
Sebastian Raschka STAT 453: Intro to Deep Learning

Deep Learning & AI News #5

1

Interesting Things Related to Deep Learning
Feb 27th, 2021

with Applications in Python

Sebastian Raschka

http://stat.wisc.edu/~sraschka

STAT 453: Introduction to Deep Learning and Generative Models

http://stat.wisc.edu/~sraschka

Sebastian Raschka STAT 453: Intro to Deep Learning 2

https://arxiv.org/abs/2102.08503

https://syncedreview.com/2021/02/19/apple-reveals-design-of-its-on-device-ml-system-for-federated-evaluation-and-tuning/

Apple's On-Device ML System for
Federated Evaluation and Tuning

• Other companies: use federated learning
to tune a global neural network

• Apple:

‣ Use global parameters but train local

model

‣ User data remains inaccessible to

server-side

https://arxiv.org/abs/2102.08503
https://syncedreview.com/2021/02/19/apple-reveals-design-of-its-on-device-ml-system-for-federated-evaluation-and-tuning/

Sebastian Raschka STAT 453: Intro to Deep Learning 3

https://arxiv.org/abs/2102.08503

https://syncedreview.com/2021/02/19/apple-reveals-design-of-its-on-device-ml-system-for-federated-evaluation-and-tuning/

Apple's On-Device ML System for
Federated Evaluation and Tuning

https://arxiv.org/abs/2102.08503
https://syncedreview.com/2021/02/19/apple-reveals-design-of-its-on-device-ml-system-for-federated-evaluation-and-tuning/

Sebastian Raschka STAT 453: Intro to Deep Learning 4

Code: https://github.com/opendp/smartnoise-samples

Whitepaper: https://azure.microsoft.com/en-us/resources/microsoft-
smartnoisedifferential-privacy-machine-learning-case-studies/

https://cloudblogs.microsoft.com/opensource/2021/02/18/create-privacy-preserving-synthetic-data-for-machine-learning-with-smartnoise/

https://github.com/opendp/smartnoise-samples
https://azure.microsoft.com/en-us/resources/microsoft-smartnoisedifferential-privacy-machine-learning-case-studies/
https://azure.microsoft.com/en-us/resources/microsoft-smartnoisedifferential-privacy-machine-learning-case-studies/
https://azure.microsoft.com/en-us/resources/microsoft-smartnoisedifferential-privacy-machine-learning-case-studies/
https://cloudblogs.microsoft.com/opensource/2021/02/18/create-privacy-preserving-synthetic-data-for-machine-learning-with-smartnoise/

Sebastian Raschka STAT 453: Intro to Deep Learning 5

Multiplicative Weights Exponential Mechanism (MWEM)
• Achieves Differential Privacy by combining Multiplicative Weights and Exponential

Mechanism techniques
• A relatively simple but effective approach
• Requires fewer computational resources, shorter runtime

Differentially Private Generative Adversarial Network (DPGAN)
• Adds noise to the discriminator of the GAN to enforce Differential Privacy
• Has been used with image data and electronic health records (HER)

Private Aggregation of Teacher Ensembles Generative Adversarial Network (PATEGAN)
• A modification of the PATE framework that is applied to GANs to preserve Differential Privacy

of synthetic data
• Improvement of DPGAN, especially for classification tasks

DP-CTGAN
• Takes the state-of-the-art CTGAN for synthesizing tabular data and applies DPSGD (the

same method for ensuring Differential Privacy that DPGAN uses)
• Suited for tabular data, avoids issues with mode collapse
• Can lead to extensive training times

PATE-CTGAN
• Takes the state-of-the-art CTGAN for synthesizing tabular data and applies PATE (the same

method for ensuring Differential Privacy that PATEGAN uses)
• Suited for tabular data, avoids issues with mode collapse

Qualified Architecture to Improve Learning (QUAIL)
• Ensemble method to improve the utility of synthetic differentially private datasets for machine

learning tasks
• Combines a differentially private synthesizer and an embedded differentially private

supervised learning model to produce a flexible synthetic data set with high machine learning
utility

Sebastian Raschka STAT 453: Intro to Deep Learning 6

One likely reason: lack of diversity in the datasets.
Common mitigation approach: provide algorithms with
datasets that represent all groups equally and fairly

Does it work? Only for a stereotypical sense of fairness:
Khan: "The people in the images appeared to fit racial
stereotypes. For example, an algorithm was more likely to
label an individual in an image as “white” if that person
had blond hair."

https://news.northeastern.edu/2021/02/22/humans-are-trying-to-take-bias-out-of-facial-
recognition-programs-its-not-working-yet/

"We find evidence that racial categories encode stereotypes, and exclude ethnic groups from categories on the
basis of nonconformity to stereotypes. Representing a billion humans under one racial category may obscure
disparities and create new ones by encoding stereotypes of racial systems."

https://arxiv.org/abs/2102.02320

https://news.northeastern.edu/2021/02/22/humans-are-trying-to-take-bias-out-of-facial-recognition-programs-its-not-working-yet/
https://news.northeastern.edu/2021/02/22/humans-are-trying-to-take-bias-out-of-facial-recognition-programs-its-not-working-yet/
https://arxiv.org/abs/2102.02320

Sebastian Raschka STAT 453: Intro to Deep Learning 7

What's new?

https://ai.googleblog.com/2021/02/introducing-model-search-open-source.html

AutoML and Neural Architecture Search

• Reinforcement learning

• Evolutionary algorithms

• Combinatorial search

https://ai.googleblog.com/2021/02/introducing-model-search-open-source.html

Sebastian Raschka STAT 453: Intro to Deep Learning 8

https://ai.googleblog.com/2021/02/introducing-model-search-open-source.html

What it does

• train models asynchronously (using building blocks)

• use beam search to check completed tries and see what to try next

• mutation of best architectures for next round

• transfer learning & knowledge distillation:

‣ match high-performing model's prediction in addition to maximizing prediction accuracy

‣ copy suitable weights over to new models

"In a recent paper, we
demonstrated the capabilities of
Model Search in the speech
domain by discovering"

https://pdfs.semanticscholar.org/1bca/
d4cdfbc01fbb60a815660d034e561843d
67a.pdf

https://ai.googleblog.com/2021/02/introducing-model-search-open-source.html
https://pdfs.semanticscholar.org/1bca/d4cdfbc01fbb60a815660d034e561843d67a.pdf
https://pdfs.semanticscholar.org/1bca/d4cdfbc01fbb60a815660d034e561843d67a.pdf
https://pdfs.semanticscholar.org/1bca/d4cdfbc01fbb60a815660d034e561843d67a.pdf
https://pdfs.semanticscholar.org/1bca/d4cdfbc01fbb60a815660d034e561843d67a.pdf

Sebastian Raschka STAT 453: Intro to Deep Learning 9

We show that TeraPipe can speed up the training by 5.0x for the largest GPT-3
model with 175 billion parameters on an AWS cluster with 48 p3.16xlarge

instances compared with state-of-the-art model-parallel methods.

https://arxiv.org/abs/2102.07988

TeraPipe: Token-Level Pipeline Parallelism for Training Large-Scale Language Models

«�

�ÙŗƖ

ΌőķƖ

ÙŊƈ

�ÙŗƖ

ŗƋô

ÙŊƈ

èôƖƱ

ŗƋô

Όôƒő

èôƖƱ

7UDQVIRUPHU�OD\HU��

7UDQVIRUPHU�OD\HU��

7UDQVIRUPHU�OD\HU�1��

7UDQVIRUPHU�OD\HU�1

(a) Transformer-based LM

/D\HU���SDUW��

/D\HU���SDUW��

/D\HU���SDUW��

«�'HYLFH�� 'HYLFH��

/D\HU���SDUW��

/D\HU���SDUW��

/D\HU���SDUW��

(b) Operation partitioning
(Megatron-LM)

7UDQVIRUPHU�OD\HU��

7UDQVIRUPHU�OD\HU��

7UDQVIRUPHU�OD\HU��

7UDQVIRUPHU�OD\HU��

7UDQVIRUPHU�OD\HU��

'HYLFH��

'HYLFH��

'HYLFH��

'HYLFH��

'HYLFH��

(c) Microbatch-based pipeline
parallelism (GPipe)

7UDQVIRUPHU�OD\HU��

7UDQVIRUPHU�OD\HU��

7UDQVIRUPHU�OD\HU��

7UDQVIRUPHU�OD\HU��

'HYLFH��

'HYLFH��

'HYLFH��

'HYLFH��

'HYLFH��

7UDQVIRUPHU�OD\HU��

(d) Token-based pipeline
parallelism (TeraPipe)

Figure 1. Different approaches of model parallel training of Transformer-based LMs. (a) shows a standard multi-layer Transformer LM.
In each layer, each position only takes only its previous positions as input. (b) shows operation partitioning (Shoeybi et al., 2019). An
allreduce operation is required to synchronize the results of each layer. (c) shows microbatch-based pipeline parallelism (Huang et al.,
2019), which allows different microbatches (red and green bars) to be executed on different layers of the DNN in parallel. (d) show
TeraPipe (our work), which pipelines along the token dimension.

To this end, we design and implement TeraPipe, a high-
performance synchronous model parallel training approach
for large-scale Transformer-based language models, which
exploits the token dimension to pipeline the computation
across devices. TeraPipe uses a small number of simple
workloads to derive a performance model and then uses
a novel dynamic programming algorithm to compute the
optimal partitioning of the token dimension for the pipeline.
TeraPipe is orthogonal to previous model-parallel training
methods, so it can be used together with these methods to
further improve the training performance. Our evaluation
shows that for the largest GPT-3 model with 175 billion
parameters, TeraPipe achieves a 5.0x speedup improvement
over the state-of-the-art synchronous model-parallel training
methods on an AWS cluster consisting of 48 p3.16xlarge
instances.

Our paper makes the following contributions:

• We propose a new dimension, token dimension, for
pipeline-parallel training of Transformer-based LMs.

• We develop a dynamic programming algorithm to com-
pute a partition along the token dimension to maximize
pipeline parallelism.

• We implement TeraPipe and show that we can increase
the synchronous training throughput of the largest GPT-
3 model (with 175 billion parameters) by 5.0x over the
previous state-of-the-art model-parallel methods.

2. Related Work
Data parallelism scales ML training by partitioning train-
ing data onto distributed devices (Zinkevich et al., 2010;
Krizhevsky, 2014; Goyal et al., 2017; Rajbhandari et al.,
2019). Each device holds a model replica, works on an

independent data partition, and synchronizes the updates
via allreduce (Krizhevsky, 2014) or a parameter server (Li
et al., 2014). Data parallelism alone is not enough to train
large-scale DNNs due to two main reasons: (1) every de-
vice has to have enough memory to store the model and the
gradients generated during the training process; (2) com-
munication can be a performance bottleneck to synchronize
model parameters.

Model parallelism allows for training models larger than
the memory capacity of a single device, by partitioning
the model (e.g., layers) into disjoint parts and executing
each on a dedicated device. Existing model parallel train-
ing approaches can be roughly categorized as: operation

partitioning and pipeline parallelism.

Operation partitioning. One way to split the model is to
partition and parallelize computational operations across
multiple devices. For example, the computation of matrix
multiplications (matmul) XAB can be spitted across mul-
tiple devices by partitioning A and B along its rows and
columns, respectively.

XAB = X ·
⇥
A1 A2

⇤
·

B1

B2

�
= XA1B1 +XA2B2.

This means we can have one device calculate XA1B1 and
another device calculate XA2B2 in parallel. After that,
cross-device communication is needed to compute the sum
of these two parts.

Many existing works (Jia et al., 2018; 2019; Wang et al.,
2019; Shazeer et al., 2018) study how to optimize the
partitioning schemes for different operations to maximize
throughput and minimize communication overheads, among
which, Megatron-LM (Figure 1b; Shoeybi et al., 2019) de-
signs partitioning schemes specifically for large-scale Trans-
formers. However, due to the excessive communication

https://arxiv.org/abs/2102.07988

Sebastian Raschka STAT 453: Intro to Deep Learning 10

Sebastian Raschka STAT 453: Intro to Deep Learning 11

Gradient Checkpointing

Sebastian Raschka STAT 453: Intro to Deep Learning 12

Example: https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/
mechanics/gradient-checkpointing-nin.ipynb

Gradient Checkpointing

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/mechanics/gradient-checkpointing-nin.ipynb
https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/mechanics/gradient-checkpointing-nin.ipynb

Sebastian Raschka STAT 453: Intro to Deep Learning 13

Zero Redundancy Optimizer (ZeRO)
https://www.deepspeed.ai/tutorials/zero/

ZeRO is a powerful set of memory optimization techniques that enable effective FP16 training of large
models with billions of parameters, such as GPT-2 and Turing-NLG 17B.

Compared to the alternative model parallelism approaches for training large models, a key appeal of
ZeRO is that no model code modifications are required.

ZeRO reduces the memory consumption of each GPU by partitioning the various model training states
(weights, gradients, and optimizer states) across the available devices (GPUs and CPUs) in the
distributed training hardware

https://www.deepspeed.ai/tutorials/zero/
https://openai.com/blog/better-language-models/
https://www.microsoft.com/en-us/research/blog/turing-nlg-a-17-billion-parameter-language-model-by-microsoft/

Sebastian Raschka STAT 453: Intro to Deep Learning 14

https://www.deepspeed.ai/tutorials/zero-offload/

ZeRO-Offload is a ZeRO optimization that offloads the optimizer memory and computation from the
GPU to the host CPU

ZeRO-Offload enables large models with up to 13 billion parameters to be efficiently trained on a single
GPU.

to prevent the optimizer from becoming a bottleneck, ZeRO-Offload uses DeepSpeed’s highly
optimized CPU implementation of Adam called DeeSpeedCPUAdam. DeepSpeedCPUAdam is 5X–7X
faster than the standard PyTorch implementation

ZeRO-Offload

https://www.deepspeed.ai/tutorials/zero-offload/
https://github.com/microsoft/DeepSpeed/tree/master/deepspeed/ops/adam

Sebastian Raschka STAT 453: Intro to Deep Learning 15

https://github.com/facebookresearch/
fairscale/pull/413

https://towardsdatascience.com/sharded-a-
new-technique-to-double-the-size-of-pytorch-

models-3af057466dba

https://github.com/facebookresearch/fairscale/pull/413
https://github.com/facebookresearch/fairscale/pull/413
https://towardsdatascience.com/sharded-a-new-technique-to-double-the-size-of-pytorch-models-3af057466dba
https://towardsdatascience.com/sharded-a-new-technique-to-double-the-size-of-pytorch-models-3af057466dba
https://towardsdatascience.com/sharded-a-new-technique-to-double-the-size-of-pytorch-models-3af057466dba

Sebastian Raschka STAT 453: Intro to Deep Learning 16

https://github.com/facebookresearch/fairscale

https://github.com/facebookresearch/fairscale

