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Biometric (Face) Recognition

A. ldentification B. Verification
Determine identity of an unknown person Verify claimed identity of a person
1-to-n matching 1-to-1 matching
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Applications of Biometric (Face) Recognition
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Soft-Biometric Attributes

Meryl Streep

Gender Female
Age 12
Race Caucasian

Medical Healthy
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Ex. 1: How difficult is it to extract
gender information from face images”

|dentity Meryl Streep

Gender Female
Age 12
Race Caucasian

Medical Healthy
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VGG-19 34-layer plain 34-layer residual

Very Easy:
P ResNet-50 Applied to Gender Classification

| 3x3cony, 64 |

Time elapsed: 37.70 min
Total Training Time: 37.70 min
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Evaluation

He, Kaiming, et al. "Deep residual learning for
iImage recognition." Proceedings of the IEEE
conference on computer vision and pattern
recognition. 2016.

with torch.set_grad_enabled(False): # save memory during inference
print('Test accuracy: %.2f%%' % (compute_accuracy(model, test_loader,

Test accuracy: 97.40%

https://nbviewer.jupyter.org/github/rasbt/deeplearning-models/blob/master/pytorch ipynb/cnn/cnn-resnet50-
celeba-dataparallel.ipynb
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Ex. 2: How difficult Is it to extract
age information from face images®?

|dentity Meryl Streep

Gender Female
Age 12
Race Caucasian

Medical Healthy
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Ordinal Regression for ordinal data:
Integrating label order info

 Ranking: Predict Correct order
(O loss if order is correct, e.g., rank a collection of movies by "goodness")

RUNNER

* Ordinal regression: Predict correct (ordered) label
(E.g., age of a person in years; here, regard aging as a non-stationary process)

Cao, Mirjalili, Raschka (2020)

Rank Consistent Ordinal Regression for Neural
Networks with Application to Age Estimation
Pattern Recognition Letters. 140, 325-331

Excerpt from the UTKFace dataset
https://susanqq.github.io/UTKFace/
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Age Prediction Datasets

AFAD
e 165,501 face images
e age range: 15-40 years

MORPH-2
e 55,008 face images
e age range: 16-70 years
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Table 1

Age prediction errors on the test sets. All models are based on the ResNet-34 architecture.

Method Random seed MORPH-2 AFAD
MAE RMSE MAE RMSE

CE-CNN 0 3.26 4.62 3.58 5.01

1 3.36 4.77 3.58 5.01

2 3.39 4.84 3.62 5.06

AVG + SD 3.34 + 0.07 474 + 0.11 3.60 + 0.02 5.03 + 0.03
OR-CNN [16] 0 2.87 4.08 3.56 4.80

1 2.81 3.97 3.48 4.68

2 2.82 3.87 3.50 4.78

AVG + SD 2.83 + 0.03 3.97 + 0.11 3.51 + 0.04 4.75 + 0.06
CORAL-CNN (ours) 0 2.66 3.69 3.42 4.65

1 2.64 3.64 3.51 4.76

2 C 3.62 A8 4.73

AVG + SD 0.02 3.65 + 0.04 0.05 4.71 + 0.06

Age prediction only off by 2 2 to 3 12 years on average

W Cao, V Mirjalili, and S Raschka (2020)

Rank Consistent Ordinal Regression for Neural Networks with Application to Age Estimation

Pattern Recognition Letters. 140, 325-331

https.//www.sciencedirect.com/science/article/pii/S016786552030413X
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MAE = —
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Biometric (Face) Recognition Can Be Useful
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Soft-Biometric Attribute Mining Can Be
Problematic in Absence of Consent

|dentity Meryl Streep

Meryl Streep_
Gender
Medical
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Soft-biometric Attributes: Issues and Concerns

1. ldentity theft: combining soft biometric info with
publicly available data

2. Profiling: e.g., gender/race based profiling

3. Ethics: extracting data without users’ consent
(e.g., intentional or via database breaches)

16



Preventing Automatic Extraction

Contact

& Not logged in Talk Contributions Create account Log in

Article Talk Read Edit View history | Search Wikipedia Q Personal email:

RSN

WIKIPEDIA Email-address harvesting maTL@sebasﬁfaV\rascL\ka.ch\

The Free Encyclopedia From Wikipedia, the free encyclopedia

Main page Email harvesting or scraping is the process of obtaining lists of email addresses using Work email:
Contents various methods. Typically these are then used for bulk email or spam.

Current events

Random article Contents [hide] Q’I’ A §' > Aéﬂ@ w IOS' il d U

About Wikipedia 1 Methods

Sontactis 2 Harvesting sources

Donate 3 Legality -

Contribute 4 Countermeasures

Help 5 See also

Learn to edit 6 References

Community portal

it Methods |edi; mail at sebastianraschka .dot. com
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Can/do we need to take similar measures to
prevent soft-biometric attribute harvesting?

18



One solution:
Storing face representation vectors
with sensitive information removed

1. Q. Xie, Z. Dai, Y. Du, E. Hovy, and G. Neubig: "Controllable invariance through adversarial feature learning," in
Advances in Neural Information Processing Systems, 2017, pp. 585-596.

2. P. Terhorst, N. Damer, F. Kirchbuchner, and A. Kuijper, "Unsupervised privacy-enhancement of face representations
using similarity-sensitive noise transformations," Applied Intelligence, pp. 1-18, 2019.

3. A. Morales, J. Fierrez, and R. Vera-Rodriguez, "SensitiveNets: Learning agnostic representations with application
to face recognition,” arXiv preprint arXiv:1902.00334,

4. P. C. Roy and V. N. Boddeti, "Mitigating information leakage in image representations: A maximum entropy
approach,” in IEEE Conference on Computer Vision and Pattern Recognition, 2019, pp. 2586-2594.

5. B. Sadeghi, R. Yu, and V. Boddeti, "On the global optima of kernelized adversarial representation learning," in
Proceedings of the IEEE International Conference on Computer Vision, 2019, pp. 7971- 7979.

Very useful approach, but can have limitation for certain application domains, because
* not interpretable by humans
e not compatible with arbitrary face matching software



Goal: Selective Privacy

1. Perturb soft-biometric (e.g., gender) information
2. Ensure realistic face images

3. Retain biometric face recognition utility

20
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Autoencoder to
perturb image

P(X) =X’ ’ J
Gender Classifier
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(GGeneral architecture of the
semi-adversarial network (SAN)

Subnetwork ||

Subnetwork |

Auxiliary Genuine
Face Matcher VS.
Image ,
Ve
Decoder X' =<
\ Subnetwork Il
\
\
; N\ .
Convolutional ~ | Auxitiary Gender | Male vs.
Autoencoder Predictor Female
enc Pdec
Encoder Prototype Decoder Prototype
(Same attribute) (Same/Opposite attribute)

V Mirjalili, S Raschka, A Namboodiri, and A Ross (2018) Semi-adversarial Networks: Convolutional Autoencoders
for Imparting Privacy to Face Images. Proc. of 11th IAPR International Conference on Biometrics (ICB 2018)
https://ieeexplore.ieee.org/document/8411207/

23


https://ieeexplore.ieee.org/document/8411207/

Sebastian Raschka

GGeneral architecture of the
semi-adversarial network (SAN)

Objective 2:

Subnetwork | Retain matching utility

Auxiliary Genuine
Face Matcher VS.
Perturbed , 7 Impostor
Image P
Decoder
Subnetwork lll
Objective 1:
Convolutional AEUSUCNINMESER S | | Ayxiliary Gender |  Male vs.
Autoencoder Predictor Female
enc Pdec
Encoder Prototype Decoder Prototype Obiective 3:
(Same attribute) (Same/Opposite attribute) J :

Confound gender
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Sebastian Raschka

Semi-adversarial network

not adversarial
Objective 1:
Realistic images

adversarial

Objective 2:
Retain matching utility

Objective 3:
Confound gender

14th International Conference on Human System Interaction 2021
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Convolutional neural networks

26



Original Inputs

Outputs

Sebastian Raschka

SAN Examples

Male: 99% Male: 97% Male: 100%

Female: 69% Male: 99% Female: 71% Female: 58%

14th International Conference on Human System Interaction 2021
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Replacing Detachable Parts for Evaluation

Subnetwork |

- —
G-COTS/
Perturbed g IntraFace

Image

Convolutional
Autoencoder

o> M-COTS

Encoder Prototype Decoder Prototype

(Same attribute) (Same/Opposite attribute)
Use methods unseen

during training
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IntraFace Gender Classifier Performance on Different Datasets

No perturbation:
Original gender
classification performance 0.75-

—— Before ---- After (SM) -=-=- After (NT) —— After (OP) --=-- After Ref[21]
= 1.00- | - .

(a) CelebA-test (b) MUCT

as \Male
o \O
N

Ul .

Strong perturbation

O .
: IntraFace Gender - IntraFace Gender
via our SAN method FGE) 0 . . . . | Ko . . . .
0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
£ 1.00] —
(@) e
Q
Very strong ;U 0.75°
perturbation 0.50-

from Ref [21]

(d) AR-face
IntraFace Gender

0.25;

' IntraFace Gender ,

0.0 02 04 06 08 1.0 00 02 04 06 0.8 1.0
Female classified as Male

0.00;

[21] A. Othman and A. Ross. Privacy of facial soft biometrics: Suppressing gender but retaining identity. In European
Conference on Computer Vision Workshop, pages 682—-696. Springer, 2014.
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Face matChing perfOrmance —  Before - == After (NT)  ==--- Before-After (OP)

— ==  After (SM) —e— After (OP) --m-- After Ref [21]

Multi-subject comparisons 1.00-
0.75
Before = J
After (SM) " o5
— == After (NT)

1074 103 102 10! 109

—eo— After (OP)

--m—- After Ref [I]

Strong perturbation
via our SAN method

Very very weak face recognition
after perturbation via Ref [21] 0.25]

[21] A. Othman and A. Ross. Privacy of facial soft biometrics: Suppressing gender but retaining identity. In European
Conference on Computer Vision Workshop, pages 682—-696. Springer, 2014.
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Gender Privacy: An Ensemble of Semi Adversarial Networks
for Confounding Arbitrary Gender Classifiers

Improvements to construct a more diverse set of SAN models

for better generalizabillity

Hypothesis space of

I gender classmers I

Non-diverse: Diverse:
Ensemble SAN cannot generalize Ensemble SAN can generalize

Figure 1: Diversity in an ensemble SAN can be enhanced
through 1ts auxiliary gender classifiers (see Figure 2). When
the auxiliary gender classifiers lack diversity, ensemble
SAN cannot generalize well to arbitrary gender classifiers.

Figure 4: Face prototypes computed for each group of at-
tribute labels. The abbreviations at the bottom of each 1m-
age refer to the prototype attribute-classes, where Y=young,
O=0ld, M=male, F=tfemale, W=white, B=black.

V Mirjalili, S Raschka, and A Ross (2018) Gender Privacy: An Ensemble of Semi Adversarial Networks for
Confounding Arbitrary Gender Classifiers. 9th IEEE International Conference on Biometrics: Theory, Applications,

and Systems (BTAS 2018)

Sebastian Raschka 14th International Conference on Human System Interaction 2021
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FIowSAN: Privacy-enhancing Semi-Adversarial Networks
to Confound Arbitrary Face-based Gender Classifiers

(A)

Improvements to better control the
perturbations and enhance the
removal of soft-biometric information

orig

Gendér Prob. _ | N
P(Male) [ 80% 56% )

Matching Acc.

w/ original:

V Mirjalili, S Raschka, A Ross (2019)
FlIowSAN: Privacy-enhancing Semi-Adversarial Networks to Confound Arbitrary Face-based Gender Classifiers
IEEE Access 2019, 10.1109/ACCESS.2019.2924619
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Selective and collective

perturbations for imparting Transforrl:\::\v;::lei:;ages for ?Race
- - - obfuscating soft-biometric |
multi-attribute privacy to face atbates @
images 8.
1age\)’:
Selective = which attributes to conceal M:;

Collective = how many attributes to conceal

V Mirjalili, S Raschka, and A Ross (2020)
PrivacyNet: Semi-Adversarial Networks for Multi-attribute Face Privacy
IEEE Transactions in Image Processing. Vol. 29, pp. 9400-9412, 2020.

Sebastian Raschka 14th International Conference on Human System Interaction 2021
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PrivacyNet replaces the convolutional autoencoder with
a GAN-based model with cycle consistency loss

Autoencoder to
perturb image

PX) =X’

DK

Face Matcher

Gender Classifier




CycleGAN

Zhu, J. Y., Park, T., Isola, P, & Efros, A. A. (2017). Unpaired image-to-image translation using cycle-consistent adversarial networks. In
Proceedings of the IEEE international conference on computer vision (pp. 2223-2232). https://arxiv.org/abs/1703.10593

Does not require paired images from source and target domains
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CycleGAN

Zhu, J. Y., Park, T., Isola, P, & Efros, A. A. (2017). Unpaired image-to-image translation using cycle-consistent adversarial networks. In
Proceedings of the IEEE international conference on computer vision (pp. 2223-2232). https://arxiv.org/abs/1703.10593

Real/Generated Real/Generated

t t

GAB

X

Image from domain B

X

Gpa
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Conditional GAN

Gscriminator

00000 000009

— —assss
00000

Mirza, M., & Osindero, S. (2014). Conditional generative adversarial nets. https://arxiv.org/abs/1411.1784
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Conditional GAN

Input image

Concatenate

/

Label channel

Mirza, M., & Osindero, S. (2014). Conditional generative adversarial nets. https://arxiv.org/abs/1411.1784
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PrivacyNet Architecture
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Labels 'Iﬂ' (;

Input
mage | [

Sebastian Raschka

4 Subnetworks
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PrivacyNet's Cycle Consistency

Co
dd4
Original Labels

Input
lmage

N 44

Target Labels

14th International Conference on Human System Interaction 2021 41



Target

%
(%
AR

Input
Image

Ct
Labels 2P —

Generator

G

Discriminator Loss Function

Discriminator
Real / Synthesized

EG,STC LD,STC

Attribute

Classitier Gender, Age, Race

[:G,attr [fD,att’r’

Auxiliary Face

Matcher  \atch score

Sebastian Raschka

LD,tot — LD,STC + )\D,attfr‘[fD,attr
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CelebA MORPH MUCT RaFD
1.0 o

O
M-COTS

=
et

SE-Net

True Match Rate
o
N

—=O

,’

-
o %=
= —F—¥—¥F |- =

10°! 103 102 107! 1073 10
False Match Rate

—e— QOriginal I PrivacyNet (ours) Controllable Face Privacy [35]
-¥- Face Mixing[34] 1 Baseline-GAN

Fig. 8: ROC curves showing the performance of unseen face matchers on the original images for PrivacyNet, the baseline-
GAN model, face mixing [34] approach and the controllable face privacy [35] method. The results show that ROC curves
of PrivacyNet have the smallest deviation from the ROC curve of original images suggesting that the performance of face
matching is minimally impacted, which is desired.
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Yage

Limitation

0 age < 30
I 30 < age <45
2 15 < age
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Suggested future solutions now that we can
hide/change the age in face images ...

AGE TEST

What's the connection between these
two objects?

Image source: https://www.pinterest.cl/pin/211458144973743149/
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Thank You!

@ https://sebastianraschka.com

y @rasbt

B3 Sebastian Raschka
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