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Abstract: We show that machine learning can pinpoint features distinguishing inactive from active
states in proteins, in particular identifying key ligand binding site flexibility transitions in GPCRs that
are triggered by biologically active ligands. Our analysis was performed on the helical segments and
loops in 18 inactive and 9 active class A G protein-coupled receptors (GPCRs). These three-dimensional
(3D) structures were determined in complex with ligands. However, considering the flexible versus
rigid state identified by graph-theoretic ProFlex rigidity analysis for each helix and loop segment with
the ligand removed, followed by feature selection and k-nearest neighbor classification, was sufficient
to identify four segments surrounding the ligand binding site whose flexibility/rigidity accurately
predicts whether a GPCR is in an active or inactive state. GPCRs bound to inhibitors were similar
in their pattern of flexible versus rigid regions, whereas agonist-bound GPCRs were more flexible
and diverse. This new ligand-proximal flexibility signature of GPCR activity was identified without
knowledge of the ligand binding mode or previously defined switch regions, while being adjacent
to the known transmission switch. Following this proof of concept, the ProFlex flexibility analysis
coupled with pattern recognition and activity classification may be useful for predicting whether
newly designed ligands behave as activators or inhibitors in protein families in general, based on the
pattern of flexibility they induce in the protein.

Keywords: GPCR activity determinants; flexibility analysis; coupled residues; allostery; ProFlex;
MLxtend; feature selection; pattern classification

1. Introduction

Recognizing the features of small, drug-like ligand molecules and protein structures that synergize
to create an active protein state (binding to an agonist ligand) versus an inactive protein state (binding
an inhibitory ligand) is essential to design drugs with predictable effects on the protein and organism.
Much drug discovery research has focused on mimicking small molecule ligands of known activity
(when available), either by incorporating very similar chemical groups that lead to cost-effective
synthesis and favorable bioavailability and toxicity profiles, or by mimicking the three-dimensional
volumes and chemical surface features of such molecules [1–3]. It is not uncommon for such molecules
to bind the protein with moderate to high affinity, but not always with the activating or inhibitory
effect that is sought. In this work, we focus on the other side of the interface, seeking a general method
that can learn from a series of active and inactive structures in a protein family to identify the shared
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subset of protein features (without using ligand information) that are reliable indicators of whether the
protein is in an active or inactive state. Identifying shared conformational changes, hydrogen bonds,
hydrophobic contacts, and surface shape between protein structures has been carefully explored in
GPCRs [4–7]. Sharing of features at an atomistic scale is dependent on conservation of the binding site
and ligand type, however, and therefore fine-scale features are unlikely to be shared across complexes
in a diverse family. Instead, we seek the signature of a shared flexibility mechanism, in the form of
protein regions whose flexibility or rigidity in the ligand-bound state form recognizable patterns across
active (or inactive) structures in the family. We then explore whether a small number of these intrinsic
flexibility features can reliably predict whether a given protein is in an active or inactive state.

We present this methodology and apply it to individual structures of different class A GPCRs
in a variety of conformations induced by small molecule agonists or antagonists, to discover hidden
commonalities in flexibility/rigidity between the active (or inactive) states. The results provide new
insights into how ligand binding to the orthosteric site (accessed from outside the cell) in this class
of GPCRs can create flexibility changes adjacent to the transmission switch residues, which in turn
undergo conformational changes acting as an on/off switch for binding intracellular protein partners
and signaling to downstream partners. The shared changes in flexibility between GPCRs upon
inhibitor or agonist binding also help distinguish key activity-relevant protein contacts of the inhibitors,
and elucidate how inhibitors alter the network of intraprotein contacts to create biologically and
pharmaceutically relevant responses.

For this analysis, we employed ProFlex, a successor to FIRST [8], an efficient and accurate tool
for evaluating flexibility and rigidity within protein structures. Instead of analyzing conformational
changes or dynamics, ProFlex analyzes the constraint network formed by covalent bonds, hydrogen
bonds, and hydrophobic contacts to identify constrained (rigid) regions within a structure, as well as
regions that are flexible and free to move due to the presence of fewer constraints. Coupling within
rigid regions or flexible regions (e.g., cooperatively flexible loops) is also assessed automatically by
ProFlex, with the rigid or flexible segments in a protein ranked from most rigid to most flexible.
These segments may be as small as a few atoms (e.g., the cyclopropyl ring within proline) or as large
as the entire protein, with no need for the user to partition atoms into artificial groups (e.g., main
chain or side chains). ProFlex evaluates all covalent, hydrogen bond, and hydrophobic interactions
and bond-rotational degrees of freedom within the system as a molecular graph on which bond
and bond-angle constraints are counted, following the structural engineering theory developed by
James Clark Maxwell, as extended to 2D and 3D atomic systems by Hendrickson, Jacobs, Thorpe, and
Kuhn [8–11].

The goals of this study were twofold: (1) predicting with high accuracy whether GPCR structures
are in active or inactive states; and (2) providing intuitive and human-interpretable insights into the
underlying patterns associated with the predictions. To identify a subset of GPCR segments for making
accurate activity predictions using a k-nearest neighbor classification model, we employed sequential
and exhaustive feature selection algorithms. While exhaustive feature selection is guaranteed to find
optimal feature subsets that maximize predictive performance, this combinatorial search problem is
computationally intractable on large feature spaces. Hence, we employed sequential feature selection
as a pre-filtering approach, which provides an excellent compromise in efficiency and effectiveness,
to filter for feature subsets that maximize prediction accuracy of a k-nearest neighbor classifier
before identifying the optimal feature subset via exhaustive search. All machine learning approaches
employed in this study (exhaustive feature selection and k-nearest neighbor classification) are easy to
use, yield intuitive results by highlighting the relative importance of predictive features, and are freely
available from GitHub through the open source libraries MLxtend (http://rasbt.github.io/mlxtend/)
and Scikit-learn (https://scikit-learn.org) [12,13].

The predictive motif ultimately identified by the ProFlex machine learning analysis in this work
involves a tendency for the extracellular ends of helices 2, 3, and 5 and extracellular loop 1 surrounding
the ligand binding site to be mutually rigid in inactive structures, as described in Section 3.2. The ionic
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lock, transmission, and tyrosine toggle conformational switch motifs identified by other researchers
and reviewed in [14] involve different regions: the intracellular end of helix 3, a nonoverlapping
segment of helix 5, and regions in helices 6 and 7. Thus, the ProFlex analysis provides new information
and reveals commonalities in the ways different inhibitors induce an off state in class A GPCRs. This is
important, because GPCRs comprise ~34% of all approved human drugs [15], and the goal of drug
design for many GPCRs is to downregulate their activity. Beta blockers are one well-known class
of inhibitory GPCR drugs, reducing blood pressure to substantially reduce cardiovascular risk and
intraocular pressure in glaucoma to prevent retinal damage. Other GPCRs are targeted to control
schizophrenia, allergies, and depression [16]. Our goal is to identify key regions in proteins that
regulate their activity, on which researchers can then focus to improve drug design, as discussed in the
Conclusions.

Two software utilities, BAT and BRAT (for B-value (Residue) Alignment Tool), have been developed
and are available via GitHub (https://github.com/psa-lab/Protein-Alignment-Tool). BRAT facilitates
identifying and visualizing the correspondence between user-defined sequence segments (such as
ligand-binding residues) and residue numbers in one protein when aligned with a sequence-divergent
homolog using Dali structural superposition [17]. BAT aligns and visualizes the temperature factor
values (B-values), or other numeric properties recorded in the B-value column of Protein Data Bank
(PDB) formatted protein structure files, across a number of user-selected, structurally aligned proteins.

2. Materials and Methods

2.1. Selecting GPCR Structures

Diverse class A GPCR structures in the Protein Data Bank (PDB; https://www.rcsb.org [18]) were
selected for analysis, following these criteria: resolution of 2.9 Å or better, to ensure well-defined
atomic positions and identification of appropriate non-covalent interactions; and no pairs of structures
within the active or inactive sets with 80% or higher sequence identity, with the exception of PDB
entries 2YDV and 3QAK, which are bound to significantly different ligands (Table 1). When possible,
the same GPCR was represented by a structure bound to both an activating/agonist ligand and an
inhibitory/antagonist ligand (as defined by the crystallographers). The resulting 18 inhibitor-bound
GPCRs and 9 activator-bound GPCRs appear in Table 1, with the ligand, resolution, and R-factor
(R value) data for each entry. Crystallographic R values measure the percentage difference in electron
density when the data gathered from the diffraction experiment are overlaid with the electron density
calculated from the atomic model that was fit into the electron density by the crystallographer, based on
the known number of electrons associated with each atom type. A problem with this R(work) definition
for assessing structural quality is that the refinement software used in structure determination is often
designed to improve the fit between the model and the experimental electron density, which improves
(lowers) the R(work) value but introduces bias. The R(free) value is used as a less biased measure of
structural agreement between the fitted structural model and the electron density data. To calculate
R(free), 10% of the experimental observations are removed from the dataset before refinement, and
the refinement is then carried out with the remaining 90%. The R(free) value, also reflecting the
percent difference in electron density between the experimental data and fitted model, is measured by
comparing the electron density of the model fitted and refined to the 90% dataset with the experimental
electron density calculated from the held-out 10% of the data. For an ideal structure, the R(free) value
is close to the R(work) value, although typically it is higher. Lower values for both R(free) and R(work)
are more favorable, showing greater agreement between the experimental data and the structure
(https://pdb101.rcsb.org/learn/guide-to-understanding-pdb-data/r-value-and-r-free).

https://github.com/psa-lab/Protein-Alignment-Tool
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Table 1. Crystal structures of inactive and active ligand-bound GPCRs analyzed. Ligands were removed prior to ProFlex analysis to focus on protein flexibility
changes in inactive versus active proteins. See Section 2.1 for definitions of R(free) and R(work).

PDB ID Activity * Chain Structure Description Ligand Name Organism Resolution (Å) R(free) R(work)

2VT4 0 A Beta1 adrenergic receptor
4-{[(2s)-3-(Tert-butylamino)-2-

hydroxypropyl]oxy}-
3h-indole-2-carbonitrile

Meleagris
gallopavo 2.7 0.27 0.21

3ODU 0 A CXCR4 chemokine receptor
(6,6-Dimethyl-5,6-dihydro-

imidazo[2,1-b][1,3]thiazol-3-yl)methyl
n,n’-dicyclohexylimidothiocarbamate

Homo sapiens 2.5 0.28 0.24

3V2Y 0 A Lyso-phospholipid sphingosine
1-phosphate receptor

{(3r)-3-Amino-4-[(3-hexylphenyl)amino]-
4-oxobutyl}phosphonic acid Homo sapiens 2.8 0.27 0.23

3VW7 0 A Human protease-activated
receptor 1 (PAR1)

Ethyl [(1r,3ar,4ar,6r,8ar,9s,9as)-9-{(e)-
2-[5-(3-fluorophenyl)pyridin-2-yl]-

ethenyl}-1-methyl-3-oxododecahydro-naphtho[2,3-
c]furan-6-yl]carbamate

Homo sapiens 2.2 0.24 0.22

3EML 0 A A2A adenosine receptor 4-{2-[(7-Amino-2-furan-2-yl[1,2,4]tria-
zolo[1,5-a][1,3,5]triazin-5-yl)amino]ethyl}phenol Homo sapiens 2.6 0.23 0.20

2RH1 0 A Beta2-adrenergic receptor (2s)-1-(9h-Carbazol-4-yloxy)-
3-(isopropylamino)propan-2-ol Homo sapiens 2.4 0.23 0.20

1GZM 0 A Bovine rhodopsin retinal Bos taurus 2.6 0.24 0.20

4DKL 0 A Mu-opioid receptor
Methyl 4-{[(5beta,6alpha)-17-(cyclopropylmethyl)-

3,14-dihydroxy-4,5-epoxymorphinan-
6-yl]amino}-4-oxobutanoate

Mus musculus 2.8 0.28 0.23

3PBL 0 A Dopamine D3 receptor Eticlopride Homo sapiens 2.9 0.27 0.24

4DJH 0 A Kappa opioid receptor JDTic Homo sapiens 2.9 0.27 0.23

4MBS 0 A CCR5 chemokine receptor Maraviroc Homo sapiens 2.7 0.26 0.22

4S0V 0 A OX2 orexin receptor Suvorexant Homo sapiens 2.5 0.24 0.20

4U15 0 A M3 muscarinic receptor Tiotropium Rattus
norvegicus 2.8 0.26 0.23

4XNW 0 A Purinergic receptor P2Y1 MRS2500 Homo sapiens 2.7 0.27 0.22

4YAY 0 A Angiotensin receptor ZD7155 Homo sapiens 2.9 0.27 0.23

4Z35 0 A Lysophosphatidic acid receptor 1 ONO-9910539 Homo sapiens 2.9 0.27 0.28

5CXV 0 A M1 muscarinic acetylcholine
receptor Tiotropium Homo sapiens 2.7 0.28 0.23
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Table 1. Cont.

PDB ID Activity * Chain Structure Description Ligand Name Organism Resolution (Å) R(free) R(work)

5T1A 0 A CC chemokine receptor 2 (CCR2) BMS-681 Homo sapiens 2.8 0.27 0.23

3QAK 1 A A2A adenosine receptor

6-(2,2-Diphenylethylamino)-
9-[(2r,3r,4s,5s)-5-

(ethylcarbamoyl)-3,4-dihydroxy-oxolan-2-yl]-
n-[2-[(1-pyridin-2-ylpiperidin-

4-yl)carbamoylamino]ethyl]purine-
2-carboxamide

Homo sapiens 2.7 0.27 0.22

4IAR 1 A 5-HT1b Ergotamine Homo sapiens 2.7 0.26 0.22

4PXZ 1 A Purinergic receptor P2Y12 receptor 2-(Methylsulfanyl)adenosine 5’-
(trihydrogen diphosphate) Homo sapiens 2.5 0.23 0.20

2YDV 1 A A2A receptor n-Ethyl-5’-carboxamido adenosine Homo sapiens 2.6 0.26 0.23

3PQR 1 A Metarhodopsin II retinal Bos taurus 2.8 0.25 0.22

5C1M 1 A Mu-opioid receptor

(2s,3s,3ar,5ar,6r,11br,11cs)-3a-Methoxy-3,14
-dimethyl-2-phenyl-2,3,3a,6,7,11c-hexahydro-

1h-6,11b-(epiminoethano)-
3,5a-methanonaphtho[2,1-g]indol-10-ol

Mus musculus 2.1 0.22 0.19

4XES 1 A Neurotensin receptor Neurotensin chain B Rattus
norvegicus 2.6 0.28 0.23

5GLH 1 A Endothelin receptor type B Endothelin-1 peptide chain B Homo sapiens 2.8 0.28 0.23

5TVN 1 A 5-HT2b receptor LSD Homo sapiens 2.9 0.26 0.21

* 1 = active; 0 = inactive.
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2.2. Defining Regions in GPCR Structures for Machine Learning

While ProFlex groups atoms that are flexible (or rigid) according to the natural partitioning of
degrees of freedom in the protein chain following constraint-counting of covalent and non-covalent
interactions in the bond network, machine learning with feature selection requires features that
are consistently defined across the analyzed proteins. A natural feature representation, given the
goal of identifying flexibility motifs in the protein associated with active or inactive states, is to
segment the GPCR structures into small regions (Figure 1), and report the degree of flexibility in each
region following ProFlex assessment. Accordingly, the extracellular (ECL) and intracellular (ICL)
loops and canonical transmembrane helices (H1-H7) and C-terminal intracellular helix (H8) were
numbered sequentially from the N-terminus to C-terminus, and then tabulated for each of the 27 protein
structures. Each transmembrane helix was further segmented into three parts: the segment closest to
the extracellular surface (e.g., H1.1 for helix 1), the most membrane-buried segment (H1.2), and the
segment closest to the intracellular surface of the membrane (H1.3). This tripartite segmentation for
transmembrane helices is based on prior observations that the extracellular, interior, and intracellular
segments of transmembrane segments have different amino acid sequence attributes, and therefore
it can be advantageous for structural predictions to consider the regions separately [19,20]. Figure 1
shows the resulting 29 segments considered in each GPCR structure (H1.1, H1.2, H1.3, ICL1, etc.) along
with activity switch regions that have been characterized in class A GPCRs (the ionic lock, transmission
switch, and tyrosine toggle; reviewed in [14]). The first extracellular loop in the GPCRs, preceding H1,
was not included in the analysis. Its length and structure vary enormously across GPCRs, and this
loop is often removed or altered in protein constructs prior to crystallization or fails to yield reliable
atomic coordinates due to high mobility.

Figure 1. Class A GPCR architecture, partitioned into segments for machine learning analysis.
Extracellular loops are labeled ECL1, ECL2, and ECL3 from N-terminus to C-terminus, and the
intracellular loops are labeled ICL1, ICL2, and ICL3. Each transmembrane helix is divided into three
segments, extracellular, interior, and intracellular, and indexed first by the helix number, e.g., H1,
and then by the segment of helix from N-terminus to C-terminus. For instance, H1.2 is the second
(interior) segment of helix 1. Helix 8, which is intracellular and shorter, was divided into two segments.
Previously characterized activity switch regions and their key amino acid residues in GPCRs—the ionic
lock, transmission switch, and tyrosine toggle—are also annotated [14]. The residues shown are those
found in human CXCR4 (PDB entry 3ODU).
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2.3. Performing and Interpreting ProFlex Analysis

To prepare PDB structures for ProFlex analysis, water molecule and hydrogen atom positions
(which are absent or variably assigned between structures) and any ANISOU data records were
removed. (These records encode anisotropic mobility data, with the same atomic coordinates repeated
for the x, y, and z directions of motion; repeated atomic coordinates would be misinterpreted as
new atoms by the software.) All ligands, as well as protein chains not relevant to the biological
state of the protein (e.g., antibodies used to aid in crystallization), were removed before ProFlex
analysis (v 5.2; https://github.com/psa-lab/proflex [8,11]). Hydrogen atom positions were then added
consistently to all structures, in optimal orientations for hydrogen bonding, using the OptHyd
method in the molecular mechanics package YASARA Structure (v 16.4.6; http://www.yasara.org [21]).
Hydrogen atom positions may alternatively be assigned using other molecular mechanics software
or Reduce (https://github.com/rlabduke/reduce). ProFlex was run as defined in the SiteInterlock
protocol (https://github.com/psa-lab/siteinterlock with detailed documentation at https://psa-lab.
github.io/siteinterlock/index.html [22]), without the ligand conformational search and docking steps
preceding ProFlex, as the GPCR structures were analyzed without ligands. An appropriate hydrogen
bond energy cut-off for ProFlex flexibility/rigidity analysis, defined by the HETHER routine (https:
//github.com/psa-lab/siteinterlock/blob/master/ scripts/proflex_hether.py) in the SiteInterlock protocol,
was option C, the energy closest to (but less than) the level at which 70% of the protein residues
were rigid.

Homology models for GPCRs contribute importantly to the field, given the difficulty of preparing
native-like, pure membrane proteins for experimental structural determination. However, in past work,
we noted that homology modeling does not always provide precise enough locations for the donor and
acceptor atoms of hydrogen bonds, resulting in fewer identified bonds and underconstrained, overly
flexible results from ProFlex. However, other aspects of a protein structure that are less dependent on
positional resolution, such as the spatial location of different amino acid types and their clustering
in protein structures, could also be good predictors of sites important for protein activation. Such
alternative types of data as features can be used and tested as predictors with the same machine
learning approach.

Aside from the structural resolution caveat, there is no fundamental limitation to the application
of this ProFlex machine learning method to any protein family for which 3D structures and at least
one known active case and one inactive case are available. That said, we would not advise mixing
GPCRs from different families together, because the structures between GPCR families differ, as do
their molecular partners and mechanisms of activation (especially for GPCRs that bind ligands in an
extracellular domain). In different GPCR families, a different set of features may be key to activation.
They can be unveiled by the machine learning feature selection approach described in Section 2.4.,
when trained on that particular family. Another aspect that can vary from family to family is whether
the automatically chosen ProFlex energy level (HETHER option C, mentioned above) is appropriate
for that particular family. This can be assessed most readily by a user who is knowledgeable about the
protein family, by inputting to ProFlex a well-characterized active structure, then a well-characterized
inactive structure, and visually identifying the energy level in the two ProFlex hydrogen bond dilution
profiles (e.g., Figure 2A) that best identifies the known (literature-described) flexibility features that
differ between the active and inactive states. Once that energy level is established, ideally by evaluating
more than one protein in the family, it can be used as the ProFlex energy threshold for predicting
the active/inactive state of other family members. Because known exemplars of active and inactive
states are used by the k-nearest neighbor (KNN) classifier as the basis for predicting the activity of new
structures, including more known examples may also improve the predictive accuracy.

The interplay between ProFlex and the KNN classifier used for prediction (Figure 2) begins with
the hydrogen bond dilution (HBdilute) results from ProFlex. ProFlex includes all the hydrophobic and
hydrogen bond interactions it detects in the protein structure using stringent geometric criteria [11].
The topmost data record (line) in the HBdilute results for PDB entry 2RH1, human β2-adrenergic G

https://github.com/psa-lab/proflex
http://www.yasara.org
https://github.com/rlabduke/reduce
https://github.com/psa-lab/siteinterlock
https://psa-lab.github.io/siteinterlock/index.html
https://psa-lab.github.io/siteinterlock/index.html
https://github.com/psa-lab/siteinterlock/blob/master/
https://github.com/psa-lab/siteinterlock/blob/master/
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protein-coupled receptor (Figure 2A), shows the rigid regions (colored bars) and flexible regions (black
lines) in the protein, from N-terminus to C-terminus, labeled by residue number along the top. The
red bars indicate residues contributing to the largest rigid region in the protein, which at this energy
level includes most of the structure except for a loop in the second half of the sequence, encompassing
residues 231–265.

Using the HBdilute option, ProFlex then proceeds to analyze the protein at increasing hydrogen
bond energy levels, mimicking the process of gradually heating the protein and observing how the
energy-dependent hydrogen bonds break, one by one. Hydrophobic interactions, on the other hand,
remain or tend to become stronger with moderate increases in energy [23]. Each time the breakage of a
hydrogen bond dilutes the constraint network sufficiently that part of the protein becomes flexible
(which ProFlex assesses quantitatively, using rigidity theory), a new line showing rigid and flexible
regions is written in the HBdilute output (which is also provided in text format). Each new, separately
rigid region appears as a bar in a different color (green, dark blue, light blue, and orange, in this case).
The H-bond energy level for each line appears in kcal/mol in the second column from the left, with all
hydrogen bonds in the current bond network being at least as strong as (equally or more negative than)
this energy. The donor and acceptor atoms of the H-bond that was most recently broken are reported
at the end each line. As a whole, the hydrogen bond dilution profile for a protein can be viewed as a
profile of structural rigidity and flexibility from lowest energy (top line) to highest energy (bottom line),
and used to identify the most persistently rigid or structurally stable regions in the protein, as well as
how flexibility evolves in regions of the protein with increasing energy. Coupling information can
also be derived from this output for the rigid region. For instance, helices H2, H3, H5, H6, and H7 all
participate in one rigid cluster (red region) at the energy at which their helix labels appear in the center
of Figure 2A, whereas H1 and H4 at that energy are separately rigid (green and light blue bars) and H8
has become almost entirely flexible (black line).

Figure 2. Schematic of how: (A) ProFlex results for a GPCR correspond to (B) a three-dimensional
structural representation of flexibility/rigidity; (C) these flexibility/rigidity features are tabulated as
discrete features for machine learning; and (D) a KNN classifier is employed with the features for
activity prediction.
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For the flexibility/rigidity analysis of all GPCRs, the highest (most negative) energy was chosen at
which 70% or more of the residues were part of a rigid region. This 70% rigid level corresponds to
a native-like state in which most GPCR helices and parts of the loops typically contribute to a large
scaffold-like rigid region (l), with one or more of the helices and loops becoming separately rigid
(s) or flexible (f). This energy level for β2-adrenergic receptor is indicated in Figure 2A by the helix
labels H1, H2, H3, etc., appearing on the corresponding hydrogen bond dilution line. Figure 2B shows
how the rigid regions at this energy level map onto the three-dimensional structure of β2-adrenergic
receptor. The largest rigid region (red ribbon) is comprised by helix 2, helix 3, most of helix 5, and an
extracellular short helix (top of figure, residues 177–187, not assigned a helix number since this helix is
absent in other GPCRs) that is part of the mostly rigid loop connecting helices 4 and 5. Separately rigid
regions appear in helix 1 (green ribbon) and helix 4 (light blue ribbon), and the position of the bound
ligand (not included in ProFlex analysis) is indicated by the narrow tubes in green (carbon atoms),
blue (nitrogen atoms), and red (oxygen atoms) behind the extracellular (upper part) of helices 3 and 4.
Regions appearing in light grey in the structure are flexible at this energy level, corresponding to the
horizontal black-lined regions in Figure 2A.

2.4. Machine Learning with ProFlex Features

To identify characteristic flexibility features and avoid overfitting when predicting protein activity,
we focused on identifying the subset of features most likely to contain useful information (Figure 3).
This was done in two ways. A profile of the frequency at which each segment (e.g., H1.1) was observed
by ProFlex to be flexible, separately rigid, or part of the largest rigid region in active versus inactive
structures (see Section 3) was used to identify features (e.g., ECL1l) with significant differences in
prevalence (at least 25%) between active and inactive GPCRs. Those features showing the greatest
difference in prevalence between active and inactive structures were considered sensitive features.
As a second approach, feature selection algorithms were used to identify a subset of features showing
the greatest discrimination between active and inactive proteins. Here, the term feature refers to the
flexibility/rigidity state of each of the 29 segments in each GPCR structure. To identify useful feature
subsets, we employed sequential feature selection (SFS) followed by exhaustive feature selection [24,25].

Figure 3. Flowchart of how ProFlex and machine learning are used to identify features that predict the
active/inactive state of GPCRs from their distribution of flexible and rigid regions.

Exhaustive feature selection (EFS) evaluates all possible feature subsets that can be created from
the original set (87 features). When evaluating all feature subsets, the goal is to select the one that
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maximizes a user-specified performance criterion, for example, the accuracy of a classification model
trained to predict active/inactive protein structures. While this approach is guaranteed to find the
optimal feature subset, it is computationally intractable due to the large number of feature subsets to
be considered, unless the initial feature set is small. Even for small feature sets, the number of subsets
can be prohibitively large. For example, the number of possible feature subsets of size 8 that can be
created from a set of 29 features is more than 3 million (3,108,105).

Similar to EFS, sequential feature selection (SFS) reduces the original d-dimensional feature space
to a k-dimensional feature subspace, where k < d. By contrast, SFS is a greedy search paradigm that
constructs feature sets in an iterative fashion guaranteed to only improve the quality of prediction,
but it does not evaluate every possible feature set. SFS is a computationally manageable alternative
to EFS, and in our case was used as a feature-filtering step prior to EFS. This approach reduces the
feature space to focus on features with the most predictive power. SFS exists in two modes, forward
and backward SFS [25]. Backward mode SFS (Figure 4) removes features from the original feature
set in an iterative fashion until the new, smaller feature subspace contains a user-specified number
of features. In each iteration of the selection algorithm, an objective function is to be optimized. For
instance, the objective function is commonly defined as minimizing the performance difference of a
predictive model before and after removing a specific feature. In each round, backward-mode SFS
eliminates the feature that causes the least performance loss upon removal [24].

Figure 4. Illustration of backward sequential feature selection for identifying feature subsets that
maximize the performance of a predictive model. In this study, the candidate feature subsets
were evaluated by using leave-one-out cross-validation and the out-of-bag bootstrap method with a
three-nearest neighbor classifier. The classifier accuracy in predicting active/inactive cases in the GPCR
held-out test data was used to evaluate each feature subset, as detailed in Table 2.
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Similar to backward mode SFS, forward mode SFS creates a feature subset of a user-specified size
from the original set. Forward mode SFS starts with an empty feature set, adding one feature at a time
(the feature resulting in highest predictive accuracy) until the feature set reaches a user-specified size,
m, which is smaller than the number of features available for selection (e.g., the 87 flexibility values for
structural segments in each GPCR). Since forward mode SFS starts with an empty feature set with
features added one at a time, m iterations are necessary to obtain a feature subset of size m. In each
iteration of forward mode SFS, the only features added to the training set are ones that were not added
in prior iterations.

In addition, so-called floating versions of forward and backward mode SFS can explore a larger
portion of the space of all possible feature subsets compared to SFS while still being computationally
tractable [25]. In contrast to backward mode SFS, floating backward mode selection allows an already
removed feature to be added back at a later iteration, if it improves the predictive performance of a
classifier trained on this subset. Similarly, in floating forward selection, a feature that was previously
added may be removed if this results in improved predictive accuracy.

To evaluate the performance of different feature subsets, a k-nearest neighbor (KNN) classifier,
implemented using Scikit-learn’s KNeighborsClassifier model [13], was used in conjunction with
leave-one-out cross-validation (LOOCV). In LOOCV, the classification model is applied n times to
the each of the left-out test cases being predicted, and each training set consists of the remaining n-1
cases. In other words, of the 27 GPCRs, one is left out as the test case to be predicted by the KNN
classifier, and the feature values and known active/inactive state of the other 26 GPCRs are used to
train the KNN classifier, as shown in Figure 2. In each round, the model predicts whether the left-out
case (represented by one GPCR feature set) corresponds to an active or inactive structure based on
its nearest neighbors (feature sets plotted as points with activity labels) from the 27 GPCRs in the
training set.

An example of using training set feature values as input to the KNN classifier appears in Figure 2C,
where GPCR X is the new GPCR (or left-out training case) for which the active or inactive state is to be
predicted. In the KNN classifier, the values of features for the training set cases are plotted on axes in a
multi-dimensional space (up to eight dimensions, for up to eight features). In Figure 2D, a subset of
three key features, H5.1l, H2.2s, and H3.1f, is being tested to predict activity. The corresponding feature
values for each GPCR in the training set are plotted in this three-dimensional space. 2RH1, 3EML,
and 2V2Y are plotted as values (1, 0, 0), corresponding to H5.1 being part of the largest rigid region,
H2.2 not being a separate rigid region, and H3.1 not being flexible. These three proteins are all known
members of the inactive class, in this two-class problem where a GPCR structure is defined as either
active or inactive. Two known-active GPCRs, 3PQR and 2YDV, are plotted with their values (1, 0, 1).
5GLH, also active, is plotted with its (0, 1, 1) value, and the test case, GPCR X, is then plotted according
to its feature values. The KNN classifier considers the k nearest training set neighbors of the test case,
GPCR X, in this feature space, by computing the Jaccard similarity coefficient to measure nearness.
The KNN classifier then predicts the class of GPCR X based on whether active or inactive training
examples dominate as its nearest neighbors. Generally, an odd number of neighbors (odd k values) is
considered to avoid the possibility of an equal number of neighbors from the two classes (to avoid
tie-breaking schemes), and a series of different k values are tested. Class imbalance—the fact that more
inactive GPCR structures than active GPCRs are available for training—must be addressed by the
classifier in the choice of discriminatory features and an optimal k value; this is generally better than
pruning examples from the training set, which loses useful information. The effect of class imbalance is
considered again in the Results, in terms of the enhancement of predictive accuracy of the best feature
sets relative to a dummy classifier, which simply predicts that all test cases match the dominant class
in the training set (inactive).

After obtaining n predictions on the held-out data points in LOOCV for a given feature subset,
the predictive accuracy for that set of features is computed as the percentage of predictions that were
correct. Predictive accuracy was also measured by bootstrap cross-validation. For each bootstrap
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iteration for the 27 GPCR cases in the dataset, a random sample of 27 structures was selected from
the GPCR dataset with replacement (meaning that a structure could be selected at random more than
once). Every GPCR not in this training set was assigned to the out-of-bag test set. This bootstrap process,
defining training and test sets for use with the selected feature set for KNN classification, was iterated
10,000 times, allowing the calculation of mean accuracy and standard error values. The most accurate
feature sets and their leave-one-out and bootstrap accuracy statistics are summarized in Section 3.2.

Finally, the key features, meaning the superset of the SFS best-predictor feature sets from above,
plus the features selected based on exhibiting at least 25% difference in prevalence between active
and inactive GPCRs, were input to exhaustive feature selection. EFS enumerated all subsets of up to
eight key features as input to the KNN classifier, to predict whether each GPCR was active or inactive
(Figure 3, Step 4). Including more than eight features did not enhance prediction, consistent with
the general statistical observation that overfitting is more likely to occur as the number of features
approaches the number of cases being analyzed (27 in this study).

The general exhaustive and sequential feature selection methods outlined in this section can be
combined with any machine learning algorithm for classification, and the specific MLxtend software
implementation of SFS and EFS used in this study is compatible with any classifier implemented in
Scikit-learn. We repeated the steps outlined in this section using generalized linear models such as
logistic regression and a linear support vector machine (SVM) instead of KNN. Both logistic regression
and linear SVM resulted in feature subsets with lower predictive performance compared with the
KNN classifier, which is likely due to the linear models’ inability to capture the complex relationship
between the input features and the class labels. A nonlinear radial basis function (RBF) kernel SVM
was not considered in this study, as it requires extensive hyperparameter tuning and is thus prone
to overfitting on a small dataset such as ours. Finally, we chose and focused on KNN as the primary
classifier for this study, because it does not require extensive hyperparameter tuning and remains
interpretable; for instance, predictions for new structures can be analyzed by querying and analyzing
its nearest-neighbor structures in the existing dataset.

2.5. Comparing GPCR Regions and Numeric Properties with Alignment Visualization Tools

A challenge for GPCRs and many other protein families, given the evolutionary and functional
diversity of sequences now available, is to identify which amino acid residues correspond between
binding sites (or other regions of interest) when two sequences are homologous but cannot be aligned
precisely (especially in less-conserved regions) by sequence similarity. This problem is easier to address
for proteins with known three-dimensional structures, as considered here, because robust structural
alignment tools such as Dali (http://ekhidna2.biocenter.helsinki.fi/dali/ [17]) are able to define which
protein segments overlay significantly in 3D structure by comparing inter-alpha-carbon distance
matrices rather than the amino acid sequences. The significance of the Dali structural alignment can be
evaluated by its Z-score, measuring the number of standard deviations this alignment scores above a
random structural alignment, taking into account the length and closeness of alpha-carbon overlay.
Significant similarities have Z-scores above 2 and usually correspond to similar protein folds. From
the resulting Dali structural alignment, the alignment of residues of interest to the user can be inferred.

Two software utilities for highlighting sequence features of user interest, especially for proteins
with regions of low sequence identity, have been developed in this work. These tools, BAT and
BRAT (for B-value (Residue) Alignment Tool), are documented and available via GitHub (https:
//github.com/psa-lab/Protein-Alignment-Tool). As summarized in Figure 5, BRAT facilitates identifying
and visualizing the correspondence between sequence segments of interest to the user (such as
ligand-binding residues or extracellular loop regions) and residue numbers in one protein when
aligned with a possibly sequence-divergent homolog, by using Dali structural superposition as
input. BRAT alignment is written in HTML format suitable for publication or presentation, or
comma-separated value (CSV) format suitable for further analysis, using single letter codes for the
residues, with residue numbers labeled, and user-defined key residues highlighted. BRAT also supports

http://ekhidna2.biocenter.helsinki.fi/dali/
https://github.com/psa-lab/Protein-Alignment-Tool
https://github.com/psa-lab/Protein-Alignment-Tool
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automated definition of key residues based on the distance between residues and a user-specified
ligand. The related BAT utility aligns and visualizes the temperature factor values (B-values) or other
numeric properties recorded in the B-value column of PDB-formatted structure files, across two or more
user-selected, Dali structurally aligned proteins. BAT writes the output of residues and correspondingly
aligned B-values in CSV format, which can be read and analyzed further by spreadsheet tools such
as Excel. These approaches provide more robust comparison between corresponding regions than a
sequence-based approach for divergent sequences, such as the ligand binding sites or loop regions
in GPCRs.

Figure 5. Comparison of the BRAT and BAT tools for annotating structure-based sequence alignment
according to key residues (BRAT) or numeric property values from the B-value column of the PDB
structure files (BAT).

A meaningful comparison between key regions in two proteins (e.g., ligand binding or allosteric
pathway residues) depends upon a reliable alignment of their protein sequences, rather than requiring
3D structures. For the present work, we focused on structure-based alignments because they allow
definition of a clear correspondence between residues in protein regions where the sequence similarity
is too low to allow confident sequence alignment. The helpfulness of structure-based alignment is
particularly clear for the ligand binding sites of different class A GPCRs, which bind remarkably
diverse ligands and therefore are not well conserved in sequence, while being substantially conserved
in 3D structure. Structural alignment can define which residues between two proteins occur in the
same position in the structure (or not). Sequence alignment methods that align one sequence to a
multiple sequence alignment for the protein family, where the constituent sequences are chosen to
reflect the protein’s evolutionary diversity, can partially address the challenge of aligning divergent
sequences. This is because multiple sequence alignments containing many evolutionarily related
sequences implicitly include information about the tolerance for different amino acid mutations and
insertions or deletions at each position, which allows the alignment method to knowledgeably penalize
for the presence of improbable residues or insertions or deletions at each position. For low-identity
regions, it is still important to evaluate a local measure of the likelihood that each region of the
sequence is correctly aligned before considering the residues in the proteins to be equivalent. Once
such an alignment is available from any robust approach, formatting it as a standard Dali input (see
documentation under https://github.com/psa-lab/Protein-Alignment-Tool) will allow BRAT and BAT
to run successfully.

https://github.com/psa-lab/Protein-Alignment-Tool
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3. Results and Discussion

3.1. Identifying Key Flexibility Features for Predicting Activity

The frequency at which each structural segment occurs in a ProFlex-determined flexible, separately
rigid, or largest rigid region in active versus inactive GPCR structures appears in Figure 6. Sensitive
features to evaluate for predicting activity were derived from this profile, based on their large differences
in frequency of occurrence between active (solid lines) and inactive structures (dashed lines). If two
flexibility categories for a given segment (e.g., ECL2l and ECL2f) both showed large differences in
frequency between active and inactive structures, the feature with the larger difference was selected as
the sensitive feature. Features exhibiting a difference of 25-30% between active and inactive structures
were ECL1l, H6.1s, and H8.2s. Features H1.3s, H3.1f, ECL2l, H5.1l, and H7.2l all differed between
active and inactive cases by 30-40%, while H7.1l differed by 44%. H2.1s and H2.2s were the most
discriminatory features, exhibiting 50-55% difference between active and inactive structures. Additional
features selected by the forward or backward sequential feature selectors as most discriminatory
between active and non-active cases were: H1.2f, ICL1f, H2.1f, H3.3f, ICL2f, H4.1l, H5.2f, H6.1f, and
H7.3s; and H2.3s, H2.1l, ECL1f, H1.3l, and H2.2s.

Figure 6. Average rigidity profiles of GPCR structures by protein segment and activity. There were 9
active structures and 18 inactive structures used for these average profiles. The occurrence values of
the three rigidity assignments (f, l, and s) for active (or inactive) structures in each segment (e.g., H1.1)
sum to 1.0 (100%).

3.2. Accurate Classification of GPCR Activity Based on the Flexibility of Key Regions

The top-performing four feature sets for predicting the activity of GPCRs in KNN classifier
cross-validation appear in Table 2. Interestingly, a subset of four flexibility features, H2.2s, ECL1l,
H3.1f, and H5.1l, were common to the top four feature-based predictors (96.3% leave-one-out and
79.6% bootstrap accuracy; top line in Table 2). Predictive accuracy was enhanced slightly by adding
two features, H2.1s and H6.1f (second line in Table 2), to the above four. Figure 7 visualizes the spatial
relationships between the top four structural flexibility features in a class A GPCR, β2-adrenergic
receptor, where they were found to surround the ligand binding site.
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Table 2. Accuracy of the highest-performing feature sets upon KNN classifier assignment of active or
inactive state from leave-one-out and bootstrap testing on subsets of 27 GPCR structures.

Feature Set Leave One Out Accuracy Bootstrap Mean Accuracy Standard Error

ECL1l, H2.2s, H3.1f, H5.1l 96.3% 79.6% 14.0%

ECL1l, H2.1s, H2.2s, H3.1f, H5.1l, H6.1f 96.3% 81.7% 12.6%

ECL1l, H2.2l, H2.2s, H3.1f, H5.1l, H6.1f 96.3% 81.1% 12.5%

ECL1, H2.1l, H2.2s, H3.1f, H5.1l, H6.1f 96.3% 80.8% 12.5%

Dummy classifier: always predicts inactive 66.6% 60.4% 15.5%

3.3. Patterns of Flexibility and Correlation between Activity-Predicting Features

The features ECL1l and H5.1l were most important for predicting inactive states, followed by
H6.1f, based on their enhanced occurrence in inactive GPCRs. On the other hand, active GPCRs were
associated with greater flexibility in the key regions, specifically the presence of H3.1f, H2.1s, and
H2.2s; these three features were never observed in the inactive GPCRs. While up to eight features
were included in the feature sets sampled exhaustively as input to the classifier, none of the top
predictors included more than six features. The best-performing feature-based classifiers (Table 2)
were well-balanced between features associated with active states versus inactive states. A dummy
classifier that always predicted structures as inactive (comprising the dominant class, 18 of the 27
GPCR structures) was used to assess the gain in accuracy from using sensitive feature selection plus
SFS with the KNN classifier. Table 2 indicates that the best feature-selection predictors yielded 30%
higher leave-one-out predictive accuracy and 21% higher bootstrap accuracy than the dummy classifier
(bottom line), while also having 3% less variability in bootstrap accuracy (as measured by standard
error).

How can these concepts and methods be applied to an individual GPCR, to help define residues
that contribute to activation or inactivation? Here, we focus on one of the best-studied GPCRs,
rhodopsin, given structures of its inactive (PDB entry 1GZM) and active (PDB entry 3PQR) states. Of
the six key flexibility features identified here across class A GPCRs, two differ significantly between
inactive and active rhodopsin states. ProFlex results show that the H2.1 region (the cytoplasmic third
of helix 2) is part of the largest rigid region in inactive rhodopsin (known as opsin), while its initial
residues are flexible in the active form. Secondly, the H6.1 region (the cytoplasmic third of helix 6)
is separately rigid in opsin, while being flexible in active rhodopsin. These flexibility changes are
consistent with the trend of key regions in class A GPCRs, as a whole, to contribute to the largest rigid
region (the protein scaffold) in the inactive state while exhibiting increased flexibility and uncoupling
to other regions of the protein in the active state (Figure 7). How do the ProFlex results compare with
experiments characterizing the rhodopsin transition between inactive and active forms? H6.1 includes
the ionic lock residue E247, which forms a salt bridge with R135 in opsin but not in active rhodopsin.
The loss of the ionic lock interaction is consistent with the ProFlex observation of increased flexibility
in H6.1 upon activation. Secondly, the cytoplasmic end of helix 6 (H6.1) is observed to hinge towards
helix 5 when comparing the active and inactive structures [26], which is consistent with the increased
flexibility of H6.1 found by ProFlex in the active state. Narrowing down the most important protein
flexibility transition sites for activation from the plethora of conformational changes observed between
crystal structures is a valuable application for ProFlex machine learning. This can suggest a much more
focused set of experiments—to test H6.1 hinge residues, for instance—as well as indicating which
flexibility transitions are shared with other class A GPCRs.

We also asked: To what extent were the most predictive flexibility features correlated? For
instance, when ECL1 was observed to be part of the largest rigid region (resulting in feature ECL1l),
was adjacent H3.1 flexible (H3.1f) or not? Correlation analysis can help us understand whether the
flexibility features work together or are relatively independent in influencing GPCR activity. To address
this, Figure 8 shows pairwise correlation of the six features in the most accurate predictor (Table 2).
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The only highly correlated features were H2.1s and H2.2s; in structures where the N-terminal segment
of helix 2 is separately rigid (in the H2.1s state), the central segment of helix also tends to be separately
rigid (H2.2s), with a correlation coefficient of 0.78. Seventy percent of the H2.1s and H2.2s occurrences
are in active GPCRs. All other feature pairs in Figure 8 have absolute correlation values less than 0.45.
Thus, most predictive features behave fairly independently of each other, while together being good
predictors of an active or inactive GPCR state.

Figure 7. The four GPCR regions whose flexibility allows the most discrimination between active
and inactive structures are highlighted in yellow; the remainder of the largest rigid region in human
β2-adrenergic receptor (PDB entry 2RH1) appears in red, with two separately rigid regions in green
and light blue ribbons (based on the data in Figure 2). The H2.2, ECL1, H3.1, and H5.1 segments
colocalize around the ligand site, which in this case hosts the blood pressure-reducing beta-blocker,
carazolol. The extracellular side of the GPCR is at the top. Trends in flexibility/rigidity of these four
regions between active and inactive structures across all 27 GPCRs are annotated.
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Figure 8. Pairwise Mathews correlation coefficient values [27] between the six features resulting in the
highest-accuracy GPCR activity prediction. Absolute values near 1 reflect high correlation (e.g., feature
1 always present when feature 2 is present), values near 0 reflect a random relationship between the
features, and values near -1 reflect anticorrelation (e.g., feature 1 is present when feature 2 is absent).
The coloring emphasizes high correlation values in red. Decreasing correlation values are highlighted
in aqua (0.3–0.5), blue (0.2–0.3), dark blue (0.1–0.2), and white (~0).

3.4. Comparison with a Crystallographic Measure of Flexibility for Active and Inactive GPCRs

We then evaluated whether crystallographic thermal mobility (B-value) data present in PDB files
could provide an alternative way of identifying regions that differ significantly in flexibility between
active and inactive GPCRs. Figure 9 shows the B-value traces for a representative sample of three active
and three inactive GPCRs; including traces for more structures made it difficult to visualize trends.
In the inactive structures, two of the three (2VT4 and 3ODU) have similar, almost overlapping B-value
traces, whereas 2RH1 shows relatively low variation in B-values from N-terminus to C-terminus. The
pattern observed from the two similar inactive traces is that the loops ICL1, ICL2, ECL2, ICL3, and the
N- and C-termini of the proteins are more flexible than the helical regions, while ECL1 is more rigid
(consistent with ProFlex analysis). This is true of many protein structures, both membrane and soluble.
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Figure 9. Main-chain crystallographic B-values plotted for three active (dashed line) and three inactive
(solid line) class A GPCR structures. Helix, loop, and switch regions are indicated along the top of the
plot, with the ionic lock residues marked by blue diamonds, the transmission switch residues marked
by blue pentagons, and the tyrosine toggle region indicated by a blue circle. The structures were
aligned by Dali prior to B-value comparison and indexed sequentially from the N-terminus, to avoid
misalignment of structural features due to inconsistent residue numbering between GPCR structures.

When the active structures were analyzed, the three B-value traces (5C1M, 5GLH, and 3QAK)
had very different B-value scales. If this difference in B-value baseline was ignored and the regions of
variation within each protein were considered and compared, ICL1, ICL2, ECL3, the N- and C-termini,
and regions roughly corresponding to ECL1 and ICL3 were found to be more flexible than the rest of
the structure in at least 2 of the 3 active proteins. ECL2 was missing (had undefined coordinates) for all
three structures, likely indicative of very high mobility, and thus is a potentially useful signature of the
active state. However, the loop and N- and C-terminal high-mobility features were all in common
between active and inactive structures, aside from the relatively low B-values observed for ECL1 in
inactive states compared with a high B-value, flexible state within or preceding this loop in active
structures. Overall, it would be more difficult to predict activity-associated regions from B-values
because of their inconsistency in baseline magnitudes, and the limited variation observed within some
of the proteins. This is likely due to the crystals being held at different temperatures during data
collection, and the GPCRs packing differently in their crystal lattices (some more constrained than
others). Additionally, different methods were used for refining the structures, which can strongly affect
B-values. Another consideration is that B-values measure mobility of atoms around their average
coordinates. Thus, an internally rigid helix with a hinge at one end, which is able to freely swing like a
lever arm, can show large B-values at the swinging end of the helix and much smaller B-values near the
hinge. In contrast, ProFlex measures flexibility based on internal rotational degrees of freedom, rather
than the Cartesian representation of mobility used for B-values. ProFlex would therefore label the
hinged, swinging helix to be separately rigid rather than flexible. Another difference between B-values
and ProFlex evaluation of flexibility is that information on coordinated motion within flexible or rigid
regions is an automatic feature of ProFlex analysis, whereas inferring coupling information from
B-value data is computationally and memory-intensive, requiring principal component or essential
dynamics analysis.
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3.5. Using the BRAT and BAT Alignment Visualization Tools to Identify Corresponding Sites and Quantitative
Features from Structural Alignments of Sequence-Diverse Homologs

A challenge for working with a diverse set of homologs, such as the hundreds of GPCRs present
in humans, is to define corresponding regions such as ligand binding sites or flexibility motifs when
the sequences are too divergent to align confidently. For this purpose, we developed two Python
alignment visualization utilities (https://github.com/psa-lab/Protein-Alignment-Tool). The first is
BRAT, which starts with a Dali pairwise structural alignment and then highlights regions of user
interest, such as ligand binding residues, which can be defined by the user as residue ranges in a
reference structure (e.g., 2RH1), or as the set of residues within a user-defined distance X (in Å) of a
ligand atom (as computed by BRAT). The output is a BRAT-formatted pairwise sequence alignment in
either comma-separated value (CSV) or hypertext markup language (HTML) web-viewable format,
which the user can further edit/annotate and incorporate in publications and presentations. An example
of BRAT output (Figure 10) shows the signature of six flexibility features that enable prediction of
whether a GPCR is inactive or active.

BAT output (Table 3) is similar to that from BRAT, while allowing multiple proteins to be visualized
along with numeric values written by the PDB, or software such as ProFlex, in the B-value column of a
PDB file.

4. Conclusions

This work on a set of 27 class A GPCRs presents several advances in the field of protein activity
prediction that can enhance our understanding of how ligand binding affects activity:

• By providing a software approach not previously used to assess protein activity, ProFlex, that
predicts rigid and flexible regions and their coupling within a single protein structure. This makes
it unnecessary to compare protein structures, which may have a different underlying mechanism
of activation. In addition, it is unnecessary to provide user-defined hypotheses regarding regions
important for (in)activation. Such hypotheses can bias towards prior knowledge, and limit the
understanding of regions involved in activity.

Figure 10. BRAT alignment (HTML view) of the sequences from PDB entries 2RH1 (human
β2-adrenergic receptor) and sequence-divergent 5XSZ (zebrafish lysophosphatidic acid receptor
6; 21% identical to human β2-adrenergic receptor), which highlights in boldface the residues in 2RH1
and 5XSZ corresponding to the key features discussed in Section 3.2. Annotations of those regions
appear as H2.1, etc., above the sequences.

https://github.com/psa-lab/Protein-Alignment-Tool
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Table 3. BAT output showing the alignment of five GPCR structures from the PDB (2RH1, 3ODU,
3QAK, 5C1M, and 5GLH) from their Dali structural alignment with 2VT4 (β1-adrenergic receptor).
Values from the B-value column, in this case containing the flexibility index value written by ProFlex
(where 0 is most rigid and larger is more flexible), are also aligned.

PDB Entry Structurally Aligned Residues

Chain ID, Residue Number C39 C40 D41 D42 D43 D44 D45 D46 D47 . . .
2vt4 Residue Name GLN TRP GLU ALA GLY MET SER LEU LEU . . .

Flexibility Index 87.52 65.84 70.48 55.27 56.21 45.47 40.01 35.27 41.46 . . .

Chain ID, Residue Number - A32 A33 A34 A35 A36 A37 A38 A39 . . .
2rh1 Residue Name - TRP VAL VAL GLY MET GLY ILE VAL . . .

Flexibility Index - 94.6 91.1 87.62 86.08 84.86 82.58 80.88 79.67 . . .

Chain ID, Residue Number - - - - - - - B43 B44 . . .
3odu Residue Name - - - - - - - THR ILE . . .

Flexibility Index - - - - - - - 27.28 25.37 . . .

Chain ID, Residue Number - - - A7 A8 A9 A10 A11 A12 . . .
3qak Residue Name - - - SER VAL TYR ILE THR VAL . . .

Flexibility Index - - - 69.69 67.31 61.19 59.49 60.78 58.29 . . .

Chain ID, Residue Number - - - - - - B72 B73 B74 . . .
5c1m Residue Name - - - - - - ARG ASP VAL . . .

Flexibility Index - - - - - - 34.11 42.58 40.51 . . .

Chain ID, Residue Number - - - A102 A103 A104 A105 A106 A107 . . .
5glh Residue Name - - - TYR ILE ASN THR VAL VAL . . .

Flexibility Index - - - 3.03 92.12 99.68 98.95 1.22 94.85 . . .

• Additional utilities developed here in Python, BAT and BRAT, facilitate visualizing
structurally-equivalent residues in key protein regions of interest, such as binding sites or
switch regions, for proteins that are sufficiently divergent that the corresponding residues cannot
be defined with high confidence from sequence alignment.

• Although ProFlex can analyze a ligand-bound protein structure as input, in our machine learning
approach, no data about the ligand or its contacts are used. Instead, ProFlex pinpoints rigid
regions created by constraints within the protein’s covalent, hydrogen bond, and hydrophobic
contact network, as well as separate internally rigid regions that can move relative to the protein
scaffold region, followed by flexible regions.

• The flexibility and rigidity pattern within a protein structure defined by ProFlex can be used to
create a set of features—segments of the protein labeled by their flexible, independently rigid,
or mutually rigid state within the structure—that machine learning techniques such as feature
selection and a classifier can use to focus down to the most discerning subset of features for
predicting activity.

• The resulting KNN classifier of active or inactive state can drive experimental protein and ligand
design, by pinpointing specific flexibility features that are more prevalent in active versus inactive
structures of the protein. The KNN classifier is also intuitive, since it uses the focused feature set
to identify proteins of known activity or inactivity with the most similar features to the user’s
protein. This approach can also help group proteins according to similarity in the flexibility of
motifs underlying (in)activation.

• The GPCR activity classifier using the identified six flexibility features has high accuracy: 96%
correct prediction in leave-one-out cross-validation across the set of 18 inactive and 9 active GPCR
structures, and 82% correct prediction when measured on held-out test sets across 10,000 iterations
of bootstrap sampling. The most-predictive features colocalize around the ligand binding site
proximal to the extracellular surface of the membrane protein, and thus add information to the
switch regions characterized by others (such as ionic lock and tyrosine toggle), which are close
to the intracellular interface with signaling partners. One of the six flexibility features, the third
of helix 5 proximal to the extracellular interface, is adjacent to but non-overlapping with the
transmission switch previously defined. Thus, the ProFlex-defined activation motif provides a
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direct connection between flexibility changes in the protein induced by ligand binding to those
previously characterized in the transmission switch involving movements of helices 5 and 6
during activation.

• This approach can help clarify how ligand binding generates an active state in the protein. For
instance, one could first use the KNN classifier step in this protocol to identify which GPCRs of
known active/inactive state have the most similar flexibility state across the six key regions, relative
to the user’s GPCR in complex with a designed or other test ligand. Then, the protein–protein
and protein–ligand contacts in the six key regions can be compared between the user’s complex
and the most similar GPCR complexes. This analysis can suggest ligand functional group changes
(making or breaking specific protein contacts) to enhance the ability to inactivate (or activate)
the GPCR.

• This intuitive feature-based classification of activity through machine learning is equally applicable
to other protein families and other kinds of data. For instance, instead of ProFlex flexibility, one
could test whether a subset of features defined as the presence/absence of specific residue–residue
contacts (such as intraprotein hydrogen bonds, salt bridges, aromatic interactions, and/or ligand
contacts) predict an active or inactive state. Because the feature selection and classifier can test
many more combinations than a person could readily perform by synthesis/mutagenesis, and
without bias, new information may result that usefully narrows the spectrum of experiments by
homing in on key features of activation.
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