

ODSC West, San Francisco November 3, 2017

Building Hypothesis-driven Virtual Screening Pipelines for Millions of Molecules

Sebastian Raschka

sebastianraschka.com

<u>♀</u> 🥩 @rasbt

LAKE

By the beginning of the twentieth century, the Great Lakes were the richest freshwater fishery in the world [...] But those good years were soon gone.

Dennis, Jerry. *The Living Great Lakes: Searching for the Heart of the Inland Seas*. Macmillan, 2003.

The opening of the Welland Canal [...] allowed ships from all over the world to come to the upper lakes [...] But nobody could have foreseen that the canal would also allow entry to a most unwelcome visitor, the sea lamprey.

Dennis, Jerry. *The Living Great Lakes: Searching for the Heart of the Inland Seas*. Macmillan, 2003.

Invasive Species Control

G protein-coupled receptors: sense diverse chemicals

Millions of Molecules

Millions of Molecules

Receptor Structure-based

Virtual Screening

Small Molecule-based

Receptor Structure-based

Virtual Screening

Small Molecule-based

Millions of molecules

Hypothesis-based filtering

Hundreds of molecules

Data Mining

Experimental Assay

Hypothesis

Experimental Assay Screening

Data

Mining

Tabular Data

BioPandas

https://rasbt.github.io/biopandas/

Raschka S (2017) BioPandas: Working with molecular structures in pandas DataFrames. J Open Source Softw 2:1–3.

@<TRIPOS>MOLECULE DCM Pose 1 32 33 0 0 0 SMALL USER_CHARGES

@<TRIPOS>ATOM

1 C ⁻	1 18.8934	5.5819	24.1747 C.2	1 <0>	-0.1356
2 C2	2 18.1301	4.7642	24.8969 C.2	1 <0>	-0.0410
3 C3	3 18.2645	6.8544	23.7342 C.2	1 <0>	0.4856
4 C4	16.2520	6.2866	24.7933 C.2	1 <0>	0.8410
5 C	5 15.3820	3.0682	25.1622 C.3	1 <0>	0.0000

•••

from biopandas.mol2 import PandasMol2

pmol = PandasMol2()
pmol.read_mol2('./molecule.mol2')
pmol.df.head(10)

	atom_id	atom_name	×	У	z	atom_type	subst_id	subst_name	charge
0	1	C1	18.8934	5.5819	24.1747	C.2	1	<0>	-0.1356
1	2	C2	18.1301	4.7642	24.8969	C.2	1	<0>	-0.0410
2	3	C3	18.2645	6.8544	23.7342	C.2	1	<0>	0.4856
3	4	C4	16.2520	6.2866	24.7933	C.2	1	<0>	0.8410
4	5	C5	15.3820	3.0682	25,1622	C.3	1	<0>	0.0000
5	6	C6	15,4162	1.8505	26.0566	C.3	1	<0>	0.2800
6	7	C7	16.7283	2.0138	26.8111	C.3	1	<0>	0.2800
7	8	C8	16.0764	4.1199	26.0119	C.3	1	<0>	0.5801
8	9	C9	17.9106	1.3823	26.0876	C.3	1	<0>	0.2800
9	10	N1	17.0289	7.1510	24.0411	N.2	1	<0>	-0.6610

26

Software

Python explosion blamed on pandas

Data science fad just won't die

By Thomas Claburn in San Francisco 14 Sep 2017 at 20:02 33 📮 SHARE 🔻

Not content to bait developers by declaring that Python is the fastestgrowing major programming language, coding community site Stack Overflow has revealed the reason for its metastasis.

https://www.theregister.co.uk/2017/09/14/python_explosion_blamed_on_pandas/

in [2]:	pmol.df[pmol.df]	'atom_type']	'P.3']
---------	------------------	--------------	--------

Out[2]:

	atom_id	atom_name	ж	y	2	atom_type	subst_id	subst_name	charge
19	20	P1	19:0969	-0.944	25.6653	P.3	्र	ŝ	1.3712

In [3]: xyz = pmol.df.loc[pmol.df['atom_type'] == 'P.3', ['x', 'y', 'z']].values[0]
xyz

Out[3]: array([19.0969, -0.944 , 25.6653])

In [4]: pmol.df['element'] = pmol.df['atom_type'].apply(lambda x: x[0])
 df_oxygen = pmol.df[pmol.df['element'] == '0'].copy()
 df_oxygen

Out[4]:

	atom_id	atom_name	x	Y	2	atom_type	subst_id	subst_name	charge	element
12	13	01	18.7676	-2.3524	26.1510	0.3	1	<0>	-1,0333	0
13	14	02	20.3972	-0.3812	26.2318	0.3	1	<0>	-1.0333	0
14	15	03	15.0888	6.5824	25.0727	0.2	1	<0>	-0.5700	0
15	16	04	18.9314	-0.7527	24.1606	0.2	1	<0>	-1.0333	0
16	17	05	16.9690	3.4315	26.8994	0.3	1	<0>	-0.5600	0
17	18	06	14.3223	1.8946	26.9702	0.3	1	<0>	-0.6800	0
18	19	07	17,9091	-0.0135	26.3390	0.3	1	<0>	-0.5512	0

In [5]: df_oxygen['distance'] = PandasMol2.distance_df(df_oxygen, xyz)
df_oxygen

Out[5]:		atom_id	atom_name	×	У	2	atom_type	subst_id	subst_name	charge	Coment	distance
	12	13	01	18.7676	-2.3524	26.1510	0.3	1	<0>	-1.0333	0	1.525757
	13	14	02	20.3972	-0,3812	26.2318	0.3	1	<0>	-1.0333	0	1.525925
	14	15	03	15.0688	6.5824	25.0727	0.2	1	<0>	-0.5700	0	8.547674
	15	16	04	18.9314	-0.7527	24.1606	0.2	1	<0>	-1.0333	0	1.525814
	16	17	05	16.9690	3,4315	26.8994	0.3	1	<0>	-0.5600	0	5.019558
	17	18	06	14.3223	1.8946	26.9702	0.3	1	<0>	-0.6800	0	5.705893
	18	19	07	17.9091	-0.0135	26.3390	0.3	1	<0>	-0.5512	0	1.652444

In [6]: df_oxygen[(df_oxygen['distance'] > 3) & (df_oxygen['distance'] < 8)].shape[0]</pre>

Out[6]: 2

More examples Multi-mol2 files Multi-processing

• • •

http://rasbt.github.io/biopandas/tutorials/ Working_with_MOL2_Structures_in_DataFrames

Experimental Assay Screening

Data

Mining

screenlamp

Hypothesis-based Filtering

Conformer Overlays and Pharmacophore Matching

Conformer Sampling

Volumetric & Chemical Functional Group Overlays Matching

Selection for Experimental Assays

ID	3-keto		12-hydroxy
12	I	 	
363	I		8

Overall Similarity Thresholds

Functional Group Matching Patterns

Additional Selection Criteria

pipeline-example-1-config.yaml ×

abhertan en misenset horaire augle mutanteaus

general settings

screenlamp tools directory: /Users/sebastian/code/screenlamp/tools
project output directory: /Users/sebastian/code/screenlamp/example_files/example_1/screening-results
input mol2 directory: /Users/sebastian/code/screenlamp/example_files/example_1/dataset/mol2
number of cpus: 0 = 0 means all available CPUs (recommended)

33 54 55 ### Step 03: PREFILTER BY FUNCTIONAL GROUP DISTANCE 56 ousensuusenneusennavennavenneusensuusenkuusenvuses 57 unicitatione d # the following selection criteria select all molecules that 58 # have an sp2-hybridized sulfur atom (MOL2 atom type S.3 or S.o2) 59 # and a keto group (MOL2 atom type 0.2), and where the distance between 60 61 # the sulfur and oxygen atoms is between 13 and 20 angstrom 62 selection key: ((atom_type = 'S.3') | (atom_type == 'S.o2')) -> (atom_type == '0.2') 63 distance: 13-20 64

💌 🔍 🗶 📷 -/Desktop — python - pipeline-sumple-1,py -c -/Desktop/pipeline-example-1-config.yom — 69×27 —		demo	
Processing partition_3.mol2 scanned 9848 molecules 18623 mol/sec Processing partition_4.mol2 scanned 9835 molecules 18812 mol/sec Finished	Back/Forward	ti 🔲 💷 ICH View	Arrange
I LILLOIDU	Name	^ S	20
	01_ids_from_0	database.txt	228.8 MB
SELECTED MOL2s:	🔻 🛅 01_selected-	mol2s	
Running command:	partition_	1.mol2	43.5 MB
python /users/sebastian/code/screeniamp/tools/count_mol2.pyinput /users/sebastian/uesk	partition_	2.mol2	43.6 MB
top/demo/ez_rgroup-presence_motzs	🎓 partition_	3.mol2	43.5 MB
partition 1.mol2 : 2768	partition_	4.mol2	43.9 MB
partition_2.mol2 : 2795	02_fgroup-pr	e_mol2ids.txt	145 KB
<pre>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>></pre>	🔻 🛅 02_fgroup-pr	resence_mol2s	
	partition_	1.mol2	12.3 MB
Total : 11156	partition_	2.mol2	12.5 MB
thon /Users/sebastian/code/screenlamp/tools/count_mol2.pyinput /Users/sebastian/Desk p/demo/02_fgroup-presence_mol2s rtition_1.mol2 : 2768 rtition_2.mol2 : 2795 rtition_3.mol2 : 2746 rtition_4.mol2 : 2847 tal : 11156	partition_	3.mol2	12.1 MB
*****	partition_	4.mol2	12,8 MB
Step 03: PREETLITER BY FUNCTIONAL GROUP DISTANCE	03_fgroup_di	ce_moi2ids.txt	2 KB
ANUNANNANNANNANNANNANNANNANNANNANNANNANN	03_fgroup_di	stance_mol2s	
Using selection: ["((pdmol.df.atom_type == 'S.3') (pdmol.df.atom_type == 'S.o2'))", "(p dmol.df.atom_type == '0.2')"] Processing partition_1.mol2 230 mol/sec			
Processing partition_3.mol2 214 mol/sec Processing partition_4.mol2			

screenlamp

Enabling the hypothesis-driven prioritization of ligand candidates in big databases: Screenlamp and its application to GPCR inhibitor discovery for invasive species control (2017). Raschka S., A. M. Scott, N. Liu. S. Gunturu, M. Huertas, W. Li, and L. A. Kuhn JCAM (manuscript under revision)

https://psa-lab.github.io/screenlamp

Experimental Assay

Hypothesis

df = pd.read_csv('../eog-assay-results.csv') df.head(10)

	Molecule ID	Signal- inhibition	3- Keto	3- Hydroxy	12- Keto	12- Hydroxy	19- Methyl	18- Methyl	Sulfate- Ester	Sulfate- Oxygens	
0	ZINC59528245	0.158	1	0	0	0	1	1	0	1	
1	ZINC01845398	0.624	0	0	0	0	0	0	0	3	
2	ZINC01532179	0.686	0	0	0	0	0	٥	1	3	
3	16409-34-0	0.108	0	0	0	1	1	1	0	2	
4	ENE3	0.897	1	0	0	1	1	1		3	222
5	ENE2	0.845	1	0	1	0	1	1	31	3	
6	ZINC08789094	0.354	1	0	0	0	1	1	0	0	
7	6785-62-2	0.297	1	0	0	0	0	1	0	2	
8	ZINC03876071	0.032	0	0	0	0	1	1	1	3	
9	ZINC71770953	0.483	0	0	0	0	0	0	0	0	***

Thresholding Assay Data

0-25% signal inhibition = non-active

0%

50-100% signal inhibition = active

69% signal inhibition

62% signal inhibition

Outcome

Concentration of gold in the ocean: 4 x 10⁻¹¹ M

(https://web.stanford.edu/group/Urchin/mineral.html)

Pheromone (@ 10⁻¹² M) + Antagonist Discovered (@ 5x10⁻¹³ M) (@ 5x10⁻¹³ M)

0%

Pheromone (@ 10⁻¹² M)

100%

Acknowledgements

Kuhn Lab

Leslie A. Kuhn Nan Liu Santosh Gunturu Jiaxing Chen

Weiming Li Lab

Weiming Li Anne M. Scott Mar Huertas

Great Lakes Fishery Commission

Software & Developers

Python (https://www.python.org) Matplotlib (https://matplotlib.org) Scikit-learn (http://scikit-learn.org) IPython (https://ipython.org) Jupyter Notebook (http://jupyter.org) Pandas (https://pandas.pydata.org) OpenEye (https://www.eyesopen.com) OpenBabel (http://openbabel.org)

EXPERT INSIGHT

Sebastian Raschka & Vahid Mirjalili

Python Machine Learning

Machine Learning and Deep Learning with Python scikit-learn and TensorFlow

Second Edition - Fully revised and updated

Book signing

Nov 04 (Fri) 1:00 PM Regency B

Thanks!

Questions?

BioPandas (https://rasbt.github.io/biopandas/) Screenlamp (https://psa-lab.github.io/screenlamp)