

www.phcschoolofai.org www

Machine Learning in 🥐 python[®]

sebastianraschka.com

<u>لک</u> @Phcschoolofai # pmlcourse

Recent Trends, Technologies, and Challenges

🥑 @rasbt

Sebastian Raschka, Ph.D. Dep. of Statistics

Article

Machine Learning in Python: Main Developments and Technology Trends in Data Science, Machine Learning, and Artificial Intelligence

Sebastian Raschka^{1,*,†}, Joshua Patterson² and Corey Nolet^{2,3}

- Department of Statistics, University of Wisconsin-Madison, Madison, WI 53575, USA
- 3 MD 21250, USA
- Correspondence: sraschka@wisc.edu
- +

Received: 6 February 2020; Accepted: 31 March 2020; Published: 4 April 2020

https://www.mdpi.com/journal/information/special_issues/ML_Python

NVIDIA, Santa Clara, CA 95051, USA; joshuap@nvidia.com (J.P.); cnolet@nvidia.com (C.N.) Department of Comp Sci & Electrical Engineering, University of Maryland, Baltimore County, Baltimore,

Current address: 1300 University Ave, Medical Sciences Building, Madison, WI 53706, USA.

See "Machine Learning with Python," a special issue of Information (ISSN 2078-2489)

Part 1: Technologies and Tools

Python for-loops are bad

$$z = \sum_{i} x_i w_i + b$$

def for_loop(w, x): z = 0. return z

x = [1., 2., 3.]bias = 0.1w = [bias, 0.3, 0.5]

print(for_loop(w, x))

2.2

- for i in range(len(x)): z += x[i] * w[i]

Python for-loops are bad: Use SIMD & vectorized code whenever you can

import torch

def dot_product_in_pytorch(w, x): return x.dot(w)

x_t, w_t = torch.tensor(x), torch.tensor(w) print(dot_product_in_pytorch(x_t, w_t))

tensor(2.2000)

 $z = \sum x_i w_i + b$ $= \mathbf{x}^{\dagger} \mathbf{w}$

For-loops vs. Vectorized Code

%timeit -r 100 -n 1 -q -o for_loop(w, x)

- <TimeitResult : 33.8 ms ± 1.43 ms per loop (mean ± std. dev.
- %timeit -r 100 -n 1 -q -o dot_product_in_pytorch(w_t, x_t)
- <TimeitResult : 22.4 µs ± 25.1 µs per loop (mean ± std. dev.
 - Dot product is approx.1500x faster

Can we speed this up further using GPUs?

%timeit -r 100 -n 1 -q -o dot_product_in_pytorch(w_t, x_t)

x_cuda = x_t.to(torch.device('cuda:0')) w_cuda = w_t.to(torch.device('cuda:0'))

torch.backends.cudnn.benchmark = True

%timeit -r 100 -n 1 -q -o dot_product_in_pytorch(w_cuda, x_cuda)

- <TimeitResult : 22.4 µs ± 25.1 µs per loop (mean ± std. dev. of 100 runs,

- <TimeitResult : 61 µs ± 13.8 µs per loop (mean ± std. dev. of 100 runs, 1
 - GPU is approx. 3x slower

Can we speed this up further using GPUs? (Yes, if the data / computation is large)

%timeit -r 100 -n 1 -q -o X.mm(W)

X_cuda = X.to(torch.device('cuda:0')) W_cuda = W.to(torch.device('cuda:0'))

%timeit -r 100 -n 1 -q -o X_cuda.mm(W_cuda)

GPU is approx. 230x faster

X, W = torch.rand((1000, 10000)), torch.rand((10000, 100))

<TimeitResult : 4.38 ms ± 1.59 ms per loop (mean ± std. dev.

<TimeitResult : 18.6 μ s ± 26.5 μ s per loop (mean ± std. dev.

Sebastian Raschka, Joshua Patterson, and Corey Nolet (2020) Machine Learning in Python: Main developments and technology trends in data science, machine learning, and artificial intelligence Information 2020, 11, 193

Figure 4. RAPIDS is an open source effort to support and grow the ecosystem of GPU-accelerated Python tools for data science, machine learning, and scientific computing. RAPIDS supports existing libraries, fills gaps by providing open source libraries with crucial components that are missing from the Python community, and promotes cohesion across the ecosystem by supporting interoperability across the libraries.

Sebastian Raschka, Joshua Patterson, and Corey Nolet (2020) Machine Learning in Python: Main developments and technology trends in data science, machine learning, and artificial intelligence Information 2020, 11, 193

GPUs

https://www.theverge.com/2015/5/31/8695075/nvidia-geforce-gtx-980-ti-announced

Specifications	Intel [®] Core [™] i7-5960X Processor Extreme Edition	NVIDIA GeForce [®] GTX [™] 980 Ti
Base Clock Frequency	3.0 GHz	1.0 GHz
Cores	8	2816
Memory Bandwidth	68 GB/s	336.5 GB/s
Floating-Point Calculations	354 GFLOPS	5632 GFLOPS
Cost	\$1000.00	\$700.00

Specifications	Intel® Core™ i7-6900K Processor Extreme Ed.	NVIDIA GeForce® GTX™ 1080 Ti
Base Clock Frequency	3.2 GHz	< 1.5 GHz
Cores	8	3584
Memory Bandwidth	64 GB/s	484 GB/s
Floating-Point Calculations	409 GFLOPS	11300 GFLOPS
Cost	~ \$1000.00	~ \$700.00

Specifications	Intel® Core™ i9-9960X X-series Processor	NVIDIA GeForce® RTX™ 2080 Ti
Base Clock Frequency	3.1 GHz	1.35 GHz
Cores	16 (32 threads)	4352
Memory Bandwidth	79.47 GB/s	616 GB/s
Floating-Point Calculations	1290 GFLOPS	13400 GFLOPS
Cost	~ \$1700.00	~ \$1100.00

Image: https://www.nvidia.com/en-in/geforce/graphics-cards/rtx-2080-ti/

Image: https://www.amazon.com/Nvidia-GEFORCE-GTX-1080-Ti/dp/B06XH5ZCLP

Sebastian Raschka. Python Machine Learning. Birmingham, UK: Packt Publishing, 2015

Sebastian Raschka and Vahid Mirjalili. Python Machine Learning 2nd Ed. Birmingham, UK: Packt Publishing, 2017

Sebastian Raschka and Vahid Mirjalili. Python Machine Learning 3rd Ed. Birmingham, UK: Packt Publishing, 2019

FP32 TensorFlow Training Performance

Source: <u>https://lambdalabs.com/blog/2080-ti-deep-learning-benchmarks/</u>

Performance Multiple Over to RTX 2080 Ti

Developing Specialized Hardware

https://arstechnica.com/gadgets/2018/07/the-ai-revolution-has-spawned-a-new-chips-arms-race/

https://developer.arm.com/products/processors/machine-learning/arm-ml-processor

Opinion: New Nvidia chip extends the company's lead in graphics, artificial intelligence

By Ryan Shrout Published: Aug 14, 2018 2:35 p.m. ET

The only question that remains: How big is Nvidia's advantage over its rivals?

https://www.marketwatch.com/story/new-nvidia-chip-extends-the-companys-lead-in-graphics-artificial-intelligence-2018-08-14

TECHNOLOGY NEWS

NOVEMBER 28, 2018 / 2:59 PM / 2 MONTHS AGO

Amazon launches machine learning chip, taking on Nvidia, Intel

https://www.reuters.com/article/us-amazon-com-nvidia/amazon-launches-machine-learning-chip-taking-on-nvidia-intel-idUSKCN1NX2PY

Deep Learning frameworks The new "Emacs vs VIM"

Which DL framework is most popular?

https://thegradient.pub/state-of-ml-frameworks-2019-pytorch-dominates-research-tensorflow-dominates-industry/

Year

https://thegradient.pub/state-of-ml-frameworks-2019-pytorch-dominates-research-tensorflow-dominates-industry/

"Most I've spoken to (and I'm from a background in ML academia); PyTorch is by a very slim margin faster than TensorFlow 2.0 in our experiences when you run TensorFlow in non-Eager mode. However, since Eager mode is now enabled by default in TensorFlow 2.0; PyTorch is significantly faster."

https://www.reddit.com/r/MachineLearning/comments/f19dj4/d_tensorflow_20_v_pytorch_performance_question/

Average in

PyTorch CPU Average inference time (s)

PyTorch CPU + TorchScript Average inferen

PyTorch GPU Average inference time (s)

PyTorch GPU + TorchScript Average inferen

TensorFlow CPU Average inference time (s

TensorFlow GPU Average inference time (s

TensorFlow GPU + XLA Average inference

Average inference time

nference time				
	0.748			
nce time (s)	0.625			
	0.046			
nce time (s)	0.036			
)	0.823			
s)	0.043			
time (s)	0.035			

Source: https://medium.com/huggingface/benchmarking-transformers-pytorch-and-tensorflow-e2917fb891c2


```
Figure 7. Comparison between (a) a static computation graph in TensorFlow 1.15 and (b) an imperative
 programming paradigm enabled by dynamic graphs in PyTorch 1.4.
 b = torch.tensor(1.5)
 x = torch.tensor(1.0)
 z = w x + b
Sebastian Raschka, Joshua Patterson, and Corey Nolet (2020)
Information 2020, 191, 193
```

```
w * x + b = 3.5
```

а

	į.	C	
g tł	ne graph	ln:	<pre>import torch</pre>
			<pre>w = torch.tensor(2.0, requires_grad=Tru b = torch.tensor(1.5) x = torch.tensor(1.0)</pre>
e)			<pre>z = w*x + b print(f'w*x + b = {z}')</pre>
	and the graph		<pre>z.backward() print(f'∂z/∂w = {w.grad}')</pre>
	ene Brahn	Out:	w*x + b = 3.5 ∂z/∂w = 1.0

Machine Learning in Python: Main developments and technology trends in data science, machine learning, and artificial intelligence

DL Frameworks are converging

Two ways for turning a **PyTorch model** into a static graph for optimization and deployment:

> a) Tracing **b)** Scripting

frameworks-2019-pytorch-dominates-researchtensorflow-dominates-industry/

DL Frameworks are converging

Eager Execution

Technologies

"Hot" research areas

Challenges

Challenges:

Adding forward-mode autodiff for efficient higher-order derivatives (e.g., Hessians)

Composable transformations of Python+NumPy programs: differentiate, vectorize, JIT to GPU/TPU, and more

Original Pytorch Forward mode AD for PyTorch: https://github.com/pytorch/pytorch/issues/10223 Swift

April 21, 2020

PyTorch 1.5 released, new and updated APIs including C++ frontend API parity with Python

https://pytorch.org/blog/pytorch-1-dot-5-released-with-new-and-updated-apis/

torch.autograd.functional.hessian(...)

Challenges:

Adversarial attacks

Phantom of the ADAS: Phantom Attacks on Driver-Assistance Systems

Ben Nassi¹, Dudi Nassi¹, Raz Ben-Netanel¹, Yisroel Mirsky^{1,2}, Oleg Drokin³, Yuval Elovici¹

Video Demonstration - https://youtu.be/1cSw4fXYqWI {nassib,nassid,razx,yisroel,elovici}@post.bgu.ac.il, green@linuxhacker.ru ¹ Ben-Gurion University of the Negev, ² Georgia Tech,³ Independent Tesla Researcher

ABSTRACT

The absence of deployed vehicular communication systems, which prevents the advanced driving assistance systems (ADASs) and autopilots of semi/fully autonomous cars to validate their virtual perception regarding the physical environment surrounding the car with a third party, has been exploited in various attacks suggested by researchers. Since the application of these attacks comes with a cost (exposure of the attacker's identity), the delicate exposure vs. application balance has held, and attacks of this kind have not yet been encountered in the wild. In this paper, we investigate a new perceptual challenge that causes the ADASs and autopilots of semi/fully autonomous to consider depthless objects (phantoms) as real. We show how attackers can exploit this perceptual challenge to apply phantom attacks and change the abovementioned balance, without the need to physically

Fig. 1: Perceptual Challenge: Would you consider the projection of the person (a) and road sign (b) real? Telsa considers (a) a real person and Mobileye 630 PRO considers (b) a real road sign.

Fig. 1: Perceptual Challenge: Would you consider the projection of the person (a) and road sign (b) real? Telsa considers (a) a real person and Mobileye 630 PRO considers (b) a real road sign.

Supported frameworks vpc		Cleverhans v3.0.1	FoolBox v2.3.0	ART v1.1.0	DEEPSEC (2019)	AdvBox v0.4.1						
TwoseProv MNNet yes yes yes yes no yes	Supported frameworks											
MYNel Mys Mys <th< td=""><td>TensorFlow</td><td>yes</td><td>yes</td><td>yes</td><td>no</td><td>yes</td><td></td><td></td><td></td><td></td><td></td><td></td></th<>	TensorFlow	yes	yes	yes	no	yes						
Hylinch (Frasion) attack mechanisms no yes yes yes (Frasion) attack mechanisms	MXNet	yes	yes	yes	no	yes						
Produktive/lise Inc.	PyTorch	no	yes	yes	yes	yes						
Evaluation Unitary of the second	PaddlePaddle	no	no	no	no	yes						
BUE [65] yes no no no AVD [17] uu nu yu yu nu	(Evasion) attack mechanisms											
AMD [170] yes no no no no no VAO [172] yes yes yes no properties no no properties no properties no properties no properties properties </td <td>BLB [163]</td> <td>yes</td> <td>no</td> <td>no</td> <td>yes</td> <td>no</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	BLB [163]	yes	no	no	yes	no						
ZOD [17] no no yes yos no no AP [173] no no yes no n	AMD [170]	yes	no	no	no	no						
VA [172] yes yes no no AP [123] no yes no no yes no no yes no no yes no yes no no yes no yes no no yes yes yes yes no yes no yes	ZOO [171]	no	no	yes	no	no						
AP Ind no yes no	VA [172]	yes	yes	yes	no	no						
Sh1 [74] no yes yes no no Detailed by the second	AP [173]	no	no	yes	no	no						
DYA [125] no yes <	STA [174]	no	yes	yes	no	no	Defense mechanisme	110	усо	110	110	110
ICSM [176] yes yes yes yes yes ges for	DTA [175]	no	no	yes	no	no	Eesture Squeezing [200]	no	no	VAS	no	Ves
R+FLCSM [177] no no no no res	FGSM [176]	yes	yes	yes	yes	yes	Spatial Smoothing [200]	no	no	ves	no	ves
R+LLC [17] no no yes no classian Augmentation [211] no no yes yes yes yes yes yes no no yes	R+FGSM [177]	no	no	no	yes	no	Label Smoothing [200]	no	no	yes	no	yes
U-MLF(SSM [178] yes yes no yes no yes no no no yes yes yes yes yes pes	R+LLC [177]	no	no	no	yes	no	Gaussian Augmentation [201]	no	no	yes	no	yes
T-MI-FCSM [178] yes no no no no yes yes yes no no no no no no yes yes no LLC / ILLC [179] no no yes no yes yes no no no no no yes no no no no no yes no no no no no yes no no no no yes no no no yes yes no	U-MI-FGSM [178]	yes	yes	no	yes	no	Adversarial Training [185]	no	no	yes	yes	yes
BIM [179] no ycs ycs ycs ycs NAI [23] no no no no ycs no LLC / ILLC [17] no ycs ycs ycs no ycs no ycs ycs ycs ycs no no ycs ycs no UAP [180] no no no ycs ycs ycs no no no ycs ycs no Deepfool [181] yes yes yes yes yes yes yes no no no yes yes no NewtonFool [182] yes yes yes yes yes yes no no no yes no no no yes no no yes no	T-MI-FGSM [178]	yes	yes	no	yes	no	Thermometer Encoding [202]	no	no	yes	yes	yes
LLC / ILLC [179] no yes no yes no no yes no no yes no no yes no yes no no no yes yes no no no no yes no no no yes no no no yes no no no yes no no no no no yes no	BIM [179]	no	yes	yes	yes	yes	NAT [203]	no	no	no	yes	no
UAP [180] no no no yes yes yes no no no no yes no DeepFool [181] yes yes yes yes yes yes yes no no no no yes yes no NewtonFool [182] no yes yes yes yes yes no no no no yes yes no JSMA [183] yes yes yes yes yes yes no no no no yes yes no JSMA [183] yes yes yes yes yes yes yes no no no no yes yes no JSMA [185] yes yes yes yes yes yes yes no n	LLC / ILLC [179]	no	yes	no	yes	no	EAI [177]	no	no	no	yes	no
DeepFool [18] yes yes yes yes yes int i	UAP [180]	no	no	yes	yes	no	IGR [205]	no	no	no	yes	no
NewtonFool [182] no yes yes yes yes yes yes yes yes no no no yes no no yes no no yes no no no yes yes no no no no yes yes no no no no no yes yes no no no no no no yes yes no no no no yes yes no	DeepFool [181]	yes	yes	yes	yes	yes	EIT [206]	no	no	ves	yes	no
JSMA [183] yes yes yes yes yes yes yes yes yes no no no yes yes no no no no yes yes no no no no no yes yes no no no no no no yes yes no no no no yes yes no no no no no yes no no no yes no no <t< td=""><td>NewtonFool [182]</td><td>no</td><td>yes</td><td>yes</td><td>no</td><td>no</td><td>RT [207]</td><td>no</td><td>no</td><td>no</td><td>yes</td><td>no</td></t<>	NewtonFool [182]	no	yes	yes	no	no	RT [207]	no	no	no	yes	no
CW/CW2 [184] yes yes yes yes yes yes yes yes no no no no yes no no PGD [185] yes no	JSMA [183]	yes	yes	yes	yes	yes	PixelDefend [208]	no	no	yes	yes	no
PGD [185] yes no yes yes yes performance no <	CW/CW2 [184]	yes	yes	yes	yes	yes	Regrbased classfication [209]	no	no	no	yes	no
OM [186] no no no yes no EAD [187] yes yes yes no no Boundary Attack [188] no yes yes no no HopSkiplumpAttack [188] no yes yes no no MaxConf [190] yes no no no no MaxConf [190] yes no no no no MaxConf [190] yes no no no no Inversion attack [191] yes yes no no no SparseL1 [192] yes yes no no no SPSA [193] yes no no no no ADef [195] no yes no no no DDNL2 [196] no yes no no no Pointwise attack [198] no yes no no no Pointwise attack [198] no yes no no no GenAttack [199] no<	PGD [185]	yes	no	yes	yes	yes	JPEG compression [210]	no	no	yes	no	no
EAD [187] yes yes yes no Boundary Attack [188] no yes yes no no HopSkipJumpAttack [189] yes yes yes no no MaxConf [190] yes yes no no no MaxConf [190] yes no no no Inversion attack [191] yes yes no no SpaseL1 [192] yes yes no no no SpaseL1 [192] yes yes no no no ADef [193] yes no no no no ADef [194] no no yes no no DDNL2 [196] no yes no no no Local Search [197] no yes no no no Pointwise attack [198] no yes no no no GenAttack [199] no yes no no no Dr no yes no no	OM [186]	no	no	no	yes	no						
Boundary Attack [188] no yes yes no no HopSkipJumpAttack [189] yes yes yes no no MaxConf [190] yes no no no no MaxConf [190] yes no no no no Inversion attack [191] yes yes no no no SparseL1 [192] yes yes no no no SparseL1 [192] yes yes no no no SparseL1 [192] yes yes no no no SPSA [193] yes no no no no ADef [195] no no yes no no DDNL2 [196] no yes no no no Local Search [197] no yes no no no Pointwise attack [198] no yes no no no GenAttack [199] no yes no no no Df no <td>EAD [187]</td> <td>yes</td> <td>yes</td> <td>yes</td> <td>yes</td> <td>no</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	EAD [187]	yes	yes	yes	yes	no						
HopSkipJumpAttack [189] yes yes yes no no MaxConf [190] yes no no no no Inversion attack [191] yes yes no no no SparseL1 [192] yes yes no no no SparseL1 [192] yes yes no no no SparseL1 [192] yes yes no no no MaxConf [192] yes yes no no no SparseL1 [192] yes yes no no no SparseL1 [192] yes no no no no MCLU [194] no no yes no no MDef [195] no yes no no no DDNL2 [196] no yes no no no Pointwise attack [197] no yes no no no GenAttack [198] no yes no no no Def (195) no	Boundary Attack [188]	no	yes	yes	no	no						
MaxConf [190] yes no no no no Inversion attack [191] yes yes no no no SparseL1 [192] yes yes no no no SparseL1 [192] yes yes no no no SPSA [193] yes no no no no HCLU [194] no no yes no no ADef [195] no yes no no no DDNL2 [196] no yes no no no Local Search [197] no yes no no no Pointwise attack [198] no yes no no no GenAttack [199] no yes no no no De (199) no yes no no no no RenAttack [198] no yes no no no no De (199) no yes no no no no no <	HopSkipJumpAttack [189]	yes	yes	yes	no	no						
Inversion attack [191]yesyesnononoSparseL1 [192]yesyesnononoSPSA [193]yesnonononoHCLU [194]nonoyesnonoHCLU [194]noyesnononoADef [195]noyesnononoDDNL2 [196]noyesnononoLocal Search [197]noyesnononoPointwise attack [198]noyesnononoGenAttack [199]noyesnononoDCyesnonononoDointwise attack [199]noyesnononoDiattack [199]noyesnononoDiatta	MaxConf [190]	yes	no	no	no	no						
SparseL1 [192]yesyesnononoSPSA [193]yesnonononoHCLU [194]nonoyesnonoADef [195]noyesnononoDDNL2 [196]noyesnononoLocal Search [197]noyesnononoPointwise attack [198]noyesnononoGenAttack [199]noyesnononoD fullnoyesnononoD fullnoyesno <t< td=""><td>Inversion attack [191]</td><td>yes</td><td>yes</td><td>no</td><td>no</td><td>no</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	Inversion attack [191]	yes	yes	no	no	no						
SPSA [193]yesnonononoHCLU [194]nonoyesnonoADef [195]noyesnononoDDNL2 [196]noyesnononoLocal Search [197]noyesnononoPointwise attack [198]noyesnononoGenAttack [199]noyesnononoDrift in the second sec	SparseL1 [192]	yes	yes	no	no	no						
HCLU [194]nonoyesnonoADef [195]noyesnononoDDNL2 [196]noyesnononoLocal Search [197]noyesnononoPointwise attack [198]noyesnononoGenAttack [199]noyesnononoDo yesnononononoConditional Search [197]noyesnonoNoyesnononoDointwise attack [198]noyesnonoConditional Search [197]noyesnonoDointwise attack [198]noyesnonoConditional Search [197]noyesnonoDointwise attack [198]noyesnonoDoint Wise Attack [199]noyesnonoDoint Wise Attack [199]noyesno	SPSA [193]	yes	no	no	no	no						
ADef [195]noyesnonoDDNL2 [196]noyesnonoLocal Search [197]noyesnonoPointwise attack [198]noyesnonoGenAttack [199]noyesnonoNoyesnononoOr Attack [199]noyesnonoNoyesnononoNoyesnononoDef Attack [199]noyesnonoNoyesnononoNoyesnononoNoyesnononoNoyesnononoNoyesnononoNoyesnononoNoyesnononoNoyesnonoNonononoNoyesnonoNononoNononoNononoNononoNononoNononoNononoNononoNononoNononoNononoNononoNononoNononoNononoNonono <td< td=""><td>HCLU [194]</td><td>no</td><td>no</td><td>yes</td><td>no</td><td>no</td><td></td><td></td><td></td><td></td><td></td><td></td></td<>	HCLU [194]	no	no	yes	no	no						
DDNL2 [196]noyesnonoLocal Search [197]noyesnonoPointwise attack [198]noyesnonoGenAttack [199]noyesnonoMachine Learning in Python: Main developments and technology trend	ADef [195]	no	yes	no	no	no						
Local Search [197]noyesnonoPointwise attack [198]noyesnonoGenAttack [199]noyesnononoMachine Learning in Python: Main developments and technology trend	DDNL2 [196]	no	yes	no	no	no						
Pointwise attack [198] no yes no no no GenAttack [199] no yes no no no no Machine Learning in Python: Main developments and technology trend	Local Search [197]	no	yes	no	no	no						
GenAttack [199] no yes no no no Machine Learning in Python: Main developments and technology trend	Pointwise attack [198]	no	yes	no	no	no	• <i>• • •</i> • • •	—	.	<u>_</u>		_
	GenAttack [199]	no	yes	no	no	no	Machine Learning in	Python: M	lain develop	oments an	d technolog	gy trenc

science, machine learning, and artificial intelligence (2020). Sebastian Raschka, Joshua Patterson, and Corey Nolet

Neglected Research Areas

Deep Learning & Ordinal Data

Wenzhi Cao, Vahid Mirjalili, and Sebastian Raschka. "Rank-consistent ordinal regression for neural networks." arXiv:1901.07884 (2019).

3.3. Theoretical Guarantees for Classifier Consistency

The following theorem shows that by minimizing the loss L (Eq. 3), the learned bias units of the output layer are nonincreasing such that $b_1 \ge b_2 \ge ... \ge b_{K-1}$. Consequently, the predicted confidence scores or probability estimates of the K-1tasks are decreasing, i.e.,

$$\widehat{P}\left(y_i^{(1)}=1\right) \ge \widehat{P}\left(y_i^{(2)}=1\right) \ge \ldots \ge \widehat{P}\left(y_i^{(K-1)}=1\right)$$
(5)

for all *i*, ensuring classifier consistency. Consequently, $\{f_k\}_{k=1}^{K-1}$ given by Eq. 4 are also rank-monotonic.

Wenzhi Cao, Vahid Mirjalili, and Sebastian Raschka. "Rank-consistent ordinal regression for neural networks." arXiv:1901.07884 (2019).

Average numbers of inconsistencies occurred on the different test datasets for CORAL-CNN and Niu et al's Ordinal CNN. The penultimate column and last column list the average numbers of inconsistencies focussing only on the correct and incorrect age predictions, respectively.

	CORAL-CNN	Ordinal-CNN [1]	Ordinal-CNN [1]	Ordinal-CNN [1]
	All predictions	All predictions	Only correct predictions	Only incorrect predictions
Morph				
Seed 0	0	2.74	2.02	2.89
Seed 1	0	2.74	2.08	2.88
Seed 2	0	3.00	2.20	3.16
AFAD				
Seed 0	0	2.32	1.78	2.40
Seed 1	0	2.35	1.83	2.43
Seed 2	0	2.55	1.97	2.63
UTKFace				
Seed 0	0	4.79	3.64	4.92
Seed 1	0	5.73	4.05	5.95
Seed 2	0	5.07	3.84	5.21
CACD				
Seed 0	0	5.06	4.55	5.10
Seed 1	0	5.40	4.76	5.44
Seed 2	0	5.56	4.87	5.61

Wenzhi Cao, Vahid Mirjalili, and Sebastian Raschka. "Rank-consistent ordinal regression for neural networks." arXiv:1901.07884 (2019).

Table 2

Deep Learning & Ordinal Data

Wenzhi Cao, Vahid Mirjalili, and Sebastian Raschka. "Rank-consistent ordinal regression for neural networks." arXiv:1901.07884 (2019).

Age prediction errors on the test sets without task ir

		_			
MORPH-2					
MAE	RMSE	_			
3.40	4.88	_			
3.39	4.87				
3.37	4.87				
3.39 ± 0.02	4.89 ± 0.01	_			
2.98	4.26	_			
2.98	4.26				
2.96	4.20				
2.97 ± 0.01	4.24 ± 0.03	_			
2.68	3.75	_			
2.63	3.66				
2.61	3.64				
2.64 ± 0.04	3.68 ± 0.06	_			
	$\begin{array}{c} \text{MOR} \\ \hline \text{MAE} \\ \hline 3.40 \\ \hline 3.39 \\ \hline 3.37 \\ \hline 3.39 \pm 0.02 \\ \hline 2.98 \\ \hline 2.98 \\ \hline 2.98 \\ \hline 2.98 \\ \hline 2.96 \\ \hline 2.97 \pm 0.01 \\ \hline 2.68 \\ \hline 2.63 \\ \hline 2.61 \\ \hline \textbf{2.64} \pm \textbf{0.04} \end{array}$	MORPH-2MAERMSE 3.40 4.88 3.39 4.87 3.39 ± 0.02 4.89 ± 0.01 2.98 4.26 2.98 4.26 2.96 4.20 2.97 ± 0.01 4.24 ± 0.03 2.68 3.75 2.63 3.66 2.61 3.64			

Technologies

"Hot" research

areas

Challenges

Transformers

Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser Ł, Polosukhin I. Attention is all you need. InAdvances in neural information processing systems 2017 (pp. 5998-6008).

Figure 1: The Transformer - model architecture.

New AI fake text generator may be too dangerous to release, say creators

The Elon Musk-backed nonprofit company OpenAI declines to release research publicly for fear of misuse

https://www.theguardian.com/technology/2019/feb/14/elonmusk-backed-ai-writes-convincing-news-fiction

"Google researchers have trained a chatbot with uncannily good conversational skills. The bot, named Meena, is a 2.6 billion parameter language model trained on 341GB of text data, filtered from public domain social media conversations. Meena uses a seq2seq model (the same sort of technology that powers Google's "Smart Compose" feature in gmail), paired with an Evolved Transformer encoder and decoder - it's interesting to see something like this depend so much on a component developed via neural architecture search."

https://mailchi.mp/jack-clark/import-ai-183-curve-fitting-conversation-withmeena-gans-paint-a-climate-change-future-and-what-compute-data-arbitragemeans-for-simulators

Human: Hi!

- Meena: Hey there! What's up?
- Human: Same old, Monday blues...what are you up to?
- Meena: I'm procrastinating on a paper I'm supposed to be writing.
- Human: are you thinking of pulling an all nighter?
- Meena: Possibly. What's your paper on?
- that will change the world!
- Meena: What's the topic?
- Human: not sure, any suggestions?
- Meena: Well what's the assignment on?
- Human: breathing under water

Human: Nah, i just do the grunge work around here...one day I wish to write a paper

https://github.com/google-research/ google-research/blob/master/meena/ meena.txt

10000 7500 5000 2500 \$ Google Al A12 OpenAI BERT-Large GPT ELMo 340 94 110 0 🔍 A91112018 october 2018 JUNY 2018

Image Source: <u>https://medium.com/huggingface/distilbert-8cf3380435b5</u>

BERT Papers Over Time

https://github.com/nslatysheva/BERT_papers/blob/master/BERT_Papers.csv

THE COST OF TRAINING NLP MODELS A CONCISE OVERVIEW

Barak Peleg AI21 Labs barakp@ai21.com

Or Sharir AI21 Labs ors@ai21.com

April 2020

http://arxiv.org/abs/2004.08900

Costs: Not for the faint hearted

Yoav Shoham AI21 Labs yoavs@ai21.com

\$2.5k - \$50k (110 million parameter model) \$10k - \$200k (340 million parameter model) \$80k - \$1.6m (1.5 billion parameter model)

Recurrent Neural Networks

many-to-many

many-to-many

Despite LSTM, it may be hard to memorize long sequences/ sentences (e.g., for language translation)

 originally developed for language translation: Bahdanau, D., Cho, K., & Bengio, Y. (2014). Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473.

"... allowing a model to automatically (soft-)search for parts of a source sentence that are relevant to predicting a target word ..."

Attention Mechanism

Figure 2: The BLEU scores of the generated translations on the test set with respect to the lengths of the sen-The results are on tences. the full test set which includes sentences having unknown words to the models.

 originally developed for language translation: Bahdanau, D., Cho, K., & Bengio, Y. (2014). Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473.

Attention Mechanism

"... allowing a model to automatically (soft-)search for parts of a source sentence that are relevant to predicting a target word ..."

Assign attention weight to each word to know how much "attention" the model should pay to each word (i.e., for each word, the network learns a "context")

 originally developed for language translation: Bahdanau, D., Cho, K., & Bengio, Y. (2014). Neural machine translation by jointly learning to align and translate. arXiv preprint arXiv:1409.0473.

attention weight

Assign attention weight to each word to know how much "attention" the model should pay to each word (i.e., for each word, the network learns a "context")

Attention Mechanism

Figure 1: The graphical illustration of the proposed model trying to generate the *t*-th target word y_t given a source sentence (x_1, x_2, \ldots, x_T) .

RNN Attention Mechanism

where the context vector c_1 is defined as $c_1 = \sum \alpha_{1,t} h_t$ t=1 $\alpha_{1,T-1}$ $\alpha_{1,2}$ $h_{F,2}$ $h_{B,2}$ $h_{F,T-1}$ $h_{B,T-1}$ R x_{T-1} X_2

RNN Attention Mechanism

Computing attention weights

 $\alpha_{t,t'} = \frac{\exp(e_{t,t'})}{\sum_{t'=1}^{T} \exp(e_{t,t'})}$

RNN Attention Mechanism

Computing attention weights

 $\alpha_{t,t'} = \frac{\exp(e_{t,t'})}{\sum_{t'=1}^{T} \exp(e_{t,t'})}$

Self-Attention Mechanism

Attention Is All You Need

Ashish Vaswani* Google Brain avaswani@google.com Noam Shazeer*Niki Parmar*Google BrainGoogle Researchnoam@google.comnikip@google.com

Llion Jones* Google Research llion@google.com Aidan N. Gomez^{* †} University of Toronto aidan@cs.toronto.edu

II llia.p

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin, I. (2017). Attention is all you need. In Advances in neural information processing systems (pp. 5998-6008).

https://arxiv.org/abs/1706.03762

Jakob Uszkoreit* Google Research usz@google.com

Łukasz Kaiser* Google Brain lukaszkaiser@google.com

Illia Polosukhin* ‡

illia.polosukhin@gmail.com

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin, I. (2017). Attention is all you need. In Advances in neural information processing systems (pp. 5998-6008).

Figure 1: The Transformer - model architecture.

AlphaStar applies a transformer torso to the units

https://deepmind.com/blog/article/alphastar-mastering-real-time-strategy-game-starcraft-ii

Transformer on a Diet

Chenguang Wang Zheng Zhang

{chgwang, yeziha, astonz, zhaz, smola}@amazon.com

Abstract

Transformer has been widely used thanks to its ability to capture sequence information in an efficient way. However, recent developments, such as BERT and GPT-2, deliver only heavy architectures with a focus on effectiveness. In this paper, we explore three carefullydesigned light Transformer architectures to figure out whether the Transformer with less computations could produce competitive re-

(a) Full Transformer.

(b) Dilated Transformer.

Feb 2020

Zihao YeAston ZhangAlexander J. Smola

Amazon Web Services

size of the model. Therefore a light version of the standard Transformer architecture is expected to relieve the heavy computation issue and compress the model to ease the deployment in real world applications.

In this paper, we carefully design several light Transformer architectures. The intuition behind the light Transformers is: preserving the Transformer connections that are useful to capture the essential

ner. (c) Dilated Transformer 54 with memory.

(d) Cascade Transformer.

Published as a conference paper at ICLR 2018

GRAPH ATTENTION NETWORKS

Petar Veličković* Department of Computer Science and Technology University of Cambridge petar.velickovic@cst.cam.ac.uk

Guillem Cucurull* Centre de Visió per Computador, UAB gcucurull@gmail.com

Arantxa Casanova* Centre de Visió per Computador, UAB ar.casanova.80gmail.com

Pietro Liò

Department of Computer Science and Technology University of Cambridge pietro.lio@cst.cam.ac.uk

Adriana Romero Montréal Institute for Learning Algorithms adriana.romero.soriano@umontreal.ca

> **Yoshua Bengio** Montréal Institute for Learning Algorithms yoshua.umontreal@gmail.com

https://arxiv.org/abs/1710.10903

Figure 1: Left: The attention mechanism $a(\mathbf{W}\vec{h}_i, \mathbf{W}\vec{h}_j)$ employed by our model, parametrized by a weight vector $\vec{\mathbf{a}} \in \mathbb{R}^{2F'}$, applying a LeakyReLU activation. **Right:** An illustration of multihead attention (with K = 3 heads) by node 1 on its neighborhood. Different arrow styles and colors denote independent attention computations. The aggregated features from each head are concatenated or averaged to obtain \vec{h}'_1 .

Graph Neural Networks -- Why Graphs?

Sebastian Raschka and Benjamin Kaufman (2020) Machine learning and AI-based approaches for bioactive ligand discovery and GPCR-ligand recognition arXiv:2001.06545

Documentation | Paper | External Resources

PyTorch Geometric (PyG) is a geometric deep learning extension library for PyTorch.

It consists of various methods for deep learning on graphs and other irregular structures, also known as *geometric deep learning*, from a variety of published papers. In addition, it consists of an easy-to-use mini-batch loader for many small and single giant graphs, multi gpu-support, a large number of common benchmark datasets (based on simple interfaces to create your own), and helpful transforms, both for learning on arbitrary graphs as well as on 3D meshes or point clouds.

https://github.com/rusty1s/pytorch_geometric

In detail, the following methods are currently implemented:

- SplineConv from Fey et al.: SplineCNN: Fast Geometric Deep Learning with Continuous B-Spline Kernels (CVPR 2018)
- GCNConv from Kipf and Welling: Semi-Supervised Classification with Graph Convolutional Networks (ICLR 2017)
- ChebConv from Defferrard et al.: Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering (NIPS 2016)
- NNConv from Gilmer et al.: Neural Message Passing for Quantum Chemistry (ICML 2017)
- CGConv from Xie and Grossman: Crystal Graph Convolutional Neural Networks for an Accurate and Interpretable Prediction of Material Properties (Physical Review Letters 120, 2018)
- ECConv from Simonovsky and Komodakis: Edge-Conditioned Convolution on Graphs (CVPR 2017)
- GATConv from Veličković et al.: Graph Attention Networks (ICLR 2018)
- SAGEConv from Hamilton et al.: Inductive Representation Learning on Large Graphs (NIPS 2017)
- GraphConv from, e.g., Morris et al.: Weisfeiler and Leman Go Neural: Higher-order Graph Neural Networks (AAAI 2019)
- GatedGraphConv from Li et al.: Gated Graph Sequence Neural Networks (ICLR 2016)
- GINConv from Xu et al.: How Powerful are Graph Neural Networks? (ICLR 2019)
- ARMAConv from Bianchi et al.: Graph Neural Networks with Convolutional ARMA Filters (CoRR 2019)
- SGConv from Wu et al.: Simplifying Graph Convolutional Networks (CoRR 2019)
- APPNP from Klicpera et al.: Predict then Propagate: Graph Neural Networks meet Personalized PageRank (ICLR 2019)
- AGNNConv from Thekumparampil et al.: Attention-based Graph Neural Network for Semi-Supervised Learning (CoRR 2017)

- TAGConv from Du et al.: Topology Adaptive Graph Convolutional Networks (CoRR 2017)
- RGCNConv from Schlichtkrull et al.: Modeling Relational Data with Graph Convolutional Networks (ESWC 2018)
- SignedConv from Derr et al.: Signed Graph Convolutional Network (ICDM 2018)
- DNAConv from Fey: Just Jump: Dynamic Neighborhood Aggregation in Graph Neural Networks (ICLR-W 2019)
- EdgeConv from Wang et al.: Dynamic Graph CNN for Learning on Point Clouds (CoRR, 2018)
- PointConv (including Iterative Farthest Point Sampling, dynamic graph generation based on nearest neighbor or maximum distance, and k-NN interpolation for upsampling) from Qi et al.: PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation (CVPR 2017) and PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space (NIPS 2017)
- XConv from Li et al.: PointCNN: Convolution On X-Transformed Points (official implementation) (NeurIPS 2018)
- PPFConv from Deng et al.: PPFNet: Global Context Aware Local Features for Robust 3D Point Matching (CVPR 2018)
- GMMConv from Monti et al.: Geometric Deep Learning on Graphs and Manifolds using Mixture Model CNNs (CVPR 2017)
- FeaStConv from Verma et al.: FeaStNet: Feature-Steered Graph Convolutions for 3D Shape Analysis (CVPR 2018)
- HypergraphConv from Bai et al.: Hypergraph Convolution and Hypergraph Attention (CoRR 2019)
- A MetaLayer for building any kind of graph network similar to the TensorFlow Graph Nets library from Battaglia et al.: Relational Inductive Biases, Deep Learning, and Graph Networks (CoRR 2018)
- GlobalAttention from Li et al.: Gated Graph Sequence Neural Networks (ICLR 2016)
- Set2Set from Vinyals et al.: Order Matters: Sequence to Sequence for Sets (ICLR 2016)
- Sort Pool from Zhang et al.: An End-to-End Deep Learning Architecture for Graph Classification (AAAI 2018)
- Dense Differentiable Pooling from Ying et al.: Hierarchical Graph Representation Learning with Differentiable Pooling (NeurIPS 2018)
- Dense MinCUT Pooling from Bianchi et al.: MinCUT Pooling in Graph Neural Networks (CoRR 2019)
- Orealus Dealing from Dhillon at al. Mainhted Oreach Outs without Figonyasters: A Multilaval

Self-Supervised Learning

Self-Supervised Learning: Image Colorization

Zhang R, Isola P, Efros AA. Colorful image colorization. InEuropean conference on computer vision 2016 Oct 8 (pp. 649-666). Springer, Cham.

Larsson G, Maire M, Shakhnarovich G. Learning representations for automatic colorization. In European Conference on Computer Vision 2016 Oct 8 (pp. 577-593). Springer, Cham.

Vondrick C, Shrivastava A, Fathi A, Guadarrama S, Murphy K. Tracking emerges by colorizing videos. InProceedings of the European Conference on Computer Vision (ECCV) 2018 (pp. 391-408).

Reference Frame

Input Frame

Reference Colors

Target Colors

Fig. 1. Self-supervised Tracking: We capitalize on large amounts of unlabeled video to learn a self-supervised model for tracking. The model learns to predict the target colors for a gray-scale input frame by pointing to a colorful reference frame, and copying the color channels. Although we train without ground-truth labels, experiments and visualizations suggest that tracking emerges automatically in this model.

Self-Supervised Learning: Inpainting

Pathak D, Krahenbuhl P, Donahue J, Darrell T, Efros AA. Context encoders: Feature learning by inpainting. InProceedings of the IEEE conference on computer vision and pattern recognition 2016 (pp. 2536-2544).

(a) Input context

(b) Human artist

(c) Context Encoder (L2 loss) (d) Context Encoder (L2 + Adversarial loss)

Self-Supervised Learning: Jigsaw Puzzles & Context Predictions

Noroozi M, Favaro P. Unsupervised learning of visual representations by solving jigsaw puzzles. In European Conference on Computer Vision 2016 Oct 8 (pp. 69-84). Springer, Cham.

Doersch C, Gupta A, Efros AA. Unsupervised visual representation learning by context prediction. InProceedings of the IEEE International Conference on Computer Vision 2015 (pp. 1422-1430).

Figure 1. Our task for learning patch representations involves randomly sampling a patch (blue) and then one of eight possible neighbors (red). Can you guess the spatial configuration for the two pairs of patches? Note that the task is much easier once you have recognized the object!

Answer key: Q1: Bottom right Q2: Top center

Self-Supervised Learning: Recognizing Artifacts

Jenni S, Favaro P. Self-supervised feature learning by learning to spot artifacts. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition 2018 (pp. 2733-2742).

Figure 1. A mixture of real images (green border) and images with synthetic artifacts (red border). Is a good object representation necessary to tell them apart?

APRIL 14, 2020

f 🕑 in 🛱 Half of Americans have decided not to use a product or service because of privacy concerns

https://www.pewresearch.org/fact-tank/2020/04/14/half-of-americans-have-decided-not-touse-a-product-or-service-because-of-privacy-concerns/

~2018-present: Increasing focus on user privacy

Vahid Mirjalili, Sebastian Raschka, Arun Ross (2020) PrivacyNet: Semi-Adversarial Networks for Multi-attribute Face Privacy arXiv:2001.00561 66

AI / DL and the "Small Data" Bottleneck

Transfer learning (pre-train on related dataset)

Self-supervised learning (like transfer **learning but pre-train** on related task)

Synthetic data (GAN, autoencoder)

One- and few-shot learning (train on many tasks with few examples per class)

Human-inthe-loop

