
Sebastian Raschka STAT 453: Intro to Deep Learning

Deep Learning & AI News #10

1

Interesting Things Related to Deep Learning
Apr 3, 2021

with Applications in Python

Sebastian Raschka

http://stat.wisc.edu/~sraschka

STAT 453: Introduction to Deep Learning and Generative Models

http://stat.wisc.edu/~sraschka

Sebastian Raschka STAT 453: Intro to Deep Learning 2

https://web.br.de/interaktiv/ki-bewerbung/en/

https://web.br.de/interaktiv/ki-bewerbung/en/

Sebastian Raschka STAT 453: Intro to Deep Learning 3

https://arxiv.org/abs/2104.00170

An Investigation of Critical Issues in Bias Mitigation Techniques

Robik Shrestha1 Kushal Kafle2 Christopher Kanan1,3,4

1Rochester Institute of Technology 2Adobe Research 3Paige 4Cornell Tech
1{rss9369, kanan}@rit.edu 2{kkafle}@adobe.com

Abstract

A critical problem in deep learning is that systems learn
inappropriate biases, resulting in their inability to perform
well on minority groups. This has led to the creation of mul-
tiple algorithms that endeavor to mitigate bias. However, it
is not clear how effective these methods are. This is because
study protocols differ among papers, systems are tested on
datasets that fail to test many forms of bias, and systems
have access to hidden knowledge or are tuned specifically to
the test set. To address this, we introduce an improved evalu-
ation protocol, sensible metrics, and a new dataset, which
enables us to ask and answer critical questions about bias
mitigation algorithms. We evaluate seven state-of-the-art
algorithms using the same network architecture and hyper-
parameter selection policy across three benchmark datasets.
We introduce a new dataset called Biased MNIST that en-
ables assessment of robustness to multiple bias sources. We
use Biased MNIST and a visual question answering (VQA)
benchmark to assess robustness to hidden biases. Rather
than only tuning to the test set distribution, we study robust-
ness across different tuning distributions, which is critical
because for many applications the test distribution may not
be known during development. We find that algorithms ex-
ploit hidden biases, are unable to scale to multiple forms
of bias, and are highly sensitive to the choice of tuning set.
Based on our findings, we implore the community to adopt
more rigorous assessment of future bias mitigation methods.
All data, code, and results are publicly available1.

1. Introduction
Deep learning systems are trained to minimize their loss

on a training dataset. However, datasets often contain spuri-
ous correlations and hidden biases which result in systems
that have low loss on the training data distribution, but then
fail to work appropriately on minority groups because they
exploit and even amplify these spurious correlations [71, 36].
For example, in systems trained to infer hair color on the

1https://github.com/erobic/bias-mitigators

What is the brown animal?

Colored

MNIST

CelebA

GQA-OOD

Ease of
Analysis

Difficulty of
Biases

Biased MNIST

(ours)

Figure 1: Current bias mitigation systems are tested on simple
datasets that are easy to analyze, but do not offer challenges present
in realistic cases. Addressing this, we propose the Biased MNIST
dataset which is easy to analyze, yet is reflective of real world
challenges since it contains multiple sources of biases. We also test
on GQA-OOD, where the sources of biases are not very obvious.

CelebA dataset [43], the majority group of non-blond males
occurs 50 times more than the minority group of blond males,
resulting in systems incorrectly predicting non-blond as hair
color for the minority group. While this is a toy problem,
in the real world, hidden minority patterns are common and
failing on them can have dire consequences. Systems de-
signed to aid human resources, help with medical diagnosis,
determine probation, or loan qualification could be biased
against minority groups based on age, gender, religion, sex-
ual orientation, ethnicity, or race [54, 8, 17, 14, 48]. Systems
can exploit correlated variables even if they are not directly a
part of the input e.g., through inferred zip codes [22], failing
to work effectively on minority groups.

Recently, many methods have been proposed to make neu-
ral networks bias resistant. These methods can be grouped
into two types: 1) those that assume the bias variables e.g.,
the gender label in CelebA, are explicitly annotated and can
be accessed during training [55, 55, 69, 38] and, 2) those
that do not require explicit access [46, 50]. Assuming ex-
plicit access requires extra annotations in addition to the

ar
X

iv
:2

10
4.

00
17

0v
1

 [c
s.L

G
]

1
A

pr
 2

02
1

• Learning inappropriate biases can
cause DL models to perform badly on
minority groups

• Several methods were developed to
address this, but do they work?

• Here:

‣ Improved evaluation protocol &
dataset

‣ Evaluation of 7 methods

‣ Biased MNIST dataset

• Code and data: https://github.com/
erobic/bias-mitigators

https://arxiv.org/abs/2104.00170

Sebastian Raschka STAT 453: Intro to Deep Learning

4

Task: recognize the digit (0 − 9)

Multiple sources of biases:

1) background color,

2) color of the target digit,

3) position of the digit (among 9 grid locations),

4) distractor shapes, which are placed on all cells except the cell with the digit,

5) color of the distractors,

6) type of texture, and

7) texture color.

Each digit co-occurs more frequently with a particular value for each bias type

E.g., "1" is most often green, placed on purple background, co-occurs with right-angled triangles

Figure 2: Biased MNIST requires the methods to classify the target
digit while remaining invariant to biases.

10 discrete values, with k
th value being denoted by: bj,k

e.g., 9th background color is b1,9 = blue. The biases are
conditionally independent from each other and dependent
only on the digit. That is, each digit di co-occurs with its bi-
ased value: bji for bj with probability: p(bji|di), otherwise
co-occurs with one of the remaining values with uniform
probability: for l 6= i, p(bjl|di) = 1�p(bji|di)

9 . Unless oth-
erwise specified, we set p(bji) = pbias = 0.7 in the train
set, while testing on an unbiased test set with pbias = 0.1.
This setup allows us to study multiple sources of biases and
scalability to large number of majority/minority groups.

4.2. CelebA
The CelebA dataset [43] of celebrity faces is widely used

to assess bias mitigation techniques [55, 56, 46, 50]. Follow-
ing earlier work, it is used for binary hair color classification
(blond or non-blond), which is correlated with gender. There
are two major bias sources: a) class imbalance, with non-
blond occurring 5.7 times more than blond hair color, and
b) presence of a rare group, i.e., blond male celebrities only
account for 0.86% of the training instances.

4.3. GQA-OOD
We use the GQA visual question answering dataset [34]

to highlight the challenges of using bias mitigation meth-
ods on real-world tasks. It has multiple sources of biases
including imbalances in answer distribution, visual concept
co-occurrences, question word correlations, and question
type/answer distribution. It is unclear how the explicit bias
variables should be defined so that the methods can gener-
alize to all minority groups. GQA-OOD [37] divides the
evaluation and test sets into majority (head) and minority
(tail) groups based on the answer frequency within each
‘local group’ (e.g., colors of bags), which is a unique com-
bination of answer type (e.g., colors) and the main concept
(e.g., ‘bag’, ‘chair’, etc.). The head/tail categorization makes

analysis easier; however, it is unclear how one should specify
the explicit biases so that the models generalize even to the
rarest of local groups. Therefore, we explore multiple ways
of defining the explicit bias variable in separate experiments:
a) majority/minority group label (2 groups), b) answer class
(1833 groups), c) global group (115 groups) and d) local
group (133328 groups). It is unknown if bias mitigation
methods can scale to hundreds and thousands of groups in
GQA, yet natural tasks require such an ability.

5. Network Architecture & Tuning Procedure

For each dataset, we assess all bias mitigation methods
with the same neural network architecture. For CelebA, we
use ResNet-18 [30]. For Biased MNIST, we use a convo-
lutional neural network with four ReLU layers consisting
of a max pooling layer attached after the first convolutional
layer. For GQA-OOD, we employ the UpDn architecture [4],
which is widely used for VQA [58, 37, 66].

For each dataset, we use the class label y and the explicit
bias variables bexpl. to define explicit groups for Up Wt,
GDRO and IRMv1. For instance, for CelebA, hair color
and gender result in four explicit groups while for Biased
MNIST, the number of groups: |G| depends on the number
of explicit bias variables: |bexpl.|, with |G| = 10|bexpl.|. We
will specify the exact bexpl. for each experiment in Sec. 6.
For GQA, we use head/tail, answer class, global and local
groups as explicit variables. For all datasets, RUBi uses
bexpl. to predict y, whereas LNL trains the adversarial branch
to predict bexpl. from representations. Of course the implicit
methods: StdM, LFF and SD are invariant to the choice of the
explicit biases during training. Unless otherwise specified,
results from Biased MNIST are averaged across 3 random
seeds, but due to computational constraints, we ran models
on CelebA and GQA-OOD only once.

Hyperparameters for each method were chosen using a
grid search with unbiased accuracy on each dataset’s vali-
dation set. To make this tractable, we first ran a grid search
for the learning rate over {10�3

, 10�4
, 10�5} and weight

decay over {0.1, 10�3
, 10�5

, 0}. After the best values were
chosen, we searched for method-specific hyperparameters.
Due to the size of GQA-OOD, hyperparameter search was
performed by training on only 10% of instances, and then
the best selected hyperparameters were used with the full
training dataset. The exact values for the hyperparameters
are specified in the Appendix.

6. Questions Posed and Answered

In this section, we probe the existing methods with critical
questions regarding their robustness, meanwhile proposing
metrics and empirical setups to study them. We first describe
the metrics and then present the results.

Sebastian Raschka STAT 453: Intro to Deep Learning 5

Table 1: Unbiased accuracies Acc(↵ = 0) on all datasets for
all methods. We format the first, second and third best results.
Methods that do not access explicit biases have gray background.

Methods/
Datasets CelebA Biased MNIST GQA

StdM 80.3 42.0 44.8
Up Wt [56] 87.4 30.1 30.0
GDRO [55] 88.5 27.2 26.4
RUBi [13] 87.2 38.9 24.1
LNL [38] 79.2 40.6 28.6
IRMv1 [5] 79.8 38.7 39.3
LFF [46] 77.8 56.6 45.1
SD [50] 88.6 41.3 46.9

6.1. Head-to-Head Comparisons
Question 1: Are there clear winners in a head-to-head

comparisons across datasets?
We first compute the unbiased accuracies for all eight

methods on all three datasets in Table. 1. We first train
explicit methods on CelebA, using class and gender labels
as explicit biases. For Biased MNIST, there are multiple
ways to define explicit biases, but for this section, we simply
use each of the seven variables as explicit biases in different
runs and average across the runs. We study combinations of
multiple explicit variables in Sec. 6.3. We set pbias = 0.7
for this section, and present results across different pbias in
the Appendix. Similarly for GQA, we consider each of the
four variables as explicit bias in separate runs and present
the average.

Results. As shown in Table. 1, no method performs
universally well across datasets; however, the implicit meth-
ods LFF and SD obtain high unbiased accuracies on most
datasets. This shows that implicit methods can deal with
multiple bias sources without explicit access. Explicit meth-
ods work well on CelebA but fail on Biased MNIST and
GQA. Specifically, Up Wt, GDRO and RUBi obtain 7-8%
improvements over StdM on CelebA, which requires gen-
eralization to only 4 groups. However, all explicit methods
perform worse than StdM on Biased MNIST and GQA, sig-
nifying their inability to deal with multiple bias sources.
LNL and IRMv1 were comparable to StdM even on CelebA,
demonstrating lack of generalization even on simple set-
tings. Despite being a simpler method, Up Wt outperformed
GDRO on both Biased MNIST and GQA, but both were
worse than StdM. These results show that implicit methods
can outperform explicit methods.

6.2. Bias Exploitation
Question 2: Do methods show robustness to both explicit

and implicit biases?
In this set of experiments, we study the exploitation of

(a)

(b)

Figure 3: Boxplots of differences between majority and minority
groups (MMD) on Biased MNIST over: a) bias variables and b)
different methods.

explicit and implicit bias. We primarily focus on the Biased
MNIST dataset. Specifically, we reserve each individual
variable as the explicit bias in separate experiments, while
treating the remaining six as implicit biases. As shown
in Fig. 3, the majority minority differences (MMD) across
explicit and implicit biases help us diagnose bias exploitation.
We also analyze per-group accuracies on CelebA, to examine
behavior in a simpler setting.

Results. As shown in Fig. 3a, we find that methods tend
to latch onto all sources of implicit bias, with the exception
of digit position. As shown in Fig. 3b, some explicit methods
attempt to mitigate the explicit bias to an extent, with Up Wt,
GDRO and RUBi obtaining lower MMD values for explicit
variables in comparison to implicit variables. However, de-
spite the decrease in MMD for explicit variables, the poor
results in Table. 1 and high MMD values for implicit vari-
ables in Fig. 3a suggest that the overall generalization is still
worsened due to implicit biases. We explore if explicit meth-
ods generalize if all bias sources are explicitly specified in
Sec. 6.3. Among the implicit methods, LFF, which obtained
the best unbiased accuracy on Biased MNIST also shows the
lowest MMD, further indicating its ability to deal with mul-
tiple sources of bias. Also, we observe large inconsistencies
in the variables exploited across the methods. Even different
runs of the same method with the same hyperparameters

[treat] "individual variable as the explicit bias in separate experiments,
while treating the remaining six as implicit biases"

Figure 4: Improvement Over the Standard Model (IOSM) for each
group of CelebA.

Figure 5: Unbiased accuracy as a function of number of explicit
bias variables. StdM, LFF and SD are invariant to the choice of
explicit bias variables.

result in exploitation of different biases. We hypothesize that
all of these variables offer plausible prediction rules for the
models to latch onto, and the initial randomness drives the
methods towards exploiting one variable over the others.

Finally, we study the per-group accuracies in CelebA us-
ing the IOSM plot in Fig. 4. The improvements in blond
(minority class) incur degradation in non-blond (majority
class). The methods tilt predictions either in the favor of mi-
nority or majority classes, which further reflects the inability
to learn the signal even in simple settings.

6.3. Scalability of Methods
Question 3: Do methods scale up to multiple types of

biases and a large number of dataset groups?
It is unknown how well the methods scale up to multiple

sources of biases and large number of groups, even when
they are explicitly annotated. To study this, we train the
explicit methods with multiple explicit variables for Biased
MNIST and individual variables that lead to hundreds and
thousands of groups for GQA and compare them with the
implicit methods. For Biased MNIST, we first sort the seven
total variables in the descending order of MMD (obtained by
StdM) and then conduct a series of experiments. In the first
experiment, the most exploited variable, distractor shape,
is used as the explicit bias. In the second experiment, the
two most exploited variables, distractor shape and texture,

Table 2: Mean of head and tail accuracies on GQA, considering
different variables as explicit biases.

Methods
Head/Tail

(2
groups)

Answer
Class
(1833

groups)

Global
Group
(115

groups)

Local
Group

(133328
groups)

StdM 44.8
Up Wt [56] 43.3 26.0 26.4 24.2
GDRO [55] 46.9 28.6 10.8 19.4
RUBi [13] 44.1 N/A 5.6 22.6
LNL [38] 42.9 N/A 32.4 10.7
IRMv1 [5] 47.2 35.8 40.4 33.8
LFF [46] 45.1
SD [50] 46.9

are used as explicit biases. This is repeated until all seven
variables are used2. Note that conducting the seventh exper-
iment entails annotating each instance with every possible
source of bias. While this may not be realistic in practice,
such a controlled setup will reveal if the explicit methods
can generalize when they have complete information about
every source of bias. For ease of analysis, we define major-
ity/minority groups with respect to each bias variable, e.g.,
if most 0s are blue and most 1s are green, then the majority
group with respect to digit color comprises of blue 0s, green
1s, etc., while the minority group contains the remaining
instances.

To test scalability on a natural dataset, we conduct four
experiments per explicit method on GQA-OOD with the
explicit bias variables: a) head/tail (2 groups), b) answer
class (1833 groups), c) global group (115 groups), and d)
local group (133328 groups). Unlike Biased MNIST, we do
not test with combinations of these variables since the last
three variables already entail generalization to many groups.

Results. We find that implicit methods either improve or
are comparable with StdM, but most explicit methods fail
when asked to generalize to multiple bias variables and a
large number of groups, even when the bias variables are
explicitly provided. As shown in Fig. 5, all explicit methods
are below StdM on Biased MNIST. Barring LNL and Up Wt,
which improve over StdM when |bexpl.| = 1 and |bexpl.| � 6
respectively, the other explicit methods obtain decreased
accuracy as the number of explicit bias variables increases.
Because the implicit methods do not rely on the choice of
explicit biases, we simply repeat the same accuracy across
x-axis. Among the implicit methods, LFF obtains the highest
improvement, whereas SD is close to StdM.

Results for GQA-OOD are similar, with explicit methods
failing to scale up to a large number of groups, while implicit
methods show some improvements over StdM. As shown

2The exact order is given in the Appendix.

Sebastian Raschka STAT 453: Intro to Deep Learning 6

EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks

Mingxing Tan
1

Quoc V. Le
1

Abstract

Convolutional Neural Networks (ConvNets) are
commonly developed at a fixed resource budget,
and then scaled up for better accuracy if more
resources are available. In this paper, we sys-
tematically study model scaling and identify that
carefully balancing network depth, width, and res-
olution can lead to better performance. Based
on this observation, we propose a new scaling
method that uniformly scales all dimensions of
depth/width/resolution using a simple yet highly
effective compound coefficient. We demonstrate
the effectiveness of this method on scaling up
MobileNets and ResNet.

To go even further, we use neural architec-
ture search to design a new baseline network
and scale it up to obtain a family of models,
called EfficientNets, which achieve much
better accuracy and efficiency than previous
ConvNets. In particular, our EfficientNet-B7
achieves state-of-the-art 84.3% top-1 accuracy
on ImageNet, while being 8.4x smaller and
6.1x faster on inference than the best existing
ConvNet. Our EfficientNets also transfer well and
achieve state-of-the-art accuracy on CIFAR-100
(91.7%), Flowers (98.8%), and 3 other transfer
learning datasets, with an order of magnitude
fewer parameters. Source code is at https:
//github.com/tensorflow/tpu/tree/
master/models/official/efficientnet.

1. Introduction

Scaling up ConvNets is widely used to achieve better accu-
racy. For example, ResNet (He et al., 2016) can be scaled
up from ResNet-18 to ResNet-200 by using more layers;
Recently, GPipe (Huang et al., 2018) achieved 84.3% Ima-
geNet top-1 accuracy by scaling up a baseline model four

1Google Research, Brain Team, Mountain View, CA. Corre-
spondence to: Mingxing Tan <tanmingxing@google.com>.

Proceedings of the 36 th International Conference on Machine
Learning, Long Beach, California, PMLR 97, 2019.

0 20 40 60 80 100 120 140 160 180
Number of Parameters (Millions)

74

76

78

80

82

84

Im
ag

en
et

To
p-

1
A

cc
ur

ac
y

(%
)

ResNet-34

ResNet-50

ResNet-152

DenseNet-201

Inception-v2

Inception-ResNet-v2

NASNet-A

NASNet-A

ResNeXt-101

Xception

AmoebaNet-A
AmoebaNet-C

SENet

B0

B3

B4
B5

B6
EfficientNet-B7

Top1 Acc. #Params
ResNet-152 (He et al., 2016) 77.8% 60M
EfficientNet-B1 79.1% 7.8M

ResNeXt-101 (Xie et al., 2017) 80.9% 84M
EfficientNet-B3 81.6% 12M

SENet (Hu et al., 2018) 82.7% 146M
NASNet-A (Zoph et al., 2018) 82.7% 89M
EfficientNet-B4 82.9% 19M

GPipe (Huang et al., 2018) † 84.3% 556M
EfficientNet-B7 84.3% 66M
†Not plotted

Figure 1. Model Size vs. ImageNet Accuracy. All numbers are
for single-crop, single-model. Our EfficientNets significantly out-
perform other ConvNets. In particular, EfficientNet-B7 achieves
new state-of-the-art 84.3% top-1 accuracy but being 8.4x smaller
and 6.1x faster than GPipe. EfficientNet-B1 is 7.6x smaller and
5.7x faster than ResNet-152. Details are in Table 2 and 4.

time larger. However, the process of scaling up ConvNets
has never been well understood and there are currently many
ways to do it. The most common way is to scale up Con-
vNets by their depth (He et al., 2016) or width (Zagoruyko &
Komodakis, 2016). Another less common, but increasingly
popular, method is to scale up models by image resolution
(Huang et al., 2018). In previous work, it is common to scale
only one of the three dimensions – depth, width, and image
size. Though it is possible to scale two or three dimensions
arbitrarily, arbitrary scaling requires tedious manual tuning
and still often yields sub-optimal accuracy and efficiency.

In this paper, we want to study and rethink the process
of scaling up ConvNets. In particular, we investigate the
central question: is there a principled method to scale up
ConvNets that can achieve better accuracy and efficiency?
Our empirical study shows that it is critical to balance all
dimensions of network width/depth/resolution, and surpris-
ingly such balance can be achieved by simply scaling each
of them with constant ratio. Based on this observation, we
propose a simple yet effective compound scaling method.
Unlike conventional practice that arbitrary scales these fac-
tors, our method uniformly scales network width, depth,

ar
X

iv
:1

90
5.

11
94

6v
5

 [c
s.L

G
]

11
 S

ep
 2

02
0

• Original EfficientNets:  
Scaling up CNNs with a compound
coefficient.

• Common ways to scale:  
(1) More layers,  
(2) Wider layers,  
(3) Higher image resolution

• EfficientNets: fixed compound ratio
for scaling all three

• Result: Better accuracy, fewer
parameters, faster than reference
networks

https://arxiv.org/abs/1905.11946

https://arxiv.org/abs/1905.11946

Sebastian Raschka STAT 453: Intro to Deep Learning 7

https://arxiv.org/abs/2104.00298

• EfficientNetV2:  
Large improvement over EfficientNets V1  
Also beats Visual Transformers ;)

• Introduces  
new ops such as Fused-MBConv  
progressive increasing of image size during training  
 -> adaptively adjusting regularization via dropout and data augmentation

EfficientNetV2: Smaller Models and Faster Training

Mingxing Tan
1

Quoc V. Le
1

Abstract

This paper introduces EfficientNetV2, a new fam-
ily of convolutional networks that have faster
training speed and better parameter efficiency
than previous models. To develop this family of
models, we use a combination of training-aware
neural architecture search and scaling, to jointly
optimize training speed and parameter efficiency.
The models were searched from the search space
enriched with new ops such as Fused-MBConv.
Our experiments show that EfficientNetV2 mod-
els train much faster than state-of-the-art models
while being up to 6.8x smaller.

Our training can be further sped up by progres-
sively increasing the image size during training,
but it often causes a drop in accuracy. To com-
pensate for this accuracy drop, we propose an
improved method of progressive learning, which
adaptively adjusts regularization (e.g., dropout
and data augmentation) along with image size.

With progressive learning, our EfficientNetV2 sig-
nificantly outperforms previous models on Im-
ageNet and CIFAR/Cars/Flowers datasets. By
pretraining on the same ImageNet21k, our Effi-
cientNetV2 achieves 87.3% top-1 accuracy on
ImageNet ILSVRC2012, outperforming the re-
cent ViT by 2.0% accuracy while training 5x-11x
faster using the same computing resources. Code
will be available at https://github.com/
google/automl/efficientnetv2.

1. Introduction

Training efficiency is important to deep learning as the sizes
of models and training data are increasingly larger. For ex-
ample, GPT-3 (Brown et al., 2020), with an unprecedented
model and training data sizes, demonstrates the remarkable
capability in few shot learning, but it requires weeks of train-
ing with thousands of GPUs, making it difficult to retrain or
improve.

1Google Research, Brain Team. Correspondence to: Mingxing
Tan <tanmingxing@google.com>.

1 2 3 4 5 6
Training time (TPU days)

83

84

85

86

87

Im
ag

en
et

To
p-

1
A

cc
ur

ac
y

(%
)

M

EffNetV2-L

M(21k)

L(21k)

EffNetV2-XL(21k)

B4

B5

B6

EffNet-B7

ViT-L/16(21k)

EffNet-B7(repro)

F0

F1

F2

F3
NFNet-F4

lambdanet botnet
ResNet-RS

(a) Training efficiency.

EfficientNet ResNet-RS DeiT/ViT EfficientNetV2
(2019) (2021) (2021) (ours)

Top-1 Acc. 84.3% 84.0% 83.1% 83.9%
Parameters 43M 164M 86M 24M

(b) Parameter efficiency.

Figure 1. ImageNet ILSVRC2012 top-1 Accuracy vs. Training

Time and Parameters – Models tagged with 21k are pretrained
on ImageNet21k, and others are directly trained on ImageNet
ILSVRC2012. Training time is measured with 32 TPU cores. All
EfficientNetV2 models are trained with progressive learning. Our
EfficientNetV2 trains 5x - 11x faster than others, while using up to
6.8x fewer parameters. Details are in Table 7 and Figure 5.

Training efficiency has gained significant interests recently.
For instance, NFNets (Brock et al., 2021) aim to improve
training efficiency by removing the expensive batch normal-
ization; ResNet-RS (Bello et al., 2021) improves training
efficiency by optimizing scaling hyperparameters; Lambda
Networks (Bello, 2021) and BotNet (Srinivas et al., 2021)
improve training speed by using attention layers in Con-
vNets; Vision Transformers (Dosovitskiy et al., 2021) im-
proves training efficiency on large-scale datasets by using
Transformer blocks. However, these methods often come
with expensive overhead on parameter size, as shown in
Figure 1(b).

In this paper, we use an combination of training-aware neu-
ral architecture search (NAS) and scaling to improve both
training speed and parameter efficiency. Given the parame-

ar
X

iv
:2

10
4.

00
29

8v
1

 [c
s.C

V
]

1
A

pr
 2

02
1

https://arxiv.org/abs/2104.00298

Sebastian Raschka STAT 453: Intro to Deep Learning 8

https://arxiv.org/abs/2101.11075

"Adam doesn’t quite reach the goal of being a general-purpose deep learning optimizer. 
The MADGRAD method is directly designed to address these issues"

https://arxiv.org/abs/2101.11075

Sebastian Raschka STAT 453: Intro to Deep Learning 9

https://dagshub.com/blog/how-to-compare-ml-experiment-tracking-tools-to-fit-your-data-science-workflow/

• Disclaimer: Graphic made by the DAGsHub developers

• Also see AIM (discussed last week)

https://dagshub.com/blog/how-to-compare-ml-experiment-tracking-tools-to-fit-your-data-science-workflow/

