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a b s t r a c t 

In many real-world prediction tasks, class labels include information about the relative ordering between 

labels, which is not captured by commonly-used loss functions such as multi-category cross-entropy. Re- 

cently, the deep learning community adopted ordinal regression frameworks to take such ordering infor- 

mation into account. Neural networks were equipped with ordinal regression capabilities by transform- 

ing ordinal targets into binary classification subtasks. However, this method suffers from inconsistencies 

among the different binary classifiers. To resolve these inconsistencies, we propose the COnsistent RAnk 

Logits (CORAL) framework with strong theoretical guarantees for rank-monotonicity and consistent con- 

fidence scores. Moreover, the proposed method is architecture-agnostic and can extend arbitrary state- 

of-the-art deep neural network classifiers for ordinal regression tasks. The empirical evaluation of the 

proposed rank-consistent method on a range of face-image datasets for age prediction shows a substan- 

tial reduction of the prediction error compared to the reference ordinal regression network. 

© 2020 The Authors. Published by Elsevier B.V. 

This is an open access article under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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. Introduction 

Ordinal regression (also called ordinal classification), describes 

he task of predicting labels on an ordinal scale. Here, a ranking 

ule or classifier h maps each object x i ∈ X into an ordered set

 : X → Y , where Y = { r 1 ≺ . . . ≺ r K } . In contrast to classification, 

he labels provide enough information to order objects. However, 

s opposed to metric regression, the difference between label val- 

es is arbitrary. 

While the field of machine learning has developed many power- 

ul algorithms for predictive modeling, most algorithms have been 

esigned for classification tasks. The extended binary classification 

pproach proposed by Li and Lin [14] forms the basis of many or- 

inal regression implementations. However, neural network-based 

mplementations of this approach commonly suffer from classifier 

nconsistencies among the binary rankings [16] . This inconsistency 

roblem among the predictions of individual binary classifiers is 

llustrated in Fig. 1 . We propose a new method and theorem for 
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uaranteed classifier consistency that can easily be implemented 

n various neural network architectures. 

Furthermore, along with the theoretical rank-consistency guar- 

ntees, this paper presents an empirical analysis of our approach to 

hallenging real-world datasets for predicting the age of individu- 

ls from face images using our method with convolutional neural 

etworks (CNNs). Aging can be regarded as a non-stationary pro- 

ess since age progression effects appear differently depending on 

he person’s age. During childhood, facial aging is primarily asso- 

iated with changes in the shape of the face, whereas aging dur- 

ng adulthood is defined mainly by changes in skin texture [16,20] . 

ased on this assumption, age prediction can be modeled using or- 

inal regression-based approaches [2,3,13,29] . 

The main contributions of this paper are as follows: 

1. The consistent rank logits (CORAL) framework for ordinal re- 

gression with theoretical guarantees for classifier consistency; 

2. Implementation of CORAL to adapt common CNN architectures, 

such as ResNet [9] , for ordinal regression; 

3. Experiments on different age estimation datasets showing that 

CORAL’s guaranteed binary classifier consistency improves pre- 

dictive performance compared to the reference framework for 

ordinal regression. 
nder the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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Fig. 1. Schematic illustration of inconsistencies that can occur among individual classifiers in the general reduction framework from ordinal regression to binary classification: 

a rank-inconsistent model (left) versus a rank-consistent model where the probabilities decrease consistently (right). 
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Note that this work focuses on age estimation to study the pro- 

osed method’s efficacy for ordinal regression. However, the pro- 

osed technique can be used for other ordinal regression problems, 

uch as crowd-counting, depth estimation, biological cell counting, 

ustomer satisfaction, and others. 

. Related work 

.1. Ordinal regression and ranking 

Several multivariate extensions of generalized linear models 

ave been developed for ordinal regression in the past, includ- 

ng the popular proportional odds and proportional hazards mod- 

ls [15] . Moreover, the machine learning field developed ordinal 

egression models based on extensions of well-studied classifica- 

ion algorithms, by reformulating the problem to utilize multiple 

inary classification tasks Baccianella et al. [1] . Early work in this 

egard includes the use of perceptrons [7,28] and support vector 

achines [6,10,19,27] . Li and Lin [14] proposed a general reduction 

ramework that unified the view of a number of these existing al- 

orithms. 

.2. Ordinal regression CNN 

While earlier works on using CNNs for ordinal targets have 

mployed conventional classification approaches [12,25] , the gen- 

ral reduction framework from ordinal regression to binary clas- 

ification by Li and Lin [14] was recently adopted by Niu et al. 

16] as Ordinal Regression CNN (OR-CNN). In the OR-CNN ap- 

roach, an ordinal regression problem with K ranks is transformed 

nto K − 1 binary classification problems, with the k th task pre- 

icting whether the age label of a face image exceeds rank r k , 

 = 1 , . . . , K − 1 . All K − 1 tasks share the same intermediate layers 

ut are assigned distinct weight parameters in the output layer. 

While the OR-CNN was able to achieve state-of-the-art perfor- 

ance on benchmark datasets, it does not guarantee consistent 

redictions, such that predictions for individual binary tasks may 

isagree. For example, in an age estimation setting, it would be 

ontradictory if the k th binary task predicted that the age of a per-

on was more than 30, but a previous task predicted the person’s 

ge was less than 20. This inconsistency could be suboptimal when 
326 
he K − 1 task predictions are combined to obtain the estimated 

ge. 

Niu et al. [16] acknowledged the classifier inconsistency as not 

eing ideal and also noted that ensuring the K − 1 binary classi- 

ers are consistent would increase the training complexity sub- 

tantially [16] . The CORAL method proposed in this paper ad- 

resses both these issues with a theoretical guarantee for classifier 

onsistency and without increasing the training complexity. 

.3. Other CNN architectures for age estimation 

Chen et al. [5] proposed a modification of the OR-CNN [16] , 

nown as Ranking-CNN, that uses an ensemble of CNNs for binary 

lassifications and aggregates the predictions to estimate the age 

abel of a given face image. The researchers showed that training 

n ensemble of CNNs improves the predictive performance over 

 single CNN with multiple binary outputs [5] , which is consis- 

ent with the well-known fact that an ensemble model can achieve 

etter generalization performance than each individual classifier in 

he ensemble [23] . 

Recent research has also shown that training a multi-task CNN 

hat shares lower-layer parameters for various face analysis tasks 

face detection, gender prediction, age estimation, etc.) can im- 

rove the overall performance across different tasks compared to 

 single-task CNN [21] . 

Another approach for utilizing binary classifiers for ordinal re- 

ression is the siamese CNN architecture proposed by Polania et al. 

18] , which computes the rank from pair-wise comparisons be- 

ween the input image and multiple, carefully selected anchor im- 

ges. 

. Proposed method 

This section describes our proposed CORAL framework that 

ddresses the problem of classifier inconsistency in the OR-CNN 

y Niu et al. [16] , which is based on multiple binary classification 

asks for ranking. 

.1. Preliminaries 

Let D = { x i , y i } N i =1 
be the training dataset consisting of N train- 

ng examples. Here, x ∈ X denotes the i th training example and y 
i i 
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he corresponding rank, where y i ∈ Y = { r 1 , r 2 , . . . r K } with order ed 

ank r K � r K−1 � . . . � r 1 . The ordinal regression task is to find a 

anking rule h : X → Y such that a loss function L (h ) is minimized.

Let C be a K × K cost matrix , where C y,r k is the cost of pre-

icting an example (x , y ) as rank r k [14] . Typically, C y,y = 0 and

 y,r k 
> 0 for y � = r k . In ordinal regression, we generally prefer each

ow of the cost matrix to be V-shaped , that is, C y,r k −1 
≥ C y,r k if r k ≤ y

nd C y,r k ≤ C y,r k +1 
if r k ≥ y . The classification cost matrix has entries 

 y,r k 
= 1 { y � = r k } that do not consider ordering information. In or- 

inal regression, where the ranks are treated as numerical values, 

he absolute cost matrix is commonly defined by C y,r k = | y − r k | . 
Li and Lin [14] proposed a general reduction framework for ex- 

ending an ordinal regression problem into several binary classifi- 

ation problems. This framework requires a cost matrix that is con- 

ex in each row ( C y,r k +1 
− C y,r k ≥ C y,r k − C y,r k −1 

for each y ) to obtain 

 rank-monotonic threshold model. Since the cost-related weight- 

ng of each binary task is specific for each training example, this 

pproach is considered as infeasible in practice due to its high 

raining complexity [16] . 

Our proposed CORAL framework does neither require a cost 

atrix with convex-row conditions nor explicit weighting terms 

hat depend on each training example to obtain a rank-monotonic 

hreshold model and produce consistent predictions for each bi- 

ary task. 

.2. Ordinal regression with a consistent rank logits model 

In this section, we describe our proposed consistent rank logits 

CORAL) framework for ordinal regression. Section 3.2.1 describes 

he label extension into binary tasks used for rank prediction. The 

oss function of the CORAL framework is described in Section 3.2.2 . 

n Section 3.2.3 , we prove the theorem for rank consistency among 

he binary classification tasks that guarantee that the binary tasks 

roduce consistently ranked predictions. 

.2.1. Label extension and rank prediction 

Given a training dataset D = { x i , y i } N i =1 
, a rank y i is first

xtended into K − 1 binary labels y (1) 
i 

, . . . , y (K−1) 
i 

such that 

 

(k ) 
i 

∈ { 0 , 1 } indicates whether y i exceeds rank r k , for instance, 

 

(k ) 
i 

= 1 { y i > r k } . The indicator function 1 {·} is 1 if the inner con- 

ition is true and 0 otherwise. Using the extended binary labels 

uring model training, we train a single CNN with K − 1 binary 

lassifiers in the output layer, which is illustrated in Fig. 2 . 

Based on the binary task responses, the predicted rank label for 

n input x i is obtained via h (x i ) = r q . The rank index 1 q is given by

 = 1 + 

K−1 ∑ 

k =1 

f k (x i ) , (1) 

here f k (x i ) ∈ { 0 , 1 } is the prediction of the k th binary classifier

n the output layer. We require that { f k } K−1 
k =1 

reflect the ordinal in-

ormation and are rank-monotonic , f 1 (x i ) ≥ f 2 (x i ) ≥ . . . ≥ f K−1 (x i ) , 

hich guarantees consistent predictions. To achieve rank- 

onotonicity and guarantee binary classifier consistency 

 Theorem 1 ), the K − 1 binary tasks share the same weight 

arameters 2 but have independent bias units ( Fig. 2 ). 
1 While the rank label r q is application-specific and defined by the user, for exam- 

le r q ∈ { “ bad ′′ , “ okay ′′ , “ good ′′ } or r q ∈ { 18 years, 19 years, . . . 70 years } , the rank index 

 is an integer in the range { 1 , 2 , . . . , K} . 
2 To provide further intuition for the weight sharing requirement, we may con- 

ider a simplified version, that is, the linear form logit(p i ) = wx + b i or p i = σ (wx + 

 i ) with a single feature x . If the weight w is not shared across the K − 1 equations, 

he S-shaped curves of the probability scores p i will intersect, making the p i ’s non- 

onotone at some given input x . Only if w is shared across the K − 1 equations, the 

-shaped curves are horizontally shifted without intersecting. 

A

A

δ

δ

327 
.2.2. Loss function 

Let W denote the weight parameters of the neural network ex- 

luding the bias units of the final layer. The penultimate layer, 

hose output is denoted as g(x i , W ) , shares a single weight with

ll nodes in the final output layer; K − 1 independent bias units are 

hen added to g(x i , W ) such that { g(x i , W ) + b k } K−1 
k =1 

are the inputs 

o the corresponding binary classifiers in the final layer. Let 

(z) = 1 / (1 + exp (−z)) (2) 

e the logistic sigmoid function. The predicted empirical probabil- 

ty for task k is defined as 

 

 (y (k ) 
i 

= 1) = σ (g(x i , W ) + b k ) . (3) 

For model training, we minimize the loss function 

 (W , b ) = −
N ∑ 

i =1 

K−1 ∑ 

k =1 

λ(k ) 
[

log (σ (g(x i , W ) + b k )) y 
(k ) 
i 

+ log (1 − σ (g(x i , W ) + b k ))(1 − y (k ) 
i 

) 
]
, (4) 

hich is the weighted cross-entropy of K − 1 binary classifiers. For 

ank prediction ( Eq. (1) ), the binary labels are obtained via 

f k (x i ) = 1 { ̂  P (y (k ) 
i 

= 1) > 0 . 5 } . (5)

In Eq. (4) , λ(k ) denotes the weight of the loss associated with 

he k th classifier (assuming λ(k ) > 0 ). In the remainder of the pa-

er, we refer to λ(k ) as the importance parameter for task k . 

ome tasks may be less robust or harder to optimize, which can 

e considered by choosing a non-uniform task weighting scheme. 

or simplicity, we carried out all experiments with uniform task 

eighting, that is, ∀ k : λ(k ) = 1 . In the next section, we provide the

heoretical guarantee for classifier consistency under uniform and 

on-uniform task importance weighting given that the task impor- 

ance weights are positive numbers. 

.2.3. Theoretical guarantees for classifier consistency 

The following theorem shows that by minimizing the loss L 

 Eq. (4) ), the learned bias units of the output layer are non-

ncreasing such that 

 1 ≥ b 2 ≥ . . . ≥ b K−1 . (6) 

Consequently, the predicted confidence scores or probability es- 

imates of the K − 1 tasks are decreasing, for instance, 

 

 

(
y (1) 

i 
= 1 

)
≥ ̂ P 

(
y (2) 

i 
= 1 

)
≥ . . . ≥ ̂ P 

(
y (K−1) 

i 
= 1 

)
(7) 

or all i, ensuring classifier consistency. Consequently, { f k } K−1 
k =1 

 Eq. (5) ) are also rank-monotonic. 

heorem 1 (Ordered bias units) . By minimizing the loss function de- 

ned in Eq. (4) , the optimal solution (W 

∗, b 

∗) satisfies b ∗1 ≥ b ∗2 ≥ . . . ≥
 

∗
K−1 . 

roof. Suppose (W , b) is an optimal solution and b k < b k +1 for

ome k . Claim: replacing b k with b k +1 , or replacing b k +1 with b k ,

ecreases the objective value L . Let 

 1 = { n : y (k ) 
n = y (k +1) 

n = 1 } , 
 2 = { n : y (k ) 

n = y (k +1) 
n = 0 } , 

 3 = { n : y (k ) 
n = 1 , y (k +1) 

n = 0 } . 
By the ordering relationship, we have 

 1 ∪ A 2 ∪ A 3 = { 1 , 2 , . . . , N} . 
Denote p n (b k ) = σ (g(x n , W ) + b k ) and 

n = log (p n (b k +1 )) − log (p n (b k )) , 
′ 
n = log (1 − p n (b k )) − log (1 − p n (b k +1 )) . 
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Fig. 2. Illustration of the consistent rank logits CNN (CORAL-CNN) used for age prediction. From the estimated probability values, the binary labels are obtained via 

Eq. (5) and converted to the age label via Eq. (1) . 
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Since p n (b k ) is increasing in b k , we have δn > 0 and δ ′ 
n > 0 . 

If we replace b k with b k +1 , the loss terms related to the k th

ask are updated. The change of loss L ( Eq. (4) ) is given as 

1 L = λ(k ) 
[ 

−
∑ 

n ∈ A 1 
δn + 

∑ 

n ∈ A 2 
δ ′ 

n −
∑ 

n ∈ A 3 
δn 

] 
. 

Accordingly, if we replace b k +1 with b k , the change of L is given

s 

2 L = λ(k +1) 
[ ∑ 

n ∈ A 1 
δn −

∑ 

n ∈ A 2 
δ ′ 

n −
∑ 

n ∈ A 3 
δ ′ 

n 

] 
. 

By adding 1 

λ(k ) �1 L and 

1 

λ(k +1) �2 L, we have 

1 

λ(k ) 
�1 L + 

1 

λ(k +1) 
�2 L = −

∑ 

n ∈ A 3 
(δn + δ ′ 

n ) < 0 , 

nd know that either �1 L < 0 or �2 L < 0 . Thus, our claim is jus-

ified. We conclude that any optimal solution (W 

∗, b ∗) that mini- 

izes L satisfies 

 

∗
1 ≥ b ∗2 ≥ . . . ≥ b ∗K−1 . 

�

Note that the theorem for rank-monotonicity proposed by Li 

nd Lin [14] , in contrast to Theorem 1 , requires a cost matrix

with each row y n being convex. Under this convexity condi- 

ion, let λ(k ) 
y n = |C y n ,r k − C y n ,r k +1 

| be the weight of the loss associ- 

ted with the k th task on the n th training example, which de- 

ends on the label y n . Li and Lin [14] proved that by using

raining example-specific task weights λ(k ) 
y n , the optimal thresh- 

lds are ordered – [16] noted that example-specific task weights 

re infeasible in practice. Moreover, this assumption requires that 
(k ) 
y n ≥ λ(k +1) 

y n when r k +1 < y n and λ(k ) 
y n ≤ λ(k +1) 

y n when r k +1 > y n . 

heorem 1 is free from this requirement and allows us to choose 

 fixed weight for each task that does not depend on the individ- 

al training examples, which greatly reduces the training complex- 

ty. Also, Theorem 1 allows for choosing either a simple uniform 
328 
ask weighting or taking dataset imbalances into account under 

he guarantee of non-decreasing predicted probabilities and consis- 

ent task predictions. Under Theorem 1 , the only requirement for 

uaranteeing rank monotonicity is that the task weights are non- 

egative. 

. Experiments 

.1. Datasets and preprocessing 

The MORPH-2 dataset [24] , containing 55,608 face images, 

as downloaded from https://www.faceaginggroup.com/morph/ 

nd preprocessed by locating the average eye-position in the re- 

pective dataset using facial landmark detection [26] and then 

ligning each image in the dataset to the average eye position us- 

ng EyepadAlign function in MLxtend v0.14 [22] . The faces were 

hen re-aligned such that the tip of the nose was located in the 

enter of each image. The age labels used in this study were in the 

ange of 16–70 years. 

The CACD dataset [4] was downloaded from http://bcsiriuschen. 

ithub.io/CARC/ and preprocessed similar to MORPH-2 such that 

he faces spanned the whole image with the nose tip at the center. 

he total number of images is 159,449 in the age range of 14–62 

ears. 

The Asian Face Database (AFAD) by Niu et al. [16] was obtained 

rom https://github.com/afad-dataset/tarball . The AFAD database 

sed in this study contained 165,501 faces in the range of 15–40 

ears. Since the faces were already centered, no further prepro- 

essing was required. 

Following the procedure described in Niu et al. [16] , each image 

atabase was randomly divided into 80% training data and 20% test 

ata. All images were resized to 128 × 128 × 3 pixels and then 

andomly cropped to 120 × 120 × 3 pixels to augment the model 

raining. During model evaluation, the 128 × 128 × 3 RGB face im- 

ges were center-cropped to a model input size of 120 × 120 × 3. 

https://www.faceaginggroup.com/morph/
http://bcsiriuschen.github.io/CARC/
https://github.com/afad-dataset/tarball
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Table 1 

Age prediction errors on the test sets. All models are based on the ResNet-34 architecture. 

Method Random seed MORPH-2 AFAD CACD 

MAE RMSE MAE RMSE MAE RMSE 

CE-CNN 0 3.26 4.62 3.58 5.01 5.74 8.20 

1 3.36 4.77 3.58 5.01 5.68 8.09 

2 3.39 4.84 3.62 5.06 5.53 7.92 

AVG ± SD 3.34 ± 0.07 4.74 ± 0.11 3.60 ± 0.02 5.03 ± 0.03 5.65 ± 0.11 8.07 ± 0.14 

OR-CNN [16] 0 2.87 4.08 3.56 4.80 5.36 7.61 

1 2.81 3.97 3.48 4.68 5.40 7.78 

2 2.82 3.87 3.50 4.78 5.37 7.70 

AVG ± SD 2.83 ± 0.03 3.97 ± 0.11 3.51 ± 0.04 4.75 ± 0.06 5.38 ± 0.02 7.70 ± 0.09 

CORAL-CNN (ours) 0 2.66 3.69 3.42 4.65 5.25 7.41 

1 2.64 3.64 3.51 4.76 5.25 7.50 

2 2.62 3.62 3.48 4.73 5.24 7.52 

AVG ± SD 2.64 ± 0.02 3.65 ± 0.04 3.47 ± 0.05 4.71 ± 0.06 5.25 ± 0.01 7.48 ± 0.06 
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We share the training and test partitions for all datasets, along 

ith all preprocessing code used in this paper in the code reposi- 

ory ( Section 4.4 ). 

.2. Neural network architectures 

To evaluate the performance of CORAL for age estimation from 

ace images, we chose the ResNet-34 architecture [9] , which is a 

odern CNN architecture that achieves good performance on a va- 

iety of image classification tasks [8] . For the remainder of this pa- 

er, we refer to the original ResNet-34 CNN with standard cross- 

ntropy loss as CE-CNN. To implement a ResNet-34 CNN for ordinal 

egression using the proposed CORAL method, we replaced the last 

utput layer with the corresponding binary tasks ( Fig. 2 ) and refer 

o this implementation as CORAL-CNN. Similar to CORAL-CNN, we 

odified the output layer of ResNet-34 to implement the ordinal 

egression reference approach described in Niu et al. [16] ; we refer 

o this architecture as OR-CNN. 

.3. Training and evaluation 

For model evaluation and comparison, we computed the mean 

bsolute error (MAE) and root mean squared error (RMSE), on the 

est set after the last training epoch: 

MAE = 

1 

N 

N ∑ 

i =1 

∣∣y i − h (x i ) 
∣∣, 

MSE = 

√ 

1 

N 

N ∑ 

i =1 

(
y i − h (x i ) 

)2 
, 

here y i is the ground truth rank of the i th test example and h (x i )

s the predicted rank, respectively. 

The model training was repeated three times with different 

andom seeds (0, 1, and 2) for model weight initialization, while 

he random seeds were consistent between the different meth- 

ds to allow fair comparisons. Since this study focuses on inves- 

igating rank consistency, an extensive comparison between op- 

imization algorithms is beyond the scope of this article, so that 

ll CNNs were trained for 200 epochs with stochastic gradient de- 

cent via adaptive moment estimation [11] using exponential decay 

ates β0 = 0 . 90 and β2 = 0 . 99 (default settings) and a batch size

f 256. To avoid introducing empirical bias by designing our own 

NN architecture for comparing the ordinal regression approaches, 

e adopted a standard architecture (ResNet-34 [9] ; Section 4.2 ) for 

his comparison. Moreover, we chose a uniform task weighting for 

he cross-entropy of K − 1 binary classifiers in CORAL-CNN, for in- 

tance, we set ∀ k : λ(k ) = 1 in Eq. (4) . 
329 
The learning rate was determined by hyperparameter tuning 

n the validation set. For the various losses (cross-entropy, ordi- 

al regression CNN [16] , and the proposed CORAL method), we 

ound that a learning rate of α = 5 × 10 −5 performed best across 

ll models, which is likely due to using the same base architecture 

ResNet-34). All models were trained for 200 epochs. From those 

00 epochs, the best model was selected via MAE performance 

n the validation set. The selected model was then evaluated on 

he independent test set, from which the reported MAE and RMSE 

erformance values were obtained. For all reported model per- 

ormances, we reported the best test set performance within the 

00 training epochs. We provide the complete training logs in the 

ource code repository ( Section 4.4 ). 

.4. Hardware and software 

All loss functions and neural network models were imple- 

ented in PyTorch 1.5 [17] and trained on NVIDIA GeForce RTX 

080Ti and Titan V graphics cards. The source code is available at 

ttps://github.com/Raschka-research-group/coral-cnn . 

. Results and discussion 

We conducted a series of experiments on three independent 

ace image datasets for age estimation ( Section 4.1 ) to compare the 

roposed CORAL method (CORAL-CNN) with the ordinal regression 

pproach proposed by Niu et al. [16] (OR-CNN). All implementa- 

ions were based on the ResNet-34 architecture, as described in 

ection 4.2 . We include the standard ResNet-34 classification net- 

ork with cross-entropy loss (CE-CNN) as a performance baseline. 

.1. Estimating the apparent age from face images 

Across all ordinal regression datasets ( Table 1 ) we found that 

oth OR-CNN and CORAL-CNN outperform the standard cross- 

ntropy classification loss (CE-CNN), which does not utilize the 

ank ordering information. Similarly, as summarized in Table 1 , the 

roposed rank-consistent CORAL method shows a substantial per- 

ormance improvement over OR-CNN [16] , which does not guaran- 

ee classifier consistency. 

Moreover, we repeated each experiment three times using dif- 

erent random seeds for model weight initialization and dataset 

huffling to ensure that the observed performance improvement 

f CORAL-CNN over OR-CNN is reproducible and not coincidental. 

e can conclude that guaranteed classifier consistency via CORAL 

as a noticeable positive effect on the predictive performance of an 

rdinal regression CNN (a more detailed analysis of the OR-CNN’s 

ank inconsistency is provided in Section 5.2 ). 

https://github.com/Raschka-research-group/coral-cnn


W. Cao, V. Mirjalili and S. Raschka Pattern Recognition Letters 140 (2020) 325–331 

Fig. 3. Graphs of the predicted probabilities for each binary classifier task on four different examples from the MORPH-2 test dataset. In all cases, OR-CNN suffers from one 

or more inconsistencies (indicated by arrows) in contrast to CORAL-CNN. 

Table 2 

Average numbers of inconsistencies occurred on the different test datasets for CORAL-CNN and Niu et al’s 

Ordinal CNN. The penultimate column and last column list the average numbers of inconsistencies focus- 

ing only on the correct and incorrect age predictions, respectively. 

CORAL-CNN OR-CNN [16] OR-CNN [16] OR-CNN [16] 

All predictions All predictions Only correct predictions Only incorrect predictions 

Morph 

Seed 0 0 2.28 1.80 2.37 

Seed 1 0 2.08 1.70 2.15 

Seed 2 0 0.86 0.65 0.89 

AFAD 

Seed 0 0 1.97 1.88 1.98 

Seed 1 0 1.91 1.81 1.92 

Seed 2 0 1.17 1.02 1.19 

CACD 

Seed 0 0 1.24 0.98 1.26 

Seed 1 0 1.68 1.29 1.71 

Seed 2 0 0.80 0.63 0.81 
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For all methods (CE-CNN, CORAL-CNN, and OR-CNN), the over- 

ll performance on the different datasets appeared in the following 

rder: MORPH-2 > AFAD > CACD ( Table 1 ). A possible explanation 

s that MORPH-2 has the best overall image quality, and the pho- 

os were taken under relatively consistent lighting conditions and 

iewing angles. For instance, we found that AFAD includes images 

ith very low resolutions (for example, 20 × 20 ). CACD also con- 

ains some lower-quality images. Because CACD has approximately 

he same size as AFAD, the overall lower performance achieved on 

his dataset may also be explained by the wider age range that 

eeds to be considered (CACD: 14–62 years, AFAD: 15–40 years). 

.2. Empirical rank inconsistency analysis 

By design, our proposed CORAL guarantees rank consistency 

 Theorem 1 ). In addition, we analyzed the rank inconsistency em- 

irically for both CORAL-CNN and OR-CNN (an example of rank 

nconsistency is shown in Fig. 3 ). Table 2 summarizes the aver- 

ge numbers of rank inconsistencies for the OR-CNN and CORAL- 

NN models on each test dataset. As expected, CORAL-CNN has 

 rank inconsistencies. When comparing the average numbers of 

ank inconsistencies considering only those cases where OR-CNN 

redicted the age correctly versus incorrectly, the average number 

f inconsistencies is higher when OR-CNN makes wrong predic- 
330 
ions. This observation can be seen as evidence that rank incon- 

istency harms predictive performance. Consequently, this finding 

uggests that addressing rank inconsistency via CORAL is beneficial 

or the predictive performance of ordinal regression CNNs. 

. Conclusions 

In this paper, we developed the CORAL framework for ordi- 

al regression via extended binary classification with theoretical 

uarantees for classifier consistency. Moreover, we proved classifier 

onsistency without requiring rank- or training label-dependent 

eighting schemes, which permits straightforward implementa- 

ions and efficient model training. CORAL can be readily imple- 

ented to extend common CNN architectures for ordinal regres- 

ion tasks. The experimental results showed that the CORAL frame- 

ork substantially improved the predictive performance of CNNs 

or age estimation on three independent age estimation datasets. 

ur method can be readily generalized to other ordinal regression 

roblems and different types of neural network architectures, in- 

luding multilayer perceptrons and recurrent neural networks. 
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