STAT 453: Introduction to Deep Learning and Generative Models

Sebastian Raschka http://stat.wisc.edu/~sraschka

Deep Learning & Al News #10

Interesting Things Related to Deep Learning Apr 3, 2021

https://web.br.de/interaktiv/ki-bewerbung/en/

Search...

Computer Science > Machine Learning

[Submitted on 1 Apr 2021]

An Investigation of Critical Issues in Bias Mitigation Techniques

Robik Shrestha, Kushal Kafle, Christopher Kanan

https://arxiv.org/abs/2104.00170

- Learning inappropriate biases can cause DL models to perform badly on minority groups
- Several methods were developed to address this, but do they work?
- Here:
 - Improved evaluation protocol & dataset
 - Evaluation of 7 methods
 - Biased MNIST dataset
- Code and data: https://github.com/ erobic/bias-mitigators

Task: recognize the digit (0 – 9) Multiple sources of biases:

background color,
 color of the target digit,
 position of the digit (among 9 grid locations),
 distractor shapes, which are placed on all cells except the cell with the digit,
 color of the distractors,
 type of texture, and

7) texture color.

Each digit co-occurs more frequently with a particular value for each bias type

E.g., "1" is most often green, placed on purple background, co-occurs with right-angled triangles

Figure 2: Biased MNIST requires the methods to classify the target digit while remaining invariant to biases.

[treat] "individual variable as the explicit bias in separate experiments, while treating the remaining six as implicit biases"

Figure 3: Boxplots of differences between majority and minority groups (MMD) on Biased MNIST over: a) bias variables and b) different methods.

We define two more metrics to help measure bias resistance. **Majority/Minority Difference (MMD)** simply measures the difference between majority and minority groups:

$$MMD = [Acc_{majority} - Acc_{minority}].$$

High MMD indicates that methods rely on factors that work for majority groups, but not for minority groups. The second metric is **Improvement Over the Standard Model** (**IOSM**), which measures the difference in group g's accuracy as compared to the standard model (StdM) i.e.,

$$IOSM_g = [Acc_g - Acc_{StdM,g}].$$

Ideal method would obtain high $IOSM_g$ across all groups.

Figure 4: Improvement Over the Standard Model (IOSM) for each group of CelebA.

Search.

Computer Science > Machine Learning

[Submitted on 28 May 2019 (v1), last revised 11 Sep 2020 (this version, v5)]

EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks

Mingxing Tan, Quoc V. Le

https://arxiv.org/abs/1905.11946

Figure 1. **Model Size vs. ImageNet Accuracy.** All numbers are for single-crop, single-model. Our EfficientNets significantly outperform other ConvNets. In particular, EfficientNet-B7 achieves

- Original EfficientNets:
 Scaling up CNNs with a compound coefficient.
- Common ways to scale: (1) More layers, (2) Wider layers, (3) Higher image resolution
- EfficientNets: fixed compound ratio for scaling all three
- Result: Better accuracy, fewer parameters, faster than reference networks

Help | Advanced

[Submitted on 1 Apr 2021]

EfficientNetV2: Smaller Models and Faster Training

Mingxing Tan, Quoc V. Le

https://arxiv.org/abs/2104.00298

EfficientNetV2:

Large improvement over EfficientNets V1 Also beats Visual Transformers ;)

Introduces

new ops such as Fused-MBConv

progressive increasing of image size during training

-> adaptively adjusting regularization via dropout and data augmentation

	EfficientNet (2019)	ResNet-RS (2021)	DeiT/ViT (2021)	EfficientNetV2 (ours)
Top-1 Acc.	84.3%	84.0%	83.1%	83.9%
Parameters	43M	164M	86M	24M

(b) Parameter efficiency.

Facebook Al 🤣 @facebookai · Mar 30

We're introducing an optimizer for deep learning, MADGRAD. This method matches or exceeds the performance of the Adam optimizer across a varied set of realistic large-scale deep learning training problems. github.com/facebookresear...

...

https://arxiv.org/abs/2101.11075

"Adam doesn't quite reach the goal of being a general-purpose deep learning optimizer. The MADGRAD method is directly designed to address these issues"

Comparison of ML Experiment Tracking Tools

	ml <mark>flow</mark> MLflow	TensorBoard Tensorboard	DVC	ClearML	g Guild.ai	Kubeflow	Neptune.ai	Weights & Biases	Comet.ml	SageMaker Experiments	DAGsHub
Open source	V Apache	A pache	V Apache	Server has non-standard license	A pache	V Apache	×	×	×	×	Open source formats
Platform & language agnostic	×	×		×	×	×	×	×	×	×	
Experiment data storage Local 📂 / Cloud 🏷	# +	Þ	P	*	* +	*	*3	2	*	ڪ	# +
Easy to set up			<	Open-source server is hard to set up		×		<	<		
Custom visualizations			Difficult to customize			×					×
Scalable for large number of experiments		×	??		??						
To read more, go to https://DAGsHub.com/blog									DAGSHUD		

https://dagshub.com/blog/how-to-compare-ml-experiment-tracking-tools-to-fit-your-data-science-workflow/

- Disclaimer: Graphic made by the DAGsHub developers
- Also see AIM (discussed last week)