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Freewire: Freely Wired Neural Networks
https://github.com/noahtren/Freewire

A PyTorch extension library for creating 
optimized freely wired neural networks to 
run on CUDA

https://github.com/noahtren/Freewire
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https://arxiv.org/abs/1904.01569

https://arxiv.org/abs/1904.01569
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Code (dataset and pre-trained CNNs):  
https://codeocean.com/capsule/9570390/tree/v1

Paper: https://www.pnas.org/content/118/8/e2011417118

• Object categories important to humans

• 1.5 million images

• 565 basic-level categories

by the brain RDM. We therefore did not perform any model
fitting [i.e., reweighting (1) or linear encoding of the DNN ac-
tivation profiles (3)], which would enable a model with a dif-
ferent distribution of features to nevertheless perform well (17).
The effects of training on ecoset rather than ILSVRC 2012 were
tested using two separate network architectures: AlexNet (ver-
sion 2, 18), one of the most frequently used computer vision
networks in computational neuroscience, and vNet, a novel
10-layer convolutional DNN that mimics the progressive increase
in foveal receptive field sizes along multiple areas of the human
ventral stream (V1, V2, V3, hV4, LO, TO, pFUS, and mFUS;
seeMaterials and Methods) as previously estimated by population
receptive field mapping (19, 20). While computer vision net-
works, engineered for task performance, exist in large variety and
complexity, testing ecoset on biologically more realistic models
brings both the architecture and training set into closer align-
ment with the task of modeling brain function. Such networks
thereby constitute a more rigorous test for the effects of
changing the training data. To account for individual differences
among DNNs (21), 10 network instances per architecture, each
initialized with different random weights, were trained on each
dataset (see Materials and Methods).
Analyses of the learned network features via RSA revealed

significant benefits in predicting human higher-level visual rep-
resentations when training on ecoset rather than ILSVRC 2012.
This was true for both architectures and both fMRI datasets
tested (Fig. 2 A and B and SI Appendix, Fig. S1). For fMRI
dataset 1 (12), which comprises cortical responses to 1,200 nat-
ural scenes recorded from each of five human participants, later
networks layers exhibited the best match to HVC. This is in line

with the literature, which commonly relies on these layers for
modeling higher-level visual computations (1, 12, 22). When
training AlexNet with ecoset, we found layers six and seven to be
more similar to human HVC than their ILSVRC-trained coun-
terparts (permutation test, P < 0.01, Bonferroni corrected for the
number of network layers; see Materials and Methods for details,
please note the effect reversal observed in earlier layers, all of
which, however, provide an overall worse model of HVC). De-
spite no parameter fitting, the predictive power of layer seven of
ecoset-trained AlexNet was on par with human observers
(matching the lower bound of the noise ceiling, i.e., the predic-
tive performance of the grand average computed over all other
participants). Similar effects were observed for vNet, which ex-
hibits significantly higher alignment with HVC representations
when trained on ecoset in layers eight to 10 (permutation test,
P < 0.01, Bonferroni corrected; peak similarity at layer eight,
98.3% of the lower bound of the noise ceiling). In the final
network layers, ecoset training led to an increase of up to 13
percentage points in the explained proportion of explainable
variance (the latter estimated as the lower bound of the noise
ceiling) for AlexNet and 17 percentage points for vNet (the total
variance explained increased by 15% for AlexNet and up to 21%
for vNet).
FMRI dataset 2 (13) consists of cortical responses to 92 ob-

jects from a diverse set of categories shown against a gray
background, recorded from each of 15 human participants.
Testing against these data revealed that layers five to seven of
ecoset-trained AlexNet more closely mirrored HVC represen-
tations (permutation test, P < 0.01, Bonferroni corrected,
Fig. 2B, middle row). For vNet, significant benefits for ecoset
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Fig. 1. Ecoset overview. (A) Flow diagram depicting the steps taken during dataset creation. This includes category selection and curation as well as image
processing (search/download, duplicate removal, and label-cleaning procedures). (B) Example images from the six categories with FCI (shown in decreasing
order from left to right). (C) Superordinate category overview. (D) Distribution of the number of images per category. (E) Distribution of image sizes
(log-transformed width and height).
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by the brain RDM. We therefore did not perform any model
fitting [i.e., reweighting (1) or linear encoding of the DNN ac-
tivation profiles (3)], which would enable a model with a dif-
ferent distribution of features to nevertheless perform well (17).
The effects of training on ecoset rather than ILSVRC 2012 were
tested using two separate network architectures: AlexNet (ver-
sion 2, 18), one of the most frequently used computer vision
networks in computational neuroscience, and vNet, a novel
10-layer convolutional DNN that mimics the progressive increase
in foveal receptive field sizes along multiple areas of the human
ventral stream (V1, V2, V3, hV4, LO, TO, pFUS, and mFUS;
seeMaterials and Methods) as previously estimated by population
receptive field mapping (19, 20). While computer vision net-
works, engineered for task performance, exist in large variety and
complexity, testing ecoset on biologically more realistic models
brings both the architecture and training set into closer align-
ment with the task of modeling brain function. Such networks
thereby constitute a more rigorous test for the effects of
changing the training data. To account for individual differences
among DNNs (21), 10 network instances per architecture, each
initialized with different random weights, were trained on each
dataset (see Materials and Methods).
Analyses of the learned network features via RSA revealed

significant benefits in predicting human higher-level visual rep-
resentations when training on ecoset rather than ILSVRC 2012.
This was true for both architectures and both fMRI datasets
tested (Fig. 2 A and B and SI Appendix, Fig. S1). For fMRI
dataset 1 (12), which comprises cortical responses to 1,200 nat-
ural scenes recorded from each of five human participants, later
networks layers exhibited the best match to HVC. This is in line

with the literature, which commonly relies on these layers for
modeling higher-level visual computations (1, 12, 22). When
training AlexNet with ecoset, we found layers six and seven to be
more similar to human HVC than their ILSVRC-trained coun-
terparts (permutation test, P < 0.01, Bonferroni corrected for the
number of network layers; see Materials and Methods for details,
please note the effect reversal observed in earlier layers, all of
which, however, provide an overall worse model of HVC). De-
spite no parameter fitting, the predictive power of layer seven of
ecoset-trained AlexNet was on par with human observers
(matching the lower bound of the noise ceiling, i.e., the predic-
tive performance of the grand average computed over all other
participants). Similar effects were observed for vNet, which ex-
hibits significantly higher alignment with HVC representations
when trained on ecoset in layers eight to 10 (permutation test,
P < 0.01, Bonferroni corrected; peak similarity at layer eight,
98.3% of the lower bound of the noise ceiling). In the final
network layers, ecoset training led to an increase of up to 13
percentage points in the explained proportion of explainable
variance (the latter estimated as the lower bound of the noise
ceiling) for AlexNet and 17 percentage points for vNet (the total
variance explained increased by 15% for AlexNet and up to 21%
for vNet).
FMRI dataset 2 (13) consists of cortical responses to 92 ob-

jects from a diverse set of categories shown against a gray
background, recorded from each of 15 human participants.
Testing against these data revealed that layers five to seven of
ecoset-trained AlexNet more closely mirrored HVC represen-
tations (permutation test, P < 0.01, Bonferroni corrected,
Fig. 2B, middle row). For vNet, significant benefits for ecoset
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Fig. 1. Ecoset overview. (A) Flow diagram depicting the steps taken during dataset creation. This includes category selection and curation as well as image
processing (search/download, duplicate removal, and label-cleaning procedures). (B) Example images from the six categories with FCI (shown in decreasing
order from left to right). (C) Superordinate category overview. (D) Distribution of the number of images per category. (E) Distribution of image sizes
(log-transformed width and height).
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https://codeocean.com/capsule/9570390/tree/v1
https://www.pnas.org/content/118/8/e2011417118
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by the brain RDM. We therefore did not perform any model
fitting [i.e., reweighting (1) or linear encoding of the DNN ac-
tivation profiles (3)], which would enable a model with a dif-
ferent distribution of features to nevertheless perform well (17).
The effects of training on ecoset rather than ILSVRC 2012 were
tested using two separate network architectures: AlexNet (ver-
sion 2, 18), one of the most frequently used computer vision
networks in computational neuroscience, and vNet, a novel
10-layer convolutional DNN that mimics the progressive increase
in foveal receptive field sizes along multiple areas of the human
ventral stream (V1, V2, V3, hV4, LO, TO, pFUS, and mFUS;
seeMaterials and Methods) as previously estimated by population
receptive field mapping (19, 20). While computer vision net-
works, engineered for task performance, exist in large variety and
complexity, testing ecoset on biologically more realistic models
brings both the architecture and training set into closer align-
ment with the task of modeling brain function. Such networks
thereby constitute a more rigorous test for the effects of
changing the training data. To account for individual differences
among DNNs (21), 10 network instances per architecture, each
initialized with different random weights, were trained on each
dataset (see Materials and Methods).
Analyses of the learned network features via RSA revealed

significant benefits in predicting human higher-level visual rep-
resentations when training on ecoset rather than ILSVRC 2012.
This was true for both architectures and both fMRI datasets
tested (Fig. 2 A and B and SI Appendix, Fig. S1). For fMRI
dataset 1 (12), which comprises cortical responses to 1,200 nat-
ural scenes recorded from each of five human participants, later
networks layers exhibited the best match to HVC. This is in line

with the literature, which commonly relies on these layers for
modeling higher-level visual computations (1, 12, 22). When
training AlexNet with ecoset, we found layers six and seven to be
more similar to human HVC than their ILSVRC-trained coun-
terparts (permutation test, P < 0.01, Bonferroni corrected for the
number of network layers; see Materials and Methods for details,
please note the effect reversal observed in earlier layers, all of
which, however, provide an overall worse model of HVC). De-
spite no parameter fitting, the predictive power of layer seven of
ecoset-trained AlexNet was on par with human observers
(matching the lower bound of the noise ceiling, i.e., the predic-
tive performance of the grand average computed over all other
participants). Similar effects were observed for vNet, which ex-
hibits significantly higher alignment with HVC representations
when trained on ecoset in layers eight to 10 (permutation test,
P < 0.01, Bonferroni corrected; peak similarity at layer eight,
98.3% of the lower bound of the noise ceiling). In the final
network layers, ecoset training led to an increase of up to 13
percentage points in the explained proportion of explainable
variance (the latter estimated as the lower bound of the noise
ceiling) for AlexNet and 17 percentage points for vNet (the total
variance explained increased by 15% for AlexNet and up to 21%
for vNet).
FMRI dataset 2 (13) consists of cortical responses to 92 ob-

jects from a diverse set of categories shown against a gray
background, recorded from each of 15 human participants.
Testing against these data revealed that layers five to seven of
ecoset-trained AlexNet more closely mirrored HVC represen-
tations (permutation test, P < 0.01, Bonferroni corrected,
Fig. 2B, middle row). For vNet, significant benefits for ecoset
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Fig. 1. Ecoset overview. (A) Flow diagram depicting the steps taken during dataset creation. This includes category selection and curation as well as image
processing (search/download, duplicate removal, and label-cleaning procedures). (B) Example images from the six categories with FCI (shown in decreasing
order from left to right). (C) Superordinate category overview. (D) Distribution of the number of images per category. (E) Distribution of image sizes
(log-transformed width and height).

2 of 9 | PNAS Mehrer et al.
https://doi.org/10.1073/pnas.2011417118 An ecologically motivated image dataset for deep learning yields better models of human

vision

D
ow

nl
oa

de
d 

by
 g

ue
st

 o
n 

Fe
br

ua
ry

 2
0,

 2
02

1 



Sebastian Raschka           STAT 453: Intro to Deep Learning          6

by the brain RDM. We therefore did not perform any model
fitting [i.e., reweighting (1) or linear encoding of the DNN ac-
tivation profiles (3)], which would enable a model with a dif-
ferent distribution of features to nevertheless perform well (17).
The effects of training on ecoset rather than ILSVRC 2012 were
tested using two separate network architectures: AlexNet (ver-
sion 2, 18), one of the most frequently used computer vision
networks in computational neuroscience, and vNet, a novel
10-layer convolutional DNN that mimics the progressive increase
in foveal receptive field sizes along multiple areas of the human
ventral stream (V1, V2, V3, hV4, LO, TO, pFUS, and mFUS;
seeMaterials and Methods) as previously estimated by population
receptive field mapping (19, 20). While computer vision net-
works, engineered for task performance, exist in large variety and
complexity, testing ecoset on biologically more realistic models
brings both the architecture and training set into closer align-
ment with the task of modeling brain function. Such networks
thereby constitute a more rigorous test for the effects of
changing the training data. To account for individual differences
among DNNs (21), 10 network instances per architecture, each
initialized with different random weights, were trained on each
dataset (see Materials and Methods).
Analyses of the learned network features via RSA revealed

significant benefits in predicting human higher-level visual rep-
resentations when training on ecoset rather than ILSVRC 2012.
This was true for both architectures and both fMRI datasets
tested (Fig. 2 A and B and SI Appendix, Fig. S1). For fMRI
dataset 1 (12), which comprises cortical responses to 1,200 nat-
ural scenes recorded from each of five human participants, later
networks layers exhibited the best match to HVC. This is in line

with the literature, which commonly relies on these layers for
modeling higher-level visual computations (1, 12, 22). When
training AlexNet with ecoset, we found layers six and seven to be
more similar to human HVC than their ILSVRC-trained coun-
terparts (permutation test, P < 0.01, Bonferroni corrected for the
number of network layers; see Materials and Methods for details,
please note the effect reversal observed in earlier layers, all of
which, however, provide an overall worse model of HVC). De-
spite no parameter fitting, the predictive power of layer seven of
ecoset-trained AlexNet was on par with human observers
(matching the lower bound of the noise ceiling, i.e., the predic-
tive performance of the grand average computed over all other
participants). Similar effects were observed for vNet, which ex-
hibits significantly higher alignment with HVC representations
when trained on ecoset in layers eight to 10 (permutation test,
P < 0.01, Bonferroni corrected; peak similarity at layer eight,
98.3% of the lower bound of the noise ceiling). In the final
network layers, ecoset training led to an increase of up to 13
percentage points in the explained proportion of explainable
variance (the latter estimated as the lower bound of the noise
ceiling) for AlexNet and 17 percentage points for vNet (the total
variance explained increased by 15% for AlexNet and up to 21%
for vNet).
FMRI dataset 2 (13) consists of cortical responses to 92 ob-

jects from a diverse set of categories shown against a gray
background, recorded from each of 15 human participants.
Testing against these data revealed that layers five to seven of
ecoset-trained AlexNet more closely mirrored HVC represen-
tations (permutation test, P < 0.01, Bonferroni corrected,
Fig. 2B, middle row). For vNet, significant benefits for ecoset
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Fig. 1. Ecoset overview. (A) Flow diagram depicting the steps taken during dataset creation. This includes category selection and curation as well as image
processing (search/download, duplicate removal, and label-cleaning procedures). (B) Example images from the six categories with FCI (shown in decreasing
order from left to right). (C) Superordinate category overview. (D) Distribution of the number of images per category. (E) Distribution of image sizes
(log-transformed width and height).
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https://www.nextplatform.com/2021/02/11/the-billion-dollar-ai-problem-that-just-keeps-scaling/


Two main methods to parallelize across 
GPUs:

• Data parallelism

• Tensor parallelism

280 DGX-A100 systems,  
which cost $199,000 each 

  +15% networking cost of the  
             total cost

  +20% storage 

List price: 75 million

(electricity not included)

https://www.nextplatform.com/2021/02/11/the-billion-dollar-ai-problem-that-just-keeps-scaling/
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"models are routinely trained for thousands of hours on specialized hardware accelerators in 
datacenters estimated to use 200 terawatt-hours per year. (The average U.S. home consumes 
about 10,000 kilowatt-hours per year, a fraction of that total.)"

Federated learning has an environmental advantage partly due to the cooling needs of 
datacenters, 

However, federated learning can also be less efficient:

• prolonged training times due to distributed data bases

• lower hardware efficiency

• data transfer via wif

1 terawatt = 1,000,000,000 kilowatts

https://science.sciencemag.org/content/367/6481/984

https://www.newsbreak.com/news/2164940176428/study-shows-that-federated-learning-can-lead-to-reduced-carbon-emissions

https://science.sciencemag.org/content/367/6481/984
https://www.newsbreak.com/news/2164940176428/study-shows-that-federated-learning-can-lead-to-reduced-carbon-emissions


Sebastian Raschka           STAT 453: Intro to Deep Learning          9

NeuReality Ltd., a startup working to develop more efficient artificial 
intelligence chips, today exited stealth mode and disclosed on the 
occasion that it has raised $8 million in seed funding.

The startup says its chip can perform inference with 15 times higher 
performance per dollar than the competition. That efficiency will come from 
lower hardware costs and decreased power consumption, as well as a 
reduction in data center space requirements, NeuReality claims. 

https://siliconangle.com/2021/02/10/chip-startup-neureality-launches-stealth-make-ai-inference-efficient/

https://siliconangle.com/2021/02/10/chip-startup-neureality-launches-stealth-make-ai-inference-efficient/
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https://web.br.de/interaktiv/ki-bewerbung/en/

https://web.br.de/interaktiv/ki-bewerbung/en/
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For computer science professor Katharina Zweig, who heads the 
Algorithm Accountability Lab at Technical University Kaiserslautern, 
these results indicate a difficulty well known: “The fundamental 
problem with face recognition by machine learning is that we never 
know exactly which pattern in an image these machines are 
responding to.”
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https://arxiv.org/abs/2102.06604

When engineers train deep learning models, they are 
very much "flying blind".

- collection of instruments to look into the inner workings closer look 
into the inner workings of a learning machine


- useful for trouble-shooting during training

- open-source, for PyTorch: https://github.com/f-dangel/cockpit

https://arxiv.org/abs/2102.06604
https://github.com/f-dangel/cockpit
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