STAT 453: Introduction to Deep Learning and Generative Models

Sebastian Raschka
http://stat.wisc.edu/~sraschka

Deep Learning & Al News #6

Interesting Things Related to Deep Learning
Mar 6th, 2021

http://stat.wisc.edu/~sraschka

March 04, 2021

PyTorch 1.8 Release, including Compiler and Distributed

Training updates, and New Mobile Tutorials

https://pytorch.org/blog/pytorch-1.8-released/

https://qgithub.com/pytorch/pytorch/releases/tag/v1.8.0

« AMD GPU support via ROCm (binaries
available directly from the installer menu)

* Now possible to fit large models onto GPUs
w/o external libraries: pipeline and model
parallelism

* Determinants & eigenvalues via torch.linalg
w/0 switching to NumPy

Sebastian Raschka STAT 458: Intro to Deep Learning 2

https://pytorch.org/blog/pytorch-1.8-released/
https://github.com/pytorch/pytorch/releases/tag/v1.8.0

PyTorch adds binaries for AMD GPU support

PyTorch Build Stable (1.8.0) Preview (Nightly)
Your OS Linux Windows
Package Conda LibTorch Source

Language Python C++/Java

ROCm 4.0 (beta) None

_ pip install toxch -f https://download.pytoxrch.oxg/whl/rocmd.0.1/toxch_sta
Run this Command: ble. html

Compute Platform CUDA 10.2 CUDA 11.1

Previous versions of PyTorch >

https://pytorch.org (Currently only for Linux though)

Sebastian Raschka STAT 458: Intro to Deep Learning

https://pytorch.org

The following packages will be downloaded:

package | build
I
cudatoolkit-11.1.1 | hé6406543_8 1.20 GB conda-forge
pytorch-1.8.0 |py3.8_cudall.l_cudnn8.0.5_0 1.27 GB pytorch
torchaudio-0.8.0 | py38 4.4 MB pytorch
Total: 2.48 GB

The following packages will be UPDATED:

cudatoolkit 11.0.3-h15472ef_8 ——> 11.1.1-h64B6543_8
pytorch 1.7.1-py3.8_cudall.n.221 cudnn8.8.5_6 ——> 1.8.0-py3.8_cudall.l _cudnn8.6.5_0
torchaudio

0.7.2-py38 ——> 0.8.06-py38

‘Proceed ([yl/n)? y

Downloading and Extracting Packages
pytorch-1.8.0 | 1.27 GB | #9

Sebastian Raschka STAT 458: Intro to Deep Learning

Distributed Training

- [Beta] Pipeline Parallelism

- [Beta] DDP Communication Hook

» (Prototype) ZeroRedundancyOptimizer

» (Prototype) CUDA-support in RPC using TensorPipe

Model Parallelism using multiple GPUs https://pytorch.org/docs/1.8.0/pipeline.htmli?highlight=pipeline#

Typically for large models which don’t fit on a single GPU, model parallelism is employed where certain parts of the
model are placed on different GPUs. Although, if this is done naively for sequential models, the training process suffers
from GPU under utilization since only one GPU is active at one time as shown in the figure below:

Fo B. Update
Fo B. Updete

Fo |) Bo e
F. Time B,

Update

The figure represents a model with 4 layers placed on 4 different GPUs (vertical axis). The horizontal axis

represents training this model through time demonstrating that only 1 GPU is utilized at a time (image source).

Pipelined Execution

To alleviate this problem, pipeline parallelism splits the input minibatch into multiple microbatches and pipelines the
execution of these microbatches across multiple GPUs. This is outlined in the figure below:

Fso| F31 | Faz | Fas| Baa | Baz | Bar | Bao Update
F2o0 | F21 | F22 | Faa B2s | B2z | B2s | Bao Update
Fio| Fia | Fi2 | F1a Bis | Biz | Bi1 | Bio Update

Bubble

Foo | Fo1 | Foz | Fos Bos Bo.2 Bo Boo | Update

The figure represents a model with 4 layers placed on 4 different GPUs (vertical axis). The horizontal axis
represents training this model through time demonstrating that the GPUs are utilized much more efficiently.
However, there still exists a bubble (as demonstrated in the figure) where certain GPUs are not utilized. (image

source).

Sebastian Raschka STAT 458: Intro to Deep Learning 6

https://pytorch.org/docs/1.8.0/pipeline.html?highlight=pipeline#

3) VGG16 with Pipeline Parallelism

Below we first define the blocks we are going to wrap into the model:

AL) O L https://github.com/rasbt/deeplearning-models/

torch.nn.Conv2d(in_channels=3,

out_channels=64, blob/master/pytorch ipynb/mechanics/model-
kernel_size=(3, 3), . . .
stride=(1, 1), pipeline-vgg16.ipynb
(1(32-1)- 32 + 3)/2 =1
padding=1),
torch.nn.RelLU(),
torch.nn.Conv2d(in_channels=64,
out_channels=64,
kernel_size=(3, 3),
stride=(1, 1),
padding=1),
torch.nn.RelLU(),
torch.nn.MaxPool2d(kernel_size=(2, 2),
stride=(2, 2))

)

block_2 = torch.nn.Sequential(
torch.nn.Conv2d(in_channels=64,
out_channels=128,

2. The chunks refertothe microbatches , for more details, see https://pytorch.org/docs/1.8.0/pipeline.htmI?higl

from torch.distributed.pipeline.sync import Pipe

blockl = block_1.cuda(9)

block2 = block_2.cuda(9)
block3 = block_3.cuda(2)
block4 = block_4.cuda(2)
block4 = block_5.cuda(3)

block4 = classifier.cuda(@)

model_parallel = torch.nn.Sequential(
block_1, block_2, block_3, block_4, block 5, classifier)
model_parallel = Pipe(model_parallel, chunks=8)
optimizer = torch.optim.Adam(model_parallel.parameters(), lr=learning_rate)

Sebastian Raschka STAT 458: Intro to Deep Learning

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/mechanics/model-pipeline-vgg16.ipynb
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/mechanics/model-pipeline-vgg16.ipynb
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/mechanics/model-pipeline-vgg16.ipynb

o LAY N A UL LA - A L L LA I e i T

for epoch in range(num_epochs):

model.train()
for batch_idx, (features, targets) in enumerate(train_loader):

features = features.to(device)
targets = targets.to(device)

FORWARD AND BACK PROP

logits = model(features)

if isinstance(logits, torch.distributed.rpc.api.RRef):
logits = logits.local_value()

loss = loss_fn(logits, targets)

optimizer.zero_grad()

loss.backward()

UPDATE MODEL PARAMETERS
optimizer.step()

LOGGING
log_dict['train_loss_per_batch'].append(loss.item())

if not batch_idx % logging_interval:
print('Epoch: %03d/%03d | Batch %04d/%04d | LosS: %.4f'
% (epoch+1, num_epochs, batch_idx,
len(train_loader), loss))

if not skip_epoch_stats:
model.eval()

https://github.com/rasbt/deeplearning-models/blob/master/pytorch ipynb/mechanics/model-pipeline-vgg16.ipynb

Sebastian Raschka STAT 458: Intro to Deep Learning

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/mechanics/model-pipeline-vgg16.ipynb

arXiv.org > c¢s > arXiv:2103.00602

Computer Science > Cryptography and Security
[Submitted on 28 Feb 2021]

Virus-MNIST: A Benchmark Malware Dataset

David Noever, Samantha E. Miller Noever

https://arxiv.org/abs/2103.00602

The work generalizes what other malware investigators have demonstrated as promising
convolutional neural networks originally developed to solve image problems but applied to a new

abstract domain in pixel bytes from executable files.

We converted the CSV format [16] to greyscale images using the intermediate NetPBM text format (PGM)
to create ASCIIl-raw images, then the ImageMagick [25] command-line tools for compressing the image to
viewable JPEG files.

Class Count Group Type Example
0 2516 |Beneware Good putty.exe
1 7684 Malware Adware IESettings
2 3037 Malware Trojan Supreme.exe
3 2404 | Malware Trojan myfile.exe
4 796 Malware Installer myfile.exe
5 6662 Malware Backdoor myfile.exe
6 15377 | Malware Crypto Powershell
7 7494 | Malware Backdoor |BitTorrent.exe
8 2571 | Malware | Downloader | myfile.exe
9 3339 Malware Heuristic myfile.exe

Figure 1 Virus-MNIST showing 10 classes. The “0” class represents non-
malicious examples. The other 9 virus families were clustered using a K-
means method to match with the standard MNIST format and multi-class

1 4

Sebastian Raschka STAT 458: Intro to Deep Learning

Figure 2. Class distributions and example types for
malware and beneware PE File headers.

https://arxiv.org/abs/2103.00602

##% Simple considerations for
simple people building fancy
neural networks

Published February 25, 2021 - Initially published on Medium, Sept 2020.

Update on GitHub

@) VictoxrSanh : : : :
Victor Sanh https://huggingface.co/blog/simple-considerations

1) Put aside machine learning and simply focus on your data:

- Are the labels balanced?

- Are there gold-labels that you do not agree with?

- How were the data obtained? What are the possible sources of noise in this process?

- Are there any preprocessing steps that seem natural (tokenization, URL or hashtag removing,
etc.)?

- How diverse are the examples?

- What rule-based algorithm would perform decently on this problem?

10

https://huggingface.co/blog/simple-considerations

##% Simple considerations for
simple people building fancy
neural networks

Published February 25, 2021 - Initially published on Medium, Sept 2020.

Update on GitHub

A VictorSanh . . : :
Victor Sanh https://huggingface.co/blog/simple-considerations

2) Start as simple as possible to get a sense of the difficulty of your task and how well
standard baselines would perform (e.g., use a logistic regression baseline)

How would a random predictor perform (especially in classification problems)? Dataset can be unbalanced...
What would the loss look like for a random predictor?

What is (are) the best metric(s) to measure progress on my task?

What are the limits of this metric? If it’s perfect, what can | conclude? What can’t | conclude?

What is missing in “simple approaches” to reach a perfect score?

Are there architectures in my neural network toolbox that would be good to model the inductive bias of the
data?

Sebastian Raschka STAT 458: Intro to Deep Learning 11

https://huggingface.co/blog/simple-considerations

3) Model debugging

Try to overfit a small batch of examples (16 for instance) and get 0-loss. If not possible,
there may be a bug.

You forgot to call model.eval() in evaluation mode (in PyTorch) or model.zero_grad() to clean the gradients

Something went wrong in the pre-processing of the inputs

The loss got wrong arguments (for instance passing probabilities when it expects logits)

Initialization doesn’t break the symmetry (usually happens when you initialize a whole matrix with a single
constant value)

Some parameters are never called during the forward pass (and thus receive no gradients)

The learning rate is taking funky values like O all the time

Your inputs are being truncated in a suboptimal way

Plot loss curves

0.8 - —— Minibatch Loss 97 4 —— Training
' —— Running Average —— Validation
0.7 1 96 -
0.6 1
w 0.5 1 95
0
o >
- 04 T % 94 n
5
0.3 1 o
<
0.2 93
O-o T T T T T
0 1000 2000 3000 4000 91 -
Iterations
0 10 2 4 6 8 10

Epochs Epoch

Sebastian Raschka STAT 458: Intro to Deep Learning 12

Simple considerations for
simple people building fancy
neural networks

Published February 25, 2021 - Initially published on Medium, Sept 2020.

Update on GitHub

VictorSanh
@ Victor Sanh https://huggingface.co/blog/simple-considerations

4. °° Tune but don’t tune blindly

| generally stick with a random grid search as it turns out to be fairly effective in practice.
Some people report successes using fancy hyperparameter tuning methods such as Bayesian optimization but in
my experience, random over a reasonably manually defined grid search is still a tough-to-beat baseline.

compare a couple of runs with different hyperparameters to get an idea of which hyperparameters have
the highest impact

favor (as most as possible) a deep understanding of each component of your neural network instead of
blindly (not to say magically) tweak the architecture.

Sebastian Raschka STAT 458: Intro to Deep Learning 13

https://huggingface.co/blog/simple-considerations

arXiv.org > c¢s > arXiv:2103.01209

Computer Science > Computer Vision and Pattern Recognition

[Submitted on 1 Mar 2021 (v1), last revised 2 Mar 2021 (this version, v2)]
Generative Adversarial Transformers

Drew A. Hudson, C. Lawrence Zitnick

https://arxiv.org/abs/2103.01209

https://qithub.com/dorarad/gansformer

Figure 1. Sample images generated by the GANsformer, along
with a visualization of the model attention maps.

Sebastian Raschka

Model

GAN

k-GAN
SAGAN
StyleGAN2
VQGAN
GANsformers
GANsformery

Model

GAN

k-GAN
SAGAN
StyleGAN2
VQGAN
GANsformer
GANsformer,

CLEVR
FID |
25.0244
28.2900
26.0433
16.0534
32.6031
10.2585
9.1679

FFHQ
FID |
13.1844
61.1426
16.2069
10.8309
63.1165
13.2861
12.8478

IS
2.1719
2.2097
2.1742
2.1472
2.0324
2.4555
2.3654

IS 1
4.2966
3.9990
4.2570
4.3294
2.2306
4.4591
4.4079

STAT 458: Intro to Deep Learning

Precision T
21.77
2293
30.09
28.41
46.55
38.47
47.55

Precision T
67.15
50.51
64.84
68.61
67.01
68.94
68.77

LSUN-Bedroom
Recall T FID |
16.76 12.1567
18.43 69.9014
15.16 14.0595
23.22 11.5255
63.33 59.6333
37.76 8.5551
66.63 6.5085
Cityscapes
Recall 1 FID |
17.64 11.5652
0.49 51.0804
12.26 12.8077
25.45 8.3500
29.67 173.7971
10.14 14.2315
5.7589 5.7589
14

https://github.com/dorarad/gansformer
https://arxiv.org/abs/2103.01209

