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Abstract

In this paper, we design and evaluate a convolutional au-
toencoder that perturbs an input face image to impart pri-
vacy to a subject. Specifically, the proposed autoencoder
transforms an input face image such that the transformed
image can be successfully used for face recognition but not
for gender classification. In order to train this autoencoder,
we propose a novel training scheme, referred to as semi-
adversarial training in this work. The training is facilitated
by attaching a semi-adversarial module consisting of an
auxiliary gender classifier and an auxiliary face matcher to
the autoencoder. The objective function utilized for training
this network has three terms: one to ensure that the per-
turbed image is a realistic face image; another to ensure
that the gender attributes of the face are confounded; and a
third to ensure that biometric recognition performance due
to the perturbed image is not impacted. Extensive experi-
ments confirm the efficacy of the proposed architecture in
extending gender privacy to face images.

1. Introduction

Biometric face recognition refers to the use of face im-

ages for recognizing an individual in an automated man-

ner [10]. A typical face recognition system employs a face
matcher that compares two face images and determines the

degree of similarity or dissimilarity between them. This

comparison operation can be used to (a) verify the claimed

identity of an input face image or (b) determine the identity
of an unknown face image by comparing it against a set of

known face images.

While face images collected by a biometric system are

expected to be used only for recognition of individuals [12],

recent research has established the possibility of automati-

cally deducing additional information about an individual

from their face image [2]. For example, information about

a person’s age, gender, race, or health can be obtained by

using a soft biometric classifier (e.g., a gender classifier)

that can extract this information from a single face image

[28]. While the extraction of soft biometric data (some-

times referred to as attributes) can be used to improve the

performance of a biometric system [26, 15], it also raises

several privacy concerns associated with gleaning informa-

tion without an individual’s consent. Further, such an auto-

mated analysis can be potentially misused for age-based or

gender-based profiling that can undermine the use of bio-

metrics in many applications [4].

Given these concerns, researchers have discussed the

possibility of de-identifying a face image prior to storing it

in a database [20]. While de-identification has tremendous

applications in surveillance systems, it can irrevocably com-

promise the biometric utility of a face image [6]. However,

in many applications, it is necessary to retain the biomet-

ric utility of the face image while suppressing the possibil-

ity of gleaning additional information, such as gender [18].

This type of differential privacy [21] is expected to enhance

the privacy of face images stored in a database while at the

same time ensuring that biometric recognition is not unduly

affected.

In this work, we develop a convolutional autoencoder

(CAE) that generates a perturbed face image that can be

successfully used by a face matcher but not by a gender
classifier. The proposed CAE is referred to as a semi-
adversarial network since its output is adversarial to the

gender classifier but not to the face matcher. The proposed

network can be easily appropriated for use with other at-

tributes (such as age or race). In principle, the design of the

semi-adversarial network can be utilized in other problem

domains where there is a need to confound some classifiers

while retaining the utility of other classifiers.
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1.1. Related work

A number of aspects of privacy protection has been stud-

ied in the biometric literature [19, 24, 21, 18]. On one

hand, there are face de-identification techniques [11, 20, 7]

where a face image is modified in order to confound a

face matcher. On the other hand, as inspired by the work

of Othman and Ross [21] and later promoted by Sim and

Zhang [27], the goal is to selectively confound or preserve

a set of attributes that can be deduced from face images.

Specifically, a few methods for suppressing the gender at-

tribute have been presented [25, 29, 21]. Recently, a new

method for protecting privacy with practical applications

for biometric databases was proposed in [18], where input

face images were modified with respect to a specific gender

classifier. In this case, perturbations were derived based on

a specific gender classifier, the perturbations did not signif-

icantly impact the match scores of a face matcher.

In this paper, we provide an alternative solution by de-

signing a convolutional autoencoder that transforms input

images such that the performance of an arbitrary gen-

der classifier is impacted, while that of an arbitrary face

matcher is retained. The contributions of this paper, in

this regard, are the following: (a) formulating the privacy-

preserving problem in terms of a convolutional autoencoder

that does not require prior knowledge about the gender clas-

sifier nor the face matcher being used; (b) incorporating an

explicit term related to the matching accuracy in the objec-

tive function which ensures that the utility of the perturbed

images is not negatively impacted; (c) developing a gen-
eralizable solution that can be trained on one dataset and

applied to other previously unseen datasets.

To the best of our knowledge, this is the first work where

adversarial training is used to design a generator compo-

nent that is able to maximize the performance with re-

spect to one classifier while minimizing the performance

with respect to another. Experimental results show that

the proposed method of semi-adversarial learning for multi-

objective functions is efficient for deriving perturbations

that are generalizable to other classifiers that were not used

(or not available) during training.

2. Proposed method
2.1. Problem formulation

Let X ∈ R
m×n×c denote a face image having c chan-

nels each of height m and width n. Let fG(X) denote a bi-

nary gender classifier that returns a value in the range [0, 1],
where 1 indicates a “Male” and 0 indicates a “Female”. Let

fM (X1, X2) denote a face matcher that computes the match

score between a pair of face images, X1 and X2. The goal

of this work is to construct a model φ(X), that perturbs an

input image X such that the perturbed image X ′ = φ(X)
has the following characteristics: (a) from a human per-

spective, the perturbed image X ′ must look similar to the

original input X; (b) the perturbed image X ′ is most likely

to be misclassified by an arbitrary gender classifier fG(X);
(c) the match scores, as assessed by an arbitrary biometric

matcher fM , between perturbed image X ′ and other unper-

turbed face images from the same subject, are not impacted

thereby retaining verification accuracy.

This goal can be expressed as the following objective

function, which minimizes a loss function J consisting of

three disjoint terms corresponding to the three characteris-

tics listed above:

J(X, y,X ′; fG, fM ) =
λDJD(X,X ′) + λGJG(y,X

′; fG) + λMJM (X,X ′; fM ),
(1)

where, X is the input image, y is the gender label of X ,

and X ′ is the perturbed image. The term JD(X,X ′) mea-

sures the dissimilarity between the input image and the per-

turbed image produced by a decoder φ(X) to ensure that

the perturbed images still appear as realistic face images.

The second term, JG(y,X
′; fG), measures the loss asso-

ciated with correctly predicting gender of perturbed image

X ′ using fG, to ensure that the accuracy of the gender clas-

sifier on the perturbed image X ′ is reduced. The third

term, JM (X,X ′; fM ), measures the loss associated with

the match score between X and X ′ computed by fM . This

term ensures that the matching accuracy as assessed by fM
is not substantially diminished due to the perturbations in-

troduced to confound the gender classifier.

In order to optimize this objective function, i.e., min-

imizing gender classifier accuracy while maximizing the

biometric matching accuracy and generating realistic look-

ing images, we design a novel convolutional neural network

architecture that we refer to as a semi-adversarial convolu-

tional autoencoder.

2.2. Semi-adversarial network architecture

The semi-adversarial network introduced in this paper

is significantly different from Generative Adversarial Net-

works (GANs). A typical GAN has two components: a

discriminator and a generator. The generator learns to gen-

erate realistic looking images from the training data, while

the discriminator learns to distinguish between the gener-

ated images and the corresponding training data [5, 26].

In contrast to regular GANs consisting of a generator and

a single discriminator, the proposed semi-adversarial net-

work attaches two independent classifiers to a generative

subnetwork. Unlike the generator subnetwork of GANs

that is trained based on the feedback of one classifier, the

semi-adversarial configuration proposed in this paper learns

to generate image perturbations based on the feedback of

two classifiers, where one classifier acts as an adversary of

the other. Hence, the semi-adversarial network architecture

we propose consists of the following three different subnet-
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works (Fig. 1): (a) a trainable generative component in form

of a convolutional autoencoder (subnetwork I) for adversar-

ial learning; (b) an auxiliary CNN-based gender classifier

(subnetwork II); (c) an auxiliary CNN-based face matcher

(subnetwork III).

The auxiliary gender classifier as well as the auxiliary

matcher1 are detachable parts in this network architecture

used only during the training phase. In contrast to GANs,

the generative component of this proposed network archi-

tecture is a convolutional autoencoder (section 2.2.1), which

is initially pre-trained to produce an image that closely re-

sembles an image from the training set after incorporat-

ing gender prototype information (section 2.2.2). Then,

during further training, feedback from both an auxiliary

CNN-based gender classifier and an auxiliary CNN-based

face matcher are incorporated into the loss function (see

Eqn. (1)) to perturb the regenerated images such that the

error rate of the auxiliary gender classifier increases while

that of the auxiliary face matcher is not unduly affected.

An overview of this semi-adversarial architecture is

shown in Fig. 1, and the details are further described in the

following subsections.

Figure 1. Schematic representation of the semi-adversarial neu-

ral network architecture designed to derive perturbations that are

able to confound gender classifiers while still allowing biomet-

ric matchers to perform well. The overall network consists of

three sub-components: a convolutional autoencoder (subnetwork

I), an auxiliary gender classifier (subnetwork II), and an auxiliary

matcher (subnetwork III).

2.2.1 Convolutional autoencoder

The architecture of the convolutional autoencoder sub-

network that modifies and reconstructs the input image in

three different ways is shown in Fig. 2. The input to this

sub-network is a gray-scale face image of size 224 × 224
concatenated with a same-gender prototype, PSM (Fig. 3).

The input is then processed through the encoder part con-

sisting of two convolutional layers; each layer is followed

1The term “auxiliary” is used to indicate that these subnetworks do not

correspond to pre-trained gender classifiers or face matchers, but rather

classifiers that are generated from the training data. Note that such a for-

mulation makes the semi-adversarial network generalizable.

by a leaky ReLU activation function and an average pooling

layer, resulting in feature maps of size 56× 56× 12. Next,

the outputs of the encoder are passed through a decoder with

two convolutional layers each, followed by a leaky ReLU

activation and an upsampling layer using two-dimensional

nearest neighbor interpolation. The output of the decoder is

a 224× 224× 128 dimensional feature map.

The feature maps from the decoder output are then con-

catenated with either same-gender (PSM ), neutral-gender

(PNT ), or opposite-gender (POP ) prototypes in the proto-
combiner module (see Fig. 2 and Fig. 3). The proto-

combiner module is followed by a final convolutional layer

and a sigmoid activation function yielding a reconstructed

image X ′
SM , X ′

NT , or X ′
OP , depending on the gender-

prototype used. The autoencoder described in this section

contains five trainable layers. Those layers are pre-trained

using an information bottleneck approach [8] to retain the

relevant information from both the original image and the

same-gender prototype. This is sufficient to reconstruct re-

alistic looking images by minimizing JD(X,X ′), which

measures the dissimilarity between the gray-scale input im-

ages and the perturbed images by computing the sum of the

element-wise cross entropy between input and output (per-

turbed) images. After pre-training, this subnetwork is fur-

ther trained by passing its reconstructed images to two other

sub-networks: the auxiliary gender predictor and the auxil-

iary face matcher (Fig. 1). The gender prototypes, as well

as the two subnetworks, are described in the following sub-

sections.

Figure 2. Architecture of the autoencoder augmented with gender-

prototype images. The encoder receives a one-channel gray-scale

image as input, which is concatenated with the RGB channels of

the same-gender prototype image. After the compressed represen-

tation is passed through the decoder part of the autoencoder for

reconstruction (128 channels), the proto-combiner concatenates it

with the RGB channels of a same-, neutral-, or opposite-gender

prototype resulting in 131 channels that are then passed to a final

convolutional layer.
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2.2.2 Gender prototypes

The 224 × 224 male and female RGB gender prototypes

(Pmale, Pfemale) were computed as the average of all 65,160
male images and 92,190 female images, respectively, in the

CelebA training set [14]. Then, the same-gender (PSM ) and

opposite-gender (POP ) prototypes, which are being con-

catenated with the input image and combined with the au-

toencoder output (Fig. 2), are constructed based on the

ground-truth label y, while the neutral-gender prototype is

computed as the weighted mean of male and female proto-

types (Fig. 3):

• Same-gender prototype, PSM : yPmale +(1−y)Pfemale

• Opposite-gender prototype, POP : (1 − y)Pmale +
yPfemale

• Neutral prototype, PNT : αFPfemale + αMPmale

Figure 3. Gender prototypes used to confound gender classifiers

while maintaining biometric matching during the semi-adversarial

training of the convolutional autoencoder.

Here, αF is the proportion of females in the CelebA

training set and αM is the proportion of males. The con-

volutional autoencoder network (summarized in Fig. 1 and

further illustrated in Fig. 2) is provided with same-gender

prototype images (female or male corresponding to the

ground truth label of the input image), which are concate-

nated with the input image before being transmitted to the

encoder module in order to derive a compressed representa-

tion of the original image along with the same-gender pro-

totype information. After the decoder reconstructs the orig-

inal images, the three different gender-prototypes are added

as additional channels via the proto-combiner (Fig. 2).

The final convolutional layer of the autoencoder pro-

duces three different perturbed images: X ′
SM (obtained

when the same-gender prototype is used), X ′
NT (when the

neutral prototype is used), and X ′
OP (when the opposite-

gender prototype is used).

Pre-training: During pre-training, to ensure that the con-

volutional autoencoder is capable of reconstructing the orig-

inal images, only the same gender perturbations (X ′
SM )

were considered in the cross-entropy cost function.

Training: For the further training of the autoencoder, to

confound the auxiliary gender classifier and ensure high

matching accuracy of the auxiliary matcher, both the per-

turbed outputs using same- and opposite-gender prototypes

were passed through the auxiliary gender classifier, to en-

sure that the perturbation made using the same-gender pro-

totype produces accurate gender prediction while perturba-

tions made using the opposite-gender prototype confounds

the gender prediction. The perturbed outputs due to the neu-

tral prototypes are not incorporated in the loss function, and

are only used for evaluation purposes.

2.2.3 Auxiliary CNN-based gender classifier

The architecture of the auxiliary CNN-based gender clas-

sifier, which consists of six convolutional layers and two

fully connected (FC) layers, is summarized in Fig. 4. Each

convolutional layer is followed by a leaky ReLU activation

function and a max-pooling layer that reduces the height

and width dimensions by a factor of 2, resulting in feature

maps of size 4 × 4 × 256. Passing the output of the sec-

ond FC layer through a sigmoid function results in class-

membership probabilities for the two labels: 0:“Female”

and 1:“Male”. This network was independently trained on

the CelebA-train dataset by minimizing the cross-entropy

cost function, until its convergence after five epochs; the

gender prediction accuracy of the auxiliary network when

tested on the CelebA-test set was 96.14%. During training,

two dropout layers with drop probability of 0.5 were added

to the FC layers for regularization. However, these dropout

layers were removed when this subnetwork was used for de-

riving perturbations as part of the three-subnetwork neural

network architecture shown in Fig 1.

As this CNN-based gender classifier was only used for

training the convolutional autoencoder for generating per-

turbed face images, and not for further evaluation of this

model, it is referred to as auxiliary gender classifier to dis-

tinguish it from the gender classifiers used for evaluation.

Figure 4. Architecture of the CNN-based auxiliary gender classi-

fier that was used during the training of the convolutional autoen-

coder. This classifier was used as an auxiliary (fixed) component

in the final model to derive the image perturbations according to

the objective function described in Section 2.1.
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2.2.4 Auxiliary CNN-based face matcher

As discussed in Section 2.1, the loss function contains a

term JM (X,X ′; fM ) to ensure good face matching accu-

racy despite the perturbations introduced to confound the

gender classifier. To provide match scores during the train-

ing of the autoencoder subnetwork, we used a publicly

available VGG model as described by Parkhi et al. [22]

consisting of 16 weight layers. This VGG subnetwork pro-

duces face descriptors which are vector representations of

size 2622 extracted from RGB face images. The publicly

available weight parameters of this network were used with-

out further performance tuning.

In addition, as the open-source VGG-face network ex-

pects RGB images as inputs, we modified the convolutional

filters of the first layer by adding the three filter matrices re-

lated to the input channels, for compatibility with the single-

channel gray-scale input images. As this CNN-based face

matcher was only used for training the convolutional au-

toencoder for generating perturbed face images, and not for

further evaluation of this model, it is referred to as auxil-
iary matcher to distinguish it from the commercial match-

ing software used for evaluation.

2.3. Loss function

After pre-training the convolutional autoencoder de-

scribed in Section 2.2.1, it is connected to the other two

subnetworks (the auxiliary CNN-based gender classifier de-

scribed in Section 2.2.3 and the auxiliary CNN-based face

matcher described in Section 2.2.4) for further training.

During the pre-training stage, the loss term JD(X,X ′) was

used to ensure that the convolutional autoencoder is capa-

ble of producing images that are similar to the input im-

ages. The loss term is computed as the element- or pixel-

wise cross entropy, S, between input and output (perturbed)

images:

JD(X,X ′
SM ) =

2242∑
k=1

S
(
X(k), X

′(k)
SM

)
. (2)

Next, to generate the perturbed images X ′
SM , X ′

NT , or

X ′
OP (based on the type of gender-prototype used) such that

gender classification is confounded but biometric matching

remains accurate, two loss terms, JG and JM , were used.

The first loss term is associated with suppressing gender in-

formation in X ′
OP and preserving it in X ′

SM :

JG (y,X ′
SM , X ′

OP ; fG) =
S (y, fG(X

′
SM )) + S (1− y, fG(X

′
OP )) ,

(3)

where, S(t, p̂) denotes the cross-entropy cost function using

target label t and the predicted class-membership probabil-

ity p̂. Note that in this loss function, we use the ground

truth labels for X ′
SM so that the gender of X ′

SM is cor-

rectly predicted, while we use flipped labels for X ′
OP so

that the gender of perturbed image X ′
OP is incorrectly pre-

dicted. We found that without the use of this configuration

for X ′
SM and X ′

OP , the network will perturb the input im-

age, X , such that perturbations are overfit to the auxiliary

gender classifier that is used during training.

The second loss term, JM , measures the matching sim-

ilarity between input image X and the perturbed image

X ′
SM generated from the same-gender prototype:

JM (X,X ′
SM ;Rvgg) = ‖Rvgg(X

′
SM )−Rvgg(X)‖22 ,

(4)

where, Rvgg(X) indicates the vector representation of im-

age X obtained from the VGG-face network [22]. The total

loss is then the weighted sum of the two loss terms JG and

JM :

Jtotal (X, y,X ′
SM , X ′

OP ; fG, Rvgg) =
λGJG(y,X

′
SM , X ′

OP ; fG) + λMJM (X,X ′
SM ;Rvgg).

(5)

Jtotal was then used to derive the loss gradients with re-

spect to the parameter weights of the convolutional autoen-

coder during the training stage, to generate perturbations

according to the objective function (Section 2.1). Note that

the coefficients λM and λG in Eqn 5 constitute additional

tuning parameters to re-weight the contributions of JG and

JM toward the total loss. In this work, we did not optimize

λM and λG, however, and used a constant of 1 to weight

both JG and JM equally.

2.4. Datasets

The original dataset source used in this work is the

large-scale CelebFaces Attributes (CelebA) dataset [14],

which consists of 202,599 face images in JPEG format for

which gender attribute labels were already available with

the dataset. The dataset was randomly divided into 162,079
training images (CelebA-train) and 40,520 images for test-

ing (CelebA-test). The CelebA-train dataset was used to

train the gender classifier (Section 2.2.3), as well as the con-

volutional autoencoder (Section 2.2.1).

In addition to the CelebA-test dataset, three publicly

available datasets were used for evaluation only: MUCT

[17], LFW [9] and AR-face [16] databases. The final com-

positions of these datasets, after applying a preprocessing

step using a deformable part model (DPM) as described by

Felzenszwalb et al. [3] to ensure that all images have the

same dimensions (224 × 224), are summarized in Table 1.

The resulting perturbed images obtained from the CelebA-

test, MUCT, LFW, and AR-face datasets, were used to mea-

sure the effectiveness of modifying the gender attribute as

assessed by a commercial gender classifier (G-COTS) and

a commercial biometric matcher (M-COTS, excluding AR-

images labeled as occluded due to sunglasses or scarfs).
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Table 1. Sizes of the datasets used in this study for training and

evaluation. CelebA-train was used for training only, while the

other four datasets were used to evaluate the final performance of

the trained model.

Dataset Train # Images # Male # Female

CelebA-train yes 157,350 65,160 92,190
CelebA-test no 39,411 16,318 23,093
MUCT no 3754 131 145

LFW no 12,969 4205 1448

AR-face no 3286 76 60

2.5. Implementation details and software

The convolutional autoencoder (Section 2.2.1), auxiliary

CNN-based gender classifier (Section 2.2.3) and the auxil-

iary CNN-based face matcher (Section 2.2.4) were imple-

mented in TensorFlow [1] based on custom code for the

convolutional layers and freezing the parameters of the gen-

der classifier and face matcher during training of the autoen-

coder subnetwork [23].

3. Experimental Results

After training the autoencoder network using the

CelebA-train dataset as described in Section 2.2.1, the

model was used to perturb images in other, independent

datasets: CelebA-test, MUCT, LFW, and the AR-face

database. For each face image in these datasets, a set of

three output images was reconstructed using same-gender,

neutral-gender, and opposite-gender prototypes. Further-

more, our results are compared with the face-mixing ap-

proach proposed in [21]. Examples of these reconstructed

outputs for two female face images, and two male face im-

ages are shown in Fig. 5.

3.1. Evaluation and verification

The previously described auxiliary CNN-based gender

classifier (Section 2.2.3) and auxiliary CNN-based face

matcher (Section 2.2.4) were not used for the evalua-

tion of the proposed semi-adversarial autoencoder as these

two subnetworks were used to provide semi-adversarial

feedback during training. The performance of the semi-

adversarial autoencoder is expected to be optimally biased

when tested using the auxiliary gender classifier and auxil-

iary face matcher. Thus, we used independent gender classi-

fication and face matching software for evaluation and veri-

fication instead, to represent a real-world use case scenario.

Two sets of experiments were conducted to assess the

effectiveness of the proposed method. First, two indepen-

dent software for gender classification were considered: the

popular research software IntraFace [13] as well as a state-

of-the-art commercial software, which we refer to as G-
COTS. Second, a state-of-the-art commercial matcher that

Figure 5. Example input images with their reconstructions using

same, neutral, and opposite gender prototypes from the CelebA-

test (first two rows) and MUCT (last two rows) datasets.

has shown excellent recognition performance on challeng-

ing face datasets was used to evaluate the face matching per-

formance; we refer to this commercial face matching soft-

ware as M-COTS.

3.1.1 Perturbing gender

In order to assess the effectiveness of the proposed scheme

in perturbing gender, the reconstructed images using

the proposed semi-adversarial autoencoder from the four

datasets were analyzed. The Receiver Operating Charac-

teristic (ROC) curves for predicting gender using IntraFace

and G-COTS from the original images and the perturbed

images are shown in Fig. 6.

We note that gender prediction via IntraFace is heavily

impacted when using different gender prototypes for im-

age reconstruction. We observe that the performance of

IntraFace on AR-face images after opposite-gender pertur-

bation is very close to random (as indicated by the near-

diagonal ROC curve in Fig. 6(a)-(d)). The performance

of G-COTS proves to be more robust towards perturba-

tions, compared to IntraFace; however, the ROC curve cor-

responding to the opposite-gender prototype, shows a sub-

stantial deviation from the ROC curve of the original images

(Fig. 6(e)-(h)). This observation indicates that the opposite-

gender prototype perturbations have a substantial, negative

impact on the performance of state-of-the-art G-COTS soft-

ware, thereby extending gender privacy.

The exact error rates in predicting the gender attribute

of face images using both IntraFace and G-COTS software

are provided in Table 2 for the original images and the per-

turbed images using opposite-gender prototypes. The quan-

titative comparison of the error rates indicates a substantial
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Figure 6. ROC curves comparing the performance of IntraFace

(a-d) and G-COTS (e-h) gender classification software on origi-

nal images (“Before”) as well as images perturbed via the con-

volutional autoencoder model (“After”) on four different datasets:

CelebA-test, MUCT, LFW, and AR-face.

Table 2. Error rates in gender prediction using IntraFace and G-

COTS gender classification softwares on the original datasets be-

fore and after perturbation. Note the substantial increase in the

prediction error upon perturbation via the convolutional autoen-

coder model using opposite-gender prototypes.

Software Dataset
Original Perturbed

Ref. [21]
(before) (after OP)

IntraFace

CelebA-test 19.7% 39.3% 44.6%

MUCT 8.0% 39.2% 57.7%

LFW 33.4% 72.5% 70.9%

AR-face 16.9% 53.8% 54.2%

G-COTS

CelebA-test 2.2% 13.6% 42.4%

MUCT 5.1% 25.4% 53.9%

LFW 2.8% 18.8% 46.1%

AR-face 9.3% 26.9% 40.6%

increase in the prediction error rates when image datasets

were perturbed using opposite-gender prototypes. Note that

in the case of G-COTS software, perturbations made by the

face mixing scheme proposed in [21] result in higher error

rates. On the other hand, the additional advantage of our

approach is in preserving the identity, as we will see in the

next section.

3.2. Retaining matching accuracy

The match scores were computed using a state-of-the-

art M-COTS software and the resulting ROC curves are
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Figure 7. ROC curves showing the performance (true and false

matching rates) of M-COTS biometric matching software on the

original images (“Before”) compared to the perturbed images

(“After”) generated by the convolutional autoencoder model using

same-, neutral-, or opposite-gender prototypes for three different

datasets: (a) MUCT, (b) LFW, and (c) AR-face.

shown in Fig. 7. While the matching term, JM , in the

loss function is directly applied to reconstructed outputs

from same-gender prototype, X ′
SM , the reconstructions that

use neutral- or opposite-gender prototypes are not directly

subject to this loss term (see Section 2.3). As a result,

the ROC curve of the reconstructed images coming from

same-gender prototype appear much closer to the original

input compared to the reconstructed images from neutral-

and opposite-gender prototypes. Overall, we were able

to retain a good matching performance even when using

opposite-gender prototype. On the other hand, the ROC

curves obtained from outputs of the mixing approach pro-

posed in [21] are heavily impacted, resulting in de-identified

outputs (which is not desirable in this work).

Finally, the True Match Rate (TMR) values at a False

Match Rate of 1% are reported in Table 3. The perturbed

images from all three datasets show TMR values that are

very close to the value obtained from the unperturbed orig-

inal dataset.

4. Conclusions
In this work, we focused on developing a semi-

adversarial network for imparting soft-biometric privacy to

face images. In particular, our semi-adversarial network

perturbs an input face image such that gender prediction is
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Table 3. True (TMR) and false (FMR) matching rates (measured at

values of 1%) of the independent, commercial M-COTS matcher

after perturbing face images via the convolution autoencoder using

same (SM), neutral (NT), and opposite (OP) gender prototypes,

indicating that the biometric matching accuracy is not substantially

affected by confounding gender predictions.

Dataset
Original Perturbed

(before) (SM) (NT) (OP)

MUCT 99.88 % 99.79% 99.57% 98.44%

LFW 90.29% 90.02% 88.47% 83.45%

AR-face 94.97% 94.11% 91.95% 90.81%

confounded while the biometric matching utility is retained.

The proposed method uses an auxiliary CNN-based gen-

der classifier and an auxiliary CNN-based face matcher for

training the convolutional autoencoder. The trained model

is evaluated using two independent gender classifiers and

a state-of-the-art commercial face matcher which were un-

seen during training. Experiments confirm the efficacy of

the proposed architecture in imparting gender privacy to

face images, while not unduly impacting the face matching

accuracy.
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