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Abstract
Understanding how proteins encode ligand specificity is fascinating and similar in importance to deciphering the genetic 
code. For protein–ligand recognition, the combination of an almost infinite variety of interfacial shapes and patterns of chemi-
cal groups makes the problem especially challenging. Here we analyze data across non-homologous proteins in complex 
with small biological ligands to address observations made in our inhibitor discovery projects: that proteins favor donating 
H-bonds to ligands and avoid using groups with both H-bond donor and acceptor capacity. The resulting clear and significant 
chemical group matching preferences elucidate the code for protein-native ligand binding, similar to the dominant patterns 
found in nucleic acid base-pairing. On average, 90% of the keto and carboxylate oxygens occurring in the biological ligands 
formed direct H-bonds to the protein. A two-fold preference was found for protein atoms to act as H-bond donors and ligand 
atoms to act as acceptors, and 76% of all intermolecular H-bonds involved an amine donor. Together, the tight chemical and 
geometric constraints associated with satisfying donor groups generate a hydrogen-bonding lock that can be matched only 
by ligands bearing the right acceptor-rich key. Measuring an index of H-bond preference based on the observed chemical 
trends proved sufficient to predict other protein–ligand complexes and can be used to guide molecular design. The resulting 
Hbind and Protein Recognition Index software packages are being made available for rigorously defining intermolecular 
H-bonds and measuring the extent to which H-bonding patterns in a given complex match the preference key.

Keywords Interaction patterns · Drug design · Protein–ligand recognition · Specificity determinants · Ligand optimization · 
Lipinski’s Rule of 5

Abbreviations
3D  Three-dimensional
CATH  Class Architecture Topology Homologous 

superfamily
H-bonds  Hydrogen bonds
MMFF94  Merck Molecular Force Field

PDB  Protein Data Bank
PRI  Protein Recognition Index

Introduction

Across several molecular docking, alignment, screening and 
crystallographic data analysis projects [1–4], we made the 
following observations:

• Molecules enhanced in chemical groups having both 
hydrogen bond (H-bond) donor and acceptor capacity 
(e.g., hydroxyl groups) tend to lead to false-positive rank-
ings in molecular screening and inaccurate prediction of 
binding poses for known ligands. This is apparently due 
to the greater number of potential favorable interactions 
of donor + acceptor matches (which are augmented by 
the bond-rotational possibilities for hydroxyl groups), 
leading to higher protein–ligand interaction counts and 
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overestimated affinity, relative to ligands enhanced in 
donor-only and acceptor-only groups.

• When analyzing the protein binding sites in a number of 
protein-small molecule crystal structures, we also noticed 
that H-bonds tended to be donated from the protein to 
the ligand, rather than observing an even distribution of 
donors and acceptors on both sides of the interface.

• While optimizing the docking scoring function for 
SLIDE [1] and the surface alignment scoring function 
for ArtSurf [4] by training on known complexes or site 
matches, we noted that the terms for matching chemical 
groups with both donor and acceptor capacity received 
much smaller weights than the terms for matching donor-
only or acceptor-only groups.

An interesting possibility is that nature avoids the pres-
ence of chemical groups bearing both H-bond donor and 
acceptor capacity, such as hydroxyl groups, in the binding 
sites of proteins or ligands. The many ways of satisfying 
these groups with H-bond partners could lead to non-selec-
tive ligand binding. This hypothesis appears to be supported 
by the second observation that proteins selectively donate 
(rather than donate and accept) H-bonds to small molecules. 
Since those observations were made anecdotally over time 
and may not hold for protein–ligand complexes in general, 
the present study was designed to assess whether the above 
trends (or others) are consistently present in a set of 136 
non-homologous proteins bound to a range of biologically 
relevant small molecules. Selecting this set of proteins with 
no binding site structural homology between any constituent 
pair removed potential bias towards a given fold, sequence, 
or function. We then tested whether the resulting statistics of 
H-bonding trends alone provided enough information to pre-
dict the orientation of ligands relative to their protein part-
ners. The goal was to evaluate whether trends derived from 
many complexes hold for individual examples well enough 
to predict the native interactions. Predicting the orienta-
tion of ligands for 30 additional complexes also addressed 
whether the observed trends constitute an essential part of 
the code for recognition between proteins and ligands.

Advances over the decades in our understanding of 
protein H-bonding have been well-reviewed in [5]. The 
literature most relevant to the present study falls into two 
areas: defining energetically favorable H-bonds in terms of 
geometry (given the integral relationship between favorable 
geometry and favorable energy) and characterizing H-bond 
interactions in protein–ligand complexes. Nittinger et al. 
[5] analyzed a large number of protein–ligand structures to 
define preferred H-bond geometries and the extent to which 
H-bonds observed in experimental structures match theoreti-
cally predicted H-bonds based on the valence shell electron 
pair repulsion model. Their focus was on furthering the accu-
rate modeling and parameterization of H-bonds. As in the 

work of McDonald and Thornton [6], Nittinger et al. found 
only small energetic differences in out-of-plane H-bonding 
angles for  sp2 groups such as keto oxygens. This has a key 
impact on ligand orientational selectivity for donor versus 
acceptor groups in the present work. Panigrahi and Desiraju 
[7] also studied protein–ligand H-bonds across a number 
of diverse, if not necessarily non-homologous, small mol-
ecule complexes. Their criteria for defining H-bonds (proton 
within 3.0 Å of acceptor, resulting in a donor–acceptor dis-
tance of up to 4 Å, and donor-H-acceptor angle greater than 
90°, with 90° reflecting a very weak H-bond) were less strin-
gent than those used here, which could result in the inclusion 
of relatively low-strength, second-shell (less direct) inter-
actions in their statistics. They defined strong H-bonds as 
those involving polar donor and acceptor atoms, versus weak 
H-bonds formed by CH donors to oxygen acceptors. They 
found that N–H–O and O–H–O H-bonds tended to be linear, 
C–H–O H-bonds to oxygen with Gly and Tyr as donors were 
ubiquitous in active sites, and that ligands accept twice as 
often as they donate H-bonds to the protein, consistent with 
Lipinski’s Rule of 5 [8]. The current work focuses on iden-
tifying chemical interaction patterns between proteins and 
their ligands at an atomic chemistry rather than functional 
group scale, evaluating underlying reasons for such patterns, 
including ligand selectivity, and testing the extent to which 
these patterns can predict native interactions.

Methods

Dataset

A dataset of well-resolved protein complexes with bio-
logically relevant small molecules was constructed based 
on the intersection between proteins representing different 
CATH structural folds [9] (Class, Architecture, Topology, 
Homologous superfamily; http://www.cathd b.info) and a set 
of well-resolved protein structures bound to small organic 
molecules with known affinity from Binding MOAD [10] 
(http://bindi ngmoa d.org). This resulted in a dataset of 136 
non-homologous protein structures (Supplementary Material 
1, Table S1) from the Protein Data Bank [11] (PDB; http://
www.rcsb.org) with a resolution of 2.4 Å or better; 90% 
of the structures were solved at 2.0 Å resolution or better. 
The protein structures were bound to a diverse set of small 
ligands (25 peptides, 50 nucleotides, bases and base analogs, 
and 61 other organic molecules). None of the structures were 
problematic in ligand fitting or resolution according to the 
Iridium quality analysis of protein–ligand fitting and refine-
ment [12].

http://www.cathdb.info
http://bindingmoad.org
http://www.rcsb.org
http://www.rcsb.org
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Protonation

Protonation of each protein–ligand complex was performed 
with the OptHyd method in YASARA Structure [13] (ver-
sion 16.4.6; http://www.yasar a.org; see details in Supple-
mentary Material 2), retaining interfacial metals and remov-
ing bound water molecules, with the goal of assessing direct, 
strong interactions between proteins and their ligands. Dur-
ing the addition of hydrogen atoms and optimization of the 
H-bond network using YASARA, heavy atom positions were 
maintained except for the rotation of the terminal amide 
groups of asparagine and glutamine side chains through 180° 
when interchange of the =O and –NH2 groups resulted in 
improvement in polar interactions. This step disambiguates 
the fitting of these side chains into electron density due to 
the similar density of oxygen and nitrogen atoms at typical 
crystallographic resolution. YASARA assigns the tauto-
meric state of the imidazole groups in histidine side chains 
according to the intra- and intermolecular hydrogen and 
metal bonding of each histidine and the influence of neigh-
boring polar groups on the  pKa of the imidazole ring [14]. 
For nucleotidyl ligands and bases, the results of high-level 
ab initio calculations on protonation states and tautomers, 
and how they are influenced by H-bonding in complexes, 
were also considered [15].

Optimization of proton orientation

To minimize steric clashes and optimize the polar interaction 
network, OptHyd also optimized the orientation of protein 
and ligand protons (for instance, the hydrogen positions in 
rotatable  NH3 and OH groups). This method uses the YAM-
BER force field, a second-generation force field derived 
from AMBER, which was self-parameterized according to 
the protonated protein, water molecules, and ions present in 
the complete unit cells of 50 high resolution X-ray structures 
[16]. All 136 of the complexes in our analysis were checked 
for agreement between YASARA protonation of the ligand 
in complex with the protein, relative to protonation of the 
ligand alone using molcharge in OpenEye QUACPAC with 
the AM1-BCC option [17] (version 1.7.0.2; https ://www.
eyeso pen.com/quacp ac; OpenEye Scientific Software, Santa 
Fe, NM). Protonation and ligand valences resulting from 
YASARA were also visually inspected with PyMOL [18] 
(version 1.8.2.2, https ://www.schro dinge r.com/pymol ). In 
cases of ambiguities or differences in protonation state or 
valence, the chemical literature for the protein–ligand com-
plex and protonation states for the ligand were consulted, 
resulting in manual correction relative to the YASARA pro-
tonation in a few cases. The protonated ligands provided in 
PDB format by YASARA were converted to Tripos MOL2 
format with the OpenEye OEChem toolkit (version 1.7.2.4; 

https ://www.eyeso pen.com/oeche m-tk; OpenEye Scientific 
Software, Santa Fe, NM).

Influence of partial charges

In the Hbind software developed in this work to define 
H-bond interactions (including salt bridges satisfying 
H-bond criteria, described in the following paragraph), par-
tial charges are only used to assess whether an atom pair can 
form longer-range salt bridges. The salt bridge assignment 
requires a higher than 0.3 charge magnitude on the ligand 
atom interacting with a charged protein or metal atom and a 
maximum distance of 4.5 Å between the donor and acceptor. 
These longer-range salt bridges are often second-shell inter-
actions and thus were not included in the current analysis. 
Hence, as expected, charges assigned by either the Merck 
Molecular Force Field [19] (MMFF94) or AM1-BCC [17] 
using molcharge in QUACPAC resulted in the same list of 
direct H-bond and metal bridge interactions for the 136 com-
plexes. The protonated ligands with MMFF94 charges are 
provided (in the same reference frame as the corresponding 
PDB complex) in a multi-MOL2 file [20] in Supplementary 
Material 3.

Hbind software

This software developed in our laboratory (available from 
GitHub at https ://githu b.com/psa-lab/Hbind ) was used to 
define direct H-bonds and metal bonds with ligands. Paul-
ing wrote, “Only the most electronegative atoms should form 
H-bonds, and the strength of the bond should increase with 
increase in the electronegativity of the two bonded atoms… 
[Thus] we might expect that fluorine, oxygen, nitrogen and 
chlorine would possess this ability, to an extent decreasing in 
this order.” [21]. In our software, nitrogen and oxygen atoms 
are considered as potential donors or acceptors of H-bonds 
and fluorine and chlorine as potential acceptors. Hbind 
interprets the donor/acceptor capacity of ligand atoms from 
information in the MOL2 file detailing the hybridization, 
the order of covalent bonds with neighboring atoms, and 
the protonation state of these atoms. The software implicitly 
evaluates by analytic geometry all orientations of protons 
in rotatable groups for their ability to satisfy the H-bond 
criteria defined below, while not altering their coordinates 
in the PDB or MOL2 file. For instance, protons in X–NH3 
and X–OH groups can adopt any sterically admissible posi-
tion on a circle upon rotation of the X–N or X–O single 
bond. The H-bond identification criteria are based on those 
of Ippolito et al. [22] and McDonald and Thornton [6], all 
of which must be met:

• Hydrogen to acceptor distance: 1.5–2.5 Å
• Donor to acceptor distance: 2.4–3.5 Å

http://www.yasara.org
https://www.eyesopen.com/quacpac
https://www.eyesopen.com/quacpac
https://www.schrodinger.com/pymol
https://www.eyesopen.com/oechem-tk
https://github.com/psa-lab/Hbind


 Journal of Computer-Aided Molecular Design

1 3

• Donor-H-acceptor angle (Θ): 120°–180°
• Pre-acceptor–acceptor–H angle (ϕ): 90°–180°

These donor, hydrogen, and acceptor geometries are 
depicted in Fig. 1. The following criteria were used for pro-
tein or ligand-bound metals to form a bond with an atom on 
the second molecule bearing a lone pair of electrons:

• Lone pair atom distance to K or Na: 2.0–2.9 Å
• Lone pair atom distance to Ca, Co, Cu, Fe, Mg, Mn, Ni, 

or Zn: 1.7–2.6 Å

Hbind calculates and outputs the interaction distance 
and angles between each protein–ligand atom pair forming 
an H-bond or metal interaction. Additional command-line 
options are available to list longer-range salt bridges (up to 
4.5 Å between protein and ligand), direct hydrophobic con-
tacts, and the protein–ligand orientation and affinity scores 
and terms calculated by SLIDE [1] (version 3.4, http://kuhnl 
ab.bmb.msu.edu/softw are/slide /index .html).

Identification of ligand H‑bonding patterns

This analysis aimed to identify any consistent patterns of 
nitrogen donor interactions from proteins to ligands in the 
dataset of 136 non-homologous complexes. When visual-
izing the complexes with PyMOL, geometrical similarities 
were apparent in the H-bond networks with nucleotidyl 
ligands, involving a visually distinctive pattern of protein 
H-bond donors. To assess this objectively, the pattern of 
H-bond interactions within each complex was represented 
by a binary vector listing the presence (1) or absence (0) of 
an H-bond to the ligand for each position in the sequence. 
Because the number of possible interaction patterns for 
protein sequences with hundreds of residues and arbitrary 
spacing between the H-bonding positions is almost infi-
nite, we chose to focus on the subcase of identifying local 
H-bonding sequence patterns with at least three interacting 
residues and no more than ten residues intervening between 
a pair of successive interactions. For each protein, the ini-
tial H-bonding vector was then split into non-overlapping 
sub-vectors (local motifs), such that each sub-vector started 
and ended with an H-bonding residue and did not contain 
a contiguous subsequence of more than ten zero-elements 

Fig. 1  Favorable regions for H-bonding partners of a an acceptor 
atom, and b a donor atom in the protein or ligand. Based on the geo-
metric criteria described in the text, the outer and inner shells rep-
resent the maximum and minimum distances for the H-bond partner 
atom relative to the acceptor (a) or donor (b). Given that the pre-
acceptor–acceptor–H angle (ϕ) can range from 90° to 180°, the sur-
face area of the outer shell defining the maximum distance at which 
a donor atom can interact favorably, within 3.5 Å of the acceptor, is 
77.0 Å2. The inner shell at 2.4 Å correspondingly represents the sur-
face of minimum distance for the donor relative to the acceptor. The 

favorable volume for a protein atom to H-bond with a donor atom 
(a) or an acceptor atom (b) on the ligand is defined as the volume 
between the inner and outer shells. Because the pre-acceptor–accep-
tor–H angle (ϕ) can range from 90° to 180° for each lone pair on the 
acceptor (a), while the range for the donor-H-acceptor angle in (b) 
is narrower (120°–180°), the volume in which a ligand proton can 
favorably bind to a protein acceptor atom (60.6 Å3) is twice the vol-
ume in which an acceptor atom can make a favorable interaction with 
a donor atom (30.3 Å3)

http://kuhnlab.bmb.msu.edu/software/slide/index.html
http://kuhnlab.bmb.msu.edu/software/slide/index.html
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(non-interacting residues). For example, an H-bond interac-
tion vector consisting only of nitrogen donors (here, from the 
entire sequence of PDB entry 1f5n [23]) appears as follows 
between the vertical bars, where the initial number (1) is the 
first residue number in the sequence, and the last number 
(1361) is the final residue number:

Note that these vectors are formatted as binary sequences, 
where residues forming interfacial H-bonds are labeled with 
1’s, and residues not involved in H-bonds are set to 0. The 
following excerpt of a protein H-bond interaction vector 
shows a region within the above complete vector contain-
ing two local interaction vectors:

The extracted sub-vectors or local H-bonding motifs were 
then:

Once all sub-vectors were extracted, they were tabulated 
by protein and concatenated into a dataset containing the 
local motifs from all 136 complexes. Trailing zeros were 
added to facilitate displaying the results:

etc.

The first letter in each row denotes whether this subse-
quence corresponds to a peptide-like (P), nucleotide-like 
(N), or other organic (O) ligand. Because some protein com-
plexes contained more than one interaction motif, the digit 
following the underscore after the PDB code indexes the 
motifs in a given protein. The first character after the next 
underscore is the PDB chain ID of the protein and ligand 
analyzed, and the remaining digits specify the residue num-
ber of the ligand molecule.

Software for statistical analyses

The parsing of Hbind interaction tables and the statisti-
cal analyses in this work were carried out in Python using 
NumPy [24] (version 1.13.3, http://www.numpy .org), SciPy 
[25] (version 0.19.1, https ://www.scipy .org), and Pandas 

1|0 0 0 ...1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1… 0 0 0 |1361

43| 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 1|69

43| 1 1 1 1 1 |47 and 62| 1 0 0 0 0 0 1 1 |69

N_1B5E_1_D400|1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0

N_1BX4_1_A350| 1 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0

N_1CIP_1_A355| 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

N_1F0L_1_A601| 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0

N_1F5N_1_A593| 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0

N_1F5N_2_A593| 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0

[26] (version 0.20.3, https ://panda s.pydat a.org). The Bio-
Pandas package [27] (version 0.2.2, http://rasbt .githu b.io/
biopa ndas/) was used to compute statistics from MOL2 and 
PDB files.

Visualization and plotting software

All data plots were created using the matplotlib library [28] 
(version 2.0.2, https ://matpl otlib .org). The Affinity Designer 
software (version 1.6.0, https ://affin ity.serif .com/en-us/desig 
ner/) was used to enhance the readability of figure labels, as 
necessary. Structural renderings of molecules were created 
in PyMOL (version 1.8.2.2, https ://pymol .org), and figures 
depicting geometric properties were drawn in OmniGraffle 
(version 7.5, https ://www.omnig roup.com/omnig raffl e).

Results and discussion

Before data analysis, the valences and protonation states 
were carefully checked for each of the 136 ligand complexes 
relative to the chemical literature. As described in the Meth-
ods, the free ligand structures were protonated with Open-
Eye molcharge and the protein-bound ligand structures were 
protonated separately with the YASARA OptHyd protocol, 
since the quantum chemistry calculations in molcharge 
would not be feasible for entire protein–ligand complexes. 
However, the resulting differences in protonation between 
the apo and bound ligand states were dominated by the abil-
ity of the respective software to correctly process the ligand 
structure from the PDB file (inferring atom hybridization, 
valence, and the charge state of polar atoms) rather than 
reflecting differences in protonation due to the ligand being 
in a protein-bound or free state. To address the interesting 
question of how often the protonation state is the same in 
the apo versus protein-bound ligand, the YASARA OptHyd 
protocol was also run on each ligand in the free state, and its 
proton assignment was compared with the YASARA results 
on the 136 complexes. The results were:

• 56 of the 136 cases (41.2%) had the same protonation and 
essentially the same proton orientation when the ligand 
was protonated as a separate molecule or in complex with 
the protein

• 52 of the 136 cases (38.2%) had the same protonation 
with one or more protons in a different orientation

• 18 of the 136 cases (13.2%) had a different protonation 
state between the apo and bound forms of the ligand; this 

http://www.numpy.org
https://www.scipy.org
https://pandas.pydata.org
http://rasbt.github.io/biopandas/
http://rasbt.github.io/biopandas/
https://matplotlib.org
https://affinity.serif.com/en-us/designer/
https://affinity.serif.com/en-us/designer/
https://pymol.org
https://www.omnigroup.com/omnigraffle
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was often due to mis-protonation of a phosphate group in 
the apo state or the presence of a metal ion in the ligand 
binding site, requiring deprotonation of the ligand atom 
in order to ligate the metal

• 7 of the 136 (5.1%) had a flipped amide or imidazole 
group between the apo and bound states to optimize 
hydrogen bonding. In one case, such a flip would be 
biologically unlikely due to electron delocalization over 
the bond connecting the amide to an aromatic ring; the 
resulting partial double bond character presents a high 
energetic barrier to flipping

• 3 of the 136 cases (2.2%) involved protonation differ-
ences due to the ligand bond structure being handled 
incorrectly

In 8 of the 136 complexes that were analyzed in the fol-
lowing sections, a proton needed to be added to the ligand, 
post-YASARA OptHyd protonation of the protein–ligand 

complex, often due to incomplete specification of the ligand 
bond structure in the PDB file interpreted by YASARA. In 
11 of the 136 cases, a proton needed to be deleted from the 
ligand for the same reason. A single ligand containing boron 
also required manual correction. Though 79% (free state) or 
86% (bound state) of the ligands were protonated correctly 
by the automated YASARA OptHyd procedure, these results 
highlight the importance of manually checking the correct-
ness of the structure and protonation state of ligands before 
further analysis.

The output of Hbind with direct intermolecular H-bonds 
and metal interactions for all 136 correctly protonated 
complexes (Supplementary Material 1, Table S1) was the 
basis for addressing a series of molecular recognition ques-
tions presented and discussed in this section. The complete 
Hbind interaction data is provided in Supplementary Mate-
rial 4, with an example for one complex shown in Fig. 2. 
We then addressed the following questions, to quantify and 

Fig. 2  Example of Hbind intermolecular direct H-bond and metal 
interaction output for chain A of PDB entry 1r8s in complex with 
ligand GDP (chain ID: A, ligand residue number: 401), showing 
only those interactions meeting the criteria defined in the Methods. 
The ligand atom number and type are from the MOL2 file definition, 

and the protein residue number and atom type, bond length between 
H-bond donor and acceptor atoms, and the donor-hydrogen-acceptor 
(θ) angle are also listed. The final columns indicate the orientation of 
the hydrogen bond, i.e., whether the ligand or protein contributed the 
donor atom, and likewise for the acceptor
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understand patterns in interfacial hydrogen bonding between 
proteins and their small biological ligands.

Are donor groups on proteins preferred 
for H‑bonding to biological ligands?

The interaction tables for 136 complexes were analyzed 
to count the frequency of protein atoms acting as H-bond 
acceptors versus donors in direct H-bonds to the ligand and 
likewise for ligand atoms (Fig. 3). The preference for the 
protein to donate H-bonds to a ligand acceptor atom was 
more than 2:1, with 712 H-bonds donated by the protein 
to the ligand and 345 H-bonds from the ligand accepted by 
the protein, across all 136 complexes. Since H-bonds were 
analyzed based on atomic interactions, including proton 
positions, a residue or atom could participate in multiple 
H-bonds if all the angular and distance criteria were met 
for each bond.

When subdivided further according to the patterns 
of nitrogen and oxygen atoms involved in protein–ligand 
H-bonds, an interesting trend came to light: the major-
ity (70%) involved both a nitrogen atom donor and an 

oxygen acceptor (Table 1), with a full 76% of intermolecu-
lar H-bonds donated by a nitrogen atom. The second most 
prevalent case paired a hydroxyl group donor with an oxygen 
acceptor (24%). Other possibilities for native ligand H-bond-
ing were rare, particularly nitrogen atoms acting as H-bond 
acceptors, whether on the protein or ligand side. The ten-
dency of hydroxyl groups to contribute only one-quarter of 
all protein–ligand H-bonds despite having two lone pairs and 
one proton, all of which can form H-bonds, can be rational-
ized by the resulting reduction in ligand selectivity. A ligand 
group with either good donor or acceptor geometry could 
both interact with that hydroxyl group, bringing the risk of 
misrecognition. This could have been the basis for negative 
selection during evolution.

Fig. 3  Frequency of donated 
and accepted intermolecular 
H-bonds across the 136 diverse 
complexes shown from the 
ligand’s perspective (two bars 
on the left) and the protein’s 
perspective (two bars on the 
right). Throughout the figures, 
red is used to indicate H-bond 
acceptors, while blue indicates 
donors

Table 1  Intermolecular NH versus OH hydrogen bond donor frequen-
cies for oxygen and nitrogen acceptors

H-bond donor 
molecule

H-bond type Frequency H-bond 
acceptor 
molecule

Protein N-H⋯O 524 Ligand
Protein N-H⋯N 53 Ligand
Protein O-H⋯O 127 Ligand
Protein O-H⋯N 6 Ligand
Ligand N-H⋯O 219 Protein
Ligand N-H⋯N 1 Protein
Ligand O-H⋯O 124 Protein
Ligand O-H⋯N 1 Protein

Fig. 4  Binding site definition for glutamate hydrogenase interacting 
with glutamic acid ligand (PDB entry 1bgv). The gray solvent-acces-
sible molecular surface envelops the ligand binding pocket defined 
as all protein atoms within 9  Å of the ligand’s heavy atoms (green 
tubes). The binding site residues H-bonding to the ligand are shown 
with carbon atoms in yellow, and all other binding site residues’ car-
bon atoms are colored in purple. Protein–ligand H-bonds as defined 
by Hbind are shown as yellow dashed lines
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Can the observed trends in interfacial polarity, 
with H‑bonds tending to be formed by donors 
on the protein side of the interface interacting 
with acceptors on the ligand side, be explained 
by the prevalence of binding‑site protons 
versus lone pairs?

To answer this question, the binding site was defined as all 
protein residues with at least one heavy atom within 9 Å 
of a ligand heavy atom. This set of potentially interacting 
atoms is typically used for interfacial analysis or scoring. 
All the previously mentioned criteria were then applied 
to identify intermolecular H-bonds, namely, meeting the 
2.4–3.5 Å range for donor–acceptor distance and satisfy-
ing both the donor-H-acceptor and preacceptor-acceptor-H 
angular criteria. An example binding site and intermolecu-
lar H-bond network for one of the complexes appears in 
Fig. 4. For each binding site or ligand atom with H-bonding 
potential, the number of protons available to donate and 
the number of lone pairs available to accept H-bonds were 
tabulated and summed over the 136 complexes. The results 
(Fig. 5) show that acceptor lone pairs are significantly more 
prevalent than donor protons in the ligand binding sites of 
proteins (~ 16,000 lone pairs: ~ 10,000 protons available to 
donate), with a similar excess of lone pairs found in the 
ligands (~ 15,000 lone pairs: ~ 9000 donor protons). Thus, if 
formation of intermolecular H-bonds were primarily driven 
by the prevalence of protons and lone pairs, the protein 
would be expected to accept H-bonds 1.6 times more often 
than it donates them. Given that the observed trend is in 
the opposite direction (a 2:1 tendency to donate H-bonds to 

the ligand; Fig. 3), there appears to be an underlying strong 
chemical or evolutionary preference for proteins to act as 
donors when binding cognate ligands.

Do certain residues predominate in the observed 
preference for proteins to donate H‑bonds 
to ligands?

The statistics of donor and acceptor atoms participat-
ing in interfacial H-bonds (Fig. 3) were further analyzed 
by atom type (Fig. 6). Panel (a) shows that amines, espe-
cially the terminal NH groups in Arg, Asn, Gln, and Lys, 
are the dominant donors of H-bonds to ligands, relative to 
hydroxyl groups. This cannot be explained by their preva-
lence in the binding sites. When the number of H-bonds 
formed is divided by the number of binding site occur-
rences, the H-bonding of terminal amines, especially in 
lysine, only becomes more pronounced (Fig. 6b). This is 
interesting, because Lys pays a higher entropic cost in lost 
degrees of bond-rotational freedom when H-bonding to 
ligands (due to having 4 side chain single bonds), relative 
to Arg (3 side chain single bonds) and especially Ser or Thr 
(2 single bonds). Lys, Ser and Thr can each potentially form 
up to three H-bonds with ligands, relative to Arg, which can 
form up to five. This also does not explain the preference 
for Lys. It could be that the greater flexibility and length of 
Lys and its rotatable proton positions (relative to the rigid 
and planar guanidinium group in arginine) allow lysine to 
better optimize H-bonds with ligands. Overall, the most 
prevalent H-bond donors and acceptors to ligands are the 
charge-bearing side chain atoms in Arg, Asp, Glu, and Lys, 

Fig. 5  Statistics across 136 non-homologous complexes of the num-
ber of electron lone pairs in the protein’s binding site available to act 
as H-bond acceptors compared with the number of protons available 
to be donated. The observed frequencies indicate that ligand binding 
sites have a significant excess of lone pairs relative to protons that can 
participate in H-bonds. The analysis was performed with histidine 

side chains (two bars at left) and without (two bars at right), because 
this residue’s protonation state is more difficult to define. However, 
the histidine residues in the 136 complexes are primarily involved in 
metal interactions (in which the nitrogen lone pairs form bonds with 
cationic metals). Consequently, the statistics are substantially similar 
with and without histidine
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followed by the polar amine groups in Asn and Gln. The 
Asn and Gln  NH2 groups form about 3 times as many ligand 
H-bonds as their terminal keto oxygens, despite having the 
capacity to form the same number of H-bonds per group. 
The same trend was observed when the number of interfacial 
H-bonds (Fig. 6a) was divided by the number of occurrences 
of each amino acid in the protein (Supplementary Material 
5, Fig. S1) instead of the number of binding site occurrences 
(Fig. 6b). Interestingly, the same preference for very polar 
donors (Arg, Lys, and main-chain nitrogens) to participate in 
H-bonding with very polar acceptors (carboxylate and keto 
groups) has been found in analyses of both water-mediated 
and direct hydrogen bonds in protein–protein interfaces 
[29–31].

When protein and ligand atoms are categorized 
according to their chemistry, are H‑bonding 
preferences between proteins and ligands 
fundamentally similar or different?

Protein atoms forming H-bonds with ligands were divided 
into main chain versus side chain categories (Fig. 7), and 
their H-bonds were tabulated according to atomic chemistry 

for keto oxygens (O), hydroxyl groups (OH), carboxylate 
oxygens (COO-), and amine nitrogens (NH and  NH2). 
Amine donors were found to dominate in the total number 
of H-bonds formed with ligands, with almost equal represen-
tation from main and side chain amines (Fig. 7a). However, 
when normalized by the number of binding site occurrences, 
side chain amines were found to form 16 times as many 
ligand H-bonds as main chain amines (Fig. 7b). Hydroxyl 
groups donate a meaningful, though lesser, number of 
H-bonds to ligands (about one-fourth as many as amine 
groups donate) and rarely act as acceptors.

Surprisingly, the trends for H-bond donors and acceptor 
chemistry in ligands are quite different (Fig. 7c, d). Keto 
(=O), ester + hydroxyl (–O–), and carboxylate oxygens 
dominate the total number of H-bonds formed with proteins 
(Fig. 7c). When the number of H-bonds formed is normal-
ized by the number of occurrences of each atom type in the 
ligands (Fig. 7d), it becomes apparent that keto and car-
boxylate oxygens have a 90% probability per occurrence 
to directly H-bond with the protein. Ligand fluorine and 
nitrogen atoms also participate as H-bond acceptors. Con-
sistent with the observed strong trend for ligands to accept 
rather than donate H-bonds to proteins, ligand hydroxyl and 

Fig. 6  Intermolecular H-bonds formed by each amino acid atom type 
in ligand binding sites. a The frequency of H-bonds to ligand by atom 
type in 136 protein complexes. b The frequency of H-bonds to ligand 

per binding site occurrence of each atom type. Pro N is omitted, 
because it lacks an amide proton to donate
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amine donors only form one-fourth to half as many pro-
tein H-bonds per occurrence when compared with oxygen 
acceptors.

These results are also consistent with results from an 
analysis in our lab of water-mediated bridges between pro-
teins and ligands in a set of 20 non-homologous complexes 
[32]. There, without defining donor or acceptor roles, we 
discovered that water molecules H-bonding directly to both 
the protein and ligand interacted with oxygen atoms on 
the ligand 74% of the time and nitrogen atoms only 25% 
of the time (with Cl atoms representing the final 1%). The 
same was true for water molecules forming di-water bridges 
between protein and ligand, with a 76% preference for inter-
acting with oxygen on the ligand. Hong and Kim [29] noted 
that interfacial water molecules, on average, make more 
interactions with protein H-bond acceptors than donors, 
similar to our finding that protein-bound water molecules 

Fig. 7  Comparison of the chemistry and prevalence of atoms form-
ing intermolecular H-bonds, by protein versus ligand side of the inter-
face. The bar plot in a shows the frequency of protein atoms partic-
ipating in H-bonds to ligands in the 136 complexes, while b shows 
the same data normalized by the number of binding site occurrences, 
yielding the average number of H-bonds to ligand per atom type. 
The bar plots c and d show the same data from the ligands’ perspec-

tive. In panels (c, d), F indicates fluorine. The label =O includes O.2 
(sp2-hybridized) oxygen atoms; –O– includes O.3 (sp3-hybridized) 
hydroxyl and ester oxygens; COO– includes O.co2 oxygen atoms in 
carboxylate, sulfate, and phosphate groups; and =N, –NH, and –NH2 
includes N.2, N.3, N.am, and N.ar. For COO– groups, each terminal 
oxygen was tabulated separately

Fig. 8  The average number of H-bonds donated (blue) or accepted 
(red) for each ligand type: peptidyl, nucleotide-like, and other organic
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interact with ligand oxygen atoms (primarily H-bond accep-
tors) more often than nitrogen atoms (primarily donors).

Do different classes of ligand differ in their tendency 
to accept versus donate H‑bonds?

For this analysis, the 136 complexes were considered from 
the ligand perspective, with the 25 peptidyl, 50 nucleotide-
like, and 61 other small organic ligands analyzed as indi-
vidual sets (Supplementary Material 1, Table S1). The 2:1 
ratio for ligands to accept rather than donate H-bonds to 
cognate proteins was seen for both nucleotidyl and other 
organic ligands (Fig. 8). Peptidyl ligands, on the other hand, 
showed no strong preference for donating versus accepting 
H-bonds. This is expected, because of the fundamental 
chemical and evolutionary parity between the peptides and 
proteins in these complexes: both cannot act primarily as 
donors and still make sufficient intermolecular H-bonds. 
The more polar, often charged, nucleotidyl ligands formed 

50% more H-bonds with proteins than the other organic 
molecules. This is in line with the observation (Fig. 6) that 
charged protein side chains play a more important role than 
neutral side chains in H-bonding to ligands. The strength of 
an H-bond also increases with the magnitude of the comple-
mentary charge on the participating atoms [33]. However, 
the greater number of H-bonds for nucleotidyl ligands could 
also reflect their greater number of heavy atoms, 31.7 ± 11.2 
on average, relative to other organic molecules, 17.8 ± 10.8. 
The average number of heavy atoms for peptidyl ligands was 
27.8 ± 21.1.

These results indicate that strong H-bonds involving 
charged groups are common in cognate protein–ligand 
complexes. The prevalence of strong H-bonds involving 
very polar groups is not necessarily expected, given that 
ligands need to be released from their proteins as part of the 
enzymatic, signaling, or transport cycles. Strong H-bonds 
also contribute to formation of the catalytic transition state 
between enzymes and their ligands [33].

Fig. 9  Patterns of H-bonds to ligands that are localized in the pro-
tein sequence and involve three or more nitrogen donors. The x-axis 
indexes from the first to the sixteenth position in all amino acid 
sequences with no more than ten residues between adjacent H-bond 
donors to ligand. The label in the rightmost column provides the PDB 
code and index of the H-bond pattern (1, 2, etc.) in a given protein, 
the chain ID and residue number of the ligand in the PDB structure 

file, the ligand category (nucleotide-like, peptidyl, or other organic), 
and the 3-letter ligand name in the PDB. Where appropriate, the base 
(adenine, A; guanine, G; uridine, U; or deoxycytidine, C) present in 
the nucleotide-like ligands is provided at the end of the label. High-
lighted in blue are the Gly-Lys-Ser/Thr motifs found hydrogen-bond-
ing to phosphate groups in seven of the nucleotidyl ligands
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Given the visual observation of dense protein networks 
of nitrogen H-bond donors interacting with the nucleotides, 
nucleotidyl ligands were the only ligand class for which a 
clear, local pattern of H-bonding appeared, involving at least 
3 nitrogen H-bond donor groups separated by no more than 
ten residues (Fig. 9). Three to five H-bond donors occurred 
within a six-residue span of the amino acid sequence (posi-
tions 1–6 in Fig. 9) in 18 of the 24 cases (rows 2–19). Thir-
teen of the 18 patterns involved nucleotidyl ligands, with the 
sequence pattern Gly-Lys-(Ser,Thr)-(Thr,Ser,Tyr,Cys,Ala) 
found in 7 cases. (Boldface indicates the dominant residue 
type(s) and regular font indicates other allowed residues.) 
This structural motif turns out to be the P-loop nest for 
phosphate binding, a strong and particularly geometrically 
ordered example of the tendency for proteins to donate 
H-bonds to ligands [34] (Fig. 10). The program for creat-
ing PyMOL H-bond interaction views from Hbind tables, 
as shown in this figure, is freely available to researchers at 
https ://githu b.com/psa-lab/Hbind Viz.

Can orientational selectivity for the biological 
ligand explain the preference for proteins to donate 
H‑bonds to ligands?

Here we evaluate whether geometrical aspects of H-bond 
interactions, in particular the angular dependence of 
H-bonds, can provide a ligand-selectivity advantage in pro-
teins that donate H-bonds to ligands more often than accept-
ing them. Underlying protein–ligand binding is a 3D code 
defined by structure and chemistry that determines which 

ligands can bind to a protein, as well as avoiding binding to 
ligands that inappropriately alter activity.

An interesting example of how strong selectivity for a 
molecular partner can confer a functional advantage is the 
observation that narrow-spectrum (more selective) antibiotic 
ligands avoid drug resistance much more effectively than 
broad-spectrum antibiotics [36]. Narrow-spectrum antibiot-
ics form interactions that are highly tuned for their protein 
target, which means that the protein must accumulate more 
mutations to abrogate binding by a narrow-spectrum antibi-
otic, relative to broad-spectrum antibiotics. The same effect, 
in the absence of any mutations, allows proteins that form 
many ligand-selective interactions to prevent misrecognition 
and binding to the wrong partners.

The simplest case supporting a hypothesized preference 
for proteins to use more chemically or geometrically selec-
tive interactions in ligand binding is the observed 3:1 prefer-
ence for proteins to use amines relative to hydroxyl groups 
in ligand H-bonds (797 amine-involving H-bonds versus 258 
hydroxyl-involving H-bonds; Table 1). This is despite the 
potential of the hydroxyl group to accept two H-bonds and 
donate one, which would allow about 1.5 times as many 
H-bonds to the ligand relative to the most common protein 
amine groups (NH and  NH2). In general, protein lone pairs 
available to accept H-bonds are 1.6 times as prevalent as 
protons available to donate (Fig. 5). However, the hydroxyl 
group is less selective in its interactions, allowing both donor 
and acceptor groups on ligand partners to match, which may 
result in insufficient selectivity for the correct ligand relative 
to the thousands of alternative molecules in the cell.

Ligand selectivity can also be conferred by the difference 
in geometrical constraints on donor versus acceptor interac-
tions. To examine how selectivity relates to the 3D geometry 
of interaction, the favored angular and donor–acceptor dis-
tance ranges are shown for H-bond acceptor and donor atoms 
(Fig. 1). A favorable donor–H⋯acceptor angle Θ range of 
120°–180° in well-resolved crystal structures, in combina-
tion with a favorable donor–acceptor separation of 2.4–3.5 Å 
[6, 22], results in a significantly smaller volume (30.3 Å3) in 
which a ligand acceptor atom can favorably interact with a 
protein donor atom, in comparison with the volume in which 
a ligand proton can favorably interact with lone pairs on a 
protein acceptor (60.6 Å3). This is partly due to the more 
permissive pre-acceptor–acceptor–H angle (ϕ) of 90–180° 
(relative to the Θ constraint on donor–H⋯acceptor angle), 
and also due to the presence of two lone pairs on the major-
ity of H-bond acceptor atoms in proteins (oxygens). The two 
lone pairs create a large, continuous volume in which a pro-
ton can H-bond with the acceptor atom. The observed distri-
bution of donor atoms relative to oxygen acceptor atoms in 
well-resolved protein X-ray structures [6] indicates there are 
few constraints on out-of-plane interactions with acceptor 

Fig. 10  P-loop nest motif Gly-Lys-Ser-Thr for phosphate bind-
ing, with carbon atoms in cyan, donating a local network of protein 
H-bonds to the oxygen-rich triphosphate group. This example is from 
a high-resolution G protein structure in complex with GTP (PDB 
entry 1cip [35]). H-bonds forming the P-loop nest interaction are 
shown as yellow dashed lines, and polar atoms participating in these 
interfacial interactions appear as red spheres for oxygen atoms, blue 
spheres for nitrogen atoms, and a green sphere for the bound  Mg2+. 
For clarity, hydrogen atoms are omitted

https://github.com/psa-lab/HbindViz
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lone pairs, resulting in an almost isotropic, hemispheric shell 
of donor proton positions relative to the acceptor.

An evolutionary emphasis on matching large volumes of 
favorable interaction around acceptors on the protein might 
well result in too little selectivity for the cognate ligand. 
While proteins, with their current amino acid content, can-
not avoid the presence of oxygen atoms on the surface, nor 
do proteins entirely avoid ligand interactions with acceptors, 
we hypothesize that cognate protein–ligand interactions may 
have evolved to favor the use of donor groups on the protein 
to create small volumes that the arrangement of acceptor 
atoms on cognate ligands must uniquely match. This is sup-
ported by the enhancement of oxygen atoms on small mol-
ecule ligands (Fig. 7c). It is also supported by an observation 
of Taylor et al. [37]: though the majority of intramolecular 
N–H⋯O H-bond angles are in the 100°–140° range, inter-
molecular N–H⋯O angles are typically much more linear 
(170°–180°), corresponding to stronger H-bonds as well 
as a narrow tolerance to be met in recognizing the cognate 
ligand. Donation of H-bonds to the ligand is, of course, one 
component of recognition. Shape complementarity, hydro-
phobic surface matching, interfacial ion binding, and addi-
tional H-bonds including water-mediated interactions [32, 
37–39] complete the selection of and enhanced affinity for 
the native ligand.

Another selective advantage that could drive the evolution 
of strong donor patterns (rather than mixed donor–accep-
tor patterns) for ligand binding, is to disfavor aberrant pro-
tein–protein interaction. Binding site donor geometries that 
evolved to match a small molecule ligand could not easily 
be satisfied by other proteins, which on average also favor 
binding site donor patterns that would tend to repel inter-
action with other sets of donors. Finally, the finding that 
asymmetry in packing of the peptide amide dipole results in 
larger positive than negative regions in proteins [40] would 
tend to enhance the preference for proteins to interact with 
more electronegative, lone-pair bearing atoms.

Another factor that comes into play in the observed pref-
erence for biological ligands to accept hydrogen bonds from 
proteins is their enhancement in oxygen atoms relative to 
nitrogen. Within cells, oxygen (particularly derived from 
water) is available at higher concentration than nitrogen, and 
therefore oxygen-rich ligands may be more readily synthe-
sized. Oxygen is also more abundant in solid earth, in fact 
10,000 times more abundant than nitrogen, due to the inabil-
ity of nitrogen to contribute to stable lattices [41], though 
nitrogen is more abundant in the atmosphere. Plants are 
the source of nutrients for many other organisms, and they 
can more readily incorporate environmental oxygen from 
 CO2 into metabolites, relative to  N2, which requires fixa-
tion. To consider their abundance within biological ligands, 
we compared the number of oxygen versus nitrogen atoms 
in the 136 ligands in our study and also in 96 metabolites 

characterized in Mycoplasma genitalium, one of the sim-
plest organisms [42]. Oxygen atoms were found to be 2.6 
times as prevalent as nitrogen atoms in the M. genitalium 
metabolites and 2.1 times as prevalent as nitrogen in the 136 
ligands in the current study. Of course, the two-fold prefer-
ence for hydrogen bond accepting by ligand atoms (mainly 
oxygen atoms; Fig. 7c) does not only reflect the prevalence 
of oxygen atoms; the preference for accepting H-bonds when 
normalized by atom type is even stronger (Fig. 7d). Still, it 
is quite interesting, and not widely recognized, that oxygen 
atoms are much more common than nitrogen in biological 
ligands and that their acceptor role is so dominant. Both 
features can be useful in designing new ligands that success-
fully compete for binding.

Do protein‑bound metal ions contribute 
significantly to ligand binding, and how does 
their bond chemistry relate to observed trends 
in H‑bonding?

When protein-bound metal ions were found in the ligand 
interface, they were included in the analysis. Table S2 (Sup-
plementary Material 6) provides detailed statistics, while 
Fig. 11 summarizes ligand interactions per occurrence for 
the 8 metal types observed in the 136 complexes.  Mg2+ was 
by far the most common, with 24 occurrences, followed 
by  Mn2+ with 14 occurrences. All other metal types were 
present 7 or fewer times.  Ni2+,  Mg2+,  Cd2+,  Mn2+,  Co2+, 
and  Na+ each accounted for 1–2 direct ligand bonds per 
occurrence (using bond-length criteria listed in the Meth-
ods), while Fe (exhibiting various oxidation states in the 
different complexes) and  Zn2+ averaged half an interaction 
per occurrence. Metal interactions with lone pairs on elec-
tronegative atoms within bonding distance, as measured 
here, are almost covalent in strength. This makes them sig-
nificant contributors to the enthalpy change upon complex 
formation. Because these metals are positively charged, the 
trend in polarity of the interface is like the dominant H-bond 
classes observed above, with a positively charged group on 

Fig. 11  The average number of bonds to ligand formed per occur-
rence by protein-bound metal ions in the 136 complexes
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the protein side forming a bond with a lone pair of electrons 
on the ligand.

How do these results relate to Lipinski’s rule of 5 
for drug‑likeness in small molecules?

In the late 1990s, Lipinski and colleagues at Pfizer under-
took a study of 2245 small molecules from the World Drug 
Index considered to have superior physicochemical prop-
erties, based on meeting solubility and cell permeability 
criteria required for entry into Phase II clinical trials [8]. 
The drug-like criteria for small molecules derived from 
their analysis of the 2245 compounds are known as the Rule 
of 5. Poor absorption or permeability tends to occur for a 
compound matching any of the Rule of 5 features: more 
than 5 H-bond donors, more than 10 H-bond acceptors, a 
molecular weight greater than 500 Da, or a calculated logP 
value of greater than 5, defined as the logarithm of the par-
tition coefficient between n-octanol and water. These crite-
ria remain widely used for selecting sets of molecules for 
virtual or high-throughput experimental screening, and as 
ideal physicochemical ranges to match when redesigning 
lead compounds to bind with higher affinity or better bio-
availability. The Rule of 5 criteria were not derived to pre-
dict molecules as effective protein ligands. However, most 
drugs do target proteins, and thus the Rule of 5 criteria may 
select for the ability to bind proteins as well as enter the cell. 
In fact, the maximum H-bond acceptor to donor ratio in the 
Rule of 5 (10:5) matches the trend found here: twice as many 
H-bonds being accepted by ligands (5 on average) as donated 
(2.5 on average; Fig. 3). The two-fold preference for ligand 
acceptors relative to donors in H-bonding may therefore be 
a molecular mechanism underlying the drug-like criteria in 
the Rule of 5. Additionally, the ability of H-bond acceptor 
and donor numbers to predict drug-likeness suggests that the 
trends identified in this paper can also be useful predictors.

Can the observed H‑bonding trends be used 
to predict protein–ligand interactions?

We addressed the question of whether the observed preva-
lence of H-bond acceptors and donors in the 136 complexes, 
tabulated by PDB atom type for protein binding site atoms 
(e.g., Arg O, N, NE, NH1, and NH2) and by MOL2 atom 
type for ligand atoms (e.g., O.2, O.3, N.2, N.3, etc.), can 
be used to predict the cognate protein–ligand orientation 
from a series of dockings of the small molecule. To test 
this, we used ten ligand dockings on average in each of 30 
protein-small molecule complexes that were recently used 
in a comparison of docking scoring functions. This set does 
not overlap with the 136 complexes [43] (Supplementary 
Material 4, Table S3). The crystallographic binding pose 
was not included, because the correct pose is unknown in a 

predictive study and therefore never exactly sampled. Sec-
ondly, many scoring methods can readily detect the crystal-
lographic pose as the global optimum due to their param-
eterization, suggesting excellent accuracy when the crystal 
pose is included; a much more realistic assessment of their 
real-world performance is the identification of near-native 
poses. The best-sampled ligand docking poses here ranged 
from 0.1 to 1.4 Å RMSD relative to the crystallographic 
position across the 30 complexes, as shown by the green 
cumulative distribution curve in Fig. 12. The goal of this 
analysis of docked positions was not to develop a new scor-
ing function, but to assess whether the H-bond interaction 
statistics accumulated across 136 structures capture the 
essential molecular recognition features that occur within 
individual structures sufficiently well to discriminate native 
or near-native interactions.

To compute the protein H-bond component of the PRI 
scoring function, the frequency scores of all protein atoms 
observed to make an H-bond with the ligand were summed, 
based on the raw data compiled across the 136 complexes, 
with sample data shown below. In the first entry, {Acceptor: 
0, Donor: 18} indicates that in the 136 complexes, alanine 
main chain nitrogen atoms accepted H-bonds from the ligand 
0 times and donated H-bonds to ligands 18 times.

ALA:

N: {Acceptor: 0, Donor: 18}
O: {Acceptor: 10, Donor: 0}

ARG:

N: {Acceptor: 0, Donor: 5}
NE: {Acceptor: 0, Donor: 28}
NH1: {Acceptor: 0, Donor: 65}
etc.

So, for instance, if you were to score a ligand orienta-
tion accepting an H-bond from the main chain N in Ala 
and H-bonds from both Arg NE and Arg NH1, the protein 
H-bond score for that binding mode would be:

The higher the score, the more the docking reflects 
the known preferences in the 136 complexes for H-bonds 
donated or accepted by the protein. This Protein Recogni-
tion Index, or PRI-prot, differs from the typical scoring of 
H-bonds in protein–ligand docking, because here the contri-
bution of each H-bond is weighted according to the preva-
lence of intermolecular H-bonds involving this protein atom 
type in crystal complexes. Scoring is performed the same 
way for the ligand side of the interaction, leading to a PRI-
lig value. Standardization is then performed on the PRI-lig 

18 + 28 + 65 = 111
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values across the dockings for a given complex, rescaling 
such that the score distribution has a mean value of 0 and a 
variance of 1. This converts the PRI-lig to a Z-score meas-
ured in standard deviations above or below the mean (more 
favorable or less favorable, statistically). The same standard-
ization is performed for protein PRI-prot values across the 
dockings, putting the ligand and protein PRI values on the 
same scale. PRI-prot and PRI-lig values can then be summed 
(reflecting the simplest possible weighting, giving equal 
importance to the protein and ligand side of the interface), 
to yield what we call the PRI value. High PRI values reflect 
that the H-bond groups linked between protein and ligand in 
the current ligand orientation match the H-bond preferences 
found in the 136 unrelated complexes. For a series of ligand 

dockings in a given protein, the docking with the highest PRI 
is predicted as the most native-like complex. This process 
was performed for all 30 complexes, and the results are sum-
marized in Fig. 12. To consider the extent to which hydro-
phobic contacts add information for defining the cognate 
ligand orientation, we created a variant of PRI that includes 
an equal-weighted, standardized hydrophobic contact term 
(PRI + hydrophobic). The hydrophobic term counts the num-
ber of carbon–carbon and carbon–sulfur contacts (atom cent-
ers within 4 Å) between the protein and ligand, as reported 
in the Hbind software output (Fig. 2). Software we used to 
compute the Protein Recognition Index (and its PRI-prot 
and PRI-lig) components is available at https ://githu b.com/
psa-lab/prote in-recog nitio n-index . We envision this software 
will be a broadly useful tool for assessing the native-likeness 
of designed or predicted protein–ligand interfaces, as well as 
for guiding protein mutagenesis to identify ligand binding 
residues and predict ligand binding sites (using the PRI-
prot component alone) or assessing ligand physicochemical 
suitability for a protein target (using the PRI-lig component 
alone).

The results of the ligand orientation prediction enrich-
ment plot (Fig. 12) clearly show that the statistical infor-
mation encoded in the Hbind hydrogen-bonding preferences 
of different atom types is able to identify near-native ligand 
orientations, selecting an orientation within 2.5 Å RMSD 
of the crystallographic position in two-thirds of the com-
plexes. Adding a hydrophobic contact term leads to a slight 
improvement in prediction, while the H-bonding preferences 
account for most of the predictive power. Measuring the Pear-
son linear correlation coefficient (r) between the PRI values, 
PRI + hydrophobic values, and two commonly used docking 
scoring functions, AutoDock Vina [44] (version 1.1.2; http://
vina.scrip ps.edu) and DSX [45] (also known as DrugScore X; 
version 0.88; http://pc166 4.pharm azie.uni-marbu rg.de/drugs 
core/) across ~ 300 dockings for the 30 complexes, shows that 
the PRI value is almost uncorrelated with the scores from 
AutoDock Vina (r = − 0.26) and DSX (r = − 0.19), despite 
these scoring functions also including H-bond interaction 
terms. This indicates that PRI provides new information 
that has high predictive value on its own, while also easily 
being combined with existing protein–ligand scoring metrics. 
Weighting H-bonds according to their statistical prevalence 
by atom type measures a chemical aspect of protein–ligand 
recognition that is both predictive of native interactions and 
not reflected in the other measures.

Conclusions

To address the question that motivated this work—whether 
proteins tend to donate rather than accept H-bonds when 
binding biological small molecules—a utility called Hbind 

Fig. 12  Enrichment plot showing the degree of native-likeness 
(RMSD relative to crystallographic position) of the docking show-
ing the highest Protein Recognition Index for all 30 complexes. The 
ligand orientation for each complex was predicted according to the 
highest H-bond PRI value (blue trace) or the highest PRI + hydropho-
bic contact score (black trace) among all the ligand orientations. All 
30 complexes’ best-scoring ligand orientations were then compiled, 
and their RMSD values relative to the crystallographic position were 
sorted from best (closest to 0  Å) to worst RMSD (4–5 Å). These 
RMSD values were then plotted as a cumulative distribution function 
of the number of ligand orientations selected to within X Å RMSD 
of the crystallographic position. For instance, all ligand orientations 
selected by either PRI or PRI + hydrophobic scoring that appear to 
the left of the dashed black vertical line at ligand RMSD = 2.5 Å were 
within 2.5  Å RMSD of the crystallographic position. This was true 
for 18 of the PRI scored complexes and 20 of the PRI + hydropho-
bic scored complexes. The result that would be obtained by the best-
possible scoring of ligand orientations (selecting the best-sampled 
docking of the ligand for each complex) is shown by the green trace. 
The result that would occur from selecting the worst docking (highest 
RMSD position) of each ligand across the 30 complexes is shown by 
the red trace

https://github.com/psa-lab/protein-recognition-index
https://github.com/psa-lab/protein-recognition-index
http://vina.scripps.edu
http://vina.scripps.edu
http://pc1664.pharmazie.uni-marburg.de/drugscore/
http://pc1664.pharmazie.uni-marburg.de/drugscore/
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was developed to label the donor/acceptor capacity of each 
atom, and characterize each H-bond in terms of its atomic 
chemistry and geometry. Making this software available 
allows such data to be generated readily and analyzed for 
a range of other interesting questions with the vast crys-
tal structure data now available. Handling both protein and 
ligand chemistry at the atomic rather than coarser functional 
group or side chain levels allowed an in-depth analysis of 
the trends and potential underlying mechanisms in ligand 
recognition by proteins. Our conclusions are:

• Across 136 non-homologous protein complexes includ-
ing a mix of nucleotide-like, peptidyl, and other organic 
ligands, the proteins were found to donate twice as many 
H-bonds as they accepted from ligands.

• Lone pairs available to accept H-bonds are actually 1.6 
times as prevalent as protons available to donate, both 
on the protein and ligand side of the interface. Thus, the 
relative availability of donor and acceptor groups does 
not explain the trend for proteins to preferentially donate 
H-bonds to their ligands.

• A corresponding, strong preference for ligands to accept 
H-bonds from proteins suggests that focusing on the 
prevalence and positioning of H-bond acceptors in both 
designed ligands and molecules assessed in screening 
(that is, a more detailed, structural measure of “drug-
likeness”) is likely to result in ligands that better match 
the protein-encoded determinants for binding. The Pro-
tein Recognition Index (PRI) software was designed for 
this purpose.

• Furthermore, on average 90% of all keto and carboxy-
late oxygens in the biological ligands were found to form 
direct hydrogen bonds to their protein partners. This sug-
gests that satisfying these oxygen atoms with direct pro-
tein H-bonds is an important and unrecognized feature 
of native ligand recognition.

• Nitrogen atoms served as donors for 76% of the intermo-
lecular H-bonds and hydroxyl groups in 24%, consider-
ing both protein and ligand donors together. This sug-
gests that amine nitrogen atoms are much more effective 
donors in biological complexes than hydroxyl groups, 
providing another straightforward way to enhance molec-
ular design.

• The side chains in proteins most likely to donate H-bonds 
to ligands are Arg and Lys, with Asn and Gln being about 
half as important. Asp and Glu are the side chains most 
likely to accept H-bonds from ligands. Highly polar 
H-bonds are apparently favored in the underlying code 
of molecular recognition. These results suggest focusing 
on these side chains when predicting binding sites or car-
rying out experiments to identify key H-bonding groups 
within a site.

• Metals bound in protein ligand-binding sites are not 
a dominant feature. Most metal ions in binding sites 
account for 1–1.7 bonds to the ligand, on average, with 
Fe and Zn accounting for fewer ligand interactions (0.5, 
on average) in the 136 complexes. While these bonds 
occur less frequently, their almost-covalent strength 
makes them important contributors to affinity.

• These trends, analyzed from all angles, indicate a sur-
prising degree of interfacial polarization for non-pepti-
dyl organic molecule complexes with proteins, favoring 
donors on the protein side and acceptors on the ligand 
side. The pairing of amine donors on the protein with 
oxygen acceptors on the ligand is a dominant motif in 
protein-small molecule recognition, like the amine-keto 
pairing between bases in nucleic acids.

• By developing software to calculate a Protein Recog-
nition Index (PRI), measuring the similarity between 
H-bonding features in a given complex (predicted or 
designed) and the characteristic H-bond trends from 
crystallographic complexes (Fig. 7), we show that the 
cognate orientation between protein and ligand can be 
predicted from this information alone. The PRI for a set 
of protein or ligand atoms can also be calculated, to dis-
cern the extent to which their H-bonding groups match 
the favored distribution of donor and acceptor atom types 
in known complexes.

• The 2:1 acceptor to donor ratio observed here for ligand 
atoms forming H-bonds to proteins appears to be an 
underlying structural explanation for the 2:1 ratio of 
ligand H-bond acceptor atoms to donor atoms in Lipin-
ski’s Rule of 5. We anticipate the Protein Recognition 
Index may prove similarly useful in guiding protein and 
ligand design to design more selective and tighter-bind-
ing complexes.

• The trend for proteins to donate H-bonds to their cog-
nate ligands, especially via amine donor groups, may 
have evolved as a ligand selectivity determinant. Amine 
donors have relatively narrow angular constraints and 
volumes in which an acceptor group can form an ener-
getically favorable H-bond. Two acceptor lone pairs are 
present on the oxygen atoms in proteins, and a conse-
quence is that the lone pairs present a broad surface and 
volume for favorable interaction with donor atoms (twice 
that of an NH donor interacting with an acceptor group). 
Molecular evolution is expected to favor a narrow selec-
tion of ligand partners due to the potential for misrecog-
nition if many ligands could easily match H-bonding 
groups in a protein pocket. The relative orientation and 
spacing of these groups is also an extremely important 
aspect of the code for matching H-bonds between protein 
and ligand.
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