

Machine Learning with Python

Sebastian Raschka, Ph.D. MSU Data Science workshop East Lansing, Michigan State University • Feb 21, 2018

Today's focus:

And if we have time, a quick overview ...

Tutorial Material on GitHub: https://github.com/rasbt/msu-datascience-ml-tutorial-2018

Contact:

- o E-mail: mail@sebastianraschka.com
- o Website: http://sebastianraschka.com
- o Twitter: @rasbt
- o GitHub: rasbt

Machine learning is used & useful (almost) anywhere

The Traditional Programming Paradigm

Machine Learning is the field of study that gives computers the ability to learn without being explicitly programmed – Arthur Samuel (1959)

3 Types of Learning

Supervised

Unsupervised

Reinforcement

Working with Labeled Data

Working with <u>Un</u>labeled Data

Topics

- 1. Introduction to Machine Learning
- 2. Linear Regression
- 3. Introduction to Classification
- 4. Feature Preprocessing & scikit-learn Pipelines
- 5. Dimensionality Reduction: Feature Selection & Extraction
- 6. Model Evaluation & Hyperparameter Tuning

Simple Linear Regression

Data Representation

Columns: features (explanatory variables, independent variables, covariates, predictors, variables, inputs, attributes)

"Basic" Supervised Learning Workflow

Jupyter Notebook

Topics

- 1. Introduction to Machine Learning
- 2. Linear Regression
- 3. Introduction to Classification
- 4. Feature Preprocessing & scikit-learn Pipelines
- 5. Dimensionality Reduction: Feature Selection & Extraction
- 6. Model Evaluation & Hyperparameter Tuning

Scikit-learn API

```
class SupervisedEstimator(...):
    def __init__(self, hyperparam, ...):
         • • •
    def fit(self, X, y):
         • • •
        return self
    def predict(self, X):
         • • •
        return y_pred
    def score(self, X, y):
         • • •
        return score
```

. . .

Iris Dataset

Iris-Setosa

Iris-Versicolor

Iris-Virginica

Iris Dataset

17

Note about Non-Stratified Splits

- training set \rightarrow 38 x Setosa, 28 x Versicolor, 34 x Virginica
- test set \rightarrow 12 x Setosa, 22 x Versicolor, 16 x Virginica

Linear Regression Recap

Linear Regression Recap

Logistic Regression, a Generalized Linear Model (a Classifier)

A "Lazy Learner:" K-Nearest Neighbors Classifier

Jupyter Notebook

There are many, many more classification and regression algorithms ...

Topics

- 1. Introduction to Machine Learning
- 2. Linear Regression
- 3. Introduction to Classification
- 4. Feature Preprocessing & scikit-learn Pipelines
- 5. Dimensionality Reduction: Feature Selection & Extraction
- 6. Model Evaluation & Hyperparameter Tuning

Categorical Variables

color	size	price	class Iabel
red	Μ	\$10.49	0
blue	XL	\$15.00	1
green	L	\$12.99	1

Encoding Categorical Variables (Ordinal vs Nominal)

			color	size	price	class label
			red	М	\$10.49	0
			blue	XL	\$15.00	1
			green	L	\$12.99	1
	Ļ					
red	blue	green			↓	
1	0	0			size	
0	4	0			0	
0	I	0			C	
0	0	1			Z	
					1	

Feature Normalization

Scikit-learn API

```
class UnsupervisedEstimator(...):
    def __init__(self, ...):
         • • •
    def fit(self, X):
         • • •
        return self
    def transform(self, X):
         • • •
        return X_transf
def predict(self, X):
        • • •
        return pred
```

Scikit-learn Pipelines

Jupyter Notebook

Topics

- 1. Introduction to Machine Learning
- 2. Linear Regression
- 3. Introduction to Classification
- 4. Feature Preprocessing & scikit-learn Pipelines
- 5. <u>Dimensionality Reduction: Feature Selection & Extraction</u>
- 6. Model Evaluation & Hyperparameter Tuning

Dimensionality Reduction – why?

Dimensionality Reduction – why?

Recursive Feature Elimination

available features:

[f1 f2 f3 f4]

Sequential Feature Selection

available features:

[f1 f2 f3 f4]

Principal Component Analysis

Jupyter Notebook

Topics

- 1. Introduction to Machine Learning
- 2. Linear Regression
- 3. Introduction to Classification
- 4. Feature Preprocessing & scikit-learn Pipelines
- 5. Dimensionality Reduction: Feature Selection & Extraction
- 6. Model Evaluation & Hyperparameter Tuning

"Basic" Supervised Learning Workflow

Holdout Method and Hyperparameter Tuning 1-3

Holdout Method and Hyperparameter Tuning 4-6

K-fold Cross-Validation

K-fold Cross-Validation Workflow 1-3

K-fold Cross-Validation Workflow 4-5

More info about model evaluation (one of the most important topics in ML):

https://sebastianraschka.com/blog/index.html

- Model evaluation, model selection, and algorithm selection in machine learning Part I The basics
- <u>Model evaluation, model selection, and algorithm selection in machine learning Part II -</u> <u>Bootstrapping and uncertainties</u>
- <u>Model evaluation, model selection, and algorithm selection in machine learning Part III Cross-</u> validation and hyperparameter tuning

Jupyter Notebook

BONUS SLIDES

https://www.tensorflow.org

TensorFlow:

Large-Scale Machine Learning on Heterogeneous Distributed Systems (Preliminary White Paper, November 9, 2015)

Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dan Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng Google Research^{*}

https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/45166.pdf

Tensors?

https://sebastianraschka.com/pdf/books/dlb/appendix_g_tensorflow.pdf

GPUs

Specifications	Intel® Core™ i7-6900K Processor Extreme Ed.	NVIDIA GeForce® GTX™ 1080 Ti
Base Clock Frequency	3.2 GHz	< 1.5 GHz
Cores	8	3584
Memory Bandwidth	64 GB/s	484 GB/s
Floating-Point Calculations	409 GFLOPS	11300 GFLOPS
Cost	~ \$1000.00	~ \$700.00

Vectorization

X = np.random.random((num_train_examples, num_features))
W = np.random.random((num_features, num_hidden))

Vectorization

Computation Graphs

```
import tensorflow as tf
```

```
g = tf.Graph()
with g.as_default() as g:
```

```
x = tf.placeholder(dtype=tf.float32, shape=None, name='x')
w = tf.Variable(initial_value=2, dtype=tf.float32, name='w')
b = tf.Variable(initial_value=1, dtype=tf.float32, name='b')
u = x * w
v = u + b
a = tf.nn.relu(v)
print(x, w, b, u, v, a)
```

Tensor("x:0", dtype=float32) <tf.Variable 'w:0' shape=() dtype=float32_ref> <tf.Variable 'b:0' shape=() dtype=float32_ref> Tensor("mul:0", dtype=float32) Tensor("add:0", dtype=float32) Tensor("Relu:0", dtype=float32)

Computation Graphs


```
with tf.Session(graph=g) as sess:
    sess.run(init_op)
    b_res = sess.run('b:0')
```

```
print(b_res)
```



```
g = tf.Graph()
with g.as_default() as g:
```

```
x = tf.placeholder(dtype=tf.float32, shape=None, name='x')
w = tf.Variable(initial_value=2, dtype=tf.float32, name='w')
b = tf.Variable(initial_value=1, dtype=tf.float32, name='b')
```

```
u = x * w

v = u + b

a = tf.nn.relu(v)
```

```
d_a_w = tf.gradients(a, w)
d_b_w = tf.gradients(a, b)
```

```
with tf.Session(graph=g) as sess:
    sess.run(tf.global_variables_initializer())
    res = sess.run([d_a_w, d_b_w], feed_dict={'x:0': 3})
```

PYTÖRCH

http://pytorch.org

```
import torch
import torch.nn.functional as F
from torch.autograd import Variable
from torch.autograd import grad
x = Variable(torch.Tensor([3]))
w = Variable(torch.Tensor([2]), requires_grad=True)
b = Variable(torch.Tensor([1]), requires_grad=True)
u = x * W
\mathbf{v} = \mathbf{u} + \mathbf{b}
a = F.relu(v)
partial derivatives = grad(a, (w, b))
for name, grad in zip("wb", (partial_derivatives)):
    print('d a %s:' % name, grad)
```

```
d_a_w: Variable containing:
3
[torch.FloatTensor of size 1]
d_a_b: Variable containing:
1
[torch.FloatTensor of size 1]
```

Multilayer Perceptron

https://github.com/rasbt/python-machine-learning-book-2nd-edition/blob/master/code/ch12/images/12_02.png

g = tf.Graph()
with g.as_default():

```
# Input data
tf_x = tf.placeholder(tf.float32, [None, n_input], name='features')
tf_y = tf.placeholder(tf.float32, [None, n_classes], name='targets')
# Model parameters
weights = {
    'h1': tf.Variable(tf.truncated_normal([n_input, n_hidden_1], stddev=0.1)),
    'out': tf.Variable(tf.truncated_normal([n_hidden_2, n_classes], stddev=0.1))
}
biases = {
    'b1': tf.Variable(tf.zeros([n_hidden_1])),
    'out': tf.Variable(tf.zeros([n_classes]))
}
```

```
# Multilayer perceptron
layer_1 = tf.add(tf.matmul(tf_x, weights['hl']), biases['bl'])
layer_1 = tf.nn.relu(layer_1)
out_layer = tf.matmul(layer_1, weights['out']) + biases['out']
```

Loss and optimizer

loss = tf.nn.softmax_cross_entropy_with_logits(logits=out_layer, labels=tf_y)
cost = tf.reduce_mean(loss, name='cost')
optimizer = tf.train.GradientDescentOptimizer(learning_rate=learning_rate)
train = optimizer.minimize(cost, name='train')

Prediction

correct_prediction = tf.equal(tf.argmax(tf_y, 1), tf.argmax(out_layer, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32), name='accuracy')

```
with tf.Session(graph=g) as sess:
    sess.run(tf.global_variables_initializer())
```

```
for epoch in range(training_epochs):
    avg_cost = 0.
    total_batch = mnist.train.num_examples // batch_size
```

PYTÖRCH

class MultilayerPerceptron(torch.nn.Module):

def __init__(self, num_features, num_classes):
 super(MultilayerPerceptron, self).__init__()

1st hidden layer
self.linear_1 = torch.nn.Linear(num_features, num_hidden_1)

Output layer
self.linear_out = torch.nn.Linear(num_hidden_2, num_classes)

def forward(self, x):

out = self.linear_1(x)
out = F.relu(out)
logits = self.linear_out(out)
probas = F.softmax(logits, dim=1)
return logits, probas

if torch.cuda.is_available():
 model.cuda()

for epoch in range(num_epochs):
 for batch_idx, (features, targets) in enumerate(train_loader):

features = Variable(features.view(-1, 28*28))
targets = Variable(targets)

if torch.cuda.is_available():
 features, targets = features.cuda(), targets.cuda()

FORWARD AND BACK PROP

logits, probas = model(features)
cost = cost_fn(logits, targets)
optimizer.zero_grad()

cost.backward()

UPDATE MODEL PARAMETERS
optimizer.step()

Further Resources

Math-heavy

Math-free scikit-learn intro

Mix of code & math (~60% scikit-learn)

Thanks for attending!

Contact:

- o E-mail: mail@sebastianraschka.com
- o Website: http://sebastianraschka.com
- o Twitter: @rasbt
- o GitHub: <u>rasbt</u>