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Abstract
While the advantage of screening vast databases of molecules to cover greater molecular diversity is often mentioned, in real-
ity, only a few studies have been published demonstrating inhibitor discovery by screening more than a million compounds 
for features that mimic a known three-dimensional (3D) ligand. Two factors contribute: the general difficulty of discovering 
potent inhibitors, and the lack of free, user-friendly software to incorporate project-specific knowledge and user hypotheses 
into 3D ligand-based screening. The Screenlamp modular toolkit presented here was developed with these needs in mind. 
We show Screenlamp’s ability to screen more than 12 million commercially available molecules and identify potent in vivo 
inhibitors of a G protein-coupled bile acid receptor within the first year of a discovery project. This pheromone receptor 
governs sea lamprey reproductive behavior, and to our knowledge, this project is the first to establish the efficacy of compu-
tational screening in discovering lead compounds for aquatic invasive species control. Significant enhancement in activity 
came from selecting compounds based on one of the hypotheses: that matching two distal oxygen groups in the 3D structure 
of the pheromone is crucial for activity. Six of the 15 most active compounds met these criteria. A second hypothesis—that 
presence of an alkyl sulfate side chain results in high activity—identified another 6 compounds in the top 10, demonstrating 
the significant benefits of hypothesis-driven screening.

Keywords  Virtual screening · Structure based drug discovery · G protein-coupled receptor · Chemoinformatics · Computer-
aided molecular design · Structure–activity relationships
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TFM	� Trifluoromethyl nitrophenol
EOG	� Electro-olfactogram

Introduction

Virtual screening for inhibitor discovery

Virtual screening in biology employs computational algo-
rithms to filter or compare the structures or chemical fea-
tures of thousands to millions of compounds to uncover 
those similar to a known bioactive reference molecule, or to 
identify a subset of compounds with significant complemen-
tarity to a receptor-binding site. One goal of screening is to 
provide a way for the biologist to encode and test a model of 
the features he hypothesizes to be important in small mol-
ecules that inhibit or activate the chosen receptor. Compu-
tational screening also leverages, on a scale not accessible 
to most experimental screening groups, the ability to test 
many or all of the millions of small drug-like molecules that 
are now available commercially. The much more expensive 
and labor-intensive lab assays can then be performed on 
a subset of screening-identified molecules with a signifi-
cantly enhanced probability of identifying molecules with 
the desired bioactivity. Screening typically has a good suc-
cess rate, with 5–35% of the resulting prioritized and tested 
molecules proving to be moderate to high affinity inhibitors, 
whereas high-throughput experimental screening involving 
no computational hypothesis-based prioritization typically 
has a success rate of 0.01% (1 active in every 10,000 mol-
cules tested) [1, 2]. Here, we present a virtual screening soft-
ware framework, Screenlamp, used to identify inhibitors of 
a known modulator of G protein-coupled receptor signaling, 
by combining unbiased 3-dimensional shape and chemical 
similarity alignment with the ability to test investigator-
formulated hypotheses about chemical groups that lead to 
inhibitor or activator activity. This software facilitates the 
use of one or more of the three commonly used approaches: 
(1) comparison of molecules in a database for similarity with 
a known bioactive molecule, (2) definition of the spatial rela-
tionships between chemical groups in a small molecule that 
allow it to activate or inhibit a biological receptor (known as 
pharmacophore identification and matching), and (3) dock-
ing of small molecules into a receptor structure to identify 
the subset of molecules that interact most favorably with 
the receptor.

In receptor structure-based approaches, small molecules 
are docked into the three-dimensional (3D) structure of an 
enzyme or receptor binding site to select a set of molecules 
for experimental testing as activators or inhibitors of the 
protein. The prioritization of candidates is typically based 
on ranking the molecules by their predicted binding affinities 
[3]. However, applications of structure-based screening are 

limited by the availability of accurate 3D structures of the 
target protein. Moreover, a consequence of the large number 
of geometrically feasible solutions when both molecules are 
considered flexible is that thorough sampling of such dock-
ing poses is computationally impractical, even for state-of-
the-art computing clusters. As a result, most currently used 
docking solutions treat the ligand candidate as flexible and 
the protein as only partly flexible via limited side-chain sam-
pling [4]. Even under these partially-flexible protein assump-
tions, ligand docking is very computationally expensive. It 
is not feasible for most academic research groups to dock 
millions of small, flexible molecules, which requires the use 
of computing clusters or commercial cloud services [5]. An 
equally significant problem is that prediction of ΔGbinding 
of protein–ligand complexes has remained prone to errors 
typically on the order of several kcal/mol (a substantial per-
centage of the total ΔGbinding), causing the ranking of com-
pounds to be approximate at best [6]. This problem is likely 
to remain difficult and improve incrementally rather than 
rapidly, due to the difficulty of measuring conformational 
energies, entropy changes, electrostatics, and solvent con-
tributions to ligand-receptor binding [7]. The most accurate 
approaches are only feasible for assessing a small number 
of compounds.

Ligand-based screening, in which database compounds 
are compared to a known active compound (rather than 
docked to the protein target) to discover mimics, is fre-
quently employed by pharmaceutical companies due to the 
success rate and the unavailability of 3D protein structures 
for many targets of interest. Generally, ligand-based virtual 
screening is computationally more efficient than structure-
based approaches [8]. An additional advantage is that errors 
in modeling protein and solvent flexibility do not come 
into play in 3D ligand similarity-based scoring, which is 
based solely on the extent to which a candidate matches the 
known ligand in volume and charge or atom-type distribu-
tion. Ligand-based screening can outperform structure-based 
approaches in the speed and the enrichment of active mol-
ecules [9–11]. Furthermore, when performed with a single 
known active compound for comparison, 3D ligand-based 
screening is capable of identifying molecular mimics with 
diverse structural scaffolds and chemotypes. This desir-
able feature, known as lead or scaffold hopping [12, 13], is 
important since a significant percentage of inhibitory com-
pounds may undergo attrition during the pharmacological 
and clinical development process due to not meeting criteria 
for in vivo absorption, distribution, metabolism, excretion, 
and toxicity.

The Screenlamp project started when we sought to fill 
a gap, by developing freely available, effective software 
to enable typical academic biochemical research groups, 
rather than just computational chemistry experts, to test 
their hypotheses about the importance of specific functional 
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groups or pharmacophores (3D spatial relationships between 
functional groups) that lead to high ligand activity, when 
performing a broad search for compounds or scaffolds with 
significant similarity to a known ligand. In a random data-
base, the probability of finding one or more good lead mol-
ecules with substantial affinity for the protein target via close 
mimicry of a known ligand increases with the number of 
molecules screened. Thus, our second goal was to make the 
organization and screening of very large databases of mil-
lions of commercially available compounds accessible to a 
typical research lab, rather than being restricted to research-
ers with parallel computing expertise. Some tools exist to 
aid users in ligand-based screening, but they are limited by 
the level of molecular detail they support, the flexibility of 
use, and cost. The SwissSimilarity webserver was recently 
launched to support ligand-based virtual screening [14]. 
While this service includes 10.6 million drug-like molecules 
from ZINC, its screening is based on non-superpositional 
methods that do not consider the 3D volumes or spatial 
arrangement of functional groups. Phase is a commercial 
tool developed by Schrödinger, which allows users to per-
form 3D ligand-based screening based on abstract hydro-
gen-bond acceptor and donor, hydrophobic, aromatic, and 
charged pharmacophore points, which the software derives 
from known actives [15]. Aside from the barrier of substan-
tial licensing costs, its integration as part of the Schrödinger 
graphical user interface, including assignment of ligand pro-
tonation states and conformers and the use of a proprietary 
scoring function and eMolecules database, limits its flex-
ibility. We have found partial charge and protonation state 
assignment, quality of 3D conformer sampling, flexible iden-
tification of pharmacophores and querying based on func-
tional group relationships, and 3D overlays and similarity 
scoring to be variable in quality between existing software 
packages while being essential to screening success. The 
ability to choose the modules that work best for a project and 
provide a freely available, flexible workflow for 3D ligand-
based discovery are supported by Screenlamp.

The fact that 3D ligand-based screening of millions of 
compounds still presents a substantial technical challenge to 
most users is underscored by only a few inhibitor-discovery 
publications appearing in the literature for this approach 
over the past 13 years [16–25], in comparison with dozens 
of publications for screening by docking of similar-sized 
databases. With Screenlamp, volumetric and partial charge-
based alignment of fully flexible molecules and analysis of 
3D chemical group matches can be performed on millions of 
commercially available molecules, such as the ZINC drug-
like database [26] (http://zinc.docki​ng.org), within a day on 
a typical desktop computer. The Screenlamp toolkit provides 
a set of command line virtual screening utilities that can 
be used individually to perform specific filtering tasks or 
in an automated fashion as a computational pipeline (with 

examples and templates provided in the distribution package 
available at https​://psa-lab.githu​b.io/scree​nlamp​/) on desk-
top computers or computing clusters. Here we demonstrate 
its successful application to a challenging problem: discov-
ery of both steroidal and non-steroidal inhibitors with IC50 
values under 1 µM for an olfactory GPCR activated by a bile 
acid pheromone [27]. Because the molecular weight of the 
pheromone is at the upper limit for drug-like compounds, the 
discovery of active compounds benefited from Screenlamp’s 
ability to search expanded sets of molecules from ZINC and 
the Chemical Abstracts Service Registry (https​://www.cas.
org/conte​nt/chemi​cal-subst​ances​).

Pioneering aquatic invasive species control 
and GPCR inhibitor discovery with Screenlamp

This pheromone inhibitor discovery project presents a novel, 
behaviorally selective approach to aquatic invasive species 
control, which in the past has involved in vivo testing of 
thousands of pesticides. The sea lamprey is an invasive spe-
cies that has had greatly deleterious impacts since the 1950s 
on both the native ecology and commercial fishery of the 
Laurentian Great Lakes. Ongoing efforts at reducing sea 
lamprey populations are labor-intensive and cost millions of 
dollars per year [28]. They include the use of in-stream bar-
riers to prevent lamprey from reaching spawning areas [29] 
and the application of trifluoromethyl nitrophenol (TFM), 
a larval lampricide [30]. TFM has been successful, leading 
to a decrease of the sea lamprey population by over 90% 
between 1960 and 1970 [31]. However, the discovery of new 
sea lamprey control approaches remains a high priority for 
the binational Great Lakes Fishery Commission. Occasion-
ally, TFM has shown off-target toxic effects to amphibians, 
trout, and most importantly, lake sturgeon, which the U.S. 
Fish and Wildlife Service lists as threatened or endangered 
in 19 of the 20 states of its historic range (https​://www.fws.
gov/midwe​st/sturg​eon/biolo​gy.htm; Accessed Sept 2 2017) 
[32, 33]. A recent sea lamprey control approach involves 
baiting traps [34, 35] with the main component of the male 
sea lamprey mating pheromone 3kPZS (3-keto petromyzonol 
sulfate; 7,12α,24-trihydroxy-5α-cholan-3-one-24-sulfate), 
which is an agonist for the sea lamprey odorant receptor 1 
(SLOR1).

G protein‑coupled receptors and olfactory receptors

SLOR1 and other pheromone and olfactory receptors in the 
sea lamprey are categorized as class A G protein-coupled 
receptors (GPCRs) based on sequence homology [36]. 
Class A or rhodopsin-like GPCRs form the largest of the 
five GPCR superfamilies [37]. GPCRs play an important 
role in human medicine, with about half of all human drugs 
targeting GPCRs and their signaling [38]. A well-known 

http://zinc.docking.org
https://psa-lab.github.io/screenlamp/
https://www.cas.org/content/chemical-substances
https://www.cas.org/content/chemical-substances
https://www.fws.gov/midwest/sturgeon/biology.htm
https://www.fws.gov/midwest/sturgeon/biology.htm
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agonist of β1-adrenergic receptor, the closest human struc-
tural homolog of SLOR1, is epinephrine (also known as 
adrenaline). Antagonists of this receptor known as beta 
blockers are commonly used for controlling blood pressure 
and glaucoma. In humans, olfactory receptors comprise 388 
out of our 779 GPCRs (http://gpcr.usc.edu), indicating their 
importance for responding to chemical cues in the environ-
ment, such as oxygen [39], smoke [40], scents released by 
rotten meat [41] or associated with nutrients [42], and phero-
mones [43]. Ligands for class A GPCRs are correspond-
ingly diverse, including steroids, peptides, light-responsive 
chromophores, neurotransmitters, lipids, nucleotides, and 
chemokine proteins [44]. In insects, non-GPCR olfactory 
receptors [45] also play key roles in sensing and responding 
to repellants such as DEET, as well as in detecting phero-
mones that lead to mating and reproduction [46].

Sea lamprey mating is governed by sex pheromones 
released by spermiated mature males. Ovulated females 
are attracted by the 3kPZS secreted in spawning areas. We 
hypothesized that blocking the detection of 3kPZS by female 
sea lamprey would halt the reproductive cycle and reduce 
the sea lamprey population. The aim of our high-through-
put screening was thus to identify sea lamprey-selective 
inhibitor mimics of 3kPZS that are environmentally benign. 
Screenlamp was developed and used to screen 12 million 
commercially available small organic molecules. Those with 
the most significant volumetric and atom-type similarity to 
3kPZS were further prioritized within Screenlamp by filter-
ing compounds according to a series of hypotheses about 
the importance of individual chemical groups for activity. 
In vivo olfactory assays of the selected 299 compounds were 
then performed, testing their ability to block 3kPZS olfac-
tory responses in sea lamprey, and resulting in the discovery 
of several classes of inhibitors with sub-micromolar IC50 
values. Beyond meeting the goals of discovering potent 
3kPZS pheromone inhibitors and pioneering the use of 
computer-aided drug discovery for invasive species control, 
this project aims to advance other researchers’ success in 
ligand discovery by making the Screenlamp software pub-
licly available.

Methods

Driving structure–activity hypothesis development 
by structural modeling of 3kPZS‑receptor 
interactions

Of the available GPCR crystal structures in the Protein Data 
Bank [47], nociceptin, adenosine, and β1-adrenergic recep-
tors are all structural homologs [48] based on pairwise iden-
tity of 24–27% covering most of the 330-residue SLOR1 
sequence [49]. SLOR1 is most similar to the β1-adrenergic 

receptor, based on evaluation of their sequence similarity in 
the extracellular loops and the inter-helical cleft comprising 
the orthosteric (activating ligand) binding site, the absence 
of non-helical insertions within transmembrane helices, and 
the conservation of motifs, including the E/DRY ionic lock 
motif in helix 3, which interacts with acidic residues in helix 
6 in the inactive state of class A GPCRs [50].

A homology-based structural model of SLOR1 was con-
structed using the crystal structure of avian β1-adrenergic 
receptor as a template (PDB code: 2vt4 [51]), by using 
ModWeb Modeller version SVN.r972 [52]. The protein 
backbone structures of other related class A GPCRs with 
their bound ligands, such as rhodopsin, adenosine (A2A), 
and β1-adrenergic receptors were overlaid with the SLOR1 
model to define the orthosteric binding region in SLOR1. 
All favorable-energy conformations of 3kPZS, generated 
via OpenEye OMEGA [53, 54] (v 2.4.1; https​://www.eyeso​
pen.com; OpenEye Software, Santa Fe), were docked into 
the SLOR1 ligand binding cavity to predict their mode of 
interaction by using the SLIDE software with default set-
tings [55].

Development of Screenlamp, a hypothesis‑based 
screening toolkit

To facilitate the virtual screening of millions of flexible, 3D 
structures for ligand discovery, including 3kPZS antagonists, 
the Screenlamp toolkit was developed in Python. It lever-
ages high-performance memory-buffered multi-dimensional 
arrays [56] and data frames [57, 58]. Screenlamp first allows 
selection of those molecules meeting specific physicochemi-
cal or spatial properties, such as the presence of two func-
tional groups within a certain distance. Screenlamp then 
interfaces with robust tools that are freely available to aca-
demic researchers to assign partial charges to ligand atoms, 
sample energetically favorable 3D conformers, and gener-
ate 3D overlays (OpenEye Scientific Software, Santa Fe, 
NM; http://www.eyeso​pen.com): the OpenEye molcharge 
utility in QUACPAC for assigning partial charges [59, 60], 
OMEGA [53, 54] for conformer generation, and ROCS [10, 
61] for 3D molecular overlays with a reference molecule 
(for example, 3kPZS). The modules and tasks that can be 
performed within Screenlamp are summarized in Fig. 1. 
While an early internal version relied on an SQL database 
[62] for recordkeeping and an HDF5 database [63] for stor-
ing 3D coordinates of molecules, the application program 
interface has been simplified and computationally acceler-
ated. Screenlamp works efficiently without SQL or HDF5 
and can be applied to any molecular database organized as 
multi-MOL2 (3D) formatted files.

The modules in the Screenlamp toolkit (Fig. 1) allow 
researchers to rearrange and recombine subsets of filtering, 
alignment, and scoring steps in a pipeline that meets their 

http://gpcr.usc.edu
https://www.eyesopen.com
https://www.eyesopen.com
http://www.eyesopen.com
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own hypothesis-driven selection criteria. For instance, a 
module within Screenlamp allows users to select subsets 
of molecules based on properties such as molecular weight, 
number of hydrogen bond acceptors and donors, number of 
rotatable bonds, or any other property data given in column 
format in a text file such as the property files (for exam-
ple, *_prop.xls) which can be downloaded from the ZINC 
commercially available compound database [26]. The use 
of molecular property data—molecular weight, number of 
freely rotatable bonds, etc.—can also be obtained by using 
open-source chemoinformatics tools such as RDKit (http://
www.rdkit​.org), and are optional for use in Screenlamp. 
Additional Screenlamp modules are available for filtering, 
such as selecting only those molecules that contain func-
tional groups of interest, or optionally, functional groups in a 
particular spatial arrangement. Based on the 3D alignments, 
Screenlamp provides a module that can generate fingerprints 
representing the presence or absence of spatial matching 
between the database entries and a series of 3D functional 
groups in the reference molecule. These molecular finger-
prints and functional group matching patterns can further be 
used for exploratory data analysis or machine learning-based 
predictive modeling of structure–activity relationships [64, 
65]. Along with volumetric and electrostatic scores provided 
by the overlay tool, and filtering based on molecular proper-
ties, the user can then test hypotheses about the biological 
importance of the features he specifies by using Screenlamp 

to identify a matching set of compounds and procuring them 
for biological assays.

Once the user has selected a subset of molecules accord-
ing to the current hypothesis to be tested, expressed as a 
set of criteria on presence or absence of certain atoms or 
properties, the corresponding structures are sent for con-
former generation and 3D alignment with the known ligand 
reference molecule (typically, a known inhibitor, agonist, 
or substrate). The following sections provide details on how 
a typical workflow was implemented, in this case for the 
discovery of potent mimics of 3kPZS as pheromone antago-
nists. The Screenlamp software and full documentation are 
available to download from GitHub (https​://githu​b.com/psa-
lab/scree​nlamp​).

Preparation of millions of drug‑like molecules 
for ligand‑based screening

The 3D coordinate files, in Tripos MOL2 format, of 
12.3 million molecules were downloaded from ZINC12 [26] 
using the “drugs now” criteria (compounds with drug-like 
properties, available off-the-shelf). They were processed 
as illustrated in Fig. 1 according to the hypothesis crite-
ria, which are summarized under Step 1, below. Additional 
screening data sets of antagonist candidates were prepared, 
as described below, to enable the testing of close analogs of 
3kPZS and known ligands of GPCRs.

Fig. 1   Summary of the tools 
provided or augmented by 
Screenlamp. (1) Filtering tasks 
that can be performed within 
Screenlamp to meet hypothesis-
driven criteria and retrieve 
the structures of a subset of 
candidate molecules. (2) Once 
flexible conformers of the 
candidate database molecules 
have been sampled and overlaid 
with the reference molecule (for 
example, by using OMEGA 
and ROCS from OpenEye), 
Screenlamp can identify 
functional group matches in the 
pairwise overlays to discover 
functional group mimics of a 
reference molecule. (3) Based 
on the information that is avail-
able from the 3D overlays and 
functional group matching, as 
well as user-specified selection 
criterion, molecules are ranked 
for experimental testing

http://www.rdkit.org
http://www.rdkit.org
https://github.com/psa-lab/screenlamp
https://github.com/psa-lab/screenlamp
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Combinatorial analog dataset

Isomeric SMILES string (simplified molecular-input line-
entry system) structural representations [66] of 332 close 
variants of 3kPZS were created by sampling different com-
binations of alternative functional groups at the 3, 7, and 12 
positions in 3kPZS (Fig. 2) and different configurations (5-α 
planar or 5-β bent relationship between the A and B rings) 
of the steroid ring system. These SMILES representations 
were used as search queries in SciFinder (http://www.cas.
org/produ​cts/scifi​nder) to identify purchasable compounds 
that exactly (or nearly exactly, showing ≥ 99% similarity) 
match the 332 analogs. Chemical Abstract Service Registry 
(CAS Registry; http://www.cas.org/conte​nt/chemi​cal-subst​
ances​/faqs) identifiers were found for 84 commercially avail-
able molecules (Supplementary Material 1, Table S1). The 
corresponding SMILES strings were translated into 3D 
structures by using OpenEye QUACPAC/molcharge v1.6.3.1 
(OpenEye Scientific Software, Santa Fe, NM; http://www.
eyeso​pen.com) with the AM1BCC [60] model for partial 
charge assignment. Then, OpenEye OMEGA was used to 
generate low-energy conformers of these molecules for vir-
tual screening.

CAS Registry steroids

The ZINC database covers many, but not all, vendors of 
small organic molecules; thus, the CAS Registry of 91 mil-
lion compounds (https​://www.cas.org/conte​nt/chemi​

cal-subst​ances​) was searched with SciFinder Scholar 
(Chemical Abstracts Service, Columbus, OH) for all com-
mercially available steroid molecules that were not already 
present in the ZINC database. Using SciFinder (which limits 
the number of molecules that can be processed at a time 
to 100), batches of CAS Registry steroid structures were 
exported and processed into SMILES strings using CAC-
TUS (http://cactu​s.nci.nih.gov). 3D structures were created 
from the SMILES strings as described for the combinatorial 
analog dataset above, resulting in 2995 additional steroids 
for screening (Supplementary Material 2, Table S2).

GPCR Ligand Library (GLL)

The GLL database consists of approximately 24,000 known 
ligands for 147 GPCRs [67] (http://cavas​otto-lab.net/Datab​
ases/GDD/). To prepare this database for our virtual screen-
ing pipeline, partial charges were added to the existing 3D 
structures of these molecules using OpenEye QUACPAC/
molcharge with the AM1BCC charge model, and low-energy 
conformations were generated using OpenEye OMEGA with 
default settings.

Identification of incorrect steroid substructures 
in molecular databases

In version 12 of ZINC (http://zinc.docki​ng.org), if a vendor 
did not provide complete stereochemistry information for 
chiral centers in a steroid molecule, up to four different stere-
oisomeric structures were automatically provided by ZINC, 
each with a separate ID. However, at most one of those four 
structures had a valid steroid configuration (with a 5-α pla-
nar or 5-β ring structure and 18- and 19-methyl group ori-
entations as shown in Fig. 2). Thus, we developed a custom 
steroid checking tool using the OpenEye OEChem toolkit 
by comparing each molecule with an isomeric SMILES rep-
resentation of the canonical steroid core atom connectivity 
and chirality, to filter out invalid steroid configurations. This 
steroid checker is included in Screenlamp and has recently 
been implemented in ZINC, by coordination with the devel-
opers at UCSF.

Step 1: hypothesis‑based molecular filtering

The Screenlamp toolkit provides a user-friendly interface 
to efficiently select those molecular structures relevant to a 
given screening hypothesis or objective. For instance, the 
first step in the 3kPZS inhibitor screening (Fig. 3) selected 
those drug-like molecules listed as commercially available 
by either ZINC or CAS. Drug-like properties were defined as 
satisfying Lipinski’s rule of 5 [68], with an additional rotat-
able bond criterion to filter out highly flexible molecules 
because their significant loss of entropy upon protein binding 

Fig. 2   The molecular structure of 3kPZS, showing canonical atom 
numbers and ring labels for the steroid ring system and tail (positions 
C-20–C-24)

http://www.cas.org/products/scifinder
http://www.cas.org/products/scifinder
http://www.cas.org/content/chemical-substances/faqs
http://www.cas.org/content/chemical-substances/faqs
http://www.eyesopen.com
http://www.eyesopen.com
https://www.cas.org/content/chemical-substances
https://www.cas.org/content/chemical-substances
http://cactus.nci.nih.gov
http://cavasotto-lab.net/Databases/GDD/
http://cavasotto-lab.net/Databases/GDD/
http://zinc.docking.org
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detracts from the ΔGbinding between receptor and ligand. The 
drug-like criteria used were: (1) molecular weight between 
150 and 500 g/mol; (2) octanol–water partition coefficient 
less than or equal to 5; (3) 5 or fewer hydrogen bond donors 
and 10 or fewer hydrogen bond acceptors; (4) polar surface 
area less than 150 Å2; and (5) fewer than 8 rotatable bonds. 
In addition, the filtering query excluded all molecules that 
were flagged as invalid steroids.

Step 2: sampling favorable molecular conformations

Low-energy conformations of the reference molecule 3kPZS 
were generated by sampling rotatable bond torsions and 

flexible ring systems with OpenEye OMEGA [53, 54] v 
2.4.1, using its default settings. Forty-eight favorable 3D 
conformers in a somewhat extended rather than folded con-
formation, required to fit within the ligand-binding site of 
the SLOR1 structure (Fig. 1), were kept (Fig. 3); specifi-
cally, the distance between the 3-keto group and the sulfur 
atom in the sulfate group in these conformers was 13–20 Å. 
Up to 200 favorable (low) energy conformations, following 
clustering by OMEGA to identify distinct conformations, 
were retained for each of the database molecules selected 
by the Screenlamp filtering steps. OMEGA uses a modified 
version of the Merck molecular force field (MMFF94) to 
measure the internal energy of a given conformation and 

Fig. 3   Using Screenlamp to 
identify compounds to test the 
hypothesis that compounds 
with negatively charged sulfate 
and sp2-hybridized oxygen 
groups matching the 24-sulfate 
to 3-keto oxygen distance in 
3kPZS will mimic 3kPZS and 
block its binding. Note that the 
mean and standard deviation 
in TanimotoCombo score used 
in Step 3 to filter candidate 
molecules were derived from 
the score distribution of the 
single conformers from the 
entire ZINC drug-like database 
overlayed with the panel of 
3kPZS conformers (rather than 
from the set of 43,000 mol-
ecules at the end of Step 1); see 
Supplementary Material 3, Fig. 
S1 for the distribution of ZINC 
database TanimotoCombo 
scores following overlay with 
3kPZS
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removes conformers with internal clashes. Based on the 
lowest energy conformer, up to 199 additional conformers 
are selected by OMEGA if their energy scores are less than 
10 kcal/mol higher than the lowest energy conformer and 
they have a pair-wise atom-position RMSD value of at least 
0.5 angstroms when overlayed with every other conformer 
in the set.

Generation of overlays to compare molecular shape 
and charge distribution with a known ligand

In addition to property and pharmacophore-based filtering, 
Screenlamp invokes the ROCS [10] software to generate 3D 
molecular overlays to evaluate similarity in volumetric and 
chemistry (or “color” [69]). In particular, the color com-
ponent evaluates whether two atoms are attractive (same 
color atom type) or repulsive (opposite color atom types), 
including weighting terms that measure the strength of the 
interaction. The color types include H-bond donor, H-bond 
acceptor, anion, cation, hydrophobic, and component of a 
ring. Using OpenEye ROCS v 2.4.6, 48 low-energy con-
formers of the 3kPZS reference molecule were overlaid with 
up to 200 conformers for each of the selected database mol-
ecules. The 3D overlays were ranked by the TanimotoCombo 
metric, which consists of equally contributing components 
that assess the degree of volumetric (shape) and atom type 
(color) similarity upon alignment. The TanimotoCombo 
metric requires perfect match between all parts of two mol-
ecules (rather than an exact substructure match) to achieve 
a perfect score, which ranges between 0 (no overlap/similar-
ity) and 2 (perfect overlap). For each database entry, only 
the configuration of the best-overlaid pair of conformers 
between 3kPZS and the database molecule was saved.

Step 3: ligand‑based scoring

Molecules with a similarity score two standard deviations 
above the mean, showing a high degree of similarity to the 
3kPZS reference molecule, were considered as potential 
3kPZS mimics and evaluated for functional group matches 
with 3kPZS. Here, the similarity score threshold was com-
puted from overlaying the low-energy 3kPZS conformers 
with the single-conformer ZINC drug-like database, which 
resulted in a mean TanimotoCombo score of 0.65 with a 
standard deviation of 0.083 (Supplementary Material 3, 
Fig. S1). 307,517 ZINC drug-like molecules have a Tani-
motoCombo score of 0.82 or greater (0.65 plus two standard 
deviations) when overlayed with the 3kPZS multi-conformer 
query. This TanimotoCombo threshold was relaxed for some 
screening hypotheses to allow selection of more compounds 
with favorable matches according to additional criteria, as 
detailed in the section, Hypothesis-driven selection of ligand 
candidates, below. Following overlay by ROCS, functional 

group matches were identified in the database molecule 
based on the presence or absence of an atom with atom 
type, atomic charge, and hybridization matching the follow-
ing (numbered according to the positions in 3kPZS): 3-keto, 
3-hydroxyl, 7-hydroxyl, and 12-hydroxyl oxygens; 18- and 
19-methyl groups; sulfate ester oxygen and three sulfate ter-
minal oxygens (Fig. 2). In each case, an atom (functional 
group component) in the database molecule was considered 
to match an overlayed atom in 3kPZS if its atom type, atomic 
charge, and hybridization matched, and the two atom centers 
were within 1.3 Å in the highest-scoring ROCS overlay of 
the database molecule with 3kPZS.

Docking the highest‑ranking compounds 
with the SLOR1 structural model to assess goodness 
of fit

For inhibitor candidates prioritized by two of the hypoth-
eses (3 and 8, described in the following section), flexible 
docking was performed by using SLIDE v 3.4 with default 
settings [55] to compare the mode of interaction of a given 
ligand candidate with 3kPZS docked into SLOR1. It was 
noted whether each candidate docked with a favorable 
SLIDE-predicted ∆Gbinding and whether it could form a salt 
bridge with His110 in SLOR1, similar to that observed for 
the 3kPZS sulfate tail, as described in the Results. His110 
proximity to the sulfate or negatively charged group in 
docked ligands selected by hypotheses 3 and 8 was used to 
define whether the fundamental orientation of the ligand 
candidate in the narrow binding cleft allowed formation 
of this favorable electrostatic interaction hypothesized to 
be essential for pheromone-like binding, or alternatively 
whether its sulfate or sulfate-like group was oriented out-
ward, towards the extracellular opening of the cleft.

Assays to measure inhibition of olfactory response 
of 3kPZS

Electro-olfactogram assays (EOGs) are commonly used to 
measure in vivo olfactory responses to environmental stimuli 
in vertebrates [70]. EOGs record the sum of action poten-
tials (the field potential) generated upon the activation of 
olfactory receptors (predominantly GPCRs) in the olfac-
tory epithelia upon exposure to an odorant. The sea lamprey 
EOG assays were conducted following a standard protocol 
described in Brant et al. [71]. Adult sea lamprey were anes-
thetized with 100 mg/L of 3-aminobenzoic acid ethyl ester 
(MS222, Sigma-Aldrich Chemical Co.) and injected with 
3 mg/kg gallamine triethiodide (Sigma-Aldrich Chemical 
Co.). Then, the gills were exposed to a continuous flow of 
aerated water with 50 mg/L MS-222 throughout the experi-
ments. All tested compounds were delivered directly to the 
olfactory rosette using a small capillary tube. Water used in 
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the EOGs was charcoal filtered fresh water. At the beginning 
of each experiment, and after each compound was tested, 
the olfactory rosette was flushed with charcoal filtered fresh 
water for 2 min before the responses to 3kPZS (10−6 M) and 
l-arginine (10−5 M), a strong sea lamprey olfactant that is not 
a pheromone, were recorded. To test the effect of the inhibi-
tor candidates on the olfactory detection of 3kPZS, the olfac-
tory rosette was continuously exposed to a 10−6 M solution 
of the candidate for 2 min. The responses were measured 
for a mixture of 10−6 M 3kPZS and 10−6 M of the inhibitor 
candidate, and also for a mixture of 10−5 M l-arginine and 
10−6 M of the candidate. The two mixtures were recorded 
for 4 s each. The percent reduction of the 3kPZS olfactory 
response was calculated as: 1 − ([response of the 3kPZS 
and candidate mixture − response to blank charcoal filtered 
fresh water]/[3kPZS response before inhibitor candidate 
− response to blank charcoal filtered fresh water]) × 100. 
Compounds that reduced the EOG response to 1 × 10−6 M 
3kPZS by 50% or more when combined with 3kPZS in equi-
molar concentration are described as having 1 micromolar 
or lower IC50 values. If the compound either inhibited or 
acted as an agonist of the 3kPZS receptor (competing for the 
receptor binding site with 3kPZS), a reduction of the 3kPZS 
signal would be observed. The response of a mixture of 
l-arginine and the inhibitor candidate was recorded, and the 
percent reduction of the l-arginine response was calculated 
to ensure that the inhibitor candidate had a specific effect on 
the 3kPZS receptor. l-Arginine is a common stimulant of the 
olfactory epithelium of sea lamprey that does not compete 
with the 3kPZS signal transduction pathway or receptor [72]. 
Recordings for each compound were repeated two to five 
times, and the reported signal reduction was computed as 
the average signal reduction among the replicates.

Graphics tools

Molecular graphics and renderings were produced using 
MacPyMOL v1.8.2.2 [73]. Data plots were generated using 
Matplotlib v2.0.0 [74], and diagrams were drawn using vec-
tor graphics software OmniGraffle v7.3.1, Affinity Designer 
v1.5.5, and Autodesk Graphic v3.0.1. All images were 
exported into bitmap format using macOS Preview v9.0.

Results and discussion

Structural model for interactions between 3kPZS 
and SLOR1

A 3D atomic structure of SLOR1 was built using the Mod-
Web interface to MODELLER and energy-minimized with 
CHARMM, as described in the Methods. MODELLER 
computed 25.5% sequence identity between SLOR1 and 

the β1-adrenergic receptor template (PDB entry 2vt4), with 
a highly significant expectation value of 6.4e−11. Structural 
evaluation by PROCHECK showed 94% of the SLOR1 resi-
dues to have main-chain dihedral values in the most-favored 
region, comparable to high-resolution crystal structures, 
and overall favorable stereochemistry, as measured by the 
PROCHECK G-factor (Supplementary Material 4). Swiss-
Model Workspace evaluation tools indicated that the model 
has favorable all-atom contacts [75] and a favorable overall 
energy [76] similar to those in the 2vt4 template structure 
(Supplementary Materials 5 and 6). The structural model of 
SLOR1 and generation of flexible conformers starting with 
the 3D structure of 3kPZS determined by NMR and mass 
spectrometry [27] enabled prediction of their interaction by 
docking. The most favorable docking mode predicted by 
SLIDE, with a predicted ΔGbinding of − 9.0 kcal/mol, showed 
the sulfate tail binding deeply in the orthosteric cleft near 
His110, surrounded by the transmembrane helices and open 
to the extracellular space (Supplementary Materials 7–9). 
The planar steroid binds in this cleft almost parallel to the 
transmembrane helical axes, with the specificity-determining 
3-keto group pointing towards the solvent-exposed extracel-
lular loops (Fig. 4).

The main sulfate-binding residue, His110, is 10 Å above 
a regulatory sodium site elucidated in the high-resolution 
adenosine receptor structure and thought to occur in many 
class A GPCRs (PDB entry 4eiy [77]). Most of the sodium-
ligating side chains are identical or similar in side-chain 
chemistry in SLOR1 (Fig. 5). The strongly attractive salt 
bridge between the 3kPZS sulfate group with both side 
chain nitrogen atoms on neighboring His110, reinforced by a 
hydrogen bond with Tyr203 and through-space electrostatic 
attraction with the postulated buried sodium ion [78], help 
explain the sensitivity of SLOR1 to 3kPZS in low nanomolar 
concentration. The di-methylated face of the steroid system 
in 3kPZS (Figs. 2, 4) is predicted to bind to a highly hydro-
phobic wall in the SLOR1 cleft, comprised of hydrocarbon 
side chain groups from Phe87, Met106, Leu109, His110, 
Asp196, Pro277, Tyr280, and Thr284. The 12-hydroxyl 
group on the opposite face of the steroid ring hydrogen-
bonds with the Cys194 main-chain oxygen. This mode of 
interaction is supported by a very similar cholate binding 
prediction for SLOR1 from CholMine [79] (http://cholm​ine.
bmb.msu.edu), in which Phe87, Leu109, and His110 also 
form major interactions with the dimethylated edge of the 
steroid ring system. This comparison between the binding 
mode predicted by CholMine for cholate and the interaction 
of 3kPZS predicted by SLIDE docking for SLOR1 can be 
visualized with the PDB and PyMOL graphics files avail-
able in Supplementary Materials files 10, 11, 12, and 13. 
The position of the 3-keto group at the solvent interface, 
not directly contacting SLOR1, suggests it interacts with 
the 30 N-terminal residues of SLOR1 that are absent from 

http://cholmine.bmb.msu.edu
http://cholmine.bmb.msu.edu
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Fig. 4   The backbone of the SLOR1 homology model is shown in 
gray ribbons with side-chain carbon atoms in yellow. 3kPZS carbon 
atoms are shown in cyan, with oxygen atoms in red, nitrogen atoms 
in blue, the sulfate sulfur in yellow, and hydrogen atoms in white. 
Hydrogen bonds between SLOR1 and 3kPZS are drawn as blue 

dashed lines. a Full view of the SLOR1-3kPZS complex, with GPCR 
transmembrane helices enumerated 1–7 from N- to C-terminus. b 
Close-up of key polar side chains forming intermolecular hydrogen 
bonds and salt bridges between SLOR1 and 3kPZS, as determined by 
SLIDE docking

Fig. 5   Alignment of the sea lamprey SLOR1 sequence with the 
closest GPCR of known 3D structure, β1-adrenergic receptor from 
Meleagris gallopavo (turkey), labelled Mgβ1AR. The V1R320 recep-
tor [36], another class A sea lamprey GPCR activated by 3kPZS, is 
shown for comparison. Highlighted residues form a disulfide bond 
(yellow) and cholesterol (aqua) and sodium ion (purple) binding 
sites, as mentioned in the text. Putative N-myristoylation and endo-
cytic binding motifs are labeled and indicated by brackets above the 
sequence. The most highly conserved residue in each helix (high-
lighted in pink, if not already highlighted according to one of the 
above roles) is labeled by its Ballesteros–Weinstein GPCR sequence 
number X.50, where X indicates the transmembrane helix number 
and 50 is the position number assigned to the most conserved residue 
in that helix across all GPCRs [80]. Residue numbers above the align-

ment correspond to the full SLOR1 sequence and are right-justified to 
align with the corresponding single-letter amino acid code. Boldface 
indicates predicted ligand binding site residues in SLOR1, based on 
occurring within 5 Å of the retinal ligand in rhodopsin (PDB entry 
2z73) or cyanopindolol in the β1-adrenergic receptor structure (PDB 
entry 2vt4), following their structural superposition on SLOR1 by 
DaliLite (http://ekhid​na.bioce​nter.helsi​nki.fi/dali_lite). Gray high-
lighting indicates residues with no structural model in SLOR1 due to 
low homology with the β1-adrenergic receptor (Mgβ1AR) or absence 
of crystallographic coordinates in this region of the Mgβ1AR crystal 
structure (PDB entry 2vt4). Underlined residues form the transmem-
brane helices in Mgβ1AR, based on DSSP main-chain hydrogen-
bonding analysis provided by the PDB [81]

http://ekhidna.biocenter.helsinki.fi/dali_lite
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the model due to lack of homology with any PDB struc-
ture. Structures of ligand-interacting lid peptides in class 
A GPCRs (which includes the CDYLVVLFL sequence in 
SLOR1) are highly individualized according to receptor type 
[78]. Together, the interactions predicted between the 3kPZS 
and SLOR1 structures informed the development of several 
screening hypotheses, as described below.

Hypothesis‑driven selection of ligand candidates

Upon screening the compounds from the ZINC, CAS and 
GLL databases to identify those with significant ROCS 
TanimotoCombo scores and functional group matches with 
3kPZS as tabulated by Screenlamp (see Methods), top-scor-
ing compounds were selected for electro-olfactogram (EOG) 
assays to directly assess their ability to reduce the sea lam-
prey olfactory response of 3kPZS, according to the follow-
ing hypotheses. Several of the hypotheses involve the pres-
ence of oxygen in a spatial position equivalent to the 3-keto 
oxygen in 3kPZS and negatively charged oxygen in positions 
equivalent to the terminal sulfate oxygens in 3kPZS. The 
focus on these functional groups is based on prior results 
indicating that both 3-O and sulfated tail groups were asso-
ciated with high olfactory potency [82] and were present in 
a few other steroid compounds known to elicit 3kPZS-like 
activity [83]. Specific hypotheses that were tested:

	 1.	 Compounds matching the 3-keto and one or more 
sulfate oxygens in extended conformations of 3kPZS, 
with TanimotoCombo score greater than 2 standard 
deviations above the mean. This tests the hypothesis 
that high overall shape and electrostatic similarity and 
matching the 3-keto and sulfate groups are sufficient 
to mimic and block 3kPZS activity.

	 2.	 Similar to the above, compounds with 3-hydroxyl 
groups spatially matching the 3-keto moiety in 3kPZS 
were selected to test the hypothesis that 3-hydroxyl 
containing compounds can block 3kPZS olfaction. 
Additional criteria for this set: ROCS similarity score 
to 3kPZS of 0.8 or above, high ROCS ColorTanimoto 
score (0.25 or above), matching a sulfate terminal 
oxygen and at least one of the other functional groups 
in 3kPZS (sulfate oxygen, hydroxyl or steroid methyl 
substituents), and docking with the sulfate group proxi-
mal to His110 in SLOR1 with a favorable predicted 
ΔGbinding (< − 7 kcal/mol).

	 3.	 All compounds with a planar steroid ring system 
and alpha configuration of hydroxyl groups match-
ing 3kPZS (rather than equatorial configuration), 
3-keto and sulfate oxygen matches, and ROCS Tani-
motoCombo scores greater than 0.65. This set tests 
the hypothesis that close steroidal analogs matching 
the oxygen-containing groups in 3kPZS will mimic 

3kPZS activity. The emphasis on planar (5-α) steroids 
derives from the fact that sea lamprey are the only fish 
that synthesize planar steroids with sulfated tails [84], 
and these features are expected to be species-selective 
olfactory cues. In fact, 5-β steroid relatives of 3kPZS 
are far less potent [83].

	 4.	 Phosphate or sulfate tail analogs. Aliphatic chains with 
at least 3 methyl(ene) groups terminating in a phos-
phate or sulfate group were identified by the ZINC 
search tool, to test whether mimicking the sulfate tail 
moiety of 3kPZS alone is sufficient to block 3kPZS 
olfaction, and whether a phosphate group can mimic 
the sulfate group.

	 5.	 Compounds with a high degree of shape/electrostatic 
match with the C and D steroid rings and sulfated ali-
phatic tail structure in PAMS-24, another sea lamprey 
pheromone identified by the Li lab [85] (Supplemen-
tary Material 3, Fig. S2). This region corresponds to 
atoms 8, 9, and 11–24 plus the sulfate group (Fig. 2), 
with the addition of an isopropyl group at C-24. This 
set tests whether compounds matching a pheromone 
tail fragment inhibit the 3kPZS response.

	 6.	  5-β steroid structures with at least 2 sulfate oxygen 
matches with 3kPZS or at least 5 functional group 
(oxygen and methyl) matches were chosen to test 
whether bent rather than planar steroids can block 
3kPZS olfaction. (None of the compounds could match 
both the 3-keto and sulfate tail, due to the bent geom-
etry of the 5-β steroid ring system when overlaid with 
ROCS to match all atoms.) Prior work on 5-β steroids 
tested their ability to act as 3kPZS agonists rather than 
inhibitors [83].

	 7.	 Compounds with highly negative sulfate oxygen-match-
ing atoms (with charges at least 0.3 units more nega-
tive than the sulfate oxygen charge in 3kPZS) were 
selected, testing the hypothesis that strongly negatively 
charged groups can form stronger interactions with 
SLOR1 (e.g., salt bridge with His110) and outcompete 
3kPZS for binding.

	 8.	 Compounds with negatively charged, non-oxygen-con-
taining tails, testing whether other negative groups can 
block 3kPZS binding. These compounds contained a 
negatively charged atom other than oxygen in one of 
the sulfate oxygen positions, a high ROCS ShapeTan-
imoto score for similarity to 3kPZS (0.8 or above) 
and favorable ROCS ColorTanimoto value (0.25 or 
above). Further filtering criteria included matching 
the 3-hydroxyl group and a sulfate terminal oxygen, 
at least one of the other functional groups (sulfate 
oxygen, hydroxyl or steroid methyl substituents), 
and docking with the sulfate group close to His110, 
deep in the SLOR1 binding site, with a docking score 
< -7 kcal/mol.
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	 9.	 Epoxide-containing steroids. Epoxide functional 
groups are labile, tending to spring open due to bond 
strain and then reacting with nearby protein groups. 
Previous research [86] indicated that epoxide cross-
links can be site-specific, preferring histidine side 
chains. 3kPZS-like, epoxide-containing steroids 
were tested because cross-linking with the active-site 
His110 in SLOR1 could result in very strong inhibi-
tion of the 3kPZS receptor. Epoxide opening or cross-
linking from the equivalent of the 3-oxygen position in 
3kPZS could also create an antenna-like group, poten-
tially making favorable interactions with the collar 
of the binding site as has been found for other GPCR 
ligands [87].

	10.	 Taurine tail-containing steroids with significant over-
all chemical similarity to 3kPZS. Taurolithocholic 
acid was observed to significantly block the olfactory 
response of sea lamprey to 3kPZS; in Fig. 6, tauro-
lithocholic acid is compound #3 and was observed to 
block 65% of the 3kPZS response. Other compounds 
with taurine tails and overall good matches to 3kPZS 
could also block its binding to SLOR1 and were identi-
fied as candidates for testing.

	11.	 CAS steroids with high volumetric and electrostatic 
similarity to 3kPZS. The top 25 steroids from the CAS 
Registry, ranked by volumetric and electrostatic simi-
larity to 3kPZS in ROCS overlays, were selected for 
experimental assays. These compounds are highly 
similar to 3kPZS while not being biased by prior 
knowledge of activity determinants, by which we mean 
chemical groups or pharmacophores involved in recep-
tor binding.

	12.	  Compounds known to be bioactive in complex with 
the β1-adrenergic receptor, the GPCR of known struc-
ture with highest binding site sequence similarity to 
SLOR1. Three molecules known to be active versus 
β1-adrenergic receptor were selected for assaying: 
carvedilol (agonist; ZINC01530579), atenolol (selec-
tive antagonist; ZINC00014007), and dobutamine 
(partial agonist; ZINC00003911).

Screenlamp discovery of potent 3kPZS antagonists

A typical screening run for a single hypothesis, for instance, 
obtaining 3kPZS volumetric and pharmacophore mimics 
with 3-oxygen and 24-sulfate matches (Fig. 3) starting from 
12 million commercially available, drug-like molecules in 
ZINC, was completed within a day on a standard desktop 
computer (2 Intel® Xeon® CPU E5-2620 v2 at 2.10 GHz (8 
cores), 16 GB DDR3 SDRAM, and 7200 RPM hard drive). 
Candidates from the hypothesis-based screens described in 
the Methods provided a set of 307 commercially available 

compounds, including 8 samples from different vendors for 
some of the 299 unique compounds. The entire set was pro-
cured and tested by EOG for the ability to reduce the 3kPZS 
olfactory response. Following the EOGs, the most and least 
active compounds (Fig. 7) were analyzed structurally to 
identify features that correlate with activity.

Structure–activity relationships of Screenlamp 
compounds

Six of the 15 most active compounds, which reduced the 
response to 3kPZS by 43–92%, were steroidal. Interestingly, 
most of the top 15 inhibitors other than petromyzonol sulfate 
(PZS; ZINC72400307; the 3-hydroxyl analog of 3kPZS), 
lacked 3kPZS-like hydroxyl groups in the 7- and 12-posi-
tions of the steroid ring system. The 3D overlays of all 15 
compounds with the best-matching conformer of 3kPZS are 
provided in Supplementary Materials file 14. The three most 
active compounds had 3-hydroxyl groups in place of the 
3-keto group in 3kPZS (Fig. 6), suggesting that this group 
acts as a switch between agonist and inhibitor functions. 
These results highlight the importance of performing some 
screens without filtering heavily on chemical group matches, 
because our initial screens focused on the hypothesis that 
presence of a keto group that matches the 3-keto group in 
3kPZS is essential for binding the 3kPZS receptor. The most 
active compound discovered in this work, PZS, which con-
tains a 3-hydroxy group instead of 3-keto (Fig. 6), first arose 
from our screen based on hypothesis 4 (presence of a sulfate 
tail). The discovery that PZS was highly active, yet con-
tained a 3-hydroxy group, drove the development of the suc-
cessful hypothesis 2 screen, seeking 3-hydroxy and 24-sul-
fate tail matches. (Note that the hypotheses are numbered 
arbitrarily, not in the order that they were performed. Several 
of the screens were performed concurrently, while others 
were initiated as assay results provided new insights into 
chemical groups associated with activity.) For the two most 
active compounds (both selected by hypothesis 2), the inhib-
itor orientation was found to be 3kPZS-like, energetically 
favorable, and capable of forming a salt bridge with His110 
deep in the orthosteric pocket of SLOR1. In these two com-
pounds, PZS and taurolithocholic acid (ZINC35044325), 
the 3-hydroxyl groups overlapped with the 3-keto group of 
3kPZS upon 3D overlay by ROCS (Fig. 6).

Other interesting structure–activity relationships were 
revealed by six sulfate tail analogs (hypothesis 4), match-
ing the sulfate tail moiety of 3kPZS, appearing among the 
10 most active compounds (Fig. 6). For instance, the four 
compounds ZINC14591952 (sodium 6-methylheptyl sul-
fate), ZINC01845398 (n-butylsulfate), ZINC01532179 (lau-
ryl sulfate), and ZINC02040987 (tetradecyl sulfate) consist 
entirely of aliphatic hydrocarbon chains terminating in a sul-
fate group (Fig. 6) and were found to reduce the olfactory 
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response of 3kPZS by 43–45%. This is a useful insight, as it 
indicates that matching the 3-keto oxygen and steroid ring 
system in 3kPZS is not absolutely essential. Sulfated alkanes 
like these are inexpensive compounds, though they vary in 
vertebrate toxicity and are likely to be less target-selective 

than molecules capable of making additional 3kPZS-like 
interactions. The trisulfated variant of PZS (ZINC72400309) 
is another molecule that would not have been predicted by a 
typical drug discovery approach, due to its high polarity and 
bulk relative to the reference compound, 3kPZS. However, 

Fig. 6   3D structures of the 15 most active molecules from screening 
the ZINC drug-like dataset, the combinatorial analog dataset, CAS 
registry steroids, and the GPCR Ligand Library as described in the 
Methods section, Preparation of millions of drug-like molecules for 
ligand-based screening. The molecule structures are numbered from 
highest percent inhibition (#1) to lowest (#15). Accession codes in 
the CAS registry and ZINC databases are provided along with aver-

age percent inhibition values over two or more replicates. Hypoth-
esis-based selection criteria are listed below the compound IDs, 
referencing the hypothesis descriptions given in the Results. The 
ZINC13057041 compound has been flagged as a potential PAIN 
(pan-assay interference compound) containing a functional group that 
leads to false-positive assay results via the server available at http://
cblig​and.org/PAINS​/ [88]

http://cbligand.org/PAINS/
http://cbligand.org/PAINS/
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this turns out to be one of the most effective antagonists of 
3kPZS according to in vivo olfactory inhibition of 3kPZS 
response. Trisulfated PZS shows even greater promise in 
behavioral tests with sea lamprey in natural stream water 
(manuscript in preparation). The other hypotheses that were 
most effective, discovering moderate-activity compounds 
that blocked 40–65% of the olfactory response to 3kPZS, 
were hypothesis 1 (compounds matching the 3-keto and 
24-sulfate groups in 3kPZS) and hypothesis 6 (compounds 
containing a 5-β steroid ring and 24-sulfate group match).

Enrichment of active molecules 
through hypothesis‑based filtering criteria

While shaped-based ranking methods for ligand-based vir-
tual screening such as ROCS yield favorable results when 
tested for the ability to identify active molecules among a 
large set of decoys [10], the development of Screenlamp 
was driven by the need to include domain-based knowledge, 
such as spatial relationships between a subset of functional 
groups observed in pheromones, to discover compounds 
highly enriched in activity. The benefits of incorporating 
system-specific criteria when screening is underscored by 
considering the results of using only shape and charge scor-
ing. Upon comparing the TanimotoCombo scores alone, 
based on shape and pharmacophore similarity to 3kPZS, 
with EOG assay values representing the percent inhibition 
of 3kPZS response for the 299 compounds (Supplementary 
Material 15, Table S3), the correlation between molecular 
similarity scores and percent inhibition of 3kPZS response 
values was low (Fig. 8), as indicated by a Pearson linear 
correlation coefficient value (R) of 0.07. On the other hand, 
the consistently accurate 3D overlays with 3kPZS provided 
by ROCS for the entire screening database were essential for 
prioritization of compounds prior to chemical group match-
ing, and the accurate ROCS overlays also enabled correct 
detection of chemical group matching in Screenlamp.

These results are consistent with a high degree of molecu-
lar similarity from overlay with a known ligand (or com-
plementarity with the protein) being a useful feature in 
molecules that compete with a known ligand for receptor 
binding. However, overall similarity with a known ligand 
is typically insufficient to ensure that the same biological 
response is generated (e.g., activation or inhibition). Bioac-
tive molecules form an exquisitely selective set of interac-
tions in order to exclude the possibility of potentially lethal 
binding by the wrong ligands. The key is to identify which 
groups are making those specificity-determining interac-
tions. Based on the experimental EOG data for 299 tested 
compounds, it is apparent that using hypothesis-driven func-
tional group matching criteria in addition to ROCS-based 
similarity scoring yields greater enrichment of activity 
(Fig. 9), while also allowing identification of those critical 

Fig. 7   a Heat map showing the functional group matches of the 15 
most active and 15 least active molecules when overlaid with 3kPZS. 
The percent inhibition was computed as the average inhibition over 
two or more independent electro-olfactogram assays. Heat map cells 
containing 1’s indicate the presence of a match and 0’s indicate the 
absence of a match. b 3D representation of an energetically favorable 
3kPZS conformer with functional group labels, to aid in interpreting 
the heat map x-axis labels. We have developed computational proto-
cols to identify activity discriminants from such data; see [65] and the 
example code on GitHub: https​://githu​b.com/psa-lab/predi​cting​-activ​
ity-by-machi​ne-learn​ing

https://github.com/psa-lab/predicting-activity-by-machine-learning
https://github.com/psa-lab/predicting-activity-by-machine-learning
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groups. For instance, while retrieving compounds matching 
3kPZS with a ROCS TanimotoCombo similarity score of 
1.03 or more recovered 4 of the 5 most active molecules 
(with at least 50% inhibition), this set of retrieved molecules 
also included many (161) non-active molecules (Fig. 9b). 
Including additional selection criteria, such as the presence 
of a steroidal substructure, a sulfur or phosphorus overlay 
with the 24-sulfur atom in 3kPZS, and three sulfate oxygen 
matches, also yields 4 active molecules but only 13 inactives 
(Fig. 9b). Of the set of 299 molecules that were assayed, one 
molecule (PZS, or ZINC72400307, the most active), ranked 

highly (19th) when the TanimotoCombo score alone was 
considered. Hence, the selection of molecules for experi-
mental assays would have been different if ROCS were used 
without additional hypothesis-based filtering criteria. How-
ever, this is expected, as the top 100 molecules ranked by 
different scoring functions (even those with similar features) 
in large database screening are often non-overlapping, due 
to the close similarity (virtual continuity) in score values, 
given a large number of molecules [2]. These results support 
that hypothesis-based chemical group filtering criteria, as 
facilitated by Screenlamp, not only decrease computational 

Fig. 8   Quantitative comparison of EOG percent inhibition values for 
3kPZS inhibitor candidates with their molecular similarity scores 
upon 3D overlay with 3kPZS. a The 299 assayed compounds were 
sorted by EOG activity values, from highest percent inhibition of 
3kPZS response (left end of x-axis) to lowest (right end). b For these 
compounds shown in the same x-axis order as in (a), the ROCS Tani-
motoCombo molecular similarity scores following 3D flexible over-
lay with 3kPZS were plotted, equally weighting the electrostatic and 
volumetric components, with a maximum possible sum of 2.0. If the 
overlay similarity scores alone were highly predictive of activity, we 
would expect to see a pattern of high overlay scores corresponding to 
high percent inhibition values [that is, a similar profile of high scores 

decreasing to low scores, left to right, in (b) as well as (a)]. However, 
the pattern of overlay scores in (b) is variable across the compounds, 
even for those with the highest percent inhibition values. Tanimoto-
Combo and percent inhibition are virtually uncorrelated, with a Pear-
son correlation coefficient of 0.07. While for most hypotheses, only 
compounds with reasonably high overlay scores were assayed (mean-
ing we pre-selected for overall molecular similarity), the data in (b) 
shows that overlay scores alone are not enough to predict the ability 
of a compound to inhibit 3kPZS activity. This drove the development 
of the tools in Screenlamp for identifying functional group patterns 
associated with biological activity (hypothesis-driven screening)
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costs by appropriately reducing the chemical search space, 
but also are valuable for increasing the rate of retrieval of 
active compounds.

Conclusions

Incorporating a hypothesis-driven strategy in computa-
tional and organismal biology has identified an inhibitor 
which in low concentration virtually nullifies the olfactory 
response of sea lamprey to the major mating pheromone, 
3kPZS. Other highly active compounds were identified 
and are showing great promise as mating behavioral deter-
rents in ongoing stream trials. The ligand-based screen-
ing with Screenlamp also provided a series of simpler, 
nonsteroidal compounds that are significantly active and 
provide useful structure–activity information. To our 

knowledge, this presents the first successful application 
of structure-based drug discovery techniques to identify 
potent lead compounds for aquatic invasive species con-
trol. To enable other projects to benefit from this scalable, 
hypothesis-driven strategy which works easily with very 
large datasets, we have documented and are distributing 
the Screenlamp toolkit free of charge. (see Methods sec-
tion on Development of Screenlamp for details.)
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Fig. 9   a Enrichment graphs 
showing the percent inhibition 
as a function of chemical and 
volumetric similarity of candi-
date molecules to 3kPZS, based 
on inhibition assays for 299 
molecules selected by structure–
activity hypotheses. The overlay 
score threshold refers to the 
ROCS TanimotoCombo score, 
equally weighting volumetric 
and pharmacophore similar-
ity. The different traces on the 
graphs compare the enrichment 
for several hypotheses relative 
to using 3D similarity (overlay 
score) alone. b Receiver operat-
ing characteristic curve (rate of 
retrieval of true positives versus 
false positives), with triangles, 
square and circle symbols used 
to show the point on each curve 
corresponding to a given score 
threshold, for cases in which the 
overlay score alone was used 
to select candidate compounds, 
versus when the overlay score 
was augmented by increas-
ingly selective steroid-based 
hypotheses, resulting in fewer 
molecules being tested but a 
greater enrichment in active 
compounds. The curves show 
the number of active molecules 
(defined as having at least 50% 
inhibition of 3kPZS in experi-
mental assays) for different 
overlay thresholds
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