MusicMood

Machine Learning in Automatic Music Mood Prediction Based on Song Lyrics

Sebastian Raschka December 10, 2014

Music Mood Prediction

- We like to listen to music [1][2]
- Digital music libraries are growing
- Recommendation system for *happy* music (clinics, restaurants ...) & genre selection

[1] Thomas Schaefer, Peter Sedlmeier, Christine Sta⁻dtler, and David Huron. The psychological functions of music listening. Frontiers in psychology, 4, 2013.

[2] Daniel Vaestfjaell. Emotion induction through music: A review of the musical mood induction procedure. Musicae Scientiae, 5(1 suppl):173–211, 2002.

Predictive Modeling

Supervised Learning In a Nutshell

This work is licensed under a Creative Commons Attribution 4.0 International License.

MusicMood - The Plan

The Dataset

Home » Getting the dataset

Getting the dataset

The logistics of distributing a 300 GB dataset are a little more complicated than for smaller collections. We do, however, provide a directly-downloadable subset for a quick look.

Before you start, you might want to review exactly what the dataset contains. Here is a page showing the contents of a single example file. You can download the corresponding raw HDF5 file here: TRAXLZU12903D05F94.h5.

http://labrosa.ee.columbia.edu/millionsong/

Sampling

Mood Labels

Downloading mood labels from Last.fm Manual labeling based on lyrics and listening

sad if ...

- Dark topic (killing, war, complaints about politics, ...)
- Artist in sorrow (lost love, ...)

Why so sad? The mood of music over the last 50 years

[based on the 1000-song training dataset] https://github.com/rasbt/musicmood

Sebastian Raschka 2014

This work is licensed under a Creative Commons Attribution 4.0 International License.

Word Clouds

A Short Introduction to Naive Bayes Classification

Naive Bayes - Why?

- Small sample size, can outperform the more powerful alternatives [1]
- "Eager learner" (on-line learning vs. batch learning)
- Fast for classification and re-training
- Success in Spam Filtering [2]
- High accuracy for predicting positive and negative classes in a sentiment analysis of Twitter data [3]

[1] Pedro Domingos and Michael Pazzani. On the optimality of the simple bayesian classifier under zero-one loss. *Machine learning*, 29(2-3):103–130, 1997.

 [3] Alec Go, Richa Bhayani, and Lei Huang. Twitter sentiment classification using distant supervision. CS224N Project Report, Stanford, pages 1–12, 2009.

^[2] Mehran Sahami, Susan Dumais, David Heckerman, and Eric Horvitz. A bayesian approach to filtering junk e-mail. In *Learning for Text Categorization: Papers from the 1998 workshop*, volume 62, pages 98–105, 1998.

Bayes Classifiers It's All About Posterior Probabilities

$$P(\omega_j \mid \mathbf{x}_i) = \frac{P(\mathbf{x}_i \mid \omega_j) \cdot P(\omega_j)}{P(\mathbf{x}_i)}$$

 $posterior \ probability = \frac{conditional \ probability \cdot prior \ probability}{evidence}$

objective function: maximize the posterior probability

predicted class label
$$\leftarrow \underset{j=1...,m}{\operatorname{arg max}} P\left(\omega_j \mid \mathbf{x}_i\right)$$

The Prior Probability

Maximum Likelihood Estimate (MLE)

$$\widehat{P}\left(\omega_{j}\right) = \frac{N_{\omega_{j}}}{N_{c}}$$

- N_{ω_j} : Count of samples from class ω_j .
- N_c: Count of all samples.

The Effect of Priors on the Decision Boundary

Class-Conditional Probability

Maximum Likelihood Estimate (MLE)

$$\widehat{P}(x_i \mid \omega_j) = \frac{N_{i,c}}{N_i} \quad (i = (1, \dots, d))$$

- $N_{i,c}$: Count of feature x_i in class ω_j .
- N_ic: Count of feature x_i in all classes.

"chance of observing feature x_i given that it belongs to class ω_j "

Evidence

$$P(\mathbf{x}_{i}) = P\left(\mathbf{x}_{i} \mid \omega_{j}\right) \cdot P\left(\omega_{j}\right) + P\left(\mathbf{x}_{i} \mid \omega_{j}^{C}\right) \cdot P\left(\omega_{j}^{C}\right)$$

just a normalization factor, can be omitted in decision rule:

$$\frac{P\left(\mathbf{x}_{i} \mid \omega_{1}\right) \cdot P\left(\omega_{1}\right)}{P\left(\mathbf{x}_{i}\right)} > \frac{P\left(\mathbf{x}_{i} \mid \omega_{2}\right) \cdot P\left(\omega_{2}\right)}{P\left(\mathbf{x}_{i}\right)}$$

 $\propto P\left(\mathbf{x}_{i} \mid \omega_{1}\right) \cdot P\left(\omega_{1}\right) > P\left(\mathbf{x}_{i} \mid \omega_{2}\right) \cdot P\left(\omega_{2}\right)$

Naive Bayes Models Gaussian Naive Bayes

$$P(x_{ik} \mid \omega) = \frac{1}{\sqrt{2\pi\sigma_{\omega}^2}} \exp\left(-\frac{(x_{ik} - \mu_{\omega})^2}{2\sigma_{\omega}^2}\right),$$

$$P\left(\mathbf{x}_{i} \mid \boldsymbol{\omega}\right) = \prod_{k=1}^{d} P\left(\mathbf{x}_{ik} \mid \boldsymbol{\omega}\right)$$

for continuous variables

Naive Bayes Models

Multi-variate Bernoulli Naive Bayes

$$P\left(\mathbf{x}|\omega_{j}\right) = \prod_{i=1}^{m} P(x_{i} | \omega_{j})^{b} \cdot \left(1 - P\left(x_{i} | \omega_{j}\right)\right)^{(1-b)} \quad (b \in 0, 1)$$

for binary features

Naive Bayes Models Multinomial Naive Bayes

$$\widehat{P}(x_i \mid \omega_j) = \frac{\sum tf(x_i, d \in \omega_j) + \alpha}{\sum N_{d \in \omega_j} + \alpha \cdot V}$$

$$P(\mathbf{x}|\omega_j) = P(x_1 | \omega_j) \cdot P(x_2 | \omega_j) \cdot \ldots \cdot P(x_n | \omega_j) = \prod_{i=1}^m P(x_i | \omega_j)$$

- x_i: A word from the feature vector **x** of a particular sample.
- $\sum tf(x_i, d \in \omega_j)$: The sum of raw term frequencies of word x_i from all documents in the training sample that belong to class ω_j .
- $\sum N_{d \in \omega_j}$: The sum of all term frequencies in the training dataset for class ω_j .
- α : An additive smoothing parameter ($\alpha = 1$ for Laplace smoothing).
- V: The size of the vocabulary (number of different words in the training set).

Naive Bayes and Text Classification

Feature Vectors

The Bag of Words Model

• D_1 : "Each state has its own laws."

• D_2 : "Every country has its own culture."

	each	state	has	its	own	laws	every	country	culture
\mathbf{x}_{D1}	1	1	1	1	1	1	0	0	0
\mathbf{x}_{D2}	0	0	1	1	1	0	1	1	1
Σ	1	1	2	2	2	1	1	1	1

Tokenization and N-grams

"a swimmer likes swimming thus he swims"

• unigram (1-gram):

a	swimmer	likes	swimming	thus	he	swims
---	---------	-------	----------	------	----	-------

• bigram (2-gram):

a swimmer	swimmer likes	likes swimming	swimming thus	
-----------	---------------	----------------	---------------	--

• trigram (3-gram):

a swimmer likes	swimmer likes swimming	likes swimming thus	
-----------------	------------------------	---------------------	--

Stemming and Lemmatization

Porter Stemming

Lemmatization

	A swin	nmer li	ikes swimmin	ıg, t	thus he	swin	ns.	
			\downarrow					
Α	swimmer	like	swimming	,	thus	he	\mathbf{swim}	- 2

Stop Word Removal

Term and Frequency

normalized term frequency =
$$\frac{tf(t,d)}{n_d}$$

where

- tf(t, d): Raw term frequency (the count of term t in document d).
- n_d : The total number of terms in document d.

Term Frequency - Inverse Document Frequency (Tf-idf)

 $Tf-idf = tf_n(t, d) \cdot idf(t)$

Let $tf_n(d, f)$ be the normalized term frequency, and idf, the inverse document frequency, which can be calculated as follows

$$idf(t) = \log\left(\frac{n_d}{n_d(t)}\right),$$

where

- n_d: The total number of documents.
- $n_d(t)$: The number of documents that contain the term t.

Grid Search and 10-fold Cross Validation to Optimize F1

 $F1 = 2 \cdot \frac{\text{precision} \cdot \text{recall}}{\text{precision} + \text{recall}}$

$$precision = \frac{TP}{TP + FP}$$

$$\mathrm{recall} = \frac{\mathrm{TP}}{\mathrm{TP} + \mathrm{FN}}$$

- TP = true positive (happy predicted as happy)
- FP = false positive (sad predicted as happy)
- FN = false negative (happy predicted as sad)

K-Fold Cross Validation

10-Fold Cross Validation After Grid Search

10-fold Cross Validation (mean ROC) Multinomial vs Multi-variate Bernoulli Naive Bayes

10-fold Cross Validation (mean ROC) Multinomial Naive Bayes & Hyperparameter Alpha

10-fold Cross Validation (mean ROC) Multinomial Naive Bayes & Vocabulary Size

10-fold Cross Validation (mean ROC) Multinomial Naive Bayes & Document Frequency Cut-off

10-fold Cross Validation (mean ROC) Multinomial Naive Bayes & N-gram Sequence Length

Contingency Tables of the Final Model

Performance metric	Training	Validation
Accuracy	80.00%	54.50%
Precision	99.60%	88.89%
Recall	55.38%	15.24%
F1-score	71.18%	26.02%
ROC auc	77.60%	56.57%

Live Demo

Artist name: Bob Dylan

Song title: Blowing in the wind

Lyrics:

How many roads must a man walk down Before you call him a man? Yea, 'n' how many seas must a white dove sail Before she sleeps in the sand? Yes, 'n' how many times must the cannon balls fly Before they're forever banned? The answer, my friend, is blowin' in the wind The answer is blowin' in the wind How many times must a man look up Before he can see the sky? Yes, 'n' how many ears must one man have Before he can hear people cry? Yes, 'n' how many deaths will it take till he knows That too many people have died? The answer, my friend, is blowin' in the wind The answer is blowin' in the wind The answer is blowin' in the wind How many years can a mountain exist Before it's washed to the sea? Yes, 'n' how many years can some people exist Before they're allowed to be free? Yes, 'n' how many times can a man tum his head Pretending he just doesn't see? The answer, my friend, is blowin' in the wind The answer is blowin' in the wind

Prediction: sad (probability 63.83%)

Try again

Listen to this song on YouTube.

I am looking forward to your feedback in order to improve the mood classifier! Clicking one of the two buttons below will add a new mood label to existing songs in the database, or a new database entry will be created if this song was not included in the training dataset, yet.

I think this song is happy ad

1332 lyrics

1350 mood labels

http://sebastianraschka.com/ Webapps/musicmood.html

Sona t	itle:	
	1	
	Search	Random song

Future Plans

• Growing a list of mood labels (majority rule).

able	: E moodtable	· 🗿 🚱	1	New Record	Delete Record
_	artist	title	lyrics	mood	
	Fillor	Filtor	Filtur	Filter	
1255	lorde	team	[Intro] Wait 'til you'r	happy	
1257	kendrick lamar	swimming pools	[Bridge:] Pour up, dra	sad	
1258	radiohead	karma police	Karma police Arrest this m	happy,sad	
1259	pink floyd	see emily play	Pink Floyd Masters Of	sad	
1260	green day	holiday	(Say hey!) Hear the sou	sad	
1251	pharrell williams	happy	(from "Despicable	happy,happy	
1262	john lennon	imagine	Imagine there's no Heaven It	sad,sad	
1263	taylor swift	blank space	Nice to meet you, where y	happy	
1264	ait-j	breezeblocks	She may contain t		
1265	metallica	one	I can't rememb		
1268	lynyrd skynyrd	free bird	(Allen Co Ronnie \		
	4	14.12 13	Baby I'm		

- Performance comparisons of different machine learning algorithms.
- Genre prediction and selection based on sound.

Thank you!