
Sebastian Raschka, Ph.D.
MSU Data Science workshop
East Lansing, Michigan State University • Feb 21, 2018

Machine Learning with Python

Today’s focus:

And if we have time, a quick
overview ...

2

Contact:
o E-mail: mail@sebastianraschka.com

o Website: http://sebastianraschka.com

o Twitter: @rasbt

o GitHub: rasbt

Tutorial Material on GitHub:
https://github.com/rasbt/msu-datascience-ml-tutorial-2018

3

mailto:mail@sebastianraschka.com
http://sebastianraschka.com
https://twitter.com/rasbt
https://github.com/rasbt
https://github.com/rasbt/msu-datascience-ml-tutorial-2018

Machine learning is used & useful (almost) anywhere

4

5

3 Types of Learning

Reinforcement

Supervised Unsupervised

6

Working with Labeled Data

Supervised
Learning

?

x (“input”)

y
(“

ou
tp

ut
”)

x1 (“input”)

x 2
(“

in
pu

t”
)

?

Regression

Classification

7

Working with Unlabeled Data

Unsupervised
Learning

Clustering

Compression

8

Topics

1. Introduction to Machine Learning

2. Linear Regression

3. Introduction to Classification

4. Feature Preprocessing & scikit-learn Pipelines

5. Dimensionality Reduction: Feature Selection & Extraction

6. Model Evaluation & Hyperparameter Tuning

9

y
(re

sp
on

se
 va

ria
bl

e)

x (explanatory variable)

(xi, yi)

ŷ = w0 + w1x

w0 (intercept)

w1 (slope)
= Δy / Δx Δx

Δy

vertical offset
|ŷ − y|

Simple Linear Regression

10

11

Columns: features (explanatory variables, independent variables, covariates,
predictors, variables, inputs, attributes)

x0 x1 … xm

x0,0 x0,1

x1,0 x1,1

x2,0 x2,1

x3,0 x3,1

.

.

.

xn,0 xn,1 … xn,m

X=

y0

y1

y2

y3

.

.

.

yn

y=

Data Representation

Ro
w

s:
 tr

ai
ni

ng
 e

xa
m

pl
es

(o
bs

er
va

tio
ns

, r
ec

or
ds

,
in

st
an

ce
s,

 s
am

pl
es

)

Targets (target
variable,response variable,
dependent variable, labels,
ground truth)

Learning
Algorithm

Hyperparameter
Values

Model

Prediction

Test Labels

Performance
Model

Learning
Algorithm

Hyperparameter
Values Final

Model

2

3

4

1

Test Labels

Test Data

Training Data

Training Labels
Data

Labels

Data

Labels

Training Data

Training Labels

Test Data

“Basic” Supervised Learning Workflow

12

Jupyter Notebook

13

Topics

1. Introduction to Machine Learning

2. Linear Regression

3. Introduction to Classification

4. Feature Preprocessing & scikit-learn Pipelines

5. Dimensionality Reduction: Feature Selection & Extraction

6. Model Evaluation & Hyperparameter Tuning

14

Scikit-learn API
class SupervisedEstimator(...):

def __init__(self, hyperparam, ...):

...

def fit(self, X, y):

...

return self

def predict(self, X):

...

return y_pred

def score(self, X, y):

...

return score

... 15

Iris Dataset

Iris-VirginicaIris-VersicolorIris-Setosa

16

features (columns)

sepal
length
[cm]

sepal
width
[cm]

petal
lengt
h
[cm]

petal
width
[cm]

1 5.1 3.5 1.4 0.2
2 4.9 3.0 1.4 0.2

50 6.4 3.5 4.5 1.2
.
.
.

150 5.9 3.0 5.0 1.8

X=

setosa
setosa

versicolor
.
.
.
virginica

y=

sa
m

pl
es

 (r
ow

s)

sepal

petal

Iris Dataset

17

Note about Non-Stratified Splits

§ training set → 38 x Setosa, 28 x Versicolor, 34 x Virginica
§ test set → 12 x Setosa, 22 x Versicolor, 16 x Virginica

18

Linear Regression Recap

Σ
...

w1

wm

w2

w0

x1

1

x2

xm

y

Activation
function

Net input
function

az Predicted
output

Weight
coefficientsInput

values

Bias
unit

19

Linear Regression Recap

Σ
...

w1

wm

w2

w0

x1

1

x2

xm

y

Activation
function

Net input
function

az Predicted
output

Weight
coefficientsInput

values

Bias
unit

Here: Identity
function

20

Logistic Regression, a Generalized Linear Model
(a Classifier)

Σ
...

w1

wm

w2

w0

x1

1

x2

xm

y

Activation
function

Net input
function

az

Unit step
function

Predicted
class label

Weight
coefficientsInput

values

Bias
unit

Predicted
probability

21

A “Lazy Learner:” K-Nearest Neighbors Classifier

x1

?

3 ×
1 ×
1 ×

Predict
? =

x2

22

Jupyter Notebook

23

http://scikit-learn.org/stable/supervised_learning.html

There are many, many more classification
and regression algorithms ...

24

http://scikit-learn.org/stable/supervised_learning.html

Topics

1. Introduction to Machine Learning

2. Linear Regression

3. Introduction to Classification

4. Feature Preprocessing & scikit-learn Pipelines

5. Dimensionality Reduction: Feature Selection & Extraction

6. Model Evaluation & Hyperparameter Tuning

25

Categorical Variables

color size price class
label

red M $10.49 0

blue XL $15.00 1

green L $12.99 1

26

Encoding Categorical Variables (Ordinal vs Nominal)

color size price class label

red M $10.49 0

blue XL $15.00 1

green L $12.99 1

size

0

2

1

red blue green

1 0 0

0 1 0

0 0 1

27

Feature Normalization

feature minmax z-score

1.0 0.0 -1.46385

2.0 0.2 -0.87831

3.0 0.4 -0.29277

4.0 0.6 0.29277

5.0 0.8 0.87831

6.0 1.0 1.46385

Min-max scaling Z-score standardization

28

Scikit-learn API
class UnsupervisedEstimator(...):

def __init__(self, ...):

...

def fit(self, X):

...

return self

def transform(self, X):

...

return X_transf

def predict(self, X):

...

return pred
29

Scikit-learn Pipelines

Class labels
Training data

Test data

Learning
Algorithm

Dimensionality
Reduction

Scaling

Model

Pipeline
fit

fit & transform

fit & transform

fit

transform

transform

Class labels
predict

predict

30

Jupyter Notebook

31

Topics

1. Introduction to Machine Learning

2. Linear Regression

3. Introduction to Classification

4. Feature Preprocessing & scikit-learn Pipelines

5. Dimensionality Reduction: Feature Selection & Extraction

6. Model Evaluation & Hyperparameter Tuning

32

Dimensionality Reduction – why?

[cm] [cm] [cm] [cm]

[c
m
]

[c
m
]

[c
m
]

[c
m
]

33

Dimensionality Reduction – why?

predictive performance

predictive performance

storage & speed

visualization &
interpretability

34

Recursive Feature Elimination

available features:

[w1 w2 w3 w4]

[w1 w2 w4]

[w1 w4]

[w4]

[f1 f2 f3 f4]

fit model, remove lowest weight, repeat

fit model, remove lowest weight, repeat

fit model, remove lowest weight, repeat

35

Sequential Feature Selection

[f1 f2 f3 f4]

[f1] [f2] [f3] [f4]

[f1 f3] [f1 f2] [f1 f4]

[f1 f3 f4] [f1 f3 f2]

available features:

fit model, pick best, repeat

fit model, pick best, repeat

36

Principal Component Analysis

x1

x2

PC1

PC2

37

Jupyter Notebook

38

Topics

1. Introduction to Machine Learning

2. Linear Regression

3. Introduction to Classification

4. Feature Preprocessing & scikit-learn Pipelines

5. Dimensionality Reduction: Feature Selection & Extraction

6. Model Evaluation & Hyperparameter Tuning

39

Learning
Algorithm

Hyperparameter
Values

Model

Prediction

Test Labels

Performance
Model

Learning
Algorithm

Hyperparameter
Values Final

Model

2

3

4

1

Test Labels

Test Data

Training Data

Training Labels
Data

Labels

Data

Labels

Training Data

Training Labels

Test Data

“Basic” Supervised Learning Workflow

40

Holdout Method and Hyperparameter Tuning 1-3

2

1
Data

Labels

Training Data

Validation
Data

Validation
Labels

Test
Data

Test
Labels

Training Labels

Performance
Model

Validation
Data

Validation
Labels

Prediction

Performance
Model

Validation
Data

Validation
Labels

Prediction

Performance
Model

Validation
Data

Validation
Labels

Prediction

Best
Model

Learning
Algorithm

Hyperparameter
values

ModelHyperparameter
values

Hyperparameter
values

Model

Model

Training Data

Training Labels

Learning
Algorithm

Best
Hyperparameter

Values Final
Model

This work by Sebastian Raschka is licensed under a
Creative Commons Attribution 4.0 International License.

6 Data

Labels

3

Best
Hyperparameter

values

Prediction

Test Labels

Performance
Model

4

Test Data

Learning
Algorithm

Best
Hyperparameter

Values
Model

Training Data

Training Labels

5

Validation
Data

Validation
Labels

41

2

1 Data

Labels

Training Data

Validation
Data

Validation
Labels

Test
Data

Test
Labels

Training Labels

Performance
Model

Validation
Data

Validation
Labels

Prediction

Performance
Model

Validation
Data

Validation
Labels

Prediction

Performance
Model

Validation
Data

Validation
Labels

Prediction

Best
Model

Learning
Algorithm

Hyperparameter
values

ModelHyperparameter
values

Hyperparameter
values

Model

Model

Training Data

Training Labels

Learning
Algorithm

Best
Hyperparameter

Values Final
Model

This work by Sebastian Raschka is licensed under a
Creative Commons Attribution 4.0 International License.

6 Data

Labels

3

Best
Hyperparameter

values

Prediction

Test Labels

Performance
Model

4

Test Data

Learning
Algorithm

Best
Hyperparameter

Values
Model

Training Data

Training Labels

5

Validation
Data

Validation
Labels

Holdout Method and Hyperparameter Tuning 4-6

42

1st

2nd

3rd

4th

5th

K
Ite

ra
tio

ns
 (K

-F
ol

ds
)

Validation
Fold

Training
Fold

Learning
Algorithm

 Hyperparameter
Values

Model

Training Fold Data

Training Fold Labels
Prediction

Performance
Model

Validation
Fold Data

Validation
Fold Labels

Performance

Performance

Performance

Performance

Performance

1

2

3

4

5

Performance
1

10 ∑
10

i=1
Performance i=

This work by Sebastian Raschka is licensed under a
Creative Commons Attribution 4.0 International License.

K-fold Cross-Validation

43

K-fold Cross-Validation Workflow 1-3

This work by Sebastian Raschka is licensed under a
Creative Commons Attribution 4.0 International License.

Test Labels

Test Data

Training Data

Training Labels
Data

Labels

Model

Model

Model

Learning
Algorithm

Hyperparameter
values

Hyperparameter
values

Hyperparameter
values

Training Data

Training Labels

Learning
Algorithm

Best
Hyperparameter

Values
Model

Training Data

Training Labels

Prediction

Test Labels

Performance
Model

Test Data

Learning
Algorithm

Best
Hyperparameter

Values Final
Model

Data

Labels

2

1

3

4

5

44

K-fold Cross-Validation Workflow 4-5

This work by Sebastian Raschka is licensed under a
Creative Commons Attribution 4.0 International License.

Test Labels

Test Data

Training Data

Training Labels
Data

Labels

Model

Model

Model

Learning
Algorithm

Hyperparameter
values

Hyperparameter
values

Hyperparameter
values

Training Data

Training Labels

Learning
Algorithm

Best
Hyperparameter

Values
Model

Training Data

Training Labels

Prediction

Test Labels

Performance
Model

Test Data

Learning
Algorithm

Best
Hyperparameter

Values Final
Model

Data

Labels

2

1

3

4

5

45

More info about model evaluation (one of the most
important topics in ML):

https://sebastianraschka.com/blog/index.html

• Model evaluation, model selection, and algorithm selection in machine learning Part I - The basics

• Model evaluation, model selection, and algorithm selection in machine learning Part II -
Bootstrapping and uncertainties

• Model evaluation, model selection, and algorithm selection in machine learning Part III - Cross-
validation and hyperparameter tuning

46

https://sebastianraschka.com/blog/index.html
https://sebastianraschka.com/blog/2016/model-evaluation-selection-part1.html
https://sebastianraschka.com/blog/2016/model-evaluation-selection-part2.html
https://sebastianraschka.com/blog/2016/model-evaluation-selection-part3.html

Jupyter Notebook

47

BONUS SLIDES

48

https://www.tensorflow.org

49

TensorFlow:
Large-Scale Machine Learning on Heterogeneous Distributed Systems

(Preliminary White Paper, November 9, 2015)

Martı́n Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro,
Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow,
Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser,
Manjunath Kudlur, Josh Levenberg, Dan Mané, Rajat Monga, Sherry Moore, Derek Murray,
Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar,

Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals,
Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng

Google Research⇤

Abstract
TensorFlow [1] is an interface for expressing machine learn-

ing algorithms, and an implementation for executing such al-
gorithms. A computation expressed using TensorFlow can be
executed with little or no change on a wide variety of hetero-
geneous systems, ranging from mobile devices such as phones
and tablets up to large-scale distributed systems of hundreds
of machines and thousands of computational devices such as
GPU cards. The system is flexible and can be used to express
a wide variety of algorithms, including training and inference
algorithms for deep neural network models, and it has been
used for conducting research and for deploying machine learn-
ing systems into production across more than a dozen areas of
computer science and other fields, including speech recogni-
tion, computer vision, robotics, information retrieval, natural
language processing, geographic information extraction, and
computational drug discovery. This paper describes the Ten-
sorFlow interface and an implementation of that interface that
we have built at Google. The TensorFlow API and a reference
implementation were released as an open-source package under
the Apache 2.0 license in November, 2015 and are available at
www.tensorflow.org.

1 Introduction

The Google Brain project started in 2011 to explore the
use of very-large-scale deep neural networks, both for
research and for use in Google’s products. As part of
the early work in this project, we built DistBelief, our
first-generation scalable distributed training and infer-
ence system [14], and this system has served us well. We
and others at Google have performed a wide variety of re-
search using DistBelief including work on unsupervised
learning [31], language representation [35, 52], models
for image classification and object detection [16, 48],
video classification [27], speech recognition [56, 21, 20],

⇤Corresponding authors: Jeffrey Dean and Rajat Monga:
{jeff,rajatmonga}@google.com

sequence prediction [47], move selection for Go [34],
pedestrian detection [2], reinforcement learning [38],
and other areas [17, 5]. In addition, often in close collab-
oration with the Google Brain team, more than 50 teams
at Google and other Alphabet companies have deployed
deep neural networks using DistBelief in a wide variety
of products, including Google Search [11], our advertis-
ing products, our speech recognition systems [50, 6, 46],
Google Photos [43], Google Maps and StreetView [19],
Google Translate [18], YouTube, and many others.

Based on our experience with DistBelief and a more
complete understanding of the desirable system proper-
ties and requirements for training and using neural net-
works, we have built TensorFlow, our second-generation
system for the implementation and deployment of large-
scale machine learning models. TensorFlow takes com-
putations described using a dataflow-like model and
maps them onto a wide variety of different hardware
platforms, ranging from running inference on mobile
device platforms such as Android and iOS to modest-
sized training and inference systems using single ma-
chines containing one or many GPU cards to large-scale
training systems running on hundreds of specialized ma-
chines with thousands of GPUs. Having a single system
that can span such a broad range of platforms signifi-
cantly simplifies the real-world use of machine learning
system, as we have found that having separate systems
for large-scale training and small-scale deployment leads
to significant maintenance burdens and leaky abstrac-
tions. TensorFlow computations are expressed as stateful
dataflow graphs (described in more detail in Section 2),
and we have focused on making the system both flexible
enough for quickly experimenting with new models for
research purposes and sufficiently high performance and
robust for production training and deployment of ma-
chine learning models. For scaling neural network train-
ing to larger deployments, TensorFlow allows clients to
easily express various kinds of parallelism through repli-
cation and parallel execution of a core model dataflow

1

https://static.googleusercontent.com/media/research.google.com/en//pubs/archive/45166.pdf

import tensorflow as tf

b = tf.Variable(tf.zeros([100])) # 100-d vector, init to zeroes
W = tf.Variable(tf.random_uniform([784,100],-1,1)) # 784x100 matrix w/rnd vals
x = tf.placeholder(name="x") # Placeholder for input
relu = tf.nn.relu(tf.matmul(W, x) + b) # Relu(Wx+b)
C = [...] # Cost computed as a function

of Relu

s = tf.Session()
for step in xrange(0, 10):

input = ...construct 100-D input array ... # Create 100-d vector for input
result = s.run(C, feed_dict={x: input}) # Fetch cost, feeding x=input
print step, result

Figure 1: Example TensorFlow code fragment

W

b

x

MatMul

Add

ReLU

...

C

Figure 2: Corresponding computation graph for Figure 1

Category Examples
Element-wise mathematical operations Add, Sub, Mul, Div, Exp, Log, Greater, Less, Equal, ...
Array operations Concat, Slice, Split, Constant, Rank, Shape, Shuffle, ...
Matrix operations MatMul, MatrixInverse, MatrixDeterminant, ...
Stateful operations Variable, Assign, AssignAdd, ...
Neural-net building blocks SoftMax, Sigmoid, ReLU, Convolution2D, MaxPool, ...
Checkpointing operations Save, Restore
Queue and synchronization operations Enqueue, Dequeue, MutexAcquire, MutexRelease, ...
Control flow operations Merge, Switch, Enter, Leave, NextIteration

Table 1: Example TensorFlow operation types

by the session interface is Run, which takes a set of out-
put names that need to be computed, as well as an op-
tional set of tensors to be fed into the graph in place of
certain outputs of nodes. Using the arguments to Run,
the TensorFlow implementation can compute the transi-
tive closure of all nodes that must be executed in order
to compute the outputs that were requested, and can then

arrange to execute the appropriate nodes in an order that
respects their dependencies (as described in more detail
in 3.1). Most of our uses of TensorFlow set up a Session
with a graph once, and then execute the full graph or a
few distinct subgraphs thousands or millions of times via
Run calls.

3

50

https://static.googleusercontent.com/media/research.google.com/en/pubs/archive/45166.pdf

https://sebastianraschka.com/pdf/books/dlb/appendix_g_tensorflow.pdf

Appendix G - TensorFlow Basics 2

While TensorFlow can be run entirely on a CPU or multiple CPUs, one of the core strength
of this library is its support of GPUs (Graphical Processing Units) that are very efficient
at performing highly parallelized numerical computations. In addition, TensorFlow also
supports distributed systems as well as mobile computing platforms, including Android and
Apple’s iOS.

But what is a tensor? In simplifying terms, we can think of tensors as multidimensional
arrays of numbers, as a generalization of scalars, vectors, and matrices.

1. Scalar: R
2. Vector: Rn

3. Matrix: Rn × Rm

4. 3-Tensor: Rn × Rm × Rp

5. …

When we describe tensors, we refer to its “dimensions” as the rank (or order) of a tensor,
which is not to be confused with the dimensions of a matrix. For instance, anm×nmatrix,
wherem is the number of rows and n is the number of columns, would be a special case of
a rank-2 tensor. A visual explanation of tensors and their ranks is given is the figure below.

Tensors

DRAFT

Index [2]

Index [0,0]

Index [0,2,1]

rank 0 tensor
dimensions []
scalar

rank 2 tensor
dimensions [5, 3]
matrix

rank 1 tensor
dimensions [5]
vector

rank 3 tensor
dimensions [4, 4, 2]

Tensors?

51

https://sebastianraschka.com/pdf/books/dlb/appendix_g_tensorflow.pdf

GPUs

52

x =

X = np.random.random((num_train_examples, num_features))
W = np.random.random((num_features, num_hidden))

Vectorization

53

x =

Vectorization

54

Computation Graphs

a(x, w, b) = relu(w*x + b)
u

v

u = wx
x

w

b

+

*
v = u+b a = relu(v)

55

Computation Graphs

Tensor("x:0", dtype=float32) <tf.Variable 'w:0' shape=() dtype=float32_ref> <tf.Variable
'b:0' shape=() dtype=float32_ref> Tensor("mul:0", dtype=float32) Tensor("add:0",
dtype=float32) Tensor("Relu:0", dtype=float32)

import tensorflow as tf

g = tf.Graph()
with g.as_default() as g:

x = tf.placeholder(dtype=tf.float32, shape=None, name='x')
w = tf.Variable(initial_value=2, dtype=tf.float32, name='w')
b = tf.Variable(initial_value=1, dtype=tf.float32, name='b')

u = x * w
v = u + b
a = tf.nn.relu(v)

print(x, w, b, u, v, a)

56

Computation Graphs

u = wx

b=1

+

*
v = u+b a = relu(v)

with tf.Session(graph=g) as sess:
sess.run(init_op)
b_res = sess.run(’b:0')

print(b_res)

1.0

x

w=2

57

u = wx
x=3

w=2

b=1

+

*
v = u+b a = relu(v)6

7 7

!"
!#

$#
$%

$#
$&$&

$'

()
(* = (+(*

()
(+

()
(, = (-(,

()
(-

= (-(,
(+
(-

()
(+

= 1

= 1

= 1

= 3

= 1

= 3*1*1 = 3
https://github.com/rasbt/pydata-annarbor2017-dl-tutorial 58

https://github.com/rasbt/pydata-annarbor2017-dl-tutorial

g = tf.Graph()
with g.as_default() as g:

x = tf.placeholder(dtype=tf.float32, shape=None, name='x')
w = tf.Variable(initial_value=2, dtype=tf.float32, name='w')
b = tf.Variable(initial_value=1, dtype=tf.float32, name='b')

u = x * w
v = u + b
a = tf.nn.relu(v)

d_a_w = tf.gradients(a, w)
d_b_w = tf.gradients(a, b)

with tf.Session(graph=g) as sess:
sess.run(tf.global_variables_initializer())
res = sess.run([d_a_w, d_b_w], feed_dict={'x:0': 3})

[3.0] [1.0] 59

http://pytorch.org

60

d_a_w: Variable containing:
 3
[torch.FloatTensor of size 1]

d_a_b: Variable containing:
 1
[torch.FloatTensor of size 1]

import torch
import torch.nn.functional as F
from torch.autograd import Variable
from torch.autograd import grad

x = Variable(torch.Tensor([3]))
w = Variable(torch.Tensor([2]), requires_grad=True)
b = Variable(torch.Tensor([1]), requires_grad=True)

u = x * w
v = u + b
a = F.relu(v)

partial_derivatives = grad(a, (w, b))

for name, grad in zip("wb", (partial_derivatives)):
 print('d_a_%s:' % name, grad)

61

https://github.com/rasbt/python-machine-learning-book-2nd-edition/blob/master/code/ch12/images/12_02.png

Multilayer Perceptron

62

g = tf.Graph()
with g.as_default():

 # Input data
 tf_x = tf.placeholder(tf.float32, [None, n_input], name='features')
 tf_y = tf.placeholder(tf.float32, [None, n_classes], name='targets')

 # Model parameters
 weights = {
 'h1': tf.Variable(tf.truncated_normal([n_input, n_hidden_1], stddev=0.1)),
 'out': tf.Variable(tf.truncated_normal([n_hidden_2, n_classes], stddev=0.1))
 }
 biases = {
 'b1': tf.Variable(tf.zeros([n_hidden_1])),
 'out': tf.Variable(tf.zeros([n_classes]))
 }

 # Multilayer perceptron
 layer_1 = tf.add(tf.matmul(tf_x, weights['h1']), biases['b1'])
 layer_1 = tf.nn.relu(layer_1)
 out_layer = tf.matmul(layer_1, weights['out']) + biases['out']

 # Loss and optimizer
 loss = tf.nn.softmax_cross_entropy_with_logits(logits=out_layer, labels=tf_y)
 cost = tf.reduce_mean(loss, name='cost')
 optimizer = tf.train.GradientDescentOptimizer(learning_rate=learning_rate)
 train = optimizer.minimize(cost, name='train')

 # Prediction
 correct_prediction = tf.equal(tf.argmax(tf_y, 1), tf.argmax(out_layer, 1))
 accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32), name='accuracy')

with tf.Session(graph=g) as sess:
 sess.run(tf.global_variables_initializer())

 for epoch in range(training_epochs):
 avg_cost = 0.
 total_batch = mnist.train.num_examples // batch_size

 for i in range(total_batch):
 batch_x, batch_y = mnist.train.next_batch(batch_size)
 _, c = sess.run(['train', 'cost:0'], feed_dict={'features:0': batch_x,
 'targets:0': batch_y})

class MultilayerPerceptron(torch.nn.Module):

 def __init__(self, num_features, num_classes):
 super(MultilayerPerceptron, self).__init__()

 ### 1st hidden layer
 self.linear_1 = torch.nn.Linear(num_features, num_hidden_1)

 ### Output layer
 self.linear_out = torch.nn.Linear(num_hidden_2, num_classes)

 def forward(self, x):
 out = self.linear_1(x)
 out = F.relu(out)
 logits = self.linear_out(out)
 probas = F.softmax(logits, dim=1)
 return logits, probas

model = MultilayerPerceptron(num_features=num_features,
 num_classes=num_classes)

if torch.cuda.is_available():
 model.cuda()

for epoch in range(num_epochs):
 for batch_idx, (features, targets) in enumerate(train_loader):

 features = Variable(features.view(-1, 28*28))
 targets = Variable(targets)

 if torch.cuda.is_available():
 features, targets = features.cuda(), targets.cuda()

 ### FORWARD AND BACK PROP
 logits, probas = model(features)
 cost = cost_fn(logits, targets)
 optimizer.zero_grad()

 cost.backward()

 ### UPDATE MODEL PARAMETERS
 optimizer.step()

 63

Further Resources

Math-heavy Math-free scikit-learn intro Mix of code & math
(~60% scikit-learn)

64

Contact:
o E-mail: mail@sebastianraschka.com

o Website: http://sebastianraschka.com

o Twitter: @rasbt

o GitHub: rasbt

Tutorial Material on GitHub:
https://github.com/rasbt/msu-datascience-ml-tutorial-2018

Thanks for attending!

65

mailto:mail@sebastianraschka.com
http://sebastianraschka.com
https://twitter.com/rasbt
https://github.com/rasbt
https://github.com/rasbt/msu-datascience-ml-tutorial-2018

