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Computer vision models Language models

Source: https://lambdalabs.com/blog/choosing-a-gpu-for-deep-learning

GPUs for Deep Learning Continue to Improve

Technologies > Hardware

https://lambdalabs.com/blog/choosing-a-gpu-for-deep-learning
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Source: https://lambdalabs.com/blog/choosing-a-gpu-for-deep-learning

Beyond Words/Images Per Second: Batch Size Matters, Too

Technologies > Hardware

https://lambdalabs.com/blog/choosing-a-gpu-for-deep-learning
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Figure 1. The standard Python ecosystem for machine learning, data science, and scientific computing.

While both NumPy and Pandas [7] (Figure 1) provide abstractions over a collection of data points61

with operations that work on the dataset as a whole, Pandas extends NumPy by providing a data62

frame-like object supporting heterogeneous column types and row and column metadata. In recent63

years, Pandas library has become the de-facto format for representing tabular data in Python for extract,64

transform, load" (ETL) contexts and data analysis. Twelve years after its first release in 2008, and 2565

versions later, the first 1.0 version of Pandas was released in 2020. In the open source community,66

where most projects follow semantic versioning standards [8], a 1.0 release conveys that a library has67

reached a major level of maturity, along with a stable API.68

Even though the first version of NumPy was released more than 25 years ago (under its previous69

name, "Numeric"), it is, similar to Pandas, still actively developed and maintained. In 2017, the70

NumPy development team received a $645,000 grant from the Moore Foundation to help with further71

development and maintenance of the library [9]. As of this writing, Pandas, NumPy, and SciPy remain72

the most user-friendly and recommended choices for many data science and computing projects.73

1.2. Optimizing Python’s Performance for Numerical Computing and Data Processing74

Aside from its threading limitations, the CPython interpreter does not take full advantage75

of modern processor hardware as it needs to be compatible with a large number of computing76

platforms [10]. Special optimized instruction sets for the CPU, like Intel’s Streaming SIMD Extensions77

(SSE) and IBM’s AltiVec, are being used underneath many low-level library specifications, such as78

the Binary Linear Algebra Subroutines (BLAS) [11] and Linear Algebra Pack (LAPACK) [12] libraries, for79

efficient matrix and vector operations.80

Significant community efforts go into the development of OpenBLAS, an open source81

implementation of the BLAS API that supports a wide variety of different processor types. While all82

major scientific libraries can be compiled with OpenBLAS integration [13], the manufacturers of the83

different CPU instruction sets will also often provide their own hardware-optimized implementations84

of the BLAS and LAPACK subroutines. For instance, Intel’s Math Kernel Library (Intel MKL) [14]85

and IBM’s Power ESSL [15] provide pluggable efficiency for scientific computing applications.86

This standardized API design offers portability, meaning that the same code can run on different87

architectures with different instruction sets, via building against the different implementations.88

When numerical libraries such as NumPy and SciPy receive a substantial performance boost, for89

example, through hardware-optimized subroutines, the performance gains automatically extend to90

higher-level machine learning libraries, like Scikit-learn, which primarily use NumPy and SciPy [16,17].91

Intel also provides a Python distribution geared for high-performance scientific computing, including92

the MKL acceleration [18] mentioned earlier. The appeal behind this Python distribution is that it93

is free to use, works right out of the box, accelerates Python itself rather than a cherry-picked set of94

libraries, and works as a drop-in replacement for the standard CPython distribution with no code95

changes required. One major downside, however, is that it is restricted to Intel processors.96

Sebastian Raschka, Joshua Patterson, and Corey Nolet (2020) 
Machine Learning in Python: Main developments and technology trends in data science, machine learning, and artificial intelligence 
Information 2020, 11, 193

Traditionally: Use GPUs for (Gaming and) Deep Learning

Technologies > Hardware
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Python API where applicable. cuIO provides storage and retrieval of many popular data formats, such552

as CSV and Parquet. cuStrings makes it possible to represent, search, and manipulate strings on GPUs.553

cuSpatial provides algorithms to build and query spatial data structures while cuSignal provides a554

near drop-in replacement for SciPy’s signaling submodule scipy.signal.555

GPU Memory
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Figure 4. RAPIDS is an open source effort to support and grow the ecosystem of GPU-accelerated
Python tools for data science, machine learning, and scientific computing. RAPIDS supports existing
libraries, fills gaps by providing open source libraries with crucial components that are missing from
the Python community, and promotes cohesion across the ecosystem by supporting interoperability
across the libraries.

4.3. NDArray and Vectorized Operations556

While NumPy is capable of invoking a BLAS implementation to optimize SIMD operations, its557

capability of vectorizing functions is limited, providing little to no performance benefits. The Numba558

library provides just-in-time (JIT) compilation [73], enabling vectorized functions to make use of559

technologies like SSE and AltiVec. This separation of describing the computation separately from560

the data also enables Numba to compile and execute these functions on the GPU. In addition to JIT,561

Numba also defines a DeviceNDArray, providing GPU-accelerated implementations of many common562

functions in NumPy’s NDArray.563

CuPy defines a GPU-accelerated NDArray with a slightly different scope than Numba [74]. CuPy564

is built specifically for the GPU, following the same API from NumPy, and includes many features from565

the SciPy API, such as scipy.stats and scipy.sparse, which use the corresponding CUDA toolkit566

libraries wherever possible. CuPy also wraps NVRTC 11 to provide a Python API capable of compiling567

and executing CUDA kernels at runtime. CuPy was developed to provide multidimensional array568

support for the deep learning library Chainer [75], and it has since become used by many libraries as a569

GPU-accelerated drop-in replacement for NumPy and SciPy.570

The TensorFlow and PyTorch libraries define Tensor objects, which are multidimensional arrays.571

These libraries, along with Chainer, provide APIs similar to NumPy, but build computation graphs572

to allow sequences of operations on tensors to be defined separately from their execution. This is573

motivated by their use in deep learning, where tracking the dependencies between operations allow574

them to provide features like automatic differentiation, which is not needed in general array libraries575

like Numba or CuPy. A more detailed discussion of deep learning and automatic differentiation can be576

found in Section 5.577

Google’s Accelerated Linear Algebra (XLA) library [76] provides its own domain-specific format578

for representing and JIT-compiling computational graphs; also giving the optimizer the benefit of579

knowing the dependencies between the operations. XLA is used by both TensorFlow and Google’s580

JAX library [77], which provides automatic differentiation and XLA for Python, using a NumPy shim581

11 https://docs.nvidia.com/cuda/nvrtc/index.html

Sebastian Raschka, Joshua Patterson, and Corey Nolet (2020) 
Machine Learning in Python: Main developments and technology trends in data science, machine learning, and artificial intelligence 
Information 2020, 11, 193

Today: Use GPUs for All ML & Data Science (and Bitcoin Mining)

Technologies > Hardware
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https://arstechnica.com/gadgets/2018/07/the-ai-revolution-has-spawned-a-new-chips-arms-race/

Besides GPUs, Companies Develop Specialized Hardware

https://developer.arm.com/products/processors/machine-learning/arm-ml-processor

https://www.reuters.com/article/us-amazon-com-nvidia/amazon-launches-machine-learning-chip-
taking-on-nvidia-intel-idUSKCN1NX2PY

Technologies > Hardware

https://www.graphcore.ai

https://www.graphcore.ai
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2000s: 
-  OpenNN, Torch, Matlab 

2010s: 
- (Multi)-GPU support: Caffe, config files;   Chainer imperative;     Theano declarative    

2015s: 
-  TensorFlow (Google), declarative 
-  Caffe2 (FAIR, by TensorFlow dev) 
- CNTK (Microsoft) 
- DyNet (Carnegie Mellon University) 
- Paddle Paddle (Baidu) 
-  MXNet (Amazon support), declarative & imperative "mix" 
-  Keras API 
-  PyTorch (FAIR), imperative (Torch and Chainer) 

Technologies > Deep Learning Frameworks

Deep Learning Frameworks: An Abbreviated History
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2000s: 
- OpenNN, Torch, Matlab 

2010s: 
- Caffe, config files;   Chainer imperative;     Theano declarative    

2015s: 
- TensorFlow (Google), declarative 
- Caffe2 (FAIR, by TensorFlow dev) 
- CNTK (Microsoft) 
- MXNet (Amazon support), declarative & imperative "mix" 
... 
- Keras API 
- PyTorch (FAIR), imperative (Torch and Chainer) 

2021: 
- TensorFlow 
- PyTorch 
- JAX

(PyMC3)

Technologies > Deep Learning Frameworks

Things Looks Much Simpler in 2021
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DL Frameworks are Converging

E.g., 
• TensorFlow adds eager mode 
• PyTorch adds static graph support

Technologies > Deep Learning Frameworks
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~fast as Fortran, ~easy as Python 
everyone loves it, not many use it

https://www.tensorflow.org/swift/guide/overview

Swift for TensorFlow: promising but ... 
Google canned it in February 2021

A more functional approach 
but requires more obj. oriented add-on libraries 
for deep learning (e.g., Haiku, Flax)

https://julialang.org

Technologies > Frameworks

Alternatives?
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https://github.com/deepmind/dm-haiku

https://github.com/google/flax/blob/master/examples/mnist/train.py

https://github.com/rasbt/stat453-
deep-learning-ss21/blob/main/L09/

code/mlp-pytorch_softmax-
crossentr.ipynb

JAX & Haiku
JAX & Flax

PyTorch

Technologies > Deep Learning Frameworks

https://www.tensorflow.org/tutorials/images/cnn

TensorFlow 2

https://github.com/deepmind/dm-haiku
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https://www.oreilly.com/radar/where-programming-ops-ai-and-the-cloud-are-headed-in-2021/

Technologies > Programming Languages

Python seems to 
be here to stay

https://www.oreilly.com/radar/where-programming-ops-ai-and-the-cloud-are-headed-in-2021/
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"[...] the speedup gained by taking Python out of the computation is 10% or less." 

-- Stevens E, Antiga L, Viehmann T. Deep learning with PyTorch. Manning; 2020.
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 (2) Challenges 
  Small data 
  Ordinal data 
  Adversarial attacks 
  Bias 
  Privacy
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Active learning

Few-shot learning

Transfer learning

Semi-supervised learning

Self-supervised learning

Pre-train on larger related dataset with labels

Pre-train on unlabeled dataset by creating 
leveraging data structure to create labels

Incorporate unlabeled data into the training

Optimize data order and labeling

Special cases with very few examples 
per class (incl. transfer learning, metric learning, 
semi-supervised, meta-learning)

Tackling Small Data Problems
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Academia Vs Industry

Technologies > Challenges > Small Data

Source: Andrej Karpathy, Andrew Ng

Model-Centric Approach

Primary focus is on tuning 
and developing 
models to improve 
performance on a fixed 
benchmark set

Data-Centric Approach

Primary focus is on how 
one can improve the 
dataset (collect more, 
select, relabel) to improve 
model performance
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Ordinal Data: Integrating Label Order Info

• Ranking: Predict Correct order 
(0 loss if order is correct, e.g., rank a collection of movies by "goodness")

• Ordinal regression: Predict correct (ordered) label 
(E.g., age of a person in years; here, regard aging as a non-stationary process)

Excerpt from the UTKFace dataset 
https://susanqq.github.io/UTKFace/

18 29 41

≻ ≻

≻ ≻

Cao, Mirjalili, Raschka (2020)  
Rank Consistent Ordinal Regression for Neural 
Networks with Application to Age Estimation  
Pattern Recognition Letters. 140, 325-331
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Phantom of the ADAS:
Phantom Attacks on Driver-Assistance Systems

Ben Nassi1, Dudi Nassi1, Raz Ben-Netanel1, Yisroel Mirsky1,2, Oleg Drokin3, Yuval Elovici1

Video Demonstration - https://youtu.be/1cSw4fXYqWI
{nassib,nassid,razx,yisroel,elovici}@post.bgu.ac.il, green@linuxhacker.ru

1 Ben-Gurion University of the Negev, 2 Georgia Tech,3 Independent Tesla Researcher

ABSTRACT

The absence of deployed vehicular communication sys-
tems, which prevents the advanced driving assistance systems
(ADASs) and autopilots of semi/fully autonomous cars to
validate their virtual perception regarding the physical en-
vironment surrounding the car with a third party, has been
exploited in various attacks suggested by researchers. Since
the application of these attacks comes with a cost (exposure
of the attacker’s identity), the delicate exposure vs. application
balance has held, and attacks of this kind have not yet
been encountered in the wild. In this paper, we investigate a
new perceptual challenge that causes the ADASs and autopi-
lots of semi/fully autonomous to consider depthless objects
(phantoms) as real. We show how attackers can exploit this
perceptual challenge to apply phantom attacks and change
the abovementioned balance, without the need to physically
approach the attack scene, by projecting a phantom via a
drone equipped with a portable projector or by presenting a
phantom on a hacked digital billboard that faces the Internet
and is located near roads. We show that the car industry has
not considered this type of attack by demonstrating the attack
on today’s most advanced ADAS and autopilot technologies:
Mobileye 630 PRO and the Tesla Model X, HW 2.5; our
experiments show that when presented with various phantoms,
a car’s ADAS or autopilot considers the phantoms as real
objects, causing these systems to trigger the brakes, steer into
the lane of oncoming traffic, and issue notifications about
fake road signs. In order to mitigate this attack, we present
a model that analyzes a detected object’s context, surface,
and reflected light, which is capable of detecting phantoms
with 0.99 AUC. Finally, we explain why the deployment
of vehicular communication systems might reduce attackers’
opportunities to apply phantom attacks but won’t eliminate
them.

I. INTRODUCTION

After years of research and development, automobile tech-
nology is rapidly approaching the point at which human
drivers can be replaced, as cars are now capable of supporting
semi/fully autonomous driving [1, 2]. While the deployment
of semi/fully autonomous cars has already begun in many
countries around the world, the deployment of vehicular
communication systems [3], a set of protocols intended for

a b

Fig. 1: Perceptual Challenge: Would you consider the projec-
tion of the person (a) and road sign (b) real? Telsa considers
(a) a real person and Mobileye 630 PRO considers (b) a real
road sign.

exchanging information between vehicles and roadside units,
has been delayed [4]. The eventual deployment of such sys-
tems, which include V2V (vehicle-to-vehicle), V2I (vehicle-to-
infrastructure), V2P (vehicle-to-pedestrian), and V2X (vehicle-
to-everything) communication systems, is intended to supply
semi/fully autonomous cars with information and validation
regarding lanes, road signs, and obstacles.

Given the delayed deployment of vehicular communication
systems in most places around the world, autonomous driving
largely relies on sensor fusion to replace human drivers.
Passive and active sensors are used in order to create 360�

3D virtual perception of the physical environment surrounding
the car. However, the lack of vehicular communication system
deployment has created a validation gap which limits the
ability of semi/fully autonomous cars to validate their virtual
perception of obstacles and lane markings with a third party,
requiring them to rely solely on their sensors and validate one
sensor’s measurements with another. Given that the exploita-
tion of this gap threatens the security of semi/fully autonomous
cars, we ask the following question: Why haven’t attacks
against semi/fully autonomous cars exploiting this validation
gap been encountered in the wild?

Various attacks have already been demonstrated by re-
searchers [5–14], causing cars to misclassify road signs [5–10],
misperceive objects [11, 12], deviate to the lane of oncoming
traffic [13], and navigate in the wrong direction [14]. These
attacks can only be applied by skilled attackers (e.g., an expert

Nassi, Mirsky, Nassi, Ben-Netanel, Drokin, Elovici. Phantom of 
the ADAS: Securing Advanced Driver-Assistance Systems from 
Split-Second Phantom Attacks. ACM SIGSAC Conference on 
Computer and Communications Security, 2020

Tesla Autopilot considers (a) as a real person and 
(b) as a real road sign

Beyond Pandas & Gibbons: Real-World Adversarial Attacks

Technologies > Challenges > Adversarial Attacks

Duan, Mao, Qin, Yang, Chen, Ye, He. Adversarial Laser Beam: 
Effective Physical-World Attack to DNNs in a Blink. arXiv preprint 
arXiv:2103.06504. 2021 Mar 11.

Adversarial Laser Beam: Effective Physical-World Attack to DNNs in a Blink

Ranjie Duan1† Xiaofeng Mao2 A. K. Qin1 Yun Yang1 Yuefeng Chen2 Shaokai Ye3 Yuan He2

1Swinburne University of Technology 2Alibaba Group
3EPFL

Abstract

Though it is well known that the performance of deep
neural networks (DNNs) degrades under certain light con-
ditions, there exists no study on the threats of light beams
emitted from some physical source as adversarial attacker
on DNNs in a real-world scenario. In this work, we show
by simply using a laser beam that DNNs are easily fooled.
To this end, we propose a novel attack method called Adver-
sarial Laser Beam (AdvLB), which enables manipulation
of laser beam’s physical parameters to perform adversar-
ial attack. Experiments demonstrate the effectiveness of our
proposed approach in both digital- and physical-settings.
We further empirically analyze the evaluation results and
reveal that the proposed laser beam attack may lead to some
interesting prediction errors of the state-of-the-art DNNs.
We envisage that the proposed AdvLB method enriches the
current family of adversarial attacks and builds the founda-
tion for future robustness studies for light.

1. Introduction

Natural phenomena may play the role of adversarial at-
tackers, e.g. a blinding glare results in a fatal crash of a
Tesla self-driving car. What if a beam of light can adver-
sarially attack a DNN? Further, how about using a beam
of light, specifically the laser beam, as the weapon to per-
form attacks. If we can do that, with the fastest speed in the
world, the laser beam could achieve the fastest attack with
no doubts. As shown in Figure 1, by using an off-the-shelf
lighting device such as a laser pointer, the attacker can ma-
liciously shoot a laser beam onto the target object to make
the self-driving car fail to recognize target objects correctly.

We regard the attack illustrated in Figure 1 as a new
type of adversarial attack, which is crucial but not yet ex-
ploited. Up to now, most researchers study the security of
DNNs by exploring various adversarial attacks in digital-
settings, where input images are added with deliberately

†Works done when intern at Alibaba
‡Code is available at https://github.com/RjDuan/Advlight

Figure 1: An example. When the camera of self-driving
car captures object shot by the laser beam, it recognizes
”trolleybus” as ”amphibian” and ”street sign” as ”soap dis-
penser”.

crafted perturbations and then fed to the target DNN model
[23, 10, 6, 3, 18]. However, in physical-world scenarios,
images are typically captured by cameras and then directly
fed to the target models, where attackers cannot directly ma-
nipulate the input image. Some recent efforts in developing
physical-world attacks are addressed in [21, 8, 2, 7, 14].
The physical-world adversarial examples typically require
large perturbations, because small perturbations are hard
to be captured by cameras. In addition, the attacking ef-
fects of adversarial examples of small perturbations can be
easily mitigated in complex physical-world environments
[21, 9, 7]. Meanwhile, physical-world adversarial exam-
ples require high stealthiness to avoid being discovered by
either the victim or defender before performing an attack
successfully. Thus for creating physical-world adversarial
examples, there is always a compromise between stealthi-
ness and adversarial strength.

Most existing physical-world attacks adopt a ”sticker-
pasting” setting, i.e., the attacker prints adversarial pertur-
bation as a sticker and then pastes it onto the target ob-
ject [16, 2, 7, 8]. These attacks achieve the stealthiness of
adversaries with extra efforts of designing adversarial per-
turbation or camouflaging adversarial images and finding
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Laser beams turn buses into amphibians and 
street signs into soap dispensers
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Table 1. Selection of evasion attack and defense mechanisms that are implemented in adversarial
learning toolkits. Note that ART also implements methods for poisoning and extraction attacks (not
shown).

Cleverhans v3.0.1 FoolBox v2.3.0 ART v1.1.0 DEEPSEC (2019) AdvBox v0.4.1
Supported frameworks

TensorFlow yes yes yes no yes
MXNet yes yes yes no yes

PyTorch no yes yes yes yes
PaddlePaddle no no no no yes

(Evasion) attack mechanisms
BLB [163] yes no no yes no

AMD [170] yes no no no no
ZOO [171] no no yes no no

VA [172] yes yes yes no no
AP [173] no no yes no no

STA [174] no yes yes no no
DTA [175] no no yes no no

FGSM [176] yes yes yes yes yes
R+FGSM [177] no no no yes no

R+LLC [177] no no no yes no
U-MI-FGSM [178] yes yes no yes no
T-MI-FGSM [178] yes yes no yes no

BIM [179] no yes yes yes yes
LLC / ILLC [179] no yes no yes no

UAP [180] no no yes yes no
DeepFool [181] yes yes yes yes yes

NewtonFool [182] no yes yes no no
JSMA [183] yes yes yes yes yes

CW/CW2 [184] yes yes yes yes yes
PGD [185] yes no yes yes yes
OM [186] no no no yes no

EAD [187] yes yes yes yes no
Boundary Attack [188] no yes yes no no

HopSkipJumpAttack [189] yes yes yes no no
MaxConf [190] yes no no no no

Inversion attack [191] yes yes no no no
SparseL1 [192] yes yes no no no

SPSA [193] yes no no no no
HCLU [194] no no yes no no

ADef [195] no yes no no no
DDNL2 [196] no yes no no no

Local Search [197] no yes no no no
Pointwise attack [198] no yes no no no

GenAttack [199] no yes no no no
Defense mechanisms

Feature Squeezing [200] no no yes no yes
Spatial Smoothing [200] no no yes no yes

Label Smoothing [200] no no yes no yes
Gaussian Augmentation [201] no no yes no yes

Adversarial Training [185] no no yes yes yes
Thermometer Encoding [202] no no yes yes yes

NAT [203] no no no yes no
EAT [177] no no no yes no
DD [204] no no no yes no
IGR [205] no no no yes no
EIT [206] no no yes yes no
RT [207] no no no yes no

PixelDefend [208] no no yes yes no
Regr.-based classfication [209] no no no yes no

JPEG compression [210] no no yes no no

8. Conclusions1137

This article reviewed some of the most notable advances in machine learning, data science, and1138

scientific computing. It provided a brief background into major topics, while investigating the various1139

challenges and current state of solutions for each. There are several more specialized application and1140

research areas that are outside the scope of this article. For example, attention-based Transformer1141
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8. Conclusions1137

This article reviewed some of the most notable advances in machine learning, data science, and1138

scientific computing. It provided a brief background into major topics, while investigating the various1139

challenges and current state of solutions for each. There are several more specialized application and1140

research areas that are outside the scope of this article. For example, attention-based Transformer1141

Machine Learning in Python: Main developments and technology trends in data 
science, machine learning, and artificial intelligence (2020). Sebastian Raschka, 
Joshua Patterson, and Corey Nolet
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Fig. 2: Schematic representation of the architecture of PrivacyNet for deriving perturbations to obfuscate three attribute
classifiers, gender, age, and race, while allowing biometric face matchers to perform well. (A) Different components of the
PrivacyNet: generator, source discriminator, attribute classifier, and auxiliary face matcher. (B) Cycle-consistency constraint
applied to the generator by transforming an input face image to a target label and reconstructing the original version.

the synthesized version according to the modified attribute
vector X 0 = G(X,Vt) :

LG,m = EX,Vt

⇥
kRM(X)�RM(G(X,Vt))k22

⇤
. (7)

Lastly, a reconstruction loss term is used to form a cycle-
consistent GAN that is able to reconstruct the original face
image X from its modified face image X 0 = G(X,Vt):

LG,rec = EX,V0,Vt [kX �G(G(X,Vt),V0)k1] . (8)

Note that the distance term in Eq. 8 is computed as
the pixel-wise L1 norm between the original and modified
image, which empirically results in less blurry images com-
pared to employing a L2 norm as the distance measure [57].

3.3 Neural Network Architecture of PrivacyNet
The composition of the different neural networks used in
PrivacyNet, generator G, real vs. fake classifier Dsrc, at-
tribute classifier Dattr , and face matcher RM is described
in Fig. 3. The generator and the discriminator architectures
were adapted from [58] and [59], respectively.

Generator. The generator G receives as input an RGB
face image X of size 224 ⇥ 224 ⇥ 3 along with the target
labels Vt concatenated as extra channels. The first two
convolutional layers, with stride 2, reduce the size of the
input image to a to 32 ⇥ 32 with 128 channels. The con-
volutional layers are followed by instance normalization
layers (InstanceNorm) [62]. The layer activations are com-
puted by applying the non-linear ReLU activation function
to the InstanceNorm outputs. Then, 6 residual blocks [63]
are applied, followed by two transposed convolution for
upsampling the image size to 224⇥ 224. Finally, the output
image X 0 is constructed by a 1 ⇥ 1 convolution layer and
the hyperbolic tangent (Tanh) activation function, which
returns pixels in the range (�1, 1) (the input image pixels
are also scaled to be in range [�1, 1]).

Discriminator and Attribute Classifier. The discrimina-
tor, as shown in Fig. 3, combines the source discriminator

Dsrc and the attribute classifier Dattr into one network
where all the layers except the last convolution layer are
shared among the two tasks. All the shared convolution
layers are followed by a Leaky ReLU non-linear activation
with a small negative slope of ↵ = 0.01. In the last layer,
separate convolutional layers are used for the two tasks,
where Dsrc returns a scalar score for computing the loss
according to Wasserstein GAN [64], and the Dattr returns a
vector of probabilities for each attribute class.

Face Matcher. Lastly, the auxiliary face matcher is
adapted from the publicly available pre-trained VGG-Face
CNN model that receives input face images of size 224 ⇥
224⇥3 and computes their face descriptors of size 2622 [65].

3.4 Datasets
We have used five datasets in this study: CelebA [66],
MORPH [67], MUCT [68], RaFD [69], and UTK-face [70]. Ta-
ble 1 shows the number of examples in each dataset, includ-
ing the number of examples for each face attribute. Since the
race label distribution in CelebA is heavily skewed towards
Caucasians, whereas MORPH is heavily skewed towards
persons with African ancestry, we combined CelebA and
MORPH for training. Both the CelebA and MORPH datasets
are split into training and evaluation sets in a subject-
disjoint manner. The two training subsets from CelebA
and MORPH are merged to train the PrivacyNet model
with a relatively balanced race distribution. The other three
datasets, MUCT, RaFD, and UTK-face are used only for
evaluation. While all five datasets provide provide binary
attribute gender labels 2, each dataset lacks the ground-truth
labels for at least one of the other attributes, age or race.

Gender Attribute: All the five datasets considered in this
study provide ground-truth labels for the gender attribute.

2. In this paper we treat gender as a binary attribute with
two labels, male and female; however, it must be noted that so-
cietal and personal interpretation of gender can result in many
more classes. Facebook, for example, suggests over 58 gen-
der classes: https://abcnews.go.com/blogs/headlines/2014/02/heres-
a-list-of-58-gender-options-for-facebook-users/.
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Fig. 1: Illustration of the overall objective of this work:
transforming an input face image across three orthogonal
axes for imparting multi-attribute privacy selectively while
retaining recognition utility. The abbreviated letters are M:
Matching, G: Gender, A: Age, and R: Race.

for predicting the gender from face images has resulted in
models with almost perfect prediction accuracy [28], [30],
[31], [32], [33]. Methods for estimating the apparent age from
face images are similarly well studied, and current-state of
the art methods can predict the apparent age of a person
with a prediction error below three years on average [26],
[27], [34], [35].

While tremendous progress has been made towards the
automatic extraction of personal attributes of face images,
the development of methods and techniques for imparting
soft biometric privacy is still a relatively recent area of
research. In 2014, Othman and Ross introduced the concept
of soft biometric privacy, where a face image is modified
such that the gender information is confounded while the
recognition utility of the face image is preserved [19]. The
researchers proposed a face mixing approach, where a face
image is morphed with a candidate face image from the
opposite gender. As a result, the resulting mixed face im-
age contains both male and females features such that the
gender information was fully anonymized. Sim and Zhang
then developed methods for imparting soft biometric pri-
vacy to multiple attributes based on multi-modal discrimi-
nant analysis, in which certain attributes can be selectively
suppressed while retaining others [20]. They proposed a
technique that decomposes a face image representation into
orthogonal axes corresponding to gender, age, and ethnicity,
and the identity information is left as a residual of this de-
composition. This enables transforming a face image along
one axis resulting in modifying the corresponding attribute,
while other information of the face image remains visibly
unchanged to the human eye. They also showed that their
proposed method can alter identities of face images, which
is useful for face de-identification [36], [37]. However, Sim
and Zhang’s [20] method cannot explicitly preserve the
matching performance of transformed face images, there-
fore, the biometric utility of the resulting face images is
severely diminished.

In 2013, Szegedy et al. [38] studied the vulnerability of
Deep Neural Networks (DNNs) towards adversarial pertur-
bations. Adversarial perturbations are small perturbations
added to an input image, typically imperceptible by a hu-

man observer, that can cause the DNN to misclassify images
with high confidence. In recent years, several methods for
generating such adversarial perturbations have been pro-
posed, and the development towards methods that make
DNN-based models more robust against these so-called ad-
versarial attacks remains an active area of research [39], [40],
[41], [42], [43], [44], [45]. The vulnerability to adversarial
attacks raises several security concerns for the use of ma-
chine learning systems in computer vision applications [18],
[39], [46], [47]. Recently, Rozsa et al. [48] investigated the
robustness of machine learning applications for predicting
the soft-biometric attributes from face images against adver-
sarial attacks. Based on the concept of adding adversarial
perturbations to an input image, Mirjalili and Ross [11]
investigated the possibility of generating adversarial pertur-
bations for imparting soft-biometric privacy to face images.
This scheme was further extended by Chhabera et al. [21]
to conceal multiple face attributes simultaneously. While
these perturbation-based methods are shown to successfully
derive adversarial examples based on a specific attribute
classifier, the perturbed output images are not generalizable
across unseen attribute classifiers. For a real-world privacy
application, generalizability of adversarial examples to un-
seen attribute classifiers is critical [25].

Recently, methods have been developed that impart
privacy through the design and use of specific face repre-
sentation vectors, which have been derived from the original
face images without including the sensitive information that
is to be concealed [49], [50], [51], [52]. For instance, the
SensitiveNet [51] model generates agnostic face represen-
tations for biometric recognition such that gender and race
information are removed from these representations [53].
However, storing face representation vectors may not be
desirable in many applications since these vectors are nei-
ther interpretable by humans nor compatible with existing
biometric software. In this work, we develop a generally
applicable method that applies perturbations to the face
images directly instead of deriving representations.

In previous work [23], we developed a deep learning-
based model to generate perturbed examples for obfuscat-
ing gender information in face images. The neural network
was coined Semi-Adversarial Network (SAN) and is com-
posed of a convolutional autoencoder for synthesizing face
images such that the gender information in the synthesized
images is obfuscated while their matching utility is pre-
served. The SAN model is trained using an auxiliary gender
classifier and an auxiliary face matcher. After training, the
auxiliary subnetworks are discarded and the convolutional
autoencoder is used for performance evaluation on unseen
data. It was shown that this model is able to suppress
gender information as assessed by some unseen1 attribute
classifiers while the matching utility, assessed by unseen
face matchers, was retained. Moreover, the generalizability
of SAN models to fool arbitrary gender classifiers can be
further enhanced by diversifying the auxiliary classifiers
during training [25] or by combining multiple, diverse SAN
models [24].

1. In contrary to “auxiliary” classifiers, the term “unseen” indicates
that the attribute classifier (or face matcher) was not used during the
training stage.

Enhancing Privacy:  
(1) Hiding Information by Modifying Data
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Whitepaper: https://azure.microsoft.com/en-us/resources/microsoft-
smartnoisedifferential-privacy-machine-learning-case-studies/

https://cloudblogs.microsoft.com/opensource/2021/02/18/create-privacy-preserving-synthetic-data-for-machine-learning-with-smartnoise/
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Machine Learning Based on a Differentially Private Dataset 
In this section, we introduce another variant of differentially private machine learning. Instead of 
adding noise during the training process, it is possible to generate a differentially private version of 
the dataset. This synthetic ("fake") dataset can then be used to train a standard (non-private) machine 
learning algorithm. 

While the synthetic dataset embodies the original data's essential properties, it is mathematically 
impossible to preserve the full data value and guaranteeing record-level privacy at the same time. 
Usually, we can't perform arbitrary statistical analysis and machine learning tasks on the synthesized 
dataset to the same extent as it is possible with the original data. Therefore, the type of downstream 
task should be considered before the data is synthesized. For a classification problem, data generation 
can be performed per group of records that belong to the same class. This way, the latent structure of 
each group is considered when synthetic records are generated. Furthermore, there are challenges in 
performing machine learning on synthetic datasets with high dimensional and imbalanced datasets.  

However, differentially private synthetic data generation is a vibrant field in research with increasing 
practical applications. New and improved synthesizers are published at a rapid pace. The essential 
advantage of the synthesizer approach is that the differentially private dataset can be analyzed any 
number of times without increasing the privacy risk. Therefore, it enables collaboration between several 
parties, democratizing knowledge, or open dataset initiatives. 

We previously used the synthesizer approach to protect sensitive medical information when we 
compared the privacy protection effectiveness of data anonymization and Differential Privacy in the 
previous chapters. We had chosen the MWEM synthesizer of SmartNoise for that purpose. 

In this case, we choose a more sophisticated approach that improves the utility of synthetic 
differentially private datasets specifically for machine learning tasks. 

 
Figure 21: Generating Synthetic Data for Machine Learning Using the QUAIL Method 

The Quail-ified Architecture to Improve Learning (QUAIL) is used to generate the differentially private 
dataset. The method combines a differentially private synthesizer and supervised learning model to 
produce a synthetic dataset with high utility for machine learning applications. 

  

Enhancing Privacy:  
(2) Differential Privacy via Synthetic Datasets

Technologies > Challenges > Privacy

https://azure.microsoft.com/en-us/resources/microsoft-smartnoisedifferential-privacy-machine-learning-case-studies/
https://azure.microsoft.com/en-us/resources/microsoft-smartnoisedifferential-privacy-machine-learning-case-studies/
https://azure.microsoft.com/en-us/resources/microsoft-smartnoisedifferential-privacy-machine-learning-case-studies/
https://cloudblogs.microsoft.com/opensource/2021/02/18/create-privacy-preserving-synthetic-data-for-machine-learning-with-smartnoise/


Sebastian Raschka, ODSC East 2021 27

Enhancing Privacy:  
(3) User Data Stays on the Device

Technologies > Challenges > Privacy

Paulik, Seigel, Mason, Telaar, Kluivers, van Dalen, Lau, 
Carlson, Granqvist, Vandevelde, Agarwal.  
Federated Evaluation and Tuning for On-Device 
Personalization: System Design & Applications. arXiv 
preprint arXiv:2102.08503. 2021 Feb 16.

Apple's On-Device ML System for 
Federated Evaluation and Tuning 

• Other approaches: use federated learning to tune a global neural network 

• Apple:  

‣ Use global parameters but train local model 

‣ User data remains inaccessible to server-side
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https://web.br.de/interaktiv/ki-bewerbung/en/

Technologies > Challenges > Bias
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Common approach: Address lack of diversity in datasets.  
--> provide algorithms with datasets that represent all groups equally and fairly 

Does it work? Only for a stereotypical sense of fairness according to  
Zaid Khan:  
     "The people in the images appeared to fit racial stereotypes.  
       For example, an algorithm was more likely to label an individual in an image    
       as 'white' if that person had blond hair." 

https://news.northeastern.edu/2021/02/22/humans-are-trying-to-take-bias-out-of-facial-recognition-programs-its-not-working-yet/

Paper:  
Khan Z, Fu Y.  
One Label, One Billion Faces: Usage and Consistency of Racial Categories in Computer Vision.  
ACM Conference on Fairness, Accountability, and Transparency 2021 Mar 3 
https://dl.acm.org/doi/abs/10.1145/3442188.3445920

Technologies > Challenges > Bias

https://news.northeastern.edu/2021/02/22/humans-are-trying-to-take-bias-out-of-facial-recognition-programs-its-not-working-yet/
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• Deep learning is currently largely based on statistical correlations from i.i.d. data 

• Learning causal relationships can make models more robust to unexpected situations  

• Can make training cheaper -- fewer examples like objects from different angles required 

• Enable transfer learning beyond fine-tuning

Don't Have to Drive a Car Off a Cliff to Learn What Happens

How do we infer abstract causal variables?
Does the data reveal causal relationships?The challenges:

Technologies > Challenges > Bias

Schölkopf B, Locatello F, Bauer S, Ke NR, Kalchbrenner N, Goyal A, Bengio Y.  
Toward Causal Representation Learning. Proceedings of the IEEE. 2021 Feb 26.
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https://www.nature.com/articles/s42256-021-00307-0

Technologies > Challenges > Bias



Sebastian Raschka, ODSC East 2021 33Technologies > Challenges > Bias

Finding Middle Ground

Source: Andrew Ng

Human Only Assistance  
by AI

Partial Automation 
by AI

Full Automation 
by AI

Shadow  
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Task done by humans

Task done by AI

Keep human in the loop
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Why Are Graph Neural Nets Interesting?

Sebastian Raschka and Benjamin Kaufman (2020) 
Machine Learning and AI-based Approaches for Bioactive Ligand Discovery and GPCR-ligand Recognition  
Elsevier Methods, 180, 89–110
representation for the ligand structure, and highlight recently devel-
oped deep learning methods that use these representations. Next, we
discuss the latest trends for ligand-based analysis, from molecular
property prediction to similarity-based virtual screening. While the li-
gand-based approaches assume that a high-quality receptor structure is
not available, the next section reviews the recent developments for
receptor structure-based bioactive ligand discovery. We then explore
advances in de novo small-molecule design. Finally, this review con-
cludes by motivating the use of transfer learning, which allow re-
searchers to make better use of publicly available data in machine
learning and AI-based bioactive ligand discovery.

2. Molecular feature representations

Machine learning methods excel at prediction tasks across multiple
disciplines but require careful data preparation as most methods are
designed to operate on tabular datasets. The standard data input format
is the so-called design matrix, where each row represents a new training
example, and the columns correspond to the different feature variables,
as illustrated in the example in Fig. 2. A common challenge in con-
ventional machine learning is how to prepare datasets as input to ma-
chine learning algorithms – in practice, machine learning practitioners
have to find a sweet spot between reducing the dimensionality and
retaining salient information that the model can learn from. In contrast
to conventional machine learning, deep learning excels at learning from
raw data, such as images and text, directly, as previously discussed in
Section 1.7. However, molecular data, such as conformations of small
molecules and receptors, can be challenging to represent in a standard
format that most machine learning and deep learning methods have
been designed for. Even if the same information can be extracted from
two different data representations, an algorithm may be more effective
at extracting that information from one over the other. There is no clear
best representation of molecules for machine learning methods and
indeed certain representations may be better for certain tasks. The
following section provides a brief overview of commonly used mole-
cular representations as well as some recent applications of them using
AI-based methods.

2.1. Property-based feature vectors

A molecular descriptor is the transformation of chemical informa-
tion into a numeric value [107]. Dragon [108] and Mordred descriptors
[109] are examples of sets of molecular descriptors. As an alternative to

molecular descriptors, molecular fingerprints encode molecular struc-
ture in a vector format, a so-called bit vector consisting of 1’s and 0’s.
When used as input for machine learning models, both molecular fin-
gerprints and descriptors have historically produced state-of-the-art
results on chemical machine learning tasks such as chemical odor
prediction and bioactivity [41,110].

The extended connectivity fingerprint (ECFP) is among the most
widely-used 2D fingerprint methods [111], and we use its generation
procedure as an example of the general process for generating tradi-
tional molecular fingerprints. A fingerprint is generated by a multistep
process in which each atom is associated with a series of integers. In this
series the kth integer encodes information about the atom it is asso-
ciated with as well as information about the atoms and bonds within k
bonds of that atom – that is, the substructure of the compound that is
within k bonds of the atom. Next, the integers associated with each
atom are concatenated into an array format, which is then processed via
a hashing algorithm to generate a bit vector of a desired length (typi-
cally 1024 or 2048 elements). This method captures information about
all identified substructures in a compound, resulting in a fixed-length
vector regardless of the input compound’s size. ECFPs do not explicitly
encode the 3D spatial information of a compound; however, specialized
fingerprint methods have recently been developed that incorporate 3D-
structural information [112]. Lastly, there are also fingerprints that can
encode protein–ligand interactions [113].

2.2. SMILES

Simplified molecular-input line-entry system (SMILES) strings are
ASCII string representations of compounds (Fig. 7 A), which are gen-
erated according to a procedure that guarantees a unique mapping from
a SMILES string to a compound structure (though not the inverse)
[114]. One benefit of SMILES strings over 2D molecular fingerprints
like ECFP is that they encode stereochemistry explicitly. One downside
for machine learning is that SMILES do not have a fixed-length; how-
ever, certain deep learning architectures designed for processing text
documents, like RNNs or 1D CNNs, can handle variable-length inputs.

Recently, Hirohara et al. [115] proposed a novel molecular re-
presentation scheme by converting SMILES strings into “SMILES feature
matrices,” which were used as inputs into a 1D CNN [115]. A SMILES
feature matrix was constructed by mapping a SMILES string of length N
to a ×N 42 matrix, where the kth row represents the kth character
(corresponding to either atom or connectivity information) of the
string, and the 42 columns correspond to properties of that character.

Fig. 7. Summary of commonly used molecular
representation methods based on the example of
Aspirin (shown in the center). (A) A molecular
fingerprint encodes structural motifs into a
sparse bit vector. (B) A SMILES string encoding
structural information of the molecule as well as
its stereochemistry. (C) A visualization of the 3D
voxelization concept. Note that information
about which atoms occupy which voxels would
be encoded in a 4th dimension which is omitted
in this visualization. (D) Illustration of how in-
formation is passed to an atom in a simple graph
neural network. Note that the graph-structural
information will be passed from more distant
atoms when the summation is repeated (not
shown).
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https://github.com/rusty1s/pytorch_geometric

Technologies > Research Trends > Graph Neural Nets

As of this writing: 82 graph neural net methods already implemented

https://github.com/rusty1s/pytorch_geometric
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Generative Adversarial Networks 
 Have Come A Long Way

https://thispersondoesnotexist.com
https://thisponydoesnotexist.net

https://thiscatdoesnotexist.com

https://thisstartupdoesnotexist.com



Sebastian Raschka, ODSC East 2021 38

ours VQVAE-2 [53] BigGAN [4] MSP [18]

Figure 13. Qualitative assessment of various models for class-conditional image synthesis on ImageNet. Depicted classes: 11: goldfinch
(top) and 22: bald eagle (bottom).

15

Qualitative assessment in a class-conditional setting (class: goldfinch)

Image source: Esser P, Rombach R, Ommer B. Taming Transformers for High-Resolution Image Synthesis. arXiv:2012.09841. 2020 Dec 17.

Vector Quantized  
Variational Autoencoder 2  

(VQVAE-2)  

Razavi, van den Oord, Vinyals. Generating Diverse High-
Fidelity Images with VQ-VAE-2, 2019  

Vector Quantized  
 GAN + Transformer  

(Visual Transformer)
Esser, Rombach, Ommer. Taming Transformers for 
High-Resolution Image Synthesis, 2021

Brock, Donahue, and Simonyan. Large Scale GAN 
Training for High Fidelity Natural Image Synthesis, 2019

BigGAN

De Fauw, Dieleman, Simonyan. Hierarchical Autoregressive 
Image Models with Auxiliary Decoders, 2019.

Masked Self-Prediction 
(MSP) 
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Self-Supervised Learning

Leverage structure of data to create labels for supervised learning, 
to utilize large amounts of unlabeled data

1. Create labels (pre-text task) by leveraging structure of the data 

2. Pre-train in self-supervised fashion to learn embeddings 

3. Fine-tune in transfer learning fashion

Technologies > Research Trends > Self-Supervised Learning
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Self-Supervised Learning

https://sebastianraschka.com/blog/2020/intro-to-dl-ch01.html 

Based on: Doersch, C., Gupta, A., & Efros, A. A.. Unsupervised visual representation learning by context prediction. CVPR 2015

Leverage structure of data to create labels for supervised learning, 
to utilize large amounts of unlabeled data

Technologies > Research Trends > Self-Supervised Learning
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1. Run original and distorted image through same 
network 

2. Compute correlation matrix 

3. Add objective to make correlation matrix close to 
identity matrix

Forces representation vectors of similar samples to be similar

Barlow Twins: Self-Supervised Learning via Redundancy Reduction

Jure Zbontar
* 1

Li Jing
* 1

Ishan Misra
1

Yann LeCun
1 2

Stéphane Deny
1

Abstract

Self-supervised learning (SSL) is rapidly closing
the gap with supervised methods on large com-
puter vision benchmarks. A successful approach
to SSL is to learn representations which are invari-
ant to distortions of the input sample. However, a
recurring issue with this approach is the existence
of trivial constant representations. Most current
methods avoid such collapsed solutions by careful
implementation details. We propose an objective
function that naturally avoids such collapse by
measuring the cross-correlation matrix between
the outputs of two identical networks fed with dis-
torted versions of a sample, and making it as close
to the identity matrix as possible. This causes the
representation vectors of distorted versions of a
sample to be similar, while minimizing the redun-
dancy between the components of these vectors.
The method is called BARLOW TWINS, owing to
neuroscientist H. Barlow’s redundancy-reduction
principle applied to a pair of identical networks.
BARLOW TWINS does not require large batches
nor asymmetry between the network twins such
as a predictor network, gradient stopping, or a
moving average on the weight updates. It allows
the use of very high-dimensional output vectors.
BARLOW TWINS outperforms previous methods
on ImageNet for semi-supervised classification in
the low-data regime, and is on par with current
state of the art for ImageNet classification with
a linear classifier head, and for transfer tasks of
classification and object detection. 1

1. Introduction

Self-supervised learning aims to learn useful representa-
tions of the input data without relying on human annota-

*Equal contribution 1Facebook AI Research 2New York
University, NY, USA. Correspondence to: Jure Zbon-
tar <jzb@fb.com>, Li Jing <ljng@fb.com>, Ishan Misra
<imisra@fb.com>, Yann LeCun <yann@fb.com>, Stéphane
Deny <stephane.deny.pro@gmail.com>.

1Code and pre-trained models (in PyTorch) coming soon at
https://github.com/facebookresearch/barlowtwins

Figure 1. BARLOW TWINS’s objective function measures the cross-
correlation matrix between the output features of two identical net-
works fed with distorted versions of a batch of samples, and tries
to make this matrix close to the identity. This causes the represen-
tation vectors of distorted versions of a sample to be similar, while
minimizing the redundancy between the components of these vec-
tors. BARLOW TWINS is competitive with state-of-the-art methods
for self-supervised learning while being conceptually simpler, nat-
urally avoiding trivial constant (i.e. collapsed representations), and
being robust to the training batch size.

tions. Recent advances in self-supervised learning for visual
data (Caron et al., 2020; Chen et al., 2020a; Grill et al., 2020;
He et al., 2019; Misra & van der Maaten, 2019) show that
it is possible to learn self-supervised representations that
are competitive with supervised representations. A common
underlying theme that unites these methods is that they all
aim to learn representations that are invariant under different
distortions (also referred to as ‘data augmentations’). This
is typically achieved by maximizing similarity of representa-
tions obtained from different distorted versions of a sample
using a variant of Siamese networks (Hadsell et al., 2006).
As there are trivial solutions to this problem, like a constant
representation, these methods rely on different mechanisms
to learn useful representations.

Contrastive methods like SIMCLR (Chen et al., 2020a) de-
fine ‘positive’ and ‘negative’ sample pairs which are treated
differently in the loss function. Additionally, they can also
use asymmetric learning updates wherein momentum en-
coders (He et al., 2019) are updated separately from the
main network. Clustering methods use one distorted sample
to compute ‘targets’ for the loss, and another distorted ver-
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Zbontar, Jing, Misra, LeCun, Deny.  
Barlow Twins: Self-Supervised Learning via Redundancy 
ReductionarXiv:2103.03230, 2021 Mar 4.
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• SEER = SElf-supERvised 

• new billion-parameter self-supervised computer vision model 

• pretraining on a billion random, unlabeled and uncurated public Instagram images 

• self-supervised SOTA: reaching 84.2 percent top-1 accuracy on ImageNet 

• SwAV (https://arxiv.org/abs/2006.09882) uses online clustering to rapidly group images 
with similar visual concepts and leverage their similarities (doesn't need pair-wise 
comparisons; fast)

Goyal, Caron, Lefaudeux, Xu, Wang, Pai, Singh, Liptchinsky, Misra, Joulin, 
Bojanowski. Self-supervised Pretraining of Visual Features in the Wild. 
arXiv:2103.01988, 2021 Mar 2.
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A quick brown    fox      jumps over the lazy dog

A quick brown [MASK] jumps over the lazy dog

Input sentence:

15% randomly masked:

BERT

Self-Supervised Learning (Text Example)

Technologies > Research Trends > Self-Supervised Learning

Possible classes 
(all words)

zoo

ant
...

...
fox11%

...

0.01%

0.2%
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Image Source: https://medium.com/huggingface/distilbert-8cf3380435b5

Technologies > Research Trends > Language Transformers

"Old" Language Transformer Models

https://medium.com/huggingface/distilbert-8cf3380435b5
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2

Fig. 1. Statistics on the number of times keywords such as BERT, Self-Attention, and Transformers appear in the titles of Peer-reviewed and arXiv
papers over the past few years. The plots show consistent growth in recent literature. We cover this progress in the computer vision domain.

Towards the later part, this manuscript details the key
practical advantages provided by different design choices
in the literature. This survey finally details open research
questions with an outlook towards the possible future work.

2 FOUNDATIONS

There exist two key ideas that have contributed towards the
development of transformer models. (a) The first one is self-
supervision, which is used to pre-train transformer models
on a large unlabeled corpus, subsequently fine-tuning them
to the target task with a small labeled dataset [3], [7],
[30]. (b) The second key idea is that of self-attention which
allows capturing ‘long-term’ information and dependencies
between sequence elements as compared to conventional
recurrent models that find it challenging to encode such
relationships. Below, we provide a brief tutorial on these
two ideas (Sec. 2.1, 2.2 and 2.3), along with a summary
of seminal Transformer networks (Sec. 2.4 and 2.5) where
these ideas have been applied. This background will help
us better understand the forthcoming Transformer based
models used in the computer vision domain (Sec. 3).

2.1 Self-supervision

Self-supervised learning (SSL) is the core concept used
alongside the transformer models to learn from large-scale
unlabelled datasets. An extensive survey on SSL can be
found in [31], [32]. As nicely summarized by Y. LeCun [33],
the basic idea of SSL is to fill in the blanks, i.e., try to predict
the occluded data in images, future or past frames in tempo-
ral video sequences or predict a pretext task e.g., the amount
of rotation applied to inputs, the permutation applied to
image patches or the color of a grayscale image. Another
effective way to impose self-supervised constraints is via
contrastive learning. In this case, nuisance transformations
are used to create two types of modified versions of the same
image i.e., without changing the underlying class semantics
(e.g., image stylizing, cropping) and with semantic changes
(e.g., replacing an object with another in the same scene, or
changing the class with minor adversarial changes to the
image). Subsequently, the model is trained to be invariant to
the nuisance transformations and emphasize on modeling
minor changes that can alter semantic labels.

Self-supervised learning provides a promising learning
paradigm since it enables learning from a vast amount of
readily available non-annotated data. SSL is performed in
two stages: first, a model is trained to learn a meaningful
representation of the underlying data by solving a pretext
task. The pseudo-labels for the pretext task are automati-
cally generated (without requiring any expensive manual
annotations) based on data attributes and task definition. In
the second stage, the first-stage trained model is fine-tuned
on a downstream task using the labeled data. Examples of
downstream tasks include image classification [34], object
detection [11] and action recognition [16].

At the core of SSL is the pretext task definition. We can
therefore broadly categorize existing SSL methods based
upon their pretext tasks into generative approaches which
synthesize images or videos, context-based methods which
exploit the relationships between image patches or video
frames, and cross-modal methods which leverage from mul-
tiple data modalities. Examples of generative approaches
include conditional generation tasks such as image coloriza-
tion [35] (model is trained on RGB images, where inputs are
grey-scale and the model outputs their RGB counterparts),
image super-resolution [36], image in-painting [37], and
GANs based methods [38], [39]. The context-based pretext
methods solve problems such as a jigsaw puzzle [40], [41],
[42] on image patches, predict geometric transformation
such as rotation [34], [43], or verify temporal sequence of
video frames [44], [45], [46]. Cross-modal pretext methods
verify the correspondence of two input modalities e.g., audio
& video [47], [48] and RGB & flow [49].

2.2 Self-Attention
The self-attention mechanism is an integral component of
transformers, which explicitly models the interactions be-
tween all entities of a sequence for structured prediction
tasks. Basically, a self-attention layer updates each compo-
nent of a sequence by aggregating global information from
the complete input sequence.

Lets denote a sequence of n entities (x1,x2, · · ·xn) by
X 2 Rn⇥d, where d is the embedding dimension to repre-
sent each entity. The goal of self-attention is to capture the
interaction amongst all n entities by encoding each entity
in terms of the global contextual information. This is done
by defining three learnable weight matrices to transform
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https://www.theverge.com/2021/3/29/22356180/openai-gpt-3-text-generation-words-day

Technologies > Research Trends > Language Transformers

https://www.theverge.com/2021/3/29/22356180/openai-gpt-3-text-generation-words-day


Sebastian Raschka, ODSC East 2021 47

• $2.5k - $50k (110 million parameter model)  
• $10k - $200k (340 million parameter model)  
• $80k - $1.6m (1.5 billion parameter model)

Costs: Not for the faint hearted

http://arxiv.org/abs/2004.08900

Technologies > Research Trends > Language Transformers

http://arxiv.org/abs/2004.08900
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https://www.nextplatform.com/2021/02/11/the-billion-dollar-ai-problem-that-just-keeps-scaling/


280 DGX-A100 systems,  
which cost $199,000 each  
  +15% networking cost of the  
             total cost 
  +20% storage 

List price: 75 million 
(electricity not included)
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https://www.eleuther.ai/projects/gpt-neo/

Training on "The Pile," an 825 GB language modeling dataset from various sources (YouTube, PubMed, etc.)
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Efficient Transformers: A Survey

Performer 
(Choromanski et al., 2020)

Linformer
(Wang et al., 2020b)

Linear 
Transformer

(Katharopoulos et al., 2020)

Set Transformer 
(Lee et al., 2019)

Transformer-XL
(Dai et al., 2019) 

Memory 
Compressed

(Liu et al., 2018)

ETC
(Ainslie et al., 2020)

Sparse Transformer
(Child et al., 2019)Image Transformer

(Parmar et al., 2018)

Routing
Transformer

(Roy et al., 2020)
Synthesizer

(Tay et al., 2020a)

Longformer
(Beltagy et al., 2020)

Big Bird
(Zaheer et al., 2020) 

Axial Transformer
(Ho et al., 2019)

Blockwise Transformer
(Qiu et al., 2019)

Sinkhorn
Transformer 

(Tay et al., 2020b)
Reformer

(Kitaev et al., 2020)

Compressive 
Transformer

(Rae et al., 2018)

Figure 2: Taxonomy of E�cient Transformer Architectures.

decoding is required when designing e�cient self-attention mechanisms since it can be a
limiting factor in many applications.

3. A Survey of E�cient Transformer Models

In this section, we provide a high-level overview of e�cient Transformer models. We begin
by presenting a characterization of the di↵erent models. Table 1 lists the e�cient Trans-
formers released to date while Figure 2 presents a graphical overview of several key e�cient
Transformer models.

3.1 A Taxonomy of E�cient Transformers

This section outlines a general taxonomy of e�cient Transformer models, charactered by
their core techniques and primary use case. The primary goal of most of these models, with
the exception of those based on segment-based recurrence, is to approximate the quadratic-
cost attention matrix. Each method applies some notion of sparsity to the otherwise dense
attention mechanism.

5

Tay, Dehghani, Bahri, Metzler. Efficient Transformers: A Survey. arXiv:2009.06732, 2020
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next word in the sequence. The decoder, therefore, takes
inputs from the encoder as well as the previous outputs
to predict the next word of the sentence in the translated
language. To facilitate residual connections the output di-
mensions of all layers are kept the same i.e., d = 512.
The dimensions of query, key and value weight matrices
in multi-head attention are set to dq = 64, dk = 64, dv = 64.

2.5 Bidirectional Representations
The training strategy of the original Transformer model [1]
could only attend to the context on the left of a given word
in the sentence. This is limiting, since for most language
tasks, contextual information from both left and right sides
is important. Bidirectional Encoder Representations from
Transformers (BERT) [3] proposed to jointly encode the right
and left context in a sentence, to learn feature representation
for textual data in an unsupervised manner. To enable
bidirectional training, [3] basically introduced two pretext
tasks: Masked Language Model and Next Sentence Prediction.
The model pre-trained on these pretext tasks in an unsuper-
vised manner was then fine-tuned for the downstream task.
For this purpose, task-specific additional output module is
appended to the pre-trained model, and the full model is
fine-tuned end-to-end.

The network architecture of the base BERT [3] model is
based upon the original Transformer model in [1] and is
similar to GPT [4]. The core contribution of BERT [3] is the
pretext task definition, which enables bidirectional feature
encoding in an unsupervised manner. To this end, BERT
[3] proposed two strategies: (1) Masked Language Model

(MLM) - A fixed percentage (15%) of words in a sentence
are randomly masked and the model is trained to predict
these masked words using cross-entropy loss. In predicting
the masked words, the model learns to incorporate the
bidirectional context. (2) Next Sentence Prediction (NSP) -

Given a pair of sentences, the model predicts a binary label
i.e., whether the pair is valid from the original document or
not. The training data for this can easily be generated from
any monolingual text corpus. A pair of sentences A and B
is formed, such that B is the actual sentence (next to A) 50%
of the time, and B is a random sentence for other 50% of the
time. NSP enables the model to capture sentence-to-sentence
relationships which are crucial in many language modeling
tasks such as Question Answering and Natural Language
Inference (NLI).

3 TRANSFORMERS & SELF-ATTENTION IN VISION

We provide an overview of main themes followed in Trans-
formers designed for vision applications in Fig. 3. Exist-
ing frameworks generally apply global or local attention,
leverage CNN representations or utilize matrix factorization
to enhance design efficiency and use vectorized attention
models. We explain these research directions below in the
form of task-specific groups of approaches.

3.1 Transformers for Image Recognition
Convolution operation is the work-horse of the conven-
tional deep neural networks used in computer vision and
it brought breakthroughs such as solving complex image
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Fig. 3. A taxonomy of self-attention design space.

recognition tasks on high dimensional datasets like Im-
ageNet [52]. However, convolution also comes with its
shortcomings e.g., it operates on a fixed-sized window thus
unable to capture long-range dependencies such as arbitrary
relations between pixels in both spatial and time domains
in a given video. Furthermore, convolution filter weights
remain fixed after training so the operation cannot adapt
dynamically to any variation to the input. In this section, we
review methods that alleviate the above-mentioned issues in
conventional deep neural networks by using Self-attention
operations and Transformer networks (a specific form of
self-attention). There are two main design approaches to
self-attention. (a) Global self-attention which is not restricted
by the size of input features e.g., [53] introduces a layer
inspired from non-local means that applies attention to the
whole feature map while [54] reduces the computational
complexity of non-local operation [53] by designing sparse
attention maps. (b) Local self-attention tries to model re-
lation within a given neighborhood e.g., [55] proposed to
restrict the attention within a specific window around a
given pixel position to reduce the computational overhead.
Similarly, [53] further improved local self-attention such
that it can dynamically adapt its weight aggregation to
variations in the input data/features.

Recently, global self-attention has been successfully ap-
plied by using NLP Transformer encoder directly on image
patches [9], removing the need for handcrafted network
design. Transformer is data-hungry in nature e.g., a large-
scale dataset like ImageNet is not enough to train vision
transformer from scratch so [10] proposes to distill knowl-
edge from a CNN teacher to a student vision transformer
which allowed Transformer training on only ImageNet
without any additional data. Here, we describe key insights
from different methods based on local/global self-attention
including Transformers specifically designed to solve the
image recognition task.

3.1.1 Non-local Neural Networks
This approach is inspired by non-local means operation
[56] which was mainly designed for image denoising. This
operation modifies a given pixel in a patch with a weighted
sum of other pixel values in an image. However, instead

Khan, Naseer, Hayat, Zamir, Khan, Shah. Transformers in Vision: A Survey. arXiv preprint arXiv:2101.01169. 2021 Jan.
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https://github.com/dorarad/gansformer

https://arxiv.org/abs/2103.01209
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