STAT 453: Introduction to Deep Learning and Generative Models

Sebastian Raschka
http://stat.wisc.edu/~sraschka

Deep Learning & Al News #10

Interesting Things Related to Deep Learning
Apr 3, 2021


http://stat.wisc.edu/~sraschka

BACKGROUND

™ z..tm\fi.!lm N
s by e s
| ll H,,,.lwm &l

OCEAN RESULTS

original ® with bookshelf
Openness

Conscientiousness

Extraversion A bookshelf alters the results
even more than the picture
Agreeableness frame. The result calculated by
the Al differs significantly from
- that of the original version.
Neuroticism &

https://web.br.de/interaktiv/ki-bewerbung/en/

Sebastian Raschka STAT 458: Intro to Deep Learning


https://web.br.de/interaktiv/ki-bewerbung/en/

arXiv.org > c¢s > arXiv:2104.00170

Help | Advanced

Computer Science > Machine Learning

[Submitted on 1 Apr 2021]
An Investigation of Critical Issues in Bias Mitigation Techniques

Robik Shrestha. Kushal Kafle. Christopher Kanan
https://arxiv.org/abs/2104.00170
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 Code and data: https://github.com/
erobic/bias-mitigators
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Task: recognize the digit (0 — 9)
Multiple sources of biases:

1) background color,
2) color of the target digit,
) position of the digit (among 9 grid locations),

3
4) distractor shapes, which are placed on all cells except the cell with the digit,
5) color of the distractors,

)
6) type of texture, and
7) texture color.

Each digit co-occurs more frequently with a particular value for each bias type
E.g., "1" is most often green, placed on purple background, co-occurs with right-angled triangles

Figure 2: Biased MNIST requires the methods to classify the target
digit while remaining invariant to biases.
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[treat] "individual variable as the explicit bias in separate experiments,

while treating the remaining six as implicit biases"”
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Figure 3: Boxplots of differences between majority and minority
groups (MMD) on Biased MNIST over: a) bias variables and b)

different methods.
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We define two more metrics to ‘help; measure bias resis-
tance. Majority/Minority Difference (MMD) simply mea-
sures the difference between majority and minority groups:

MMD = [Accmajority - Accminority]-

High MMD indicates that methods rely on factors that work
for majority groups, but not for minority groups. The sec-
ond metric is Improvement Over the Standard Model
(IOSM), which measures the difference in group g’s ac-
curacy as compared to the standard model (StdM) i.e.,

IOSM, = [Accy — Acestan,g)-

Ideal method would obtain high 7O.SM, across all groups.
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Figure 4: Improvement Over the Standard Model (IOSM) for each
group of CelebA.
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[Submitted on 28 May 2019 (v1), last revised 11 Sep 2020 (this version, v5)]
EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks

Mingxing Tan, Quoc V. Le

https://arxiv.org/abs/1905.11946
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Figure 1. Model Size vs. ImageNet Accuracy. All numbers are parameters, faster than reference
for single-crop, single-model. Our EfficientNets significantly out- networks

perform other ConvNets. In particular, EfficientNet-B7 achieves
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EfficientNetV2: Smaller Models and Faster Training
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Mingxing Tan, Quoc V. Le &7 1
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new ops such as Fused-MBConv
progressive increasing of image size during training
-> adaptively adjusting regularization via dropout and data augmentation
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Facebook Al & @facebookai - Mar 30
We're introducing an optimizer for deep learning, MADGRAD. This method

matches or exceeds the performance of the Adam optimizer across a
varied set of realistic large-scale deep learning training problems.
github.com/facebookresear...
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https://arxiv.org/abs/2101.11075

"Adam doesn’t quite reach the goal of being a general-purpose deep learning optimizer.
The MADGRAD method is directly designed to address these issues”

Sebastian Raschka STAT 458: Intro to Deep Learning


https://arxiv.org/abs/2101.11075

Comparison of ML Experiment Tracking Tools

experiments
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To read more, go to https://DAGsHub.com/blog
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https://dagshub.com/blog/how-to-compare-ml-experiment-tracking-tools-to-fit-your-data-science-workflow/

- Disclaimer: Graphic made by the DAGsHub developers

 Also see AIM (discussed last week)
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