
Sebastian Raschka STAT 453: Intro to Deep Learning

Deep Learning & AI News #8

1

Interesting Things Related to Deep Learning
Mar 20th, 2021

with Applications in Python

Sebastian Raschka

http://stat.wisc.edu/~sraschka

STAT 453: Introduction to Deep Learning and Generative Models

http://stat.wisc.edu/~sraschka

Sebastian Raschka STAT 453: Intro to Deep Learning 2

Do you like math?

Sebastian Raschka STAT 453: Intro to Deep Learning 3

Hendrycks D, Burns C, Kadavath S, Arora A, Basart S, Tang E, Song D, Steinhardt J. Measuring Mathematical Problem Solving With the MATH Dataset. arXiv preprint
arXiv:2103.03874. 2021

Sebastian Raschka STAT 453: Intro to Deep Learning 4

"MATH, a dataset of math problems that contemporary
Transformer-based models can't solve (yet)."

Paper: https://arxiv.org/abs/2103.03874

Dataset & PyTorch DataLoaders: https://github.com/hendrycks/math/

• Consists of 12,500 problems
from high school math
competitions

• Plus a ~100,000 Khan
Academy solutions with step-
by-step solutions

• Plus 5 millions problems
generated via Mathematica

https://arxiv.org/abs/2103.03874
https://github.com/hendrycks/math/

Sebastian Raschka STAT 453: Intro to Deep Learning 5

2 Related Work

Neural Theorem Provers. Much of the existing work on machine learning models for mathematical reasoning relies
on automated theorem proving benchmarks. Huang et al. (2019) use the Coq theorem proving environment to create a
machine learning benchmark with 1, 602 theorems and lemmas. Bansal et al. (2019) introduce the HOList benchmark for
automated theorem proving, which uses a formal language to enable automatic evaluation. Rather than use HOList, Polu
and Sutskever (2020) use the Metamath formalization language for automated theorem proving with promising results.
We show an example of Metamath in Figure 1. These benchmarks can be approached with seq2seq (Sutskever et al.,
2014) Transformers which have traction on the problem (Polu and Sutskever, 2020; Rabe et al., 2020; Li et al., 2020).

H2LLst
ProoIs

H2L6tHS
ProoIs

DHHS0Lnd
0Dth

6yPboOLc
IntHgrDtLon

0ATH
(2urs)

0

20

40

60

80

100

Ac
cu

rD
cy

 (%
)

6tDtH-oI-thH-Art AccurDcy on
0DthHPDtLcs DDtDsHts

Figure 2: Compared to existing proof and plug-and-chug
tasks, our mathematical problem solving task is considerably
more challenging. HOList results are from Wu et al. (2021).
HOLStep results are from Crouse et al. (2019). DeepMind
Math accuracy is the median IID accuracy from Henighan
et al. (2020). Symbolic Integration accuracy is from Lample
and Charton (2020).

Rather than prove theorems with standard pretrained Trans-
formers, McAllester (2020) proposes that the community
create theorem provers that bootstrap their mathematical
capabilities through open-ended self-improvement. For
bootstrapping to be feasible, models will also need to un-
derstand mathematics as humans write it, as manually con-
verting advanced mathematics to a proof generation lan-
guage is extremely time-consuming. This is why Szegedy
(2020) argues that working on formal theorem provers
alone will be an impractical path towards world-class math-
ematical reasoning. We address Szegedy (2020)’s concern
by creating a dataset to test understanding of mathematics
written in natural language and commonplace mathemat-
ical notation. This also means that the answers in our
dataset can be assessed without the need for a cumbersome
theorem proving environment, which is another advantage
of our evaluation framework.

Neural Calculators. Recent work shows that Trans-
formers can sometimes perform laborious calculations
around as well as calculators and computer algebra sys-
tems. Lample and Charton (2020) use Transformers to
solve algorithmically generated symbolic integration prob-
lems and achieve greater than 95% accuracy. Amini et al.
(2019); Ling et al. (2017) introduce plug-and-chug multi-
ple choice mathematics problems and focus on sequence-
to-program generation. Saxton et al. (2019) introduce the DeepMind Mathematics dataset, which consists of algorith-
mically generated plug-and-chug problems such as addition, list sorting, and function evaluation, as shown in Figure 1.
Recently, Henighan et al. (2020) show that nearly all of the DeepMind Mathematics dataset can be straightforwardly
solved with large Transformers.

Benchmarks for Enormous Transformers. There are few existing natural language benchmarks left to solve, as
tasks that aggregate multiple subtasks such as SuperGLUE (Wang et al., 2019) are solved by simply training enormous
Transformers (He et al., 2020). Kaplan et al. (2020); Henighan et al. (2020) show that the performance of Transformers
predictably increases with an increase in model size and dataset size, raising the question of whether natural language
processing can be solved by simply increasing compute and funding. In Appendix A.1, we even find that large GPT-3
models can perform remarkably well on a sequence completion test similar to an IQ test, the C-Test (Hernández-Orallo,
1998; Legg and Hutter, 2007). Even difficult logical understanding tasks such as LogiQA (Liu et al., 2020) will soon
be straightforwardly solved by enormous Transformers should trends continue, which we also show in Appendix A.1.
Hendrycks et al. (2021) create a multiple-choice benchmark covering 57 subjects which are difficult for enormous
Transformers. However, unlike our benchmark, which is a text generation task with 12, 500 mathematical reasoning
questions, their benchmark is a multiple choice task that includes only a few hundred questions about mathematics. We
find that our MATH benchmark is especially challenging for current models and, if trends continue, simply using bigger
versions of today’s Transformers will not solve our task in the foreseeable future.

3 Datasets

In this section, we introduce two new datasets, one for benchmarking mathematical problem-solving ability (MATH) and
one for pretraining (AMPS).

3

Model Prealgebra Algebra Number
Theory

Counting &
Probability

Geometry Intermediate
Algebra

Precalculus Average

GPT-2 (0.1B) 5.2 5.1 5.0 2.8 5.7 6.5 7.3 5.4 (+0%)
GPT-2 (0.3B) 6.7 6.6 5.5 3.8 6.9 6.0 7.1 6.2 (+15%)
GPT-2 (0.7B) 6.9 6.1 5.5 5.1 8.2 5.8 7.7 6.4 (+19%)
GPT-2 (1.5B) 8.3 6.2 4.8 5.4 8.7 6.1 8.8 6.9 (+28%)
GPT-3 (2.7B) 2.8 2.9 3.9 3.6 2.1 2.5 2.6 2.9 (�46%)
GPT-3 (175B) 7.7 6.0 4.4 4.7 3.1 4.4 4.0 5.2 (�4%)

Table 2: MATH accuracies across subjects for GPT-2 and few-shot GPT-3 models. The character ‘B’ denotes the number
of parameters in billions. The gray text indicates the relative improvement over the 0.1B baseline. All GPT-2 models
pretrain on AMPS, and all values are percentages. A 15⇥ increase in model parameters increased accuracy by 1.5%, a
28% relative improvement. Model accuracy is increasing very slowly, so much future research is needed.

like mathematics got 14/20 and 15/20. A participant who got a perfect score on the AMC 10 exam and attended USAMO
several times got 18/20. A three-time IMO gold medalist got 18/20 = 90%, though missed questions were exclusively
due to small errors of arithmetic. Expert-level performance is theoretically 100% given enough time, though even 40%
accuracy for a machine learning model would be impressive.

3.2 AMPS (Khan + Mathematica) Dataset

Since pretraining data can greatly influence performance (Hernandez et al., 2021; Gururangan et al., 2020) and since
mathematics is a small fraction of online text, we introduce a large and diverse mathematics pretraining corpus. Our
pretraining dataset, the Auxiliary Mathematics Problems and Solutions (AMPS) dataset, has problems and step-by-step
solutions typeset in LATEX. AMPS contains over 100, 000 problems pulled from Khan Academy and approximately 5
million problems generated from manually designed Mathematica scripts.

Khan Academy. The Khan Academy subset of AMPS has 693 exercise types with over 100, 000 problems and full
solutions. Problem types range from elementary mathematics (e.g. addition) to multivariable calculus (e.g. Stokes’
theorem), and are used to teach actual K-12 students. Many of the exercises can be regenerated using code from
github.com/Khan/khan-exercises/. We show the full list of problem types in the Figures 13 to 16.

Mathematica. To make AMPS larger, we also contribute our own Mathematica scripts to generate approximately
50⇥ more problems than our Khan Academy dataset. With Mathematica, we designed 100 scripts that test distinct
mathematics concepts, 37 of which include full step-by-step LATEX solutions in addition to final answers. We generated
around 50, 000 exercises from each of our scripts, or around 5 million problems in total. This results in over 23 GB of
mathematics problems, making it larger than the 16 GB of natural language used to train BERT (Devlin et al., 2019).

Problems include various aspects of algebra, calculus, counting and statistics, geometry, linear algebra, and number theory
(see Table 1 for a sampling of topics). Unlike prior approaches to algorithmically generating mathematics problems, we
use Mathematica’s computer algebra system so that we can manipulate fractions, transcendental numbers, and analytic
functions.

4 Experiments

In this section, we perform experiments to investigate performance on the MATH dataset. We find that accuracy remains
low even for the best models. Furthermore, unlike for most other text-based datasets, we find that accuracy is increasingly
very slowly with model size. If trends continue, then we will need algorithmic improvements, rather than just scale, to
make substantial progress on MATH. Nevertheless, we show that making progress is also possible today. We find that
pretraining on AMPS increases relative accuracy by 25%, which is comparable to the improvement due to a 15⇥ increase
in model size.

We also experiment with using step-by-step solutions. We find that having models generate their own step-by-step
solutions before producing an answer actually degrades accuracy. We qualitatively assess these generated solutions and
find that while many steps remain illogical, they are often related to the question. Finally, we show that step-by-step
solutions can still provide benefits today. We find that providing partial ground truth step-by-step solutions can improve
performance, and that providing models with step-by-step solutions at training time also increases accuracy.

4.1 Experimental Setup

Models and Hyperparameters. Because MATH answers must be generated, we use autoregressive language models,
namely GPT-2 (Radford et al., 2016) and GPT-3 (Brown et al., 2020), which are decoder models pretrained on natural
language text. Our GPT-2 models tokenize numbers so that each digit is its own token (Henighan et al., 2020). We were

5

Hendrycks D, Burns C, Kadavath S, Arora A, Basart S, Tang E, Song D,
Steinhardt J. Measuring Mathematical Problem Solving With the MATH
Dataset. arXiv preprint arXiv:2103.03874. 2021

https://github.com/hendrycks/math/blob/main/modeling/equivalent.py

https://github.com/hendrycks/math/blob/main/modeling/equivalent.py

Sebastian Raschka STAT 453: Intro to Deep Learning 6

2 Related Work

Neural Theorem Provers. Much of the existing work on machine learning models for mathematical reasoning relies
on automated theorem proving benchmarks. Huang et al. (2019) use the Coq theorem proving environment to create a
machine learning benchmark with 1, 602 theorems and lemmas. Bansal et al. (2019) introduce the HOList benchmark for
automated theorem proving, which uses a formal language to enable automatic evaluation. Rather than use HOList, Polu
and Sutskever (2020) use the Metamath formalization language for automated theorem proving with promising results.
We show an example of Metamath in Figure 1. These benchmarks can be approached with seq2seq (Sutskever et al.,
2014) Transformers which have traction on the problem (Polu and Sutskever, 2020; Rabe et al., 2020; Li et al., 2020).

H2LLst
ProoIs

H2L6tHS
ProoIs

DHHS0Lnd
0Dth

6yPboOLc
IntHgrDtLon

0ATH
(2urs)

0

20

40

60

80

100

Ac
cu

rD
cy

 (%
)

6tDtH-oI-thH-Art AccurDcy on
0DthHPDtLcs DDtDsHts

Figure 2: Compared to existing proof and plug-and-chug
tasks, our mathematical problem solving task is considerably
more challenging. HOList results are from Wu et al. (2021).
HOLStep results are from Crouse et al. (2019). DeepMind
Math accuracy is the median IID accuracy from Henighan
et al. (2020). Symbolic Integration accuracy is from Lample
and Charton (2020).

Rather than prove theorems with standard pretrained Trans-
formers, McAllester (2020) proposes that the community
create theorem provers that bootstrap their mathematical
capabilities through open-ended self-improvement. For
bootstrapping to be feasible, models will also need to un-
derstand mathematics as humans write it, as manually con-
verting advanced mathematics to a proof generation lan-
guage is extremely time-consuming. This is why Szegedy
(2020) argues that working on formal theorem provers
alone will be an impractical path towards world-class math-
ematical reasoning. We address Szegedy (2020)’s concern
by creating a dataset to test understanding of mathematics
written in natural language and commonplace mathemat-
ical notation. This also means that the answers in our
dataset can be assessed without the need for a cumbersome
theorem proving environment, which is another advantage
of our evaluation framework.

Neural Calculators. Recent work shows that Trans-
formers can sometimes perform laborious calculations
around as well as calculators and computer algebra sys-
tems. Lample and Charton (2020) use Transformers to
solve algorithmically generated symbolic integration prob-
lems and achieve greater than 95% accuracy. Amini et al.
(2019); Ling et al. (2017) introduce plug-and-chug multi-
ple choice mathematics problems and focus on sequence-
to-program generation. Saxton et al. (2019) introduce the DeepMind Mathematics dataset, which consists of algorith-
mically generated plug-and-chug problems such as addition, list sorting, and function evaluation, as shown in Figure 1.
Recently, Henighan et al. (2020) show that nearly all of the DeepMind Mathematics dataset can be straightforwardly
solved with large Transformers.

Benchmarks for Enormous Transformers. There are few existing natural language benchmarks left to solve, as
tasks that aggregate multiple subtasks such as SuperGLUE (Wang et al., 2019) are solved by simply training enormous
Transformers (He et al., 2020). Kaplan et al. (2020); Henighan et al. (2020) show that the performance of Transformers
predictably increases with an increase in model size and dataset size, raising the question of whether natural language
processing can be solved by simply increasing compute and funding. In Appendix A.1, we even find that large GPT-3
models can perform remarkably well on a sequence completion test similar to an IQ test, the C-Test (Hernández-Orallo,
1998; Legg and Hutter, 2007). Even difficult logical understanding tasks such as LogiQA (Liu et al., 2020) will soon
be straightforwardly solved by enormous Transformers should trends continue, which we also show in Appendix A.1.
Hendrycks et al. (2021) create a multiple-choice benchmark covering 57 subjects which are difficult for enormous
Transformers. However, unlike our benchmark, which is a text generation task with 12, 500 mathematical reasoning
questions, their benchmark is a multiple choice task that includes only a few hundred questions about mathematics. We
find that our MATH benchmark is especially challenging for current models and, if trends continue, simply using bigger
versions of today’s Transformers will not solve our task in the foreseeable future.

3 Datasets

In this section, we introduce two new datasets, one for benchmarking mathematical problem-solving ability (MATH) and
one for pretraining (AMPS).

3

Model Prealgebra Algebra Number
Theory

Counting &
Probability

Geometry Intermediate
Algebra

Precalculus Average

GPT-2 (0.1B) 5.2 5.1 5.0 2.8 5.7 6.5 7.3 5.4 (+0%)
GPT-2 (0.3B) 6.7 6.6 5.5 3.8 6.9 6.0 7.1 6.2 (+15%)
GPT-2 (0.7B) 6.9 6.1 5.5 5.1 8.2 5.8 7.7 6.4 (+19%)
GPT-2 (1.5B) 8.3 6.2 4.8 5.4 8.7 6.1 8.8 6.9 (+28%)
GPT-3 (2.7B) 2.8 2.9 3.9 3.6 2.1 2.5 2.6 2.9 (�46%)
GPT-3 (175B) 7.7 6.0 4.4 4.7 3.1 4.4 4.0 5.2 (�4%)

Table 2: MATH accuracies across subjects for GPT-2 and few-shot GPT-3 models. The character ‘B’ denotes the number
of parameters in billions. The gray text indicates the relative improvement over the 0.1B baseline. All GPT-2 models
pretrain on AMPS, and all values are percentages. A 15⇥ increase in model parameters increased accuracy by 1.5%, a
28% relative improvement. Model accuracy is increasing very slowly, so much future research is needed.

like mathematics got 14/20 and 15/20. A participant who got a perfect score on the AMC 10 exam and attended USAMO
several times got 18/20. A three-time IMO gold medalist got 18/20 = 90%, though missed questions were exclusively
due to small errors of arithmetic. Expert-level performance is theoretically 100% given enough time, though even 40%
accuracy for a machine learning model would be impressive.

3.2 AMPS (Khan + Mathematica) Dataset

Since pretraining data can greatly influence performance (Hernandez et al., 2021; Gururangan et al., 2020) and since
mathematics is a small fraction of online text, we introduce a large and diverse mathematics pretraining corpus. Our
pretraining dataset, the Auxiliary Mathematics Problems and Solutions (AMPS) dataset, has problems and step-by-step
solutions typeset in LATEX. AMPS contains over 100, 000 problems pulled from Khan Academy and approximately 5
million problems generated from manually designed Mathematica scripts.

Khan Academy. The Khan Academy subset of AMPS has 693 exercise types with over 100, 000 problems and full
solutions. Problem types range from elementary mathematics (e.g. addition) to multivariable calculus (e.g. Stokes’
theorem), and are used to teach actual K-12 students. Many of the exercises can be regenerated using code from
github.com/Khan/khan-exercises/. We show the full list of problem types in the Figures 13 to 16.

Mathematica. To make AMPS larger, we also contribute our own Mathematica scripts to generate approximately
50⇥ more problems than our Khan Academy dataset. With Mathematica, we designed 100 scripts that test distinct
mathematics concepts, 37 of which include full step-by-step LATEX solutions in addition to final answers. We generated
around 50, 000 exercises from each of our scripts, or around 5 million problems in total. This results in over 23 GB of
mathematics problems, making it larger than the 16 GB of natural language used to train BERT (Devlin et al., 2019).

Problems include various aspects of algebra, calculus, counting and statistics, geometry, linear algebra, and number theory
(see Table 1 for a sampling of topics). Unlike prior approaches to algorithmically generating mathematics problems, we
use Mathematica’s computer algebra system so that we can manipulate fractions, transcendental numbers, and analytic
functions.

4 Experiments

In this section, we perform experiments to investigate performance on the MATH dataset. We find that accuracy remains
low even for the best models. Furthermore, unlike for most other text-based datasets, we find that accuracy is increasingly
very slowly with model size. If trends continue, then we will need algorithmic improvements, rather than just scale, to
make substantial progress on MATH. Nevertheless, we show that making progress is also possible today. We find that
pretraining on AMPS increases relative accuracy by 25%, which is comparable to the improvement due to a 15⇥ increase
in model size.

We also experiment with using step-by-step solutions. We find that having models generate their own step-by-step
solutions before producing an answer actually degrades accuracy. We qualitatively assess these generated solutions and
find that while many steps remain illogical, they are often related to the question. Finally, we show that step-by-step
solutions can still provide benefits today. We find that providing partial ground truth step-by-step solutions can improve
performance, and that providing models with step-by-step solutions at training time also increases accuracy.

4.1 Experimental Setup

Models and Hyperparameters. Because MATH answers must be generated, we use autoregressive language models,
namely GPT-2 (Radford et al., 2016) and GPT-3 (Brown et al., 2020), which are decoder models pretrained on natural
language text. Our GPT-2 models tokenize numbers so that each digit is its own token (Henighan et al., 2020). We were

5

Hendrycks D, Burns C, Kadavath S, Arora A, Basart S, Tang E, Song D,
Steinhardt J. Measuring Mathematical Problem Solving With the MATH
Dataset. arXiv preprint arXiv:2103.03874. 2021

We also evaluated humans on MATH, and found that a
computer science PhD student who does not especially like
mathematics attained approximately 40% on MATH, while a
three-time IMO gold medalist attained 90%, indicating that

MATH can be challenging for humans as well.

Sebastian Raschka STAT 453: Intro to Deep Learning 7

Revisiting Data
Augmentation

Sebastian Raschka STAT 453: Intro to Deep Learning 8

Pasting a smaller version of the image inside itself

bination of data samples according to a certain strategy. It
is because when pasting the thumbnail in another image
with mixed label, the thumbnail can completely contain
the global information of its original image without taking
up much semantics of another image. Therefore, we paste
the thumbnail of one image to another, and mix their
labels together with certain weights, which makes great
achievements on various computer vision tasks. Besides,
pasting two or more thumbnails into another image can
also improve the network’s effect on specific datasets. We
specify a series of strategies around Thumbnail that will be
illustrated in Section 3.

The existing data augmentation methods significantly
improve the network performance, but they all have some
limitations. As shown in Figure 2, Cutout sets a black
block in a random area but reduces the proportion of
informative pixels on training images. Mixup combines
the two images with different weights after adjusting the
resolution, but the generated samples tend to be unnatural.
CutMix replaces the removed regions with a patch from
another random image, but this patch may not contain the
most discriminative region. Thumbnail uses the thumbnail
instead of the black block to replace the random area,
which will not cause the information loss. Besides, the
generated images of Thumbail are natural and almost
contain complete semantics of both images

To demonstrate Thumbnail’s effectiveness, we con-
duct extensive experiments on various CNN architectures,
datasets, and tasks. On ImageNet (Russakovsky et al.
2015), Thumbnail can improve the accuracy of ResNet50
(He et al. 2016) from 76.32% to 79.21%, more effective
than state-of-the-art method CutMix, which accomplishes
78.40%. On CIFAR100 (Krizhevsky, Hinton et al. 2009),
applying Thumbnail to ResNet-56 and WideResNet-28-10
(Zagoruyko and Komodakis 2016) has improved the classi-
fication accuracy by +3.07% and +2.45%, respectively. Fur-
thermore, On the CUB-200-2011 (Wah et al. 2011) dataset
for the fine-grained classification task, Thumbnail increases
the accuracy of ResNet50 from 85.31% to 87.76%. On the
Pascal VOC (Everingham et al. 2010) dataset for the object
detection task, our method increases the mAP of RetinaNet
from 70.14% to 72.16%.

To sum up, this paper makes the following contributions:

• We propose Thumbnail, the first augmentation strategy
introducing the idea of thumbnail to data augmenta-
tion, which aims to make the network better learn the
global features.

• We combine Thumbnail with MSDA. The combined
method can solve the problems that generated images
are unnatural or the networks are unable to capture
the most discriminative region of images appearing in
other MSDA methods.

• We conduct extensive experiments on classification,
fine-grained classification and object detection. Com-
paring with state-of-the-art data augmentation meth-
ods, the experimental results demonstrate that our
method achieves the best performance.

Fig. 2: Comparison between existing data augmentation
methods and Thumbnail.

2. Related work

Regularization: The regularization methods are ef-
fective for training neural networks. Dropout (Srivastava
et al. 2014) injects noise into feature space by randomly
zeroing the activation function to avoid overfitting. Drop-
Connect (Wan et al. 2013), Spatial dropout (Tompson
et al. 2015), Droppath (Larsson, Maire, and Shakhnarovich
2016), DropBlock (Ghiasi, Lin, and Le 2018) and Weighted
Channel Dropout (Hou and Wang 2019) were also proposed
as variants of dropout. Besides, Batch Normalization (Ioffe
and Szegedy 2015) improves the gradient propagation
through network by normalizing the input for each layer.
Our method is complementary to the above strategies
because it operates on the data level, without changing
internal representations or architecture.

Data augmentation: Data augmentation generates vir-
tual training examples in the vicinity of the given training
dataset to improve the generalization performance of net-
work. Random cropping, horizontal flipping (Russakovsky
et al. 2015) are the most commonly used data augmentation
techniques. By randomly removing contiguous sections of
input images, cutout (DeVries and Taylor 2017) improves
the robustness of network. Random Erasing (Zhong et al.
2020) randomly selects a rectangle region in an image and
erases its pixels with random values. Hide and seek (Provos
and Honeyman 2003) and GridMask (Chen 2020) can be
regarded as upgraded versions of Cutout. They divide the
images into grids, random or regular black blocks are added
to each grid, making the network training more sufficient.
Recently, AutoAugment (Paszke et al. 2017) improved
the inception-preprocess using reinforcement learning to
search existing policies for the optimal combination. These
methods improve the generalization ability of the network
by changing spatial information, adding noise, while our
method introduce the global information guide into network
training.

Mixed Sample Data Augmentation (MSDA): Mixed
Sample Data Augmentation has received increasing at-
tention in recent years. Input mixup (Zhang et al. 2017)
creates virtual training examples by linearly interpolating
two input data and corresponding one hot labels. Manifold
mixup (Verma et al. 2019) is the variance of mixup, which
encourages neural networks to predict less confidently on
interpolations of hidden representations. Random image
cropping and patching randomly (Takahashi, Matsubara,
and Uehara 2018) crops four images and patches them
to create a new training image. Inspired by Cutout and
Mixup, CutMix (Yun et al. 2019) cut patches and pasted

Fig. 3: Illustration of Thumbnail. We put a single thumbnail or multiple thumbnails on the thumbnail’s original image or
another image, and thus get different strategies.

among training images. Based on CutMix, Attentive Cut-
Mix (Walawalkar et al. 2020) and FMix (Harris et al.
2020) aim to capture the most important region(s) of one
image and paste it(them) on another one. Thumbnail can
be perfectly integrated with MSDA, because Thumbnail can
introduce most semantics of one image to another image
with occupying a small area of it.

3. Our Approach

Thumbnail is a simple but effective data augmentation
technique for CNN. Based on the observation that the
thumbnail contains global information of original image,
we get the thumbnail by reducing the image to a certain size
and place it in the original image or another image, which
aims to strengthen the network’s capture of global features.
For a given training sample (x, y) which x 2 RW⇥H⇥C

denotes the training image and y denotes the training label,
we get a thumbnail image T (x) by simply taking one pixel
out of a certain number of pixels of the image x. We put a
single thumbnail or multiple thumbnails on the thumbnail’s
original image or another image, and thus get different
strategies. Next, we will introduce them in turn.

Self Thumbnail (ST): In our first strategy, the thumb-
nail T (x1) 2 Rw⇥h⇥C is randomly placed in the random
position of the original image x1 and the label is not
changed, which is called Self Thumbnail as shown in
Figure 3(b). For a given training sample (x1, y1), We define
this operation as

x̃ = M� x1 + �(T (x1))

ỹ = y1
(1)

where (x̃, ỹ) denotes the generated sample, and M 2
{0, 1}W⇥H is the binary mask indicating where to drop
out and fill in from origin image and thumbnail, and
� is element-wise multiplication. To sample the binary
mask M, we first sample the bounding box coordinates
B = (rx, ry, rw, rh) indicating the cropping regions on
x1. The region B in x1 is removed and filled in with
the thumbnail T (x1). The box coordinates are uniformly
sampled according to

rx ⇠ Unif(0,W), rw = w

ry ⇠ Unif(0, H), rh = h
(2)

where w, h denotes the width and height of the thumbnail
T (x1), which are usually set to half the width and height

of the original image. With the cropping region, the binary
mask M is decided by filling with 0 within the bounding
box B, otherwise 1. �(·) denotes the padding operation
that generates a image with the same size as x1. � first
generates a binary mask M̃ = 1 � M, 1 is a binary
mask filled with ones. The bounding box coordinates B
still exists in M̃, so we put the thumbnail T (x) in B and
the generated image is �(T (x)). We do not change the
label of the image because no other image is introduced.
This strategy enables the network to learn the same image
at different scales. In addition to the information obtained
from the original image, the thumbnail can provide the
global information for the training, which plays a guiding
role in the network learning.

Mixed Single Thumbnail (MST): The idea of thumb-
nail is very suitable for Mixed Sample Data Augmentation
(MSDA), which involves combining data samples accord-
ing to some policy to create an augmented data set. In our
second strategy, one image’s thumbnail is pasted on another
image where their labels are multiplied by different weights
and added, so that most of the generated images contain
the information of two images as shown in Figure 3(c). We
called this strategy as Mixed Single Thumbnail. For a pair
of given training sample(x1, y1) and (x2, y2), we define
this combining operation as

x̃ = M� x1 + �(T (x2))

ỹ = (1� �)y1 + �y2
(3)

where M, �, and the size of thumbnail T (x2) is set in
the same way as Self Thumbnail. This strategy combines
the idea of thumbnail with MSDA, so that the network can
learn the original information of one image and the global
information of another image simultaneously. Mixed Single
Thumbnail gets rid of the problem of incomplete semantics
in CutMix, and retains the advantage of thumbnail, which
makes the network learn image information from different
scales. As can be seen in later experiments, this strategy
significantly improves network performance and achieves
great results in classification, fine-grained classification,
and object detection.

Mixed Multiple Thumbnails (MMT): One of Thumb-
nail’s advantages is that it can introduce one image’s com-
plete semantics by occupying a small area of another image.
Besides, unlike the simple overlay in Mixup, Thumbnail

https://arxiv.org/abs/2103.05342

https://arxiv.org/abs/2103.05342

Sebastian Raschka STAT 453: Intro to Deep Learning 9

Do GANs learn meaningful structural
parts of objects during their attempt to

reproduce those?

Sebastian Raschka STAT 453: Intro to Deep Learning 10

Paper: https://arxiv.org/abs/2103.04379

Demos: https://repurposegans.github.io

Repurposing GANs for One-shot Semantic Part Segmentation

Nontawat Tritrong* Pitchaporn Rewatbowornwong* Supasorn Suwajanakorn
VISTEC, Thailand

{nontawat.t s19, pitchaporn.r s18, supasorn.s}@vistec.ac.th

Figure 1: One-shot segmentation results. In each task, our segmentation network is given only one example of part labels.

Abstract

While GANs have shown success in realistic image gen-

eration, the idea of using GANs for other tasks unrelated

to synthesis is underexplored. Do GANs learn meaningful

structural parts of objects during their attempt to reproduce

those objects? In this work, we test this hypothesis and pro-

pose a simple and effective approach based on GANs for

semantic part segmentation that requires as few as one la-

bel example along with an unlabeled dataset. Our key idea

is to leverage a trained GAN to extract pixel-wise represen-

tation from the input image and use it as feature vectors

for a segmentation network. Our experiments demonstrate

that GANs representation is “readily discriminative” and

produces surprisingly good results that are comparable to

those from supervised baselines trained with significantly

more labels. We believe this novel repurposing of GANs

underlies a new class of unsupervised representation learn-

ing that is applicable to many other tasks. More results are

available at https://RepurposeGANs.github.io/.

1. Introduction
After seeing what an elephant trunk looks like for the

first time, a young child can identify this conspicuous part
for the whole herd. This key capability in humans is still

*Authors contributed equally to this work. Manuscript in progress and
accepted to CVPR2021.

a fundamental challenge in computer vision. That is, how
can a machine learn to identify an object or its parts by
seeing only one or few examples? A kid does, however,
have access to prior visual information learned constantly
throughout the years, and he or she could quickly learn to
identify human ears perhaps by utilizing the experience of
seeing many faces before. In this paper, we tackle a prob-
lem inspired by this scenario. Given a large photo collection
of human faces, or any other object classes, our goal is to
identify the pixels corresponding to each semantic part for
unseen face images given very few images with part anno-
tations.

This problem setup is different from the typical defini-
tion of few-shot learning, which describes a problem where
a learning algorithm trained with many object classes needs
to classify or operate on new classes with few supervised
examples of those new classes. In contrast, our novel few-
shot setup involves a single object class with few annotated
examples and no other training data from any other classes.
Many methods are proposed in this area of few-shot learn-
ing, and the general idea is to apply prior knowledge learned
externally to the few-shot task. Examples include meta
learning [42] and prototype representation [32, 52] which
extract information from annotations of non-target classes
or image-level annotations to be used as prior knowledge.
However, most of these approaches still learn from some
supervised task that requires expensive labels or part an-
notations. In this work, we introduce a new direction that

1

ar
X

iv
:2

10
3.

04
37

9v
2

 [c
s.C

V
]

9
M

ar
 2

02
1

https://arxiv.org/abs/2103.04379
https://repurposegans.github.io

Sebastian Raschka STAT 453: Intro to Deep Learning 11

rely instead on other kinds of annotations that are cheaper
to obtain, such as keypoints [16], body poses [56], or edge
maps [59]. However, they are often inflexible and only
work on some specific domains such as human body parts.
Some other attempts forgo the annotations completely with
self-supervised techniques. For example, [23] uses equiv-
ariance, geometric, and semantic consistency constraints to
train a segmentation network, and [30, 55] exploit motion
information from videos. One main drawback of these un-
supervised methods is that there is little control over the
partition of object parts which can lead to arbitrary segmen-
tation. Unlike these approaches, our method allows com-
plete control over the partition of object parts by requiring
only few annotated examples.

Few-shot Semantic Segmentation Past research has at-
tempted to solve segmentation with few annotations. A
meta learning approach [42] first trains a segmentation net-
work on an annotated dataset then fine-tunes the network
parameters on one annotation of the target class. Prototyp-
ical methods [14, 32, 52] use a support set to learn a pro-
totype vector for each object class. Both meta learning and
prototypical methods construct two training branches where
the support branch is trained on annotations of non-target
classes or image-level annotations, and the query branch
then takes an input image as well as the extracted feature to
predict segmentation masks. Similarity guidance network
[58] uses a segmentation mask to mask off the background
in the support image, then using only features from the fore-
ground object to guide the query branch to locate pixels
with high similarity to the features from the support branch.
Some work [45, 5] segment objects in all video frames with
only the first frame annotated. Nonetheless, these meth-
ods have not shown success in semantic part segmentation.
Meta learning requires annotation masks of similar object
classes, and hence learning part-specific prototypes is not
viable. Leveraging the information from the support set is
also difficult due to the lack of part-level annotations. In
contrast, our representation extracted from GANs contains
part-level information and can be learned without supervi-
sion.

3. Approach
Our problem concerns semantic part segmentation with

the following novel setup. Given an image dataset of a sin-
gle object class, our goal is to segment an unseen object
from the same class by learning from few images with part
annotations. These part annotations can be specified by the
user with binary masks. Note that semantic part segmenta-
tion can also be considered as an n-way per-pixel classifi-
cation problem where n is the number of parts.

This problem would become trivial if there existed a
function f that maps each pixel value, which by itself lacks
semantic meaning, to its own feature vector that contains

z

C
on

v.

C
on

v.

・・・

Generator

・・・ ・・・upsample

Output
Representation

a1 a2 an AnA2A1

C
on

v.Latent
Optimizer

Input
Image

C
on

v.

Figure 2: Representation extraction To extract a represen-
tation from an image, we embed the image into the latent
space of GAN by optimizing for the latent z that reproduces
the input image. z is then fed to the generator and we col-
lect multiple activation maps a1, a2, ..., an of dimensions
(h1, w1, c1), ..., (hn, wn, cn). Each of these maps is upsam-
pled to Ai with dimension (hn, wn, ci). The representation
is a concatenation of all Ai along the channel dimension.

Figure 3: Few-shot segmentation pipeline For training,
we use a trained GAN to generate a few images along with
their representations by feeding random latent codes. Then,
we manually annotate these images and train our few-shot
segmenter to output segmentation maps that match our an-
notated masks. For inference, we extract a representation
from a test image (Figure 2) then input it to the few-shot
segmenter to obtain a segmentation map.

discriminative information for part classification. We pro-
pose to derive such a function from a GAN trained to syn-
thesize images of the target class. In the following sections,
we will explain how GANs are utilized for this task, how
to use the computed per-pixel features for segmentation, as
well as a simple extension that allows segmentation without
requiring a GAN or its expensive mapping during inference.

3

rely instead on other kinds of annotations that are cheaper
to obtain, such as keypoints [16], body poses [56], or edge
maps [59]. However, they are often inflexible and only
work on some specific domains such as human body parts.
Some other attempts forgo the annotations completely with
self-supervised techniques. For example, [23] uses equiv-
ariance, geometric, and semantic consistency constraints to
train a segmentation network, and [30, 55] exploit motion
information from videos. One main drawback of these un-
supervised methods is that there is little control over the
partition of object parts which can lead to arbitrary segmen-
tation. Unlike these approaches, our method allows com-
plete control over the partition of object parts by requiring
only few annotated examples.

Few-shot Semantic Segmentation Past research has at-
tempted to solve segmentation with few annotations. A
meta learning approach [42] first trains a segmentation net-
work on an annotated dataset then fine-tunes the network
parameters on one annotation of the target class. Prototyp-
ical methods [14, 32, 52] use a support set to learn a pro-
totype vector for each object class. Both meta learning and
prototypical methods construct two training branches where
the support branch is trained on annotations of non-target
classes or image-level annotations, and the query branch
then takes an input image as well as the extracted feature to
predict segmentation masks. Similarity guidance network
[58] uses a segmentation mask to mask off the background
in the support image, then using only features from the fore-
ground object to guide the query branch to locate pixels
with high similarity to the features from the support branch.
Some work [45, 5] segment objects in all video frames with
only the first frame annotated. Nonetheless, these meth-
ods have not shown success in semantic part segmentation.
Meta learning requires annotation masks of similar object
classes, and hence learning part-specific prototypes is not
viable. Leveraging the information from the support set is
also difficult due to the lack of part-level annotations. In
contrast, our representation extracted from GANs contains
part-level information and can be learned without supervi-
sion.

3. Approach
Our problem concerns semantic part segmentation with

the following novel setup. Given an image dataset of a sin-
gle object class, our goal is to segment an unseen object
from the same class by learning from few images with part
annotations. These part annotations can be specified by the
user with binary masks. Note that semantic part segmenta-
tion can also be considered as an n-way per-pixel classifi-
cation problem where n is the number of parts.

This problem would become trivial if there existed a
function f that maps each pixel value, which by itself lacks
semantic meaning, to its own feature vector that contains

Figure 2: Representation extraction To extract a represen-
tation from an image, we embed the image into the latent
space of GAN by optimizing for the latent z that reproduces
the input image. z is then fed to the generator and we col-
lect multiple activation maps a1, a2, ..., an of dimensions
(h1, w1, c1), ..., (hn, wn, cn). Each of these maps is upsam-
pled to Ai with dimension (hn, wn, ci). The representation
is a concatenation of all Ai along the channel dimension.

Representation

Few-shot
Segmenter

z

Generator

Representation

Few-shot
Segmenter

Output
Segmentations

Ground Truths

Rep.
Extractor

Output
Segmentation

Input Image

Inference

Few-shot Training

Manually Annotated

Loss

Generated
Images

Figure 3: Few-shot segmentation pipeline For training,
we use a trained GAN to generate a few images along with
their representations by feeding random latent codes. Then,
we manually annotate these images and train our few-shot
segmenter to output segmentation maps that match our an-
notated masks. For inference, we extract a representation
from a test image (Figure 2) then input it to the few-shot
segmenter to obtain a segmentation map.

discriminative information for part classification. We pro-
pose to derive such a function from a GAN trained to syn-
thesize images of the target class. In the following sections,
we will explain how GANs are utilized for this task, how
to use the computed per-pixel features for segmentation, as
well as a simple extension that allows segmentation without
requiring a GAN or its expensive mapping during inference.

3

Sebastian Raschka STAT 453: Intro to Deep Learning 12

https://www.wired.com/story/secret-auction-race-ai-supremacy-google-microsoft-baidu/

https://www.wired.com/story/secret-auction-race-ai-supremacy-google-microsoft-baidu/

Sebastian Raschka STAT 453: Intro to Deep Learning 13

SpeechBrain is an open-source toolkit designed to speedup
research and development of speech technologies. It is

flexible, modular, easy-to-use and well documented

https://speechbrain.github.io/

https://speechbrain.github.io/

