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Today’s focus: 

And if we have time, a quick 
overview ...
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Contact:
o E-mail: mail@sebastianraschka.com

o Website: http://sebastianraschka.com

o Twitter: @rasbt

o GitHub: rasbt

Tutorial Material on GitHub:
https://github.com/rasbt/msu-datascience-ml-tutorial-2018
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Machine learning is used & useful (almost) anywhere
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3 Types of Learning

Reinforcement

Supervised Unsupervised
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Working with Labeled Data

Supervised 
Learning

?
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Regression

Classification
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Working with Unlabeled Data

Unsupervised 
Learning

Clustering

Compression

8



Topics

1. Introduction to Machine Learning

2. Linear Regression

3. Introduction to Classification

4. Feature Preprocessing & scikit-learn Pipelines

5. Dimensionality Reduction: Feature Selection & Extraction

6. Model Evaluation & Hyperparameter Tuning
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(xi, yi)

ŷ = w0 + w1x 

w0 (intercept)

w1 (slope)
= Δy / Δx Δx

Δy

vertical offset
|ŷ − y|

Simple Linear Regression
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Columns: features (explanatory variables, independent variables,  covariates, 
predictors, variables, inputs, attributes)
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Targets (target 
variable,response variable, 
dependent variable,  labels, 
ground truth) 



Learning  
Algorithm

Hyperparameter  
Values

Model

Prediction

Test Labels

Performance
Model

Learning  
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Hyperparameter  
Values Final 

Model
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Test Labels

Test Data

Training Data

Training Labels
Data

Labels

Data

Labels

Training Data

Training Labels

Test Data

“Basic” Supervised Learning Workflow
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Jupyter Notebook
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Topics

1. Introduction to Machine Learning

2. Linear Regression

3. Introduction to Classification

4. Feature Preprocessing & scikit-learn Pipelines

5. Dimensionality Reduction: Feature Selection & Extraction

6. Model Evaluation & Hyperparameter Tuning
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Scikit-learn API
class SupervisedEstimator(...):

def __init__(self, hyperparam, ...):

...

def fit(self, X, y):

...

return self

def predict(self, X):

...

return y_pred

def score(self, X, y):

...

return score
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Iris Dataset

Iris-VirginicaIris-VersicolorIris-Setosa
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features (columns)

sepal 
length 
[cm]

sepal
width 
[cm]

petal 
lengt
h 
[cm]

petal 
width 
[cm]

1 5.1 3.5 1.4 0.2
2 4.9 3.0 1.4 0.2

50 6.4 3.5 4.5 1.2
.
.
.

150 5.9 3.0 5.0 1.8

X=
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versicolor
.
.
.
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es

 (r
ow

s)

sepal

petal

Iris Dataset
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Note about Non-Stratified Splits

§ training set → 38 x Setosa, 28 x Versicolor, 34 x Virginica
§ test set → 12 x Setosa, 22 x Versicolor, 16 x Virginica
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Linear Regression Recap

Σ
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unit
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Linear Regression Recap
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Logistic Regression, a Generalized Linear Model
(a Classifier)
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A “Lazy Learner:” K-Nearest Neighbors Classifier

x1

?

3 ×
1 ×
1 ×

Predict 
? =

x2
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Jupyter Notebook
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http://scikit-learn.org/stable/supervised_learning.html

There are many, many more classification 
and regression algorithms ...
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Topics

1. Introduction to Machine Learning

2. Linear Regression

3. Introduction to Classification

4. Feature Preprocessing & scikit-learn Pipelines

5. Dimensionality Reduction: Feature Selection & Extraction

6. Model Evaluation & Hyperparameter Tuning
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Categorical Variables

color size price class 
label

red M $10.49 0

blue XL $15.00 1

green L $12.99 1
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Encoding Categorical Variables (Ordinal vs Nominal)

color size price class label

red M $10.49 0

blue XL $15.00 1

green L $12.99 1

size

0

2

1

red blue green

1 0 0

0 1 0

0 0 1
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Feature Normalization

feature minmax z-score

1.0 0.0 -1.46385

2.0 0.2 -0.87831

3.0 0.4 -0.29277

4.0 0.6 0.29277

5.0 0.8 0.87831

6.0 1.0 1.46385

Min-max scaling Z-score standardization
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Scikit-learn API
class UnsupervisedEstimator(...):

def __init__(self, ...):

...

def fit(self, X):

...

return self

def transform(self, X):

...

return X_transf

def predict(self, X):

...

return pred
29



Scikit-learn Pipelines

Class labels
Training data

Test data

Learning 
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fit & transform
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transform

transform

Class labels
predict

predict
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Jupyter Notebook
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Topics

1. Introduction to Machine Learning

2. Linear Regression

3. Introduction to Classification

4. Feature Preprocessing & scikit-learn Pipelines

5. Dimensionality Reduction: Feature Selection & Extraction

6. Model Evaluation & Hyperparameter Tuning
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Dimensionality Reduction – why?
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Dimensionality Reduction – why?

predictive performance

predictive performance

storage & speed

visualization & 
interpretability
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Recursive Feature Elimination

available features:

[ w1  w2  w3  w4 ]

[ w1  w2  w4 ]

[ w1  w4 ]

[ w4 ]

[ f1  f2  f3  f4 ]

fit model, remove lowest weight, repeat

fit model, remove lowest weight, repeat

fit model, remove lowest weight, repeat
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Sequential Feature Selection

[ f1  f2  f3  f4 ]

[ f1 ] [ f2 ] [ f3 ] [ f4 ]

[ f1  f3 ] [ f1  f2 ] [ f1  f4 ]

[ f1  f3  f4 ] [ f1  f3  f2 ]

available features:

fit model, pick best, repeat

fit model, pick best, repeat
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Principal Component Analysis

x1

x2

PC1

PC2
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Jupyter Notebook
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Topics
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“Basic” Supervised Learning Workflow
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Holdout Method and Hyperparameter Tuning 1-3
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This work by Sebastian Raschka is licensed under a  
Creative Commons Attribution 4.0 International License. 
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K-fold Cross-Validation
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K-fold Cross-Validation Workflow 1-3

This work by Sebastian Raschka is licensed under a  
Creative Commons Attribution 4.0 International License. 
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K-fold Cross-Validation Workflow 4-5

This work by Sebastian Raschka is licensed under a  
Creative Commons Attribution 4.0 International License. 
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More info about model evaluation (one of the most 
important topics in ML):

https://sebastianraschka.com/blog/index.html

• Model evaluation, model selection, and algorithm selection in machine learning Part I - The basics

• Model evaluation, model selection, and algorithm selection in machine learning Part II -
Bootstrapping and uncertainties

• Model evaluation, model selection, and algorithm selection in machine learning Part III - Cross-
validation and hyperparameter tuning

46
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Jupyter Notebook
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BONUS SLIDES
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https://www.tensorflow.org
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TensorFlow:
Large-Scale Machine Learning on Heterogeneous Distributed Systems

(Preliminary White Paper, November 9, 2015)

Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro,
Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow,
Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser,
Manjunath Kudlur, Josh Levenberg, Dan Mané, Rajat Monga, Sherry Moore, Derek Murray,
Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar,

Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals,
Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng

Google Research⇤

Abstract
TensorFlow [1] is an interface for expressing machine learn-

ing algorithms, and an implementation for executing such al-
gorithms. A computation expressed using TensorFlow can be
executed with little or no change on a wide variety of hetero-
geneous systems, ranging from mobile devices such as phones
and tablets up to large-scale distributed systems of hundreds
of machines and thousands of computational devices such as
GPU cards. The system is flexible and can be used to express
a wide variety of algorithms, including training and inference
algorithms for deep neural network models, and it has been
used for conducting research and for deploying machine learn-
ing systems into production across more than a dozen areas of
computer science and other fields, including speech recogni-
tion, computer vision, robotics, information retrieval, natural
language processing, geographic information extraction, and
computational drug discovery. This paper describes the Ten-
sorFlow interface and an implementation of that interface that
we have built at Google. The TensorFlow API and a reference
implementation were released as an open-source package under
the Apache 2.0 license in November, 2015 and are available at
www.tensorflow.org.

1 Introduction

The Google Brain project started in 2011 to explore the
use of very-large-scale deep neural networks, both for
research and for use in Google’s products. As part of
the early work in this project, we built DistBelief, our
first-generation scalable distributed training and infer-
ence system [14], and this system has served us well. We
and others at Google have performed a wide variety of re-
search using DistBelief including work on unsupervised
learning [31], language representation [35, 52], models
for image classification and object detection [16, 48],
video classification [27], speech recognition [56, 21, 20],

⇤Corresponding authors: Jeffrey Dean and Rajat Monga:
{jeff,rajatmonga}@google.com

sequence prediction [47], move selection for Go [34],
pedestrian detection [2], reinforcement learning [38],
and other areas [17, 5]. In addition, often in close collab-
oration with the Google Brain team, more than 50 teams
at Google and other Alphabet companies have deployed
deep neural networks using DistBelief in a wide variety
of products, including Google Search [11], our advertis-
ing products, our speech recognition systems [50, 6, 46],
Google Photos [43], Google Maps and StreetView [19],
Google Translate [18], YouTube, and many others.

Based on our experience with DistBelief and a more
complete understanding of the desirable system proper-
ties and requirements for training and using neural net-
works, we have built TensorFlow, our second-generation
system for the implementation and deployment of large-
scale machine learning models. TensorFlow takes com-
putations described using a dataflow-like model and
maps them onto a wide variety of different hardware
platforms, ranging from running inference on mobile
device platforms such as Android and iOS to modest-
sized training and inference systems using single ma-
chines containing one or many GPU cards to large-scale
training systems running on hundreds of specialized ma-
chines with thousands of GPUs. Having a single system
that can span such a broad range of platforms signifi-
cantly simplifies the real-world use of machine learning
system, as we have found that having separate systems
for large-scale training and small-scale deployment leads
to significant maintenance burdens and leaky abstrac-
tions. TensorFlow computations are expressed as stateful
dataflow graphs (described in more detail in Section 2),
and we have focused on making the system both flexible
enough for quickly experimenting with new models for
research purposes and sufficiently high performance and
robust for production training and deployment of ma-
chine learning models. For scaling neural network train-
ing to larger deployments, TensorFlow allows clients to
easily express various kinds of parallelism through repli-
cation and parallel execution of a core model dataflow

1

https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/45166.pdf

import tensorflow as tf

b = tf.Variable(tf.zeros([100])) # 100-d vector, init to zeroes
W = tf.Variable(tf.random_uniform([784,100],-1,1)) # 784x100 matrix w/rnd vals
x = tf.placeholder(name="x") # Placeholder for input
relu = tf.nn.relu(tf.matmul(W, x) + b) # Relu(Wx+b)
C = [...] # Cost computed as a function

# of Relu

s = tf.Session()
for step in xrange(0, 10):

input = ...construct 100-D input array ... # Create 100-d vector for input
result = s.run(C, feed_dict={x: input}) # Fetch cost, feeding x=input
print step, result

Figure 1: Example TensorFlow code fragment

W

b

x

MatMul

Add

ReLU

...

C

Figure 2: Corresponding computation graph for Figure 1

Category Examples
Element-wise mathematical operations Add, Sub, Mul, Div, Exp, Log, Greater, Less, Equal, ...
Array operations Concat, Slice, Split, Constant, Rank, Shape, Shuffle, ...
Matrix operations MatMul, MatrixInverse, MatrixDeterminant, ...
Stateful operations Variable, Assign, AssignAdd, ...
Neural-net building blocks SoftMax, Sigmoid, ReLU, Convolution2D, MaxPool, ...
Checkpointing operations Save, Restore
Queue and synchronization operations Enqueue, Dequeue, MutexAcquire, MutexRelease, ...
Control flow operations Merge, Switch, Enter, Leave, NextIteration

Table 1: Example TensorFlow operation types

by the session interface is Run, which takes a set of out-
put names that need to be computed, as well as an op-
tional set of tensors to be fed into the graph in place of
certain outputs of nodes. Using the arguments to Run,
the TensorFlow implementation can compute the transi-
tive closure of all nodes that must be executed in order
to compute the outputs that were requested, and can then

arrange to execute the appropriate nodes in an order that
respects their dependencies (as described in more detail
in 3.1). Most of our uses of TensorFlow set up a Session
with a graph once, and then execute the full graph or a
few distinct subgraphs thousands or millions of times via
Run calls.

3
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https://sebastianraschka.com/pdf/books/dlb/appendix_g_tensorflow.pdf

Appendix G - TensorFlow Basics 2

While TensorFlow can be run entirely on a CPU or multiple CPUs, one of the core strength
of this library is its support of GPUs (Graphical Processing Units) that are very efficient
at performing highly parallelized numerical computations. In addition, TensorFlow also
supports distributed systems as well as mobile computing platforms, including Android and
Apple’s iOS.

But what is a tensor? In simplifying terms, we can think of tensors as multidimensional
arrays of numbers, as a generalization of scalars, vectors, and matrices.

1. Scalar: R
2. Vector: Rn

3. Matrix: Rn × Rm

4. 3-Tensor: Rn × Rm × Rp

5. …

When we describe tensors, we refer to its “dimensions” as the rank (or order) of a tensor,
which is not to be confused with the dimensions of a matrix. For instance, anm×nmatrix,
wherem is the number of rows and n is the number of columns, would be a special case of
a rank-2 tensor. A visual explanation of tensors and their ranks is given is the figure below.

Tensors

DRAFT

Index [2]

Index [0,0]

Index [0,2,1]

rank 0 tensor  
dimensions [ ] 
scalar

rank 2 tensor  
dimensions [5, 3] 
matrix

rank 1 tensor  
dimensions [5] 
vector

rank 3 tensor  
dimensions [4, 4, 2]

Tensors?
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GPUs
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x =

X = np.random.random((num_train_examples, num_features))
W = np.random.random((num_features, num_hidden))

Vectorization
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x =

Vectorization
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Computation Graphs

a(x, w, b) = relu(w*x + b)
u

v

u = wx
x

w

b

+

*
v = u+b a = relu(v)
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Computation Graphs

Tensor("x:0", dtype=float32) <tf.Variable 'w:0' shape=() dtype=float32_ref> <tf.Variable
'b:0' shape=() dtype=float32_ref> Tensor("mul:0", dtype=float32) Tensor("add:0", 
dtype=float32) Tensor("Relu:0", dtype=float32)

import tensorflow as tf

g = tf.Graph()
with g.as_default() as g:

x = tf.placeholder(dtype=tf.float32, shape=None, name='x')
w = tf.Variable(initial_value=2, dtype=tf.float32, name='w')
b = tf.Variable(initial_value=1, dtype=tf.float32, name='b')

u = x * w
v = u + b
a = tf.nn.relu(v)

print(x, w, b, u, v, a)
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Computation Graphs

u = wx

b=1

+

*
v = u+b a = relu(v)

with tf.Session(graph=g) as sess:
sess.run(init_op)
b_res = sess.run(’b:0')

print(b_res)

1.0

x

w=2
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u = wx
x=3

w=2

b=1

+

*
v = u+b a = relu(v)6
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g = tf.Graph()
with g.as_default() as g:

x = tf.placeholder(dtype=tf.float32, shape=None, name='x')
w = tf.Variable(initial_value=2, dtype=tf.float32, name='w')
b = tf.Variable(initial_value=1, dtype=tf.float32, name='b')

u = x * w
v = u + b
a = tf.nn.relu(v)

d_a_w = tf.gradients(a, w)
d_b_w = tf.gradients(a, b)

with tf.Session(graph=g) as sess:
sess.run(tf.global_variables_initializer())
res = sess.run([d_a_w, d_b_w], feed_dict={'x:0': 3})

[3.0] [1.0] 59



http://pytorch.org

60



d_a_w: Variable containing: 
 3 
[torch.FloatTensor of size 1] 
 
d_a_b: Variable containing: 
 1 
[torch.FloatTensor of size 1] 

 

import torch 
import torch.nn.functional as F 
from torch.autograd import Variable 
from torch.autograd import grad 
 
 
x = Variable(torch.Tensor([3])) 
w = Variable(torch.Tensor([2]), requires_grad=True) 
b = Variable(torch.Tensor([1]), requires_grad=True) 
 
u = x * w 
v = u + b 
a = F.relu(v) 
 
partial_derivatives = grad(a, (w, b)) 
 
for name, grad in zip("wb", (partial_derivatives)): 
    print('d_a_%s:' % name, grad) 
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https://github.com/rasbt/python-machine-learning-book-2nd-edition/blob/master/code/ch12/images/12_02.png

Multilayer Perceptron
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g = tf.Graph() 
with g.as_default(): 
 
    # Input data 
    tf_x = tf.placeholder(tf.float32, [None, n_input], name='features') 
    tf_y = tf.placeholder(tf.float32, [None, n_classes], name='targets') 
 
    # Model parameters 
    weights = { 
        'h1': tf.Variable(tf.truncated_normal([n_input, n_hidden_1], stddev=0.1)), 
        'out': tf.Variable(tf.truncated_normal([n_hidden_2, n_classes], stddev=0.1)) 
    } 
    biases = { 
        'b1': tf.Variable(tf.zeros([n_hidden_1])), 
        'out': tf.Variable(tf.zeros([n_classes])) 
    } 
 
    # Multilayer perceptron 
    layer_1 = tf.add(tf.matmul(tf_x, weights['h1']), biases['b1']) 
    layer_1 = tf.nn.relu(layer_1) 
    out_layer = tf.matmul(layer_1, weights['out']) + biases['out'] 
 
    # Loss and optimizer 
    loss = tf.nn.softmax_cross_entropy_with_logits(logits=out_layer, labels=tf_y) 
    cost = tf.reduce_mean(loss, name='cost') 
    optimizer = tf.train.GradientDescentOptimizer(learning_rate=learning_rate) 
    train = optimizer.minimize(cost, name='train') 
 
    # Prediction 
    correct_prediction = tf.equal(tf.argmax(tf_y, 1), tf.argmax(out_layer, 1)) 
    accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32), name='accuracy') 
 
with tf.Session(graph=g) as sess: 
    sess.run(tf.global_variables_initializer()) 
 
    for epoch in range(training_epochs): 
        avg_cost = 0. 
        total_batch = mnist.train.num_examples // batch_size 
 
        for i in range(total_batch): 
            batch_x, batch_y = mnist.train.next_batch(batch_size) 
            _, c = sess.run(['train', 'cost:0'], feed_dict={'features:0': batch_x, 
                                                            'targets:0': batch_y}) 

 

class MultilayerPerceptron(torch.nn.Module): 
 
    def __init__(self, num_features, num_classes): 
        super(MultilayerPerceptron, self).__init__() 
         
        ### 1st hidden layer 
        self.linear_1 = torch.nn.Linear(num_features, num_hidden_1) 
         
        ### Output layer 
        self.linear_out = torch.nn.Linear(num_hidden_2, num_classes) 
         
    def forward(self, x): 
        out = self.linear_1(x) 
        out = F.relu(out) 
        logits = self.linear_out(out) 
        probas = F.softmax(logits, dim=1) 
        return logits, probas 
 
model = MultilayerPerceptron(num_features=num_features, 
                             num_classes=num_classes) 
 
if torch.cuda.is_available(): 
    model.cuda() 
 
for epoch in range(num_epochs): 
    for batch_idx, (features, targets) in enumerate(train_loader): 
         
        features = Variable(features.view(-1, 28*28)) 
        targets = Variable(targets) 
         
        if torch.cuda.is_available(): 
            features, targets = features.cuda(), targets.cuda() 
             
        ### FORWARD AND BACK PROP 
        logits, probas = model(features) 
        cost = cost_fn(logits, targets) 
        optimizer.zero_grad() 
         
        cost.backward() 
         
        ### UPDATE MODEL PARAMETERS 
        optimizer.step() 
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Further Resources

Math-heavy Math-free scikit-learn intro Mix of code & math 
(~60% scikit-learn)
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Contact:
o E-mail: mail@sebastianraschka.com

o Website: http://sebastianraschka.com

o Twitter: @rasbt

o GitHub: rasbt

Tutorial Material on GitHub:
https://github.com/rasbt/msu-datascience-ml-tutorial-2018

Thanks for attending!
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