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1. Run original and distorted image through same network

2. Compute correlation matrix

3. Add objective to make the correlation matrix close to identity matrix

Forces representation vectors of similar samples to be similar
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Abstract

Self-supervised learning (SSL) is rapidly closing
the gap with supervised methods on large com-
puter vision benchmarks. A successful approach
to SSL is to learn representations which are invari-
ant to distortions of the input sample. However, a
recurring issue with this approach is the existence
of trivial constant representations. Most current
methods avoid such collapsed solutions by careful
implementation details. We propose an objective
function that naturally avoids such collapse by
measuring the cross-correlation matrix between
the outputs of two identical networks fed with dis-
torted versions of a sample, and making it as close
to the identity matrix as possible. This causes the
representation vectors of distorted versions of a
sample to be similar, while minimizing the redun-
dancy between the components of these vectors.
The method is called BARLOW TWINS, owing to
neuroscientist H. Barlow’s redundancy-reduction
principle applied to a pair of identical networks.
BARLOW TWINS does not require large batches
nor asymmetry between the network twins such
as a predictor network, gradient stopping, or a
moving average on the weight updates. It allows
the use of very high-dimensional output vectors.
BARLOW TWINS outperforms previous methods
on ImageNet for semi-supervised classification in
the low-data regime, and is on par with current
state of the art for ImageNet classification with
a linear classifier head, and for transfer tasks of
classification and object detection. 1

1. Introduction

Self-supervised learning aims to learn useful representa-
tions of the input data without relying on human annota-
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tar <jzb@fb.com>, Li Jing <ljng@fb.com>, Ishan Misra
<imisra@fb.com>, Yann LeCun <yann@fb.com>, Stéphane
Deny <stephane.deny.pro@gmail.com>.

1Code and pre-trained models (in PyTorch) coming soon at
https://github.com/facebookresearch/barlowtwins

Figure 1. BARLOW TWINS’s objective function measures the cross-
correlation matrix between the output features of two identical net-
works fed with distorted versions of a batch of samples, and tries
to make this matrix close to the identity. This causes the represen-
tation vectors of distorted versions of a sample to be similar, while
minimizing the redundancy between the components of these vec-
tors. BARLOW TWINS is competitive with state-of-the-art methods
for self-supervised learning while being conceptually simpler, nat-
urally avoiding trivial constant (i.e. collapsed representations), and
being robust to the training batch size.

tions. Recent advances in self-supervised learning for visual
data (Caron et al., 2020; Chen et al., 2020a; Grill et al., 2020;
He et al., 2019; Misra & van der Maaten, 2019) show that
it is possible to learn self-supervised representations that
are competitive with supervised representations. A common
underlying theme that unites these methods is that they all
aim to learn representations that are invariant under different
distortions (also referred to as ‘data augmentations’). This
is typically achieved by maximizing similarity of representa-
tions obtained from different distorted versions of a sample
using a variant of Siamese networks (Hadsell et al., 2006).
As there are trivial solutions to this problem, like a constant
representation, these methods rely on different mechanisms
to learn useful representations.

Contrastive methods like SIMCLR (Chen et al., 2020a) de-
fine ‘positive’ and ‘negative’ sample pairs which are treated
differently in the loss function. Additionally, they can also
use asymmetric learning updates wherein momentum en-
coders (He et al., 2019) are updated separately from the
main network. Clustering methods use one distorted sample
to compute ‘targets’ for the loss, and another distorted ver-
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Barlow Twins: Self-Supervised Learning via Redundancy Reduction

Algorithm 1 PyTorch-style pseudocode for Barlow Twins.

# f: encoder network
# lambda: weight on the off-diagonal terms
# N: batch size
# D: dimensionality of the representation
#
# mm: matrix-matrix multiplication
# off_diagonal: off-diagonal elements of a matrix
# eye: identity matrix

for x in loader: # load a batch with N samples
# two randomly augmented versions of x
y_a, y_b = augment(x)

# compute representations
z_a = f(y_a) # NxD
z_b = f(y_b) # NxD

# normalize repr. along the batch dimension
z_a_norm = (z_a - z_a.mean(0)) / z_a.std(0) # NxD
z_b_norm = (z_b - z_b.mean(0)) / z_b.std(0) # NxD

# cross-correlation matrix
c = mm(z_a_norm.T, z_b_norm) / N # DxD

# loss
c_diff = (c - eye(D)).pow(2) # DxD
# multiply off-diagonal elems of c_diff by lambda
off_diagonal(c_diff).mul_(lambda)
loss = c_diff.sum()

# optimization step
loss.backward()
optimizer.step()

information about the sample as possible while being the
least possible informative about the specific distortions ap-
plied to that sample. The mathematical connection between
BARLOW TWINS’s objective function and the IB principle
is explored in Appendix A.

BARLOW TWINS’ objective function has similarities with
existing objective functions for SSL. For example, the redun-
dancy reduction term plays a role similar to the contrastive
term in the INFONCE objective (Oord et al., 2018), as dis-
cussed in detail in Section 5. However, important conceptual
differences in these objective functions result in practical
advantages of our method compared to INFONCE-based
methods, namely that (1) our method does not require a large
number of negative samples and can thus operate on small
batches (2) our method can take advantage of very high-
dimensional representations. Alternatively, the redundancy
reduction term can be viewed as a soft-whitening constraint
on the representations, connecting our method to a recently
proposed method performing a hard-whitening operation
on the representations (Ermolov et al., 2020), as discussed
in Section 5. However, our method performs better than
current hard-whitening methods.

The pseudocode for BARLOW TWINS is shown as Algo-
rithm 1.

2.2. Implementation Details

Image augmentations Each input image is transformed
twice to produce the two distorted views shown in Figure 1.

The image augmentation pipeline consists of the following
transformations: random cropping, resizing to 224 ⇥ 224,
horizontal flipping, color jittering, converting to grayscale,
Gaussian blurring, and solarization. The first two transfor-
mations (cropping and resizing) are always applied, while
the last five are applied randomly, with some probability.
This probability is different for the two distorted views in the
last two transformations (blurring and solarization). We use
the same augmentation parameters as BYOL (Grill et al.,
2020).

Architecture The encoder f✓ consists of a ResNet-50 net-
work (He et al., 2016) (without the final classification layer)
followed by a projector network. The projector network
has three linear layers, each with 8192 output units. The
first two layers of the projector are followed by a batch
normalization layer and rectified linear units.

Optimization We follow the optimization protocol de-
scribed in BYOL (Grill et al., 2020). We use the LARS
optimizer (You et al., 2017) and train for 1000 epochs with
a batch size of 2048. We however emphasize that our model
works well with batches as small as 256 (see Ablations). The
learning rate starts at 0 and is linearly increased to 0.2 in
the first 10 epochs of training, after which it is decreased to
0.002 using a cosine decay schedule (Loshchilov & Hutter,
2016). We ran a search for the trade-off parameter � of the
loss function and found the best results for � = 5 ·10�3. We
use a weight decay parameter of 1.5 · 10�6. The biases and
batch normalization parameters are excluded from LARS
adaptation and weight decay. Training is distributed across
32 V100 GPUs and takes approximately 124 hours. For
comparison, our reimplementation of BYOL trained with a
batch size of 4096 takes 113 hours on the same hardware.

3. Results

We follow standard practice (Goyal et al., 2019) and eval-
uate our representations by transfer learning to different
datasets and tasks in computer vision. Our network is pre-
trained using self-supervised learning on the training set
of the ImageNet ILSVRC-2012 dataset (Deng et al., 2009)
(without labels). We evaluate our model on a variety of
tasks such as image classification and object detection, and
using fixed representations from the network or finetuning it.
We provide the hyperparameters for all the transfer learning
experiments in the Appendix.

3.1. Linear and Semi-Supervised Evaluations on

ImageNet

Linear evaluation on ImageNet We train a linear classi-
fier on ImageNet on top of fixed representations of a ResNet-
50 pretrained with our method. The top-1 and top-5 accu-
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racies obtained on the ImageNet validation set are reported
in Table 1. Our method obtains a top-1 accuracy of 73.2%
which is comparable to the state-of-the-art methods.

Table 1. Top-1 and top-5 accuracies (in %) under linear evalu-

ation on ImageNet. All models use a ResNet-50 encoder. Top-3
best self-supervised methods are underlined.

Method Top-1 Top-5

Supervised 76.5

MOCO 60.6
PIRL 63.6 -
SIMCLR 69.3 89.0
MOCO V2 71.1 90.1
SIMSIAM 71.3 -
SWAV 71.8 -
BYOL 74.3 91.6
SWAV (w/ multi-crop) 75.3 -
BARLOW TWINS (ours) 73.2 91.0

Semi-supervised training on ImageNet We fine-tune a
ResNet-50 pretrained with our method on a subset of Ima-
geNet. We use subsets of size 1% and 10% using the same
split as SIMCLR. The semi-supervised results obtained on
the ImageNet validation set are reported in Table 2. Our
method is either on par (when using 10% of the data) or
slightly better (when using 1% of the data) than competing
methods.

Table 2. Semi-supervised learning on ImageNet using 1% and
10% training examples. Results for the supervised method are
from (Zhai et al., 2019). Best results are in bold.

Method Top-1 Top-5

1% 10% 1% 10%

Supervised 25.4 56.4 48.4 80.4

PIRL - - 57.2 83.8
SIMCLR 48.3 65.6 75.5 87.8
BYOL 53.2 68.8 78.4 89.0
SWAV (w/ multi-crop) 53.9 70.2 78.5 89.9

BARLOW TWINS (ours) 55.0 69.7 79.2 89.3

3.2. Transfer to other datasets and tasks

Image classification with fixed features We follow the
setup from (Misra & van der Maaten, 2019) and train a
linear classifier on fixed image representations, i.e., the
parameters of the ConvNet remain unchanged. We use a
diverse set of datasets for this evaluation - Places-205 (Zhou
et al., 2014) for scene classification, VOC07 (Everingham

Table 3. Transfer learning: image classification. We benchmark
learned representations on the image classification task by training
linear classifiers on fixed features. We report top-1 accuracy on
Places-205 and iNat18 datasets, and classification mAP on VOC07.
Top-3 best self-supervised methods are underlined.

Method Places-205 VOC07 iNat18

Supervised 53.2 87.5 46.7

SimCLR 52.5 85.5 37.2
MoCo-v2 51.8 86.4 38.6
SwAV 52.8 86.4 39.5
SwAV (w/ multi-crop) 56.7 88.9 48.6
BYOL 54.0 86.6 47.6
BARLOW TWINS (ours) 54.1 86.2 46.5

et al., 2010) for multi-label image classification, and iNat-
uralist2018 (Van Horn et al., 2018) for fine-grained image
classification. We report our results in Table 3. BARLOW
TWINS performs competitively against prior work, and out-
performs SimCLR and MoCo-v2 across all datasets.

Object Detection and Instance Segmentation We evalu-
ate our representations for the localization based tasks of
object detection and instance segmentation. We use the
VOC07+12 (Everingham et al., 2010) and COCO (Lin et al.,
2014) datasets following the setup in (He et al., 2019) which
finetunes the ConvNet parameters. Our results in Table 4
indicate that BARLOW TWINS performs comparably or bet-
ter than state-of-the-art representation learning methods for
these localization tasks.

Table 4. Transfer learning: object detection and instance seg-

mentation. We benchmark learned representations on the object
detection task on VOC07+12 using Faster R-CNN (Ren et al.,
2015) and on the detection and instance segmentation task on
COCO using Mask R-CNN (He et al., 2017). All methods use the
C4 backbone variant (Wu et al., 2019) and models on COCO are
finetuned using the 1⇥ schedule. Best results are in bold.

Method VOC07+12 det COCO det COCO instance seg

APall AP50 AP75 APbb APbb
50 APbb

75 APmk APmk
50 APmk

75

Sup. 53.5 81.3 58.8 38.2 58.2 41.2 33.3 54.7 35.2

MoCo-v2 57.4 82.5 64.0 39.3 58.9 42.5 34.4 55.8 36.5
SwAV 56.1 82.6 62.7 38.4 58.6 41.3 33.8 55.2 35.9
SimSiam 57 82.4 63.7 39.2 59.3 42.1 34.4 56.0 36.7

BT (ours) 56.8 82.6 63.4 39.2 59.0 42.5 34.3 56.0 36.5

4. Ablations

For all ablation studies, BARLOW TWINS was trained for
300 epochs instead of 1000 epochs in the previous section.
A linear evaluation on ImageNet of this baseline model
yielded a 71.4% top-1 accuracy and a 90.2% top-5 accu-
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Source: https://www.workshopononlineabuse.com/cfp/shared-task-on-hateful-memes

Task A (multi-label): For each meme, detect the protected category. Protected categories are: 
race, disability, religion, nationality, sex. If the meme is not_hateful the protected category is: 
pc_empty.


Task B (multi-label): For each meme, detect the attack type. Attack types are: Attack types are: 
contempt, mocking, inferiority, slurs, exclusion, dehumanizing, inciting_violence. If the meme is 
not_hateful the protected category is: attack_empty.

Important dates

▪ March 19th: Shared task data is available.

▪ March 25th: MMF setup for getting started, with initial baselines and pre-trained models released

▪ May 19th 23:59 (AOE): Predictions due

▪ May 31, 23:59 (AOE): Shared task paper submissions due

▪ June 14, 23:59 (AOE): Camera-ready papers due 

▪ August 5th - 6th: Workshop day!

https://www.workshopononlineabuse.com/cfp/shared-task-on-hateful-memes
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• Deep learning is currently largely based on statistical correlations from i.i.d. data


• Learning causal relationships can make models more robust to unexpected situations 


• Can make training cheaper -- fewer examples like objects from different angles required


• Enable transfer learning beyond fine-tuning

Don't have to drive a car off a cliff to learn what happens

How do we infer abstract causal variables?

Does the data reveal causal relationships?

The challenges:

https://arxiv.org/abs/2102.11107

https://arxiv.org/abs/2102.11107
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https://pytorch.org/blog/introducing-pytorch-profiler-the-new-and-improved-performance-tool/
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VisualStudio Code TensorBoard Integration
https://devblogs.microsoft.com/python/python-in-visual-studio-code-february-2021-release/
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