
Sebastian Raschka STAT 453: Intro to Deep Learning

Deep Learning & AI News #6

1

Interesting Things Related to Deep Learning
Mar 6th, 2021

with Applications in Python

Sebastian Raschka

http://stat.wisc.edu/~sraschka

STAT 453: Introduction to Deep Learning and Generative Models

http://stat.wisc.edu/~sraschka

Sebastian Raschka STAT 453: Intro to Deep Learning 2

https://pytorch.org/blog/pytorch-1.8-released/

• AMD GPU support via ROCm (binaries
available directly from the installer menu)

• Now possible to fit large models onto GPUs
w/o external libraries: pipeline and model
parallelism

• Determinants & eigenvalues via torch.linalg
w/o switching to NumPy

https://github.com/pytorch/pytorch/releases/tag/v1.8.0

https://pytorch.org/blog/pytorch-1.8-released/
https://github.com/pytorch/pytorch/releases/tag/v1.8.0

Sebastian Raschka STAT 453: Intro to Deep Learning 3

https://pytorch.org (Currently only for Linux though)

PyTorch adds binaries for AMD GPU support

https://pytorch.org

Sebastian Raschka STAT 453: Intro to Deep Learning 4

Sebastian Raschka STAT 453: Intro to Deep Learning 5

Distributed Training

• [Beta] Pipeline Parallelism

• [Beta] DDP Communication Hook

• ...

• (Prototype) ZeroRedundancyOptimizer

• (Prototype) CUDA-support in RPC using TensorPipe

Sebastian Raschka STAT 453: Intro to Deep Learning 6

https://pytorch.org/docs/1.8.0/pipeline.html?highlight=pipeline#

https://pytorch.org/docs/1.8.0/pipeline.html?highlight=pipeline#

Sebastian Raschka STAT 453: Intro to Deep Learning 7

https://github.com/rasbt/deeplearning-models/
blob/master/pytorch_ipynb/mechanics/model-
pipeline-vgg16.ipynb

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/mechanics/model-pipeline-vgg16.ipynb
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/mechanics/model-pipeline-vgg16.ipynb
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/mechanics/model-pipeline-vgg16.ipynb

Sebastian Raschka STAT 453: Intro to Deep Learning 8

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/mechanics/model-pipeline-vgg16.ipynb

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/mechanics/model-pipeline-vgg16.ipynb

Sebastian Raschka STAT 453: Intro to Deep Learning 9

https://arxiv.org/abs/2103.00602

The work generalizes what other malware investigators have demonstrated as promising
convolutional neural networks originally developed to solve image problems but applied to a new
abstract domain in pixel bytes from executable files.

VIRUS-MNIST: A BENCHMARK MALWARE DATASET
David A. Noever and Samantha E. Miller Noever

PeopleTec, Inc., Huntsville, Alabama, USA
david.noever@peopletec.com

ABSTRACT
The short note presents an image classification dataset consisting of 10 executable code varieties and approximately
50,000 virus examples. The malicious classes include 9 families of computer viruses and one benign set. The image
formatting for the first 1024 bytes of the Portable Executable (PE) mirrors the familiar MNIST handwriting dataset,
such that most of the previously explored algorithmic methods can transfer with minor modifications. The designation
of 9 virus families for malware derives from unsupervised learning of class labels; we discover the families with
KMeans clustering that excludes the non-malicious examples. As a benchmark using deep learning methods
(MobileNetV2), we find an overall 80% accuracy for virus identification by families when beneware is included. We
also find that once a positive malware detection occurs (by signature or heuristics), the projection of the first 1024
bytes into a thumbnail image can classify with 87% accuracy the type of virus. The work generalizes what other
malware investigators have demonstrated as promising convolutional neural networks originally developed to solve
image problems but applied to a new abstract domain in pixel bytes from executable files. The dataset is available on
Kaggle and Github.

KEYWORDS
Neural Networks, Computer Vision, Image Classification, Malware Detection, MNIST Benchmark

1. INTRODUCTION
For classifying handwriting, the popularity of the Modified National Institute of Standards and Technology
dataset (MNIST) continues to dominate the early exploration of new algorithms [1-3]. Its extensions to
other domains have included foreign languages [4-8], medical diagnoses [9], overhead imagery [10], and
retail objects [11]. With modern deep learning and convolutional neural networks, the accuracy for multiple
classification challenges typically exceed 90% across all classes [12]. Recent interest in applying the same
techniques to anti-virus and malware detectors [13-19] motivates the present work to score a similar
formatted problem and compare the algorithmic performance with existing methods. Intel Labs and
Microsoft Threat Protection Intelligence Team recently launched their static malware collaboration called
STAMINA: Scalable Deep Learning
Approach for Malware Classification
[20]. The contribution of this short note
is to reformulate the malware-image
problem as a familiar MNIST variant,
to generate the 9-virus clusters based
on byte-similarities, and then to
identify the virus family based on a
grey-scale thumbnail image (32 x 32).
Figure 1 shows the abstract images
derived for each of the 10 classes, with
“0” as the only one that is non-
malicious.

Figure 1 Virus-MNIST showing 10 classes. The “0” class represents non-
malicious examples. The other 9 virus families were clustered using a K-
means method to match with the standard MNIST format and multi-class

solutions.

We converted the CSV format [16] to greyscale images using the intermediate NetPBM text format (PGM)
to create ASCII-raw images, then the ImageMagick [25] command-line tools for compressing the image to
viewable JPEG files.

https://arxiv.org/abs/2103.00602

Sebastian Raschka STAT 453: Intro to Deep Learning 10

https://huggingface.co/blog/simple-considerations

1) Put aside machine learning and simply focus on your data: 

• Are the labels balanced?

• Are there gold-labels that you do not agree with?

• How were the data obtained? What are the possible sources of noise in this process?

• Are there any preprocessing steps that seem natural (tokenization, URL or hashtag removing,

etc.)?

• How diverse are the examples?

• What rule-based algorithm would perform decently on this problem?

https://huggingface.co/blog/simple-considerations

Sebastian Raschka STAT 453: Intro to Deep Learning 11

https://huggingface.co/blog/simple-considerations

2) Start as simple as possible to get a sense of the difficulty of your task and how well
standard baselines would perform (e.g., use a logistic regression baseline)

• How would a random predictor perform (especially in classification problems)? Dataset can be unbalanced…
• What would the loss look like for a random predictor?
• What is (are) the best metric(s) to measure progress on my task?
• What are the limits of this metric? If it’s perfect, what can I conclude? What can’t I conclude?
• What is missing in “simple approaches” to reach a perfect score?
• Are there architectures in my neural network toolbox that would be good to model the inductive bias of the

data?

https://huggingface.co/blog/simple-considerations

Sebastian Raschka STAT 453: Intro to Deep Learning 12

3) Model debugging
Try to overfit a small batch of examples (16 for instance) and get 0-loss. If not possible,
there may be a bug.

• You forgot to call model.eval() in evaluation mode (in PyTorch) or model.zero_grad() to clean the gradients
• Something went wrong in the pre-processing of the inputs
• The loss got wrong arguments (for instance passing probabilities when it expects logits)
• Initialization doesn’t break the symmetry (usually happens when you initialize a whole matrix with a single

constant value)
• Some parameters are never called during the forward pass (and thus receive no gradients)
• The learning rate is taking funky values like 0 all the time
• Your inputs are being truncated in a suboptimal way

Plot loss curves

Sebastian Raschka STAT 453: Intro to Deep Learning 13

4. 👀 Tune but don’t tune blindly
I generally stick with a random grid search as it turns out to be fairly effective in practice.
Some people report successes using fancy hyperparameter tuning methods such as Bayesian optimization but in
my experience, random over a reasonably manually defined grid search is still a tough-to-beat baseline.

compare a couple of runs with different hyperparameters to get an idea of which hyperparameters have
the highest impact

favor (as most as possible) a deep understanding of each component of your neural network instead of
blindly (not to say magically) tweak the architecture.

https://huggingface.co/blog/simple-considerations

https://huggingface.co/blog/simple-considerations

Sebastian Raschka STAT 453: Intro to Deep Learning 14

https://github.com/dorarad/gansformer

https://arxiv.org/abs/2103.01209

https://github.com/dorarad/gansformer
https://arxiv.org/abs/2103.01209

