still has to generate)

Can be considered as a form of unidirectional (as opposed to bidirectional) parsing

^{DyData} Jeddah

Topics

- 1. Augmenting RNNs with attention
- 2. Self-attention
- 3. The original transformer architecture

4. Large-scale language models

- 5. Fine-tuning a pre-trained BERT model in PyTorch
- 6. Quo vadis, transformers?

Focus on 2 popular models/approaches:

Common theme among most transformers:

1. Pre-training on very large, unlabeled datasets 2. Then fine-tuning on labeled dataset for respective target tasks

Sebastian Raschka

GPT (unidirectional) -> good for generating text BERT (bidirectional) -> good for prediction (classification)

Training transformers: a 2-step approach

Sebastian Raschka

GPT: Generative Pretrained Transformer

Model	Release year	Number of parameters
GPT-1	2018	110 million
GPT-2	2019	1.5 billion
GPT-3	2020	175 billion

Sebastian Raschka

Title

Manuscript link

https://www.cs.ubc.ca/ ~amuham01/LING530/ Understanding by Generative papers/ radford2018improving.pdf

Language Models are Unsupervised Multitask Learners

Improving Language

Pre-Training

<u> https://</u>

www.semanticscholar.org/ paper/Language-Models-are-Unsupervised-Multitask-Learners-Radford-Wu/ 9405cc0d6169988371b2755 e573cc28650d14dfe

Language Models are Few-Shot Learners

https://arxiv.org/pdf/ 2005.14165.pdf

Decoder Additional layer(s) for fine-tuning Pre-trained model Text Task Classification Start Text classifier Prediction Entailment Start Delim Premise Layer Norm Delim Start Text2 Text1 Feed Forward Similarity Delim Text1 Text2 Start i 12 × -Layer Norm Delim Context Masked multi-Start Answer1 head attention Delim Start Context Answer2 **Multiple choice** ... Positional Start Context Delim encoding AnswerN Text embedding

Unidirectional language model: next word prediction

Sebastian Raschka

GPT-1

Jeddah

GPT-2: Zero-shot learning

Examples are provided via context (no fine-tuning), e.g.,

Sebastian Raschka

"translate to french, english text, french text"

GPT-3: Zero- and few-shot learning

The three settings we explore for in-context learning

In addition to the task description, the model is also given

a Jeddah

Bidirectional Encoder Representations from Transformers: **BERT**

BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding (2018), J. Devlin, M. Chang, K. Lee and K. Toutanova, https://arxiv.org/abs/1810.04805

featuring a bidirectional ("nondirectional") training as it reads all elements at once (as opposed to word by word, left to right)

Sebastian Raschka

BERT's Pre-training task 1/2: Masked Language Model

15% of the words are masked (or "marked") and are treated as follows ...

Input sentence: A quick brown fox jumps over a lazy dog.

80% Mask token: replace fox with [MASK]

Output sentence: \dashv

_ 10% Unchanged: keep fox

Sebastian Raschka

10% Random token: replace fox with coffee

BERT's Pre-training task 2/2: Next sentence prediction

Classification token: IsNext, NotNext

Sebastian Raschka

BERT Fine-tuning tasks

(a) Sentence pair classification tasks

(c) Question answering tasks

Sebastian Raschka

(b) Single sentence classification tasks

(d) Single sentence tagging tasks

Topics

- 1. Augmenting RNNs with attention
- 2. Self-attention
- 3. The original transformer architecture
- 4. Large-scale language models
- 5. Fine-tuning a pre-trained BERT model in PyTorch 6. Quo vadis, transformers?

Fine-tuning BERT

(a) Sentence pair classification tasks

(c) Question answering tasks

Single sentence

(d) Single sentence tagging tasks

Multiple sentences can be concatenated (512 token limit)

Large Movie Review Dataset

This is a dataset for binary sentiment classification containing substantially more data than previous benchmark datasets. We provide a set of 25,000 highly polar movie reviews for training, and 25,000 for testing. There is additional unlabeled data for use as well. Raw text and already processed bag of words formats are provided. See the README file contained in the release for more details.

Large Movie Review Dataset v1.0

When using this dataset, please cite our ACL 2011 paper [bib].

For comments or questions on the dataset please contact <u>Andrew Maas</u>. As you publish papers using the dataset please notify us so we can post a link on this page.

Publications Using the Dataset

Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng, and Christopher Potts. (2011). Learning Word Vectors for Sentiment Analysis. The 49th Annual Meeting of the Association for Computational Linguistics (ACL 2011).

https://ai.stanford.edu/~amaas/data/sentiment/

Sebastian Raschka

Contact

Code notebook: <u>https://github.com/rasbt/2021-pydata-jeddah</u>

Sebastian Raschka

Topics

- 1. Augmenting RNNs with attention
- 2. Self-attention
- 3. The original transformer architecture
- 4. Large-scale language models
- 5. Fine-tuning a pre-trained BERT model in PyTorch
- 6. Quo vadis, transformers?

10000			
7500			
7500			
5000			
5000			
0500			
2500			
		(C)	
AZ		Ś	Google Al
NIZ		OpenAI	DEDT Large
ELMo		GPT	BERT-Large 340
94		110	540
0 -	April 2018	JUHY 2018	October 2018
	:12015	2017	201-
	POLI	Philip	x0 ^{ber}
			000

Image Source: https://medium.com/huggingface/distilbert-8cf3380435b5

Sebastian Raschka

GPT-3 (175 billion)

THE COST OF TRAINING NLP MODELS A CONCISE OVERVIEW

Or Sharir AI21 Labs ors@ai21.com

Barak Peleg AI21 Labs barakp@ai21.com

Sebastian Raschka

Yoav Shoham AI21 Labs yoavs@ai21.com

April 2020

http://arxiv.org/abs/2004.08900

• \$2.5k - \$50k (110 million parameter model) • \$10k - \$200k (340 million parameter model) • \$80k - \$1.6m (1.5 billion parameter model)

TECH ARTIFICIAL INTELLIGENCE

OpenAl's text-generating system GPT-3 is now spewing out 4.5 billion words a day

Robot-generated writing looks set to be the next big thing

By James Vincent | Mar 29, 2021, 8:24am EDT

https://www.theverge.com/2021/3/29/22356180/openai-gpt-3-text-generation-words-day

Sebastian Raschka

Figure credits:

Python Machine Learning book chapter on Transformers by Jitian Zhao and Sebastian Raschka

Sebastian Raschka

YouTube https://www.youtube.com/playlist?list=PLTKMiZHVd_2KJtIXOW0zFhFfBaJJilH51

https://sebastianraschka.com/blog/2021/dl-course.html

Sebastian Raschka

https://sebastianraschka.com/books/

