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Abstract
TensorFlow [1] is an interface for expressing machine learn-

ing algorithms, and an implementation for executing such al-
gorithms. A computation expressed using TensorFlow can be
executed with little or no change on a wide variety of hetero-
geneous systems, ranging from mobile devices such as phones
and tablets up to large-scale distributed systems of hundreds
of machines and thousands of computational devices such as
GPU cards. The system is flexible and can be used to express
a wide variety of algorithms, including training and inference
algorithms for deep neural network models, and it has been
used for conducting research and for deploying machine learn-
ing systems into production across more than a dozen areas of
computer science and other fields, including speech recogni-
tion, computer vision, robotics, information retrieval, natural
language processing, geographic information extraction, and
computational drug discovery. This paper describes the Ten-
sorFlow interface and an implementation of that interface that
we have built at Google. The TensorFlow API and a reference
implementation were released as an open-source package under
the Apache 2.0 license in November, 2015 and are available at
www.tensorflow.org.

1 Introduction

The Google Brain project started in 2011 to explore the
use of very-large-scale deep neural networks, both for
research and for use in Google’s products. As part of
the early work in this project, we built DistBelief, our
first-generation scalable distributed training and infer-
ence system [14], and this system has served us well. We
and others at Google have performed a wide variety of re-
search using DistBelief including work on unsupervised
learning [31], language representation [35, 52], models
for image classification and object detection [16, 48],
video classification [27], speech recognition [56, 21, 20],
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sequence prediction [47], move selection for Go [34],
pedestrian detection [2], reinforcement learning [38],
and other areas [17, 5]. In addition, often in close collab-
oration with the Google Brain team, more than 50 teams
at Google and other Alphabet companies have deployed
deep neural networks using DistBelief in a wide variety
of products, including Google Search [11], our advertis-
ing products, our speech recognition systems [50, 6, 46],
Google Photos [43], Google Maps and StreetView [19],
Google Translate [18], YouTube, and many others.

Based on our experience with DistBelief and a more
complete understanding of the desirable system proper-
ties and requirements for training and using neural net-
works, we have built TensorFlow, our second-generation
system for the implementation and deployment of large-
scale machine learning models. TensorFlow takes com-
putations described using a dataflow-like model and
maps them onto a wide variety of different hardware
platforms, ranging from running inference on mobile
device platforms such as Android and iOS to modest-
sized training and inference systems using single ma-
chines containing one or many GPU cards to large-scale
training systems running on hundreds of specialized ma-
chines with thousands of GPUs. Having a single system
that can span such a broad range of platforms signifi-
cantly simplifies the real-world use of machine learning
system, as we have found that having separate systems
for large-scale training and small-scale deployment leads
to significant maintenance burdens and leaky abstrac-
tions. TensorFlow computations are expressed as stateful
dataflow graphs (described in more detail in Section 2),
and we have focused on making the system both flexible
enough for quickly experimenting with new models for
research purposes and sufficiently high performance and
robust for production training and deployment of ma-
chine learning models. For scaling neural network train-
ing to larger deployments, TensorFlow allows clients to
easily express various kinds of parallelism through repli-
cation and parallel execution of a core model dataflow
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import tensorflow as tf

b = tf.Variable(tf.zeros([100])) # 100-d vector, init to zeroes

W = tf.Variable(tf.random_uniform([784,100],-1,1)) # 784x100 matrix w/rnd vals

x = tf.placeholder(name="x") # Placeholder for input

relu = tf.nn.relu(tf.matmul(W, x) + b) # Relu(Wx+b)

C = [...] # Cost computed as a function

# of Relu

s = tf.Session()

for step in xrange(0, 10):

input = ...construct 100-D input array ... # Create 100-d vector for input

result = s.run(C, feed_dict={x: input}) # Fetch cost, feeding x=input

print step, result

Figure 1: Example TensorFlow code fragment
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Figure 2: Corresponding computation graph for Figure 1

Category Examples
Element-wise mathematical operations Add, Sub, Mul, Div, Exp, Log, Greater, Less, Equal, ...
Array operations Concat, Slice, Split, Constant, Rank, Shape, Shuffle, ...
Matrix operations MatMul, MatrixInverse, MatrixDeterminant, ...
Stateful operations Variable, Assign, AssignAdd, ...
Neural-net building blocks SoftMax, Sigmoid, ReLU, Convolution2D, MaxPool, ...
Checkpointing operations Save, Restore
Queue and synchronization operations Enqueue, Dequeue, MutexAcquire, MutexRelease, ...
Control flow operations Merge, Switch, Enter, Leave, NextIteration

Table 1: Example TensorFlow operation types

by the session interface is Run, which takes a set of out-
put names that need to be computed, as well as an op-
tional set of tensors to be fed into the graph in place of
certain outputs of nodes. Using the arguments to Run,
the TensorFlow implementation can compute the transi-
tive closure of all nodes that must be executed in order
to compute the outputs that were requested, and can then

arrange to execute the appropriate nodes in an order that
respects their dependencies (as described in more detail
in 3.1). Most of our uses of TensorFlow set up a Session
with a graph once, and then execute the full graph or a
few distinct subgraphs thousands or millions of times via
Run calls.
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Appendix G - TensorFlow Basics 2

While TensorFlow can be run entirely on a CPU or multiple CPUs, one of the core strength
of this library is its support of GPUs (Graphical Processing Units) that are very efficient
at performing highly parallelized numerical computations. In addition, TensorFlow also
supports distributed systems as well as mobile computing platforms, including Android and
Apple’s iOS.

But what is a tensor? In simplifying terms, we can think of tensors as multidimensional
arrays of numbers, as a generalization of scalars, vectors, and matrices.

1. Scalar: R
2. Vector: Rn

3. Matrix: Rn × Rm

4. 3-Tensor: Rn × Rm × Rp

5. …

When we describe tensors, we refer to its “dimensions” as the rank (or order) of a tensor,
which is not to be confused with the dimensions of a matrix. For instance, anm×nmatrix,
wherem is the number of rows and n is the number of columns, would be a special case of
a rank-2 tensor. A visual explanation of tensors and their ranks is given is the figure below.

Tensors

DRAFT

Index [2]

Index [0,0]

Index [0,2,1]

rank 0 tensor  
dimensions [ ] 
scalar

rank 2 tensor  
dimensions [5, 3] 
matrix

rank 1 tensor  
dimensions [5] 
vector

rank 3 tensor  
dimensions [4, 4, 2]

Tensors?



pip install tensorflow
pip install tensorflow-gpu
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Installing TensorFlow

https://www.tensorflow.org/install/



pip install tensorflow
pip install tensorflow-gpu

Setup help:
• https://www.tensorflow.org/install/
• https://sebastianraschka.com/pdf/books/dlb/appendix_h_cloud-computing.pdf
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x =

X = np.random.random((num_train_examples, num_features))
W = np.random.random((num_features, num_hidden))

Vectorization
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logits = np.zeros([num_train_examples, num_hidden])

for i, row in enumerate(X): # row = training_example
 
for j, col in enumerate(W.T): # col = features
 

vector_dot_product = 0
for a, b in zip(row, col):

vector_dot_product += a*b 
 

logits[i, j] = vector_dot_product
 

np.allclose(logits, np.dot(X, W))
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sequence prediction [47], move selection for Go [34],
pedestrian detection [2], reinforcement learning [38],
and other areas [17, 5]. In addition, often in close collab-
oration with the Google Brain team, more than 50 teams
at Google and other Alphabet companies have deployed
deep neural networks using DistBelief in a wide variety
of products, including Google Search [11], our advertis-
ing products, our speech recognition systems [50, 6, 46],
Google Photos [43], Google Maps and StreetView [19],
Google Translate [18], YouTube, and many others.

Based on our experience with DistBelief and a more
complete understanding of the desirable system proper-
ties and requirements for training and using neural net-
works, we have built TensorFlow, our second-generation
system for the implementation and deployment of large-
scale machine learning models. TensorFlow takes com-
putations described using a dataflow-like model and
maps them onto a wide variety of different hardware
platforms, ranging from running inference on mobile
device platforms such as Android and iOS to modest-
sized training and inference systems using single ma-
chines containing one or many GPU cards to large-scale
training systems running on hundreds of specialized ma-
chines with thousands of GPUs. Having a single system
that can span such a broad range of platforms signifi-
cantly simplifies the real-world use of machine learning
system, as we have found that having separate systems
for large-scale training and small-scale deployment leads
to significant maintenance burdens and leaky abstrac-
tions. TensorFlow computations are expressed as stateful
dataflow graphs (described in more detail in Section 2),
and we have focused on making the system both flexible
enough for quickly experimenting with new models for
research purposes and sufficiently high performance and
robust for production training and deployment of ma-
chine learning models. For scaling neural network train-
ing to larger deployments, TensorFlow allows clients to
easily express various kinds of parallelism through repli-
cation and parallel execution of a core model dataflow
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import tensorflow as tf

b = tf.Variable(tf.zeros([100])) # 100-d vector, init to zeroes

W = tf.Variable(tf.random_uniform([784,100],-1,1)) # 784x100 matrix w/rnd vals

x = tf.placeholder(name="x") # Placeholder for input

relu = tf.nn.relu(tf.matmul(W, x) + b) # Relu(Wx+b)

C = [...] # Cost computed as a function

# of Relu

s = tf.Session()

for step in xrange(0, 10):

input = ...construct 100-D input array ... # Create 100-d vector for input

result = s.run(C, feed_dict={x: input}) # Fetch cost, feeding x=input

print step, result

Figure 1: Example TensorFlow code fragment
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Figure 2: Corresponding computation graph for Figure 1

Category Examples
Element-wise mathematical operations Add, Sub, Mul, Div, Exp, Log, Greater, Less, Equal, ...
Array operations Concat, Slice, Split, Constant, Rank, Shape, Shuffle, ...
Matrix operations MatMul, MatrixInverse, MatrixDeterminant, ...
Stateful operations Variable, Assign, AssignAdd, ...
Neural-net building blocks SoftMax, Sigmoid, ReLU, Convolution2D, MaxPool, ...
Checkpointing operations Save, Restore
Queue and synchronization operations Enqueue, Dequeue, MutexAcquire, MutexRelease, ...
Control flow operations Merge, Switch, Enter, Leave, NextIteration

Table 1: Example TensorFlow operation types

by the session interface is Run, which takes a set of out-
put names that need to be computed, as well as an op-
tional set of tensors to be fed into the graph in place of
certain outputs of nodes. Using the arguments to Run,
the TensorFlow implementation can compute the transi-
tive closure of all nodes that must be executed in order
to compute the outputs that were requested, and can then

arrange to execute the appropriate nodes in an order that
respects their dependencies (as described in more detail
in 3.1). Most of our uses of TensorFlow set up a Session
with a graph once, and then execute the full graph or a
few distinct subgraphs thousands or millions of times via
Run calls.
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Computation Graphs

a(x, w, b) = relu(w*x + b)

activation function

weight parameter training example
with 1 input feature

bias term
(“threshold”)
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import matplotlib.pyplot as plt
import numpy as np

def relu(x):
# max(0, x)
return x * (x > 0) 

 
x = np.arange(-10, 10)
plt.plot(x, relu(x))

relu(x) =

⇢
x if x > 0

0 otherwise

drelu(x)

dx

=

⇢
1 if x > 0

0 otherwise

1

REctified Linear Unit
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Computation Graphs

a(x, w, b) = relu(w*x + b)
u

v
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Computation Graphs

a(x, w, b) = relu(w*x + b)
u

v

u = wx
x

w

b

+

*
v = u+b a = relu(v)



Computation Graphs
import tensorflow as tf

g = tf.Graph()
with g.as_default() as g:

 
x = tf.placeholder(dtype=tf.float32, shape=None, name='x')
w = tf.Variable(initial_value=2, dtype=tf.float32, name='w')
b = tf.Variable(initial_value=1, dtype=tf.float32, name='b')
 
u = x * w 
v = u + b 
a = tf.nn.relu(v)

  
init_op = tf.global_variables_initializer()
 

print(x, w, b, u, v, a)

a(x, w, b) = relu(w*x + b)
u

v

14



Computation Graphs

Tensor("x:0", dtype=float32) <tf.Variable 'w:0' shape=() dtype=float32_ref> <tf.Variable
'b:0' shape=() dtype=float32_ref> Tensor("mul:0", dtype=float32) Tensor("add:0", 
dtype=float32) Tensor("Relu:0", dtype=float32)

import tensorflow as tf

g = tf.Graph()
with g.as_default() as g:

 
x = tf.placeholder(dtype=tf.float32, shape=None, name='x')
w = tf.Variable(initial_value=2, dtype=tf.float32, name='w')
b = tf.Variable(initial_value=1, dtype=tf.float32, name='b')
 
u = x * w 
v = u + b 
a = tf.nn.relu(v) 
 

print(x, w, b, u, v, a)
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Computation Graphs

u = wx

b=1
+

*
v = u+b a = relu(v)

with tf.Session(graph=g) as sess:
sess.run(init_op)
b_res = sess.run(’b:0') 

 
print(b_res)

1.0

x

w=2

16
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TensorBoard

with tf.Session(graph=g) as sess:
 
sess.run(init_op)
file_writer = tf.summary.FileWriter(logdir='logs/graph-1', graph=g)

In your terminal

$ pip install tensorboard
$ tensorboard --logdir logs/graph-1
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Computation Graphs

u = wx

b=1
+

*
v = u+b a = relu(v)

with tf.Session(graph=g) as sess:
sess.run(tf.global_variables_initializer())
u_res, v_res, a_res = sess.run([u, v, a], feed_dict={'x:0': 3.}) 

 
print(u_res, v_res, a_res)

6.0, 7.0 7.0

x

w=2

19

3.0
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u = wx

b=1
+

*
v = u+b a = relu(v)x

w=2

Calculus refresher: 
https://sebastianraschka.com/pdf/books/dlb/appendix_d_calculus.pdf

𝑑𝑎
𝑑𝑣

Computation Graphs and Derivatives
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u = wx

b=1
+

*
v = u+b a = relu(v)x

w=2

Calculus refresher: 
https://sebastianraschka.com/pdf/books/dlb/appendix_d_calculus.pdf

𝑑𝑎
𝑑𝑣

𝜕𝑣
𝜕𝑏
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u = wx

b=1
+

*
v = u+b a = relu(v)x

w=2

𝑑𝑎
𝑑𝑣

𝜕𝑣
𝜕𝑏

𝜕𝑣
𝜕𝑢



23

u = wx

b=1
+

*
v = u+b a = relu(v)x

w=2

𝑑𝑎
𝑑𝑣

𝜕𝑣
𝜕𝑏
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𝜕𝑤
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u = wx

b=1
+

*
v = u+b a = relu(v)x

w=2

𝑑𝑎
𝑑𝑣

𝜕𝑣
𝜕𝑏

𝜕𝑣
𝜕𝑢𝜕𝑢
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Appendix D - Calculus and Differentiation Primer 7

Using the chain rule, the following figure illustrates how we can derive F (x) via two
parallel steps: We compute the derivative of the inner function g and multiply it by the outer
derivative f ′(g(x)).

Now, for the rest of the section, let use the Leibniz notation, which makes these concepts
easier to follow:

d

dx

[
f(g(x))

]
=

df

dg
· dg
dx

. (10)

(Remember the equation above is equivalent to writing F ′(x) = f ′(g(x))g′(x).)

DRAFT

Appendix D - Calculus and Differentiation Primer 7

Using the chain rule, the following figure illustrates how we can derive F (x) via two
parallel steps: We compute the derivative of the inner function g and multiply it by the outer
derivative f ′(g(x)).

Now, for the rest of the section, let use the Leibniz notation, which makes these concepts
easier to follow:

d

dx

[
f(g(x))

]
=

df

dg
· dg
dx

. (10)

(Remember the equation above is equivalent to writing F ′(x) = f ′(g(x))g′(x).)

DRAFT

Chain Rule
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u = wx

b=1
+

*
v = u+b a = relu(v)x

w=2
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u = wx
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*
v = u+b a = relu(v)x
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u = wx

b=1
+

*
v = u+b a = relu(v)x

w=2
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u = wx

b=1
+

*
v = u+b a = relu(v)x
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u = wx

b=1
+

*
v = u+b a = relu(v)x

w=2

3.0
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u = wx
x=3

w=2

b=1
+

*
v = u+b a = relu(v)6
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u = wx
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+
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relu(x) =

⇢
x if x > 0

0 otherwise

drelu(x)

dx

=

⇢
1 if x > 0

0 otherwise

1
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Appendix D - Calculus and Differentiation Primer 6

Common Differentiation Rules

In addition to the constant rule (Table D1 row 1) and the power rule (Table D1 row 5),
the following table lists the most common differentiation rules that we often encounter
in practice. Although we will not go over the derivations of these rules, it is highly
recommended to memorize and practice them. Most machine learning concepts heavily rely
on applications of these rules, and in the following sections, we will pay special attention to
the last rule in this list, the chain rule.

Table D2. Common differentiation rules.

Function Derivative

Sum Rule f(x) + g(x) f ′(x) + g′(x)
Difference Rule f(x)− g(x) f ′(x)− g′(x)
Product Rule f(x)g(x) f(x)g′(x) + f ′(x)g(x)
Quotient Rule f(x)/g(x) [g(x)f ′(x)− f(x)g′(x)]/[g(x)]2

Reciprocal Rule 1/f(x) −[f ′(x)]/[f(x)]2

Chain Rule f(g(x)) f ′(g(x))g′(x)

The Chain Rule – Computing the Derivative of a
Composition of Functions

The chain rule is essential to understanding backpropagation; thus, let us discuss it in more
detail. In its essence, the chain rule is just a mental crutch that we use to differentiate
composite functions, functions that are nested within each other. For example,

F (x) = f(g(x)). (8)

To differentiate such a function F , we can use this chain rule, which we can break down to a
three-step procedure. First, we compute the derivative of the outer function (f ′)with respect
to the inner function (g). Second, we compute the derivative of the inner function (g′) with
respect to its function argument (x). Third, we multiply the outcome of step 1 and step 2:

F ′(x) = f ′(g(x))g′(x). (9)

Since this notation may look quite daunting, let us use a more visual approach, breaking
down the function F into individual steps: We take the argument x, feed it to g, then, we
take the outcome of g(x) and feed it to f .

DRAFT
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with g.as_default() as g:
d_a_w = tf.gradients(a, w)
d_b_w = tf.gradients(a, b)
 
 

with tf.Session(graph=g) as sess:
sess.run(init_op)

 dw, db = sess.run([d_a_w, d_b_w], feed_dict={'x:0': 3}) 
 
print(dw, db)

[3.0] [1.0]
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g = tf.Graph()
with g.as_default() as g:

 
x = tf.placeholder(dtype=tf.float32, shape=None, name='x')
w = tf.Variable(initial_value=2, dtype=tf.float32, name='w')
b = tf.Variable(initial_value=1, dtype=tf.float32, name='b')
 
u = x * w 
v = u + b 
a = tf.nn.relu(v) 

 
d_a_w = tf.gradients(a, w)
d_b_w = tf.gradients(a, b)
 

with tf.Session(graph=g) as sess:
sess.run(tf.global_variables_initializer())

 res = sess.run([d_a_w, d_b_w], feed_dict={'x:0': 3}) 
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Multilayer Perceptron – Forward Pass

reshape
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Multilayer Perceptron – Backpropagation

As	implemented	in	
https://github.com/ra
sbt/pydata-
annarbor2017-dl-
tutorial/blob/master/
code.ipynb
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TensorFlow makes implementing 
neural nets very convenient!
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(very) 
low-level 
backprop

 # Loss 
loss = tf.nn.softmax_cross_entropy_with_logits(logits=out_z, labels=tf_y)
cost = tf.reduce_mean(loss, name='cost') 

# input/output dim: [n_samples, n_classlabels]
sigma_out = (out_act - tf_y) / batch_size
 
# input/output dim: [n_samples, n_hidden_1]
softmax_derivative_h1 = h1_act * (1. - h1_act)
 
# input dim: [n_samples, n_classlabels] dot [n_classlabels, n_hidden]
# output dim: [n_samples, n_hidden]
sigma_h = (tf.matmul(sigma_out, tf.transpose(weights['out'])) *

softmax_derivative_h1) 
 
# input dim: [n_features, n_samples] dot [n_samples, n_hidden]
# output dim: [n_features, n_hidden]
grad_w_h1 = tf.matmul(tf.transpose(tf_x), sigma_h)
grad_b_h1 = tf.reduce_sum(sigma_h, axis=0)

# input dim: [n_hidden, n_samples] dot [n_samples, n_classlabels]
# output dim: [n_hidden, n_classlabels]
grad_w_out = tf.matmul(tf.transpose(h1_act), sigma_out)
grad_b_out = tf.reduce_sum(sigma_out, axis=0)
 
# Update weights
upd_w_1 = tf.assign(weights['h1'], weights['h1'] - learning_rate * grad_w_h1)
upd_b_1 = tf.assign(biases['b1'], biases['b1'] - learning_rate * grad_b_h1)
upd_w_out = tf.assign(weights['out'], weights['out'] - learning_rate * grad_w_out)
upd_b_out = tf.assign(biases['out'], biases['out'] - learning_rate * grad_b_out)
 
train = tf.group(upd_w_1, upd_b_1, upd_w_out, upd_b_out, name='train')
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##########################
### TRAINING & EVALUATION
##########################

with tf.Session(graph=g) as sess:
sess.run(tf.global_variables_initializer())

for epoch in range(training_epochs):
avg_cost = 0. 
total_batch = mnist.train.num_examples // batch_size

for i in range(total_batch):
batch_x, batch_y = mnist.train.next_batch(batch_size)
 _, c = sess.run(['train', 'cost:0'], feed_dict={'features:0': batch_x, 

'targets:0': batch_y})
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low-level backprop
 # Loss 

loss = tf.nn.softmax_cross_entropy_with_logits(logits=out_z, labels=tf_y)
cost = tf.reduce_mean(loss, name='cost')
 
##################
# Backpropagation
##################

# Get Gradients
dc_dw_out, dc_db_out = tf.gradients(cost, [weights['out'], biases['out']])
dc_dw_1, dc_db_1 = tf.gradients(cost, [weights['h1'], biases['b1']])
 
# Update Weights
upd_w_1 = tf.assign(weights['h1'], weights['h1'] - learning_rate * dc_dw_1)
upd_b_1 = tf.assign(biases['b1'], biases['b1'] - learning_rate * dc_db_1)
upd_w_out = tf.assign(weights['out'], weights['out'] - learning_rate * dc_dw_out)
upd_b_out = tf.assign(biases['out'], biases['out'] - learning_rate * dc_db_out)
 
train = tf.group(upd_w_1, upd_b_1, upd_w_out, upd_b_out, name='train')
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“convenient” backprop

 # Loss 
loss = tf.nn.softmax_cross_entropy_with_logits(logits=out_z, labels=tf_y)
cost = tf.reduce_mean(loss, name='cost')
 
##################
# Backpropagation
##################

optimizer = tf.train.GradientDescentOptimizer(learning_rate=learning_rate)
train = optimizer.minimize(cost, name='train')
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##########################
### TRAINING & EVALUATION
##########################

with tf.Session(graph=g) as sess:
sess.run(tf.global_variables_initializer())

for epoch in range(training_epochs):
avg_cost = 0. 
total_batch = mnist.train.num_examples // batch_size

for i in range(total_batch):
batch_x, batch_y = mnist.train.next_batch(batch_size)
 _, c = sess.run(['train', 'cost:0'], feed_dict={'features:0': batch_x, 

'targets:0': batch_y})
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TensorFlow Layers
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Link	to	the	talk:	https://www.youtube.com/watch?v=t64ortpgS-E
Estimator	Documentation:	https://www.tensorflow.org/extend/estimators
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def fully_connected(input_tensor, output_nodes,
  activation=None, seed=None, 

name='fully_connected'): 
 

with tf.variable_scope(name):
input_nodes = input_tensor.get_shape().as_list()[1]
weights = tf.Variable(tf.truncated_normal(shape=(input_nodes,

output_nodes), 
mean=0.0, 
stddev=0.01, 
dtype=tf.float32, 
seed=seed), 

name='weights') 
biases = tf.Variable(tf.zeros(shape=[output_nodes]), name='biases')

act = tf.matmul(input_tensor, weights) + biases
if activation is not None:

act = activation(act) 
return act

Defining your wrapper functions manually
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Using tensorflow.layers

g = tf.Graph()
with g.as_default():

# Input data
tf_x = tf.placeholder(tf.float32, [None, n_input], name='features')
tf_y = tf.placeholder(tf.float32, [None, n_classes], name='targets')

# Multilayer perceptron
layer_1 = tf.layers.dense(tf_x, n_hidden_1, 

activation=tf.nn.relu,  
kernel_initializer=tf.truncated_normal_initializer(stddev=0.1))

layer_2 = tf.layers.dense(layer_1, n_hidden_2,
 activation=tf.nn.relu, 
kernel_initializer=tf.truncated_normal_initializer(stddev=0.1))

out_layer = tf.layers.dense(layer_2, n_classes, activation=None)
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Feeding Data into the Graph

From Python via placeholders

- Python pickle
- NumPy .npz archives (https://github.com/rasbt/deep-learning-book/blob/master/code/model_zoo/image-data-chunking-npz.ipynb)

- HDF5 (https://github.com/rasbt/deep-learning-book/blob/master/code/model_zoo/image-data-chunking-hdf5.ipynb)

- CSV
- …

sess.run([…], feed_dict={'x:0': …, 'y:0': …, …}) 

More info: https://www.tensorflow.org/programmers_guide/reading_data

Using input pipelines and queues

- Reading data from TFRecords files (https://github.com/rasbt/deep-learning-book/blob/master/code/model_zoo/tfrecords.ipynb)

- Queues for loading raw images (https://github.com/rasbt/deep-learning-book/blob/master/code/model_zoo/file-queues.ipynb)
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Code snippets
GitHub: https://github.com/rasbt/pydata-annarbor2017-dl-tutorial
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Useful (and Free) Resources

https://www.tensorflow.org

https://github.com/rasbt/deep-learning-book

http://www.deeplearningbook.org
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One More Thing!

https://www.amazon.com/Python-Machine-Learning-scikit-learn-TensorFlow/dp/1787125939/
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Thanks for attending!

Contact:
o E-mail: mail@sebastianraschka.com

o Website: http://sebastianraschka.com

o Twitter: @rasbt

o GitHub: rasbt

Slides
Speaker Deck: 
https://speakerdeck.com/rasbt/introduction-to-deep-learning-with-tensorflow-at-pydata-ann-arbor

Code snippets
GitHub: 
https://github.com/rasbt/pydata-annarbor2017-dl-tutorial
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Thanks for attending!

Contact:
o E-mail: mail@sebastianraschka.com

o Website: http://sebastianraschka.com

o Twitter: @rasbt

o GitHub: rasbt

Slides
Speaker Deck: 
https://speakerdeck.com/rasbt/introduction-to-deep-learning-with-tensorflow-at-pydata-ann-arbor

Code snippets
GitHub: 
https://github.com/rasbt/pydata-annarbor2017-dl-tutorial

Questions?


