STAT 453: Introduction to Deep Learning and Generative Models

Sebastian Raschka http://stat.wisc.edu/~sraschka

Deep Learning & Al News #9

Interesting Things Related to Deep Learning Mar 27th, 2021

https://www.therobotbrains.ai

Barlow Twins: Self-Supervised Learning via Redundancy Reduction

- 1. Run original and distorted image through same network
- 2. Compute correlation matrix
- 3. Add objective to make the correlation matrix close to identity matrix

Forces representation vectors of similar samples to be similar

Barlow Twins: Self-Supervised Learning via Redundancy Reduction

Jure Zbontar^{*1} Li Jing^{*1} Ishan Misra¹ Yann LeCun¹² Stéphane Deny¹

https://arxiv.org/pdf/2103.03230.pdf

Algorithm 1 PyTorch-style pseudocode for Barlow Twins.

```
# f: encoder network
 lambda: weight on the off-diagonal terms
 N: batch size
# D: dimensionality of the representation
 mm: matrix-matrix multiplication
# off_diagonal: off-diagonal elements of a matrix
# eye: identity matrix
for x in loader: # load a batch with N samples
    # two randomly augmented versions of x
   y_a, y_b = augment(x)
    # compute representations
    z_a = f(y_a) # NxD
   z_b = f(y_b) # NxD
    # normalize repr. along the batch dimension
    z_a_norm = (z_a - z_a.mean(0)) / z_a.std(0) # NxD
    z_b_norm = (z_b - z_b.mean(0)) / z_b.std(0) # NxD
    # cross-correlation matrix
   c = mm(z a norm.T, z b norm) / N \# DxD
    # loss
   c_diff = (c - eye(D)).pow(2) # DxD
    # multiply off-diagonal elems of c_diff by lambda
    off diagonal(c diff).mul (lambda)
   loss = c_diff.sum()
    # optimization step
   loss.backward()
    optimizer.step()
```

Table 1. **Top-1 and top-5 accuracies (in %) under linear evaluation on ImageNet**. All models use a ResNet-50 encoder. Top-3 best self-supervised methods are <u>underlined</u>.

Method	Top-1	Top-5
Supervised	76.5	
МоСо	60.6	
PIRL	63.6	-
SIMCLR	69.3	89.0
MoCo v2	71.1	90.1
SIMSIAM	71.3	-
SWAV	71.8	-
BYOL	74.3	91.6
SWAV (w/ multi-crop)	<u>75.3</u>	-
BARLOW TWINS (ours)	<u>73.2</u>	91.0

Shared Task on Hateful Memes at WOAH 2021

Source: <u>https://www.workshopononlineabuse.com/cfp/shared-task-on-hateful-memes</u>

Task A (multi-label): For each meme, detect the protected category. Protected categories are: *race, disability, religion, nationality, sex.* If the meme is *not_hateful* the protected category is: pc_empty.

Task B (multi-label): For each meme, detect the attack type. Attack types are: Attack types are: contempt, mocking, inferiority, slurs, exclusion, dehumanizing, inciting_violence. If the meme is not_hateful the protected category is: attack_empty.

Important dates

- March 19th: Shared task data is available.
- March 25th: MMF setup for getting started, with initial baselines and pre-trained models released
- May 19th 23:59 (AOE): Predictions due
- May 31, 23:59 (AOE): Shared task paper submissions due
- June 14, 23:59 (AOE): Camera-ready papers due
- August 5th 6th: Workshop day!

Computer Science > Machine Learning

[Submitted on 22 Feb 2021]

Towards Causal Representation Learning

Bernhard Schölkopf, Francesco Locatello, Stefan Bauer, Nan Rosemary Ke, Nal Kalchbrenner, Anirudh Goyal, Yoshua Bengio

https://arxiv.org/abs/2102.11107

Don't have to drive a car off a cliff to learn what happens

- Deep learning is currently largely based on statistical correlations from i.i.d. data
- Learning causal relationships can make models more robust to unexpected situations
- Can make training cheaper -- fewer examples like objects from different angles required
- Enable transfer learning beyond fine-tuning

The challenges:

Does the data reveal causal relationships?

How do we infer abstract causal variables?

☆ Star 58 "REIMAGINE THE FUTURE WITH DATA ANNOTATION"

Classifai is one the most comprehensive open-source data annotation platform.

It supports the labelling of various data types with multi labelled outputs forms for AI model training.

Get Started

CLASSIFAI

https://classifai.ai

• • •

Docs ~

Q

March 25, 2021

Introducing PyTorch Profiler - the new and improved performance tool

Mobile

https://pytorch.org/blog/introducing-pytorch-profiler-the-new-and-improved-performance-tool/

VisualStudio Code TensorBoard Integration

https://devblogs.microsoft.com/python/python-in-visual-studio-code-february-2021-release/

•••			TensorBoard —	profilersamples			
Ð	🍖 test.py	✓ tensorboard_example.py ×		\equiv TensorBoard $ imes$		□ ·	
þ	tenso 1 2	orboard_example.py > # imports import matplotlib.pyplot as plt		TensorBoard SCALARS	IMAGES GRAPHS TIME SERIES TORCH_PROF INACTIVE	• 🛈 UPLOAD C 🏚 (୭ ^
0 070	3 4 5	<pre>import numpy as np import torch import torchvision</pre>		Search nodes. Regexes suppor	output	Subgraph: 25 nodes	$\hat{\Box}$
\$ ₩	7 : 8 9 :	<pre>import torchvision.transforms as transforms import torch.nn as nn</pre>		Download PNG Run (1) runs/fashion_mnist_e.~	Net	Inputs (1) input/input.1 4×1×28× Outputs (1) output/output.1 4×1×28×	28
	10 11 12 13	<pre>import torch.nn.functional as F import torch.optim as optim import os</pre>	Restances	Tag Default (2) Upload Choose File	Linear[fc3]	Remove from main graph	
	15 14 15 16	► Launch TensorBoard Session from torch.utils.tensorboard import SummaryWriter		 Graph Conceptual Graph Profile Trace inputs 	Linear[fc2]		
نند م	17 (18 19 20	os.environ['KMP_DUPLICATE_LIB_OK']='True' # transforms transform = transforms.Compose(Color Structure Device XLA Cluster Compute time	input.6 Linear[fc1]		
6	21 22 23 24	<pre>[transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,))]) # datasets</pre>		Memory TPU Compatibility colors same substructure unique substructure	Conv2d[con		
	25 26 27 28	<pre>trainset = torchvision.datasets.FashionMNIST('./data',</pre>			MaxPool2d[p		
	29 30 31 32	<pre>testset = torchvision.datasets.FashionMNIST('./data',</pre>		 Close legend. Graph (* = expandable) Namespace* ? OpNode ? Unconnected series* ? 	Conv2d[con		
() () () () () () () () () () () () () (33 34 35 36 37 38	<pre># dataloaders trainloader = torch.utils.data.DataLoader(trainset, batch_size=4,</pre>		Connected series* 2 Constant 2 Summary 2 Dataflow edge 2 Control dependency edge 2 Reference edge 2	input		
× }	⁹ master*	↔ Python 3.8.5 64-bit ('profiler': conda) ⊗ 0 ▲ 0				<u></u>	Д
							4

Aim Ostar 989

Compare 1000s of AI experiments at once

- > Get started
- > Get involved

https://aimstack.io/

MACHINE LEARNING

Machine Learning and Al in 2021: Recent Trends, Technologies, and Challenges

Sebastian Raschka, PhD Professor, Researcher, Author of 'Python Machine Learning University of Wisconsin-Madison

TALK

"Machine Learning and AI in 2021: Recent Trends, Technologies, and Challenges" March 31, 2021. 10:40 am CT

https://odsc.com/boston/