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STAT 479: Deep Learning, Spring 2019 
Sebastian Raschka 

http://stat.wisc.edu/~sraschka/teaching/stat479-ss2019/

Lecture 13

Introduction to  
Convolutional Neural Networks 

Part 2

http://pages.stat.wisc.edu/~sraschka/teaching/stat479-ss2019/
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(forward method on the next slide)

A Simple CNN in PyTorch
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A Simple CNN in PyTorch

(model parameters on the previous slide)

Working example:  
https://github.com/rasbt/stat479-deep-learning-ss19/blob/master/L13_intro-
cnn/code/cnn-with-diff-init/default.ipynb

https://github.com/rasbt/stat479-deep-learning-ss19/blob/master/L13_intro-cnn/code/cnn-with-diff-init/default.ipynb
https://github.com/rasbt/stat479-deep-learning-ss19/blob/master/L13_intro-cnn/code/cnn-with-diff-init/default.ipynb
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Padding

o =

�
i+ 2p� k

s

⌫
+ 1

<latexit sha1_base64="1+3PcismmoemfcI0obtP4BHnYWc=">AAACGHicbVBNS8NAEN3Ur1q/qh69LBZBKNakCnoRil48VrAf0JSy2W7apZts2J0IJeRnePGvePGgiNfe/Ddu2xy09cHA470ZZuZ5keAabPvbyq2srq1v5DcLW9s7u3vF/YOmlrGirEGlkKrtEc0ED1kDOAjWjhQjgSdYyxvdTf3WE1Oay/ARxhHrBmQQcp9TAkbqFc/ljSuYD67whZTK9RWhCS9XcXQ2ShOduooPhuCqmVvGTq9Ysiv2DHiZOBkpoQz1XnHi9iWNAxYCFUTrjmNH0E2IAk4FSwturFlE6IgMWMfQkARMd5PZYyk+MUof+1KZCgHP1N8TCQm0Hgee6QwIDPWiNxX/8zox+NfdhIdRDCyk80V+LDBIPE0J97liFMTYEEIVN7diOiQmGzBZFkwIzuLLy6RZrTgXlerDZal2m8WRR0foGJ0iB12hGrpHddRAFD2jV/SOPqwX6836tL7mrTkrmzlEf2BNfgDz2aBR</latexit>

"floor" function

output size output size padding pixels per side

kernel size

stride
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No padding, stride=1

output

input

padding=2, stride=1

No padding, stride=2

(4 - 3 + 2*0)/1 + 1 = 2

(5 - 4 + 2*2)/1 + 1 = 6

(5 - 3 + 2*0)/2 + 1 = 2

Dumoulin, Vincent, and Francesco Visin. "A guide to 
convolution arithmetic for deep learning." arXiv preprint 
arXiv:1603.07285 (2016).

Highly recommended:

https://arxiv.org/abs/1603.07285
https://arxiv.org/abs/1603.07285
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Padding Jargon

"valid" convolution: no padding (feature map may shrink) 

"same" convolution: padding such that the output size 
is equal to the input size

Common kernel size conventions: 
3x3, 5x5, 7x7 (sometimes 1x1 in later layers to reduce channels)
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Padding

o =

�
i+ 2p� k

s

⌫
+ 1

<latexit sha1_base64="1+3PcismmoemfcI0obtP4BHnYWc=">AAACGHicbVBNS8NAEN3Ur1q/qh69LBZBKNakCnoRil48VrAf0JSy2W7apZts2J0IJeRnePGvePGgiNfe/Ddu2xy09cHA470ZZuZ5keAabPvbyq2srq1v5DcLW9s7u3vF/YOmlrGirEGlkKrtEc0ED1kDOAjWjhQjgSdYyxvdTf3WE1Oay/ARxhHrBmQQcp9TAkbqFc/ljSuYD67whZTK9RWhCS9XcXQ2ShOduooPhuCqmVvGTq9Ysiv2DHiZOBkpoQz1XnHi9iWNAxYCFUTrjmNH0E2IAk4FSwturFlE6IgMWMfQkARMd5PZYyk+MUof+1KZCgHP1N8TCQm0Hgee6QwIDPWiNxX/8zox+NfdhIdRDCyk80V+LDBIPE0J97liFMTYEEIVN7diOiQmGzBZFkwIzuLLy6RZrTgXlerDZal2m8WRR0foGJ0iB12hGrpHddRAFD2jV/SOPqwX6836tL7mrTkrmzlEf2BNfgDz2aBR</latexit>

Assume you want to use a convolutional operation with 
stride 1 and maintain the input dimensions in the output feature map:

o = i+ 2p� k + 1
<latexit sha1_base64="KScMiOYK5Huk0js+ek4SjQbMhXY=">AAAB+nicbVDLSgMxFL3js9bXVJdugkUQxDJTBd0IRTcuK9gHtEPJpJk2NJMMSUYptZ/ixoUibv0Sd/6NaTsLbT1wuYdz7iU3J0w408bzvp2l5ZXVtfXcRn5za3tn1y3s1bVMFaE1IrlUzRBrypmgNcMMp81EURyHnDbCwc3EbzxQpZkU92aY0CDGPcEiRrCxUsctSHSFGDpB5QSdDmz3O27RK3lToEXiZ6QIGaod96vdlSSNqTCEY61bvpeYYISVYYTTcb6dappgMsA92rJU4JjqYDQ9fYyOrNJFkVS2hEFT9ffGCMdaD+PQTsbY9PW8NxH/81qpiS6DERNJaqggs4eilCMj0SQH1GWKEsOHlmCimL0VkT5WmBibVt6G4M9/eZHUyyX/rFS+Oy9WrrM4cnAAh3AMPlxABW6hCjUg8AjP8ApvzpPz4rw7H7PRJSfb2Yc/cD5/ALi9kQ8=</latexit>

, p = (o� i+ k � 1)/2
<latexit sha1_base64="626xz0vjLoBFOjFRhY1RQUsbPLE=">AAACCHicbVA9SwNBEN2LXzF+nVpauBiEiCTeRUEbIWhjYRHBfEASwt5mL1myd3vszikhpLTxr9hYKGLrT7Dz37hJrtDog4HHezPMzPMiwTU4zpeVmptfWFxKL2dWVtfWN+zNraqWsaKsQqWQqu4RzQQPWQU4CFaPFCOBJ1jN61+O/dodU5rL8BYGEWsFpBtyn1MCRmrbu81r5oPi3R4QpeQ9jvA5zsk8P+zn3YOjYtvOOgVnAvyXuAnJogTltv3Z7EgaBywEKojWDdeJoDUkCjgVbJRpxppFhPZJlzUMDUnAdGs4eWSE943Swb5UpkLAE/XnxJAEWg8Cz3QGBHp61huL/3mNGPyz1pCHUQwspNNFfiwwSDxOBXe4YhTEwBBCFTe3YtojilAw2WVMCO7sy39JtVhwjwvFm5Ns6SKJI4120B7KIRedohK6QmVUQRQ9oCf0gl6tR+vZerPep60pK5nZRr9gfXwDrzeXzQ==</latexit>

, p = (k � 1)/2
<latexit sha1_base64="d58aLPAYf749hHhkSP5OGRKTYVc=">AAACBHicbVA9SwNBEN2LXzF+nVqmWQxCLIx3UdBGCNpYWEQwH5AcYW+zlyzZuz1255QQUtj4V2wsFLH1R9j5b9wkV2j0wcDjvRlm5vmx4Boc58vKLCwuLa9kV3Nr6xubW/b2Tl3LRFFWo1JI1fSJZoJHrAYcBGvGipHQF6zhDy4nfuOOKc1ldAvDmHkh6UU84JSAkTp2vn3NAlC81weilLzHMT7HxcGhe3BU7tgFp+RMgf8SNyUFlKLasT/bXUmTkEVABdG65ToxeCOigFPBxrl2ollM6ID0WMvQiIRMe6PpE2O8b5QuDqQyFQGeqj8nRiTUehj6pjMk0Nfz3kT8z2slEJx5Ix7FCbCIzhYFicAg8SQR3OWKURBDQwhV3NyKaZ8oQsHkljMhuPMv/yX1csk9LpVvTgqVizSOLMqjPVRELjpFFXSFqqiGKHpAT+gFvVqP1rP1Zr3PWjNWOrOLfsH6+AYmrZZ1</latexit>

How much padding do you need for "same" convolution?
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Padding

o = i+ 2p� k + 1
<latexit sha1_base64="KScMiOYK5Huk0js+ek4SjQbMhXY=">AAAB+nicbVDLSgMxFL3js9bXVJdugkUQxDJTBd0IRTcuK9gHtEPJpJk2NJMMSUYptZ/ixoUibv0Sd/6NaTsLbT1wuYdz7iU3J0w408bzvp2l5ZXVtfXcRn5za3tn1y3s1bVMFaE1IrlUzRBrypmgNcMMp81EURyHnDbCwc3EbzxQpZkU92aY0CDGPcEiRrCxUsctSHSFGDpB5QSdDmz3O27RK3lToEXiZ6QIGaod96vdlSSNqTCEY61bvpeYYISVYYTTcb6dappgMsA92rJU4JjqYDQ9fYyOrNJFkVS2hEFT9ffGCMdaD+PQTsbY9PW8NxH/81qpiS6DERNJaqggs4eilCMj0SQH1GWKEsOHlmCimL0VkT5WmBibVt6G4M9/eZHUyyX/rFS+Oy9WrrM4cnAAh3AMPlxABW6hCjUg8AjP8ApvzpPz4rw7H7PRJSfb2Yc/cD5/ALi9kQ8=</latexit>

, p = (o� i+ k � 1)/2
<latexit sha1_base64="626xz0vjLoBFOjFRhY1RQUsbPLE=">AAACCHicbVA9SwNBEN2LXzF+nVpauBiEiCTeRUEbIWhjYRHBfEASwt5mL1myd3vszikhpLTxr9hYKGLrT7Dz37hJrtDog4HHezPMzPMiwTU4zpeVmptfWFxKL2dWVtfWN+zNraqWsaKsQqWQqu4RzQQPWQU4CFaPFCOBJ1jN61+O/dodU5rL8BYGEWsFpBtyn1MCRmrbu81r5oPi3R4QpeQ9jvA5zsk8P+zn3YOjYtvOOgVnAvyXuAnJogTltv3Z7EgaBywEKojWDdeJoDUkCjgVbJRpxppFhPZJlzUMDUnAdGs4eWSE943Swb5UpkLAE/XnxJAEWg8Cz3QGBHp61huL/3mNGPyz1pCHUQwspNNFfiwwSDxOBXe4YhTEwBBCFTe3YtojilAw2WVMCO7sy39JtVhwjwvFm5Ns6SKJI4120B7KIRedohK6QmVUQRQ9oCf0gl6tR+vZerPep60pK5nZRr9gfXwDrzeXzQ==</latexit>

, p = (k � 1)/2
<latexit sha1_base64="d58aLPAYf749hHhkSP5OGRKTYVc=">AAACBHicbVA9SwNBEN2LXzF+nVqmWQxCLIx3UdBGCNpYWEQwH5AcYW+zlyzZuz1255QQUtj4V2wsFLH1R9j5b9wkV2j0wcDjvRlm5vmx4Boc58vKLCwuLa9kV3Nr6xubW/b2Tl3LRFFWo1JI1fSJZoJHrAYcBGvGipHQF6zhDy4nfuOOKc1ldAvDmHkh6UU84JSAkTp2vn3NAlC81weilLzHMT7HxcGhe3BU7tgFp+RMgf8SNyUFlKLasT/bXUmTkEVABdG65ToxeCOigFPBxrl2ollM6ID0WMvQiIRMe6PpE2O8b5QuDqQyFQGeqj8nRiTUehj6pjMk0Nfz3kT8z2slEJx5Ix7FCbCIzhYFicAg8SQR3OWKURBDQwhV3NyKaZ8oQsHkljMhuPMv/yX1csk9LpVvTgqVizSOLMqjPVRELjpFFXSFqqiGKHpAT+gFvVqP1rP1Zr3PWjNWOrOLfsH6+AYmrZZ1</latexit>

Probably explains why common kernel size conventions are 
3x3, 5x5, 7x7 (sometimes 1x1 in later layers to reduce channels)
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Spatial Dropout -- Dropout2D

• Problem with regular dropout and CNNs: 
Adjacent pixels are likely highly correlated  
(thus, may not help with reducing the 
"dependency" much as originally intended by  
dropout) 

• Hence, it may be better to drop entire feature maps

Idea comes from
Tompson, Jonathan, Ross Goroshin, Arjun Jain, Yann LeCun, and Christoph Bregler.  
"Efficient object localization using convolutional networks." In Proceedings of the IEEE Conference on Computer Vision 
and Pattern Recognition, pp. 648-656. 2015.

https://www.cv-foundation.org/openaccess/content_cvpr_2015/html/Tompson_Efficient_Object_Localization_2015_CVPR_paper.html
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Spatial Dropout -- Dropout2D
• Dropout2d will drop full feature maps (channels)
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Cross-Correlation vs Convolution
Deep Learning Jargon: convolution in DL is actually cross-correlation

Cross-correlation is our sliding dot product over the image

"feature map"

Z[i, j]
<latexit sha1_base64="pgja+B12YuauQl9BN2y3pM0zL0U=">AAAB7nicbVBNSwMxEJ2tX7V+VT16CRbBg5TdKuix6MVjBfuB26Vk02wbm2SXJCuUpT/CiwdFvPp7vPlvTNs9aOuDgcd7M8zMCxPOtHHdb6ewsrq2vlHcLG1t7+zulfcPWjpOFaFNEvNYdUKsKWeSNg0znHYSRbEIOW2Ho5up336iSrNY3ptxQgOBB5JFjGBjpfaDz87QY9ArV9yqOwNaJl5OKpCj0St/dfsxSQWVhnCste+5iQkyrAwjnE5K3VTTBJMRHlDfUokF1UE2O3eCTqzSR1GsbEmDZurviQwLrccitJ0Cm6Fe9Kbif56fmugqyJhMUkMlmS+KUo5MjKa/oz5TlBg+tgQTxeytiAyxwsTYhEo2BG/x5WXSqlW982rt7qJSv87jKMIRHMMpeHAJdbiFBjSBwAie4RXenMR5cd6dj3lrwclnDuEPnM8faFKO9Q==</latexit>

A 2 R3⇥3
<latexit sha1_base64="w4C4gcSFPGJnEK+9pILhLFkPnXM=">AAACBXicbVA9SwNBEJ2LXzF+RS21WAyCVbhLBC2jNpZRzAfkzrC32SRL9vaO3T0hHGls/Cs2ForY+h/s/DfuJVdo4oOBx3szzMzzI86Utu1vK7e0vLK6ll8vbGxube8Ud/eaKowloQ0S8lC2fawoZ4I2NNOctiNJceBz2vJHV6nfeqBSsVDc6XFEvQAPBOszgrWRusXDC+QygdwA66HvJ7eT+6TqahZQhaqTbrFkl+0p0CJxMlKCDPVu8cvthSQOqNCEY6U6jh1pL8FSM8LppODGikaYjPCAdgwV2OzxkukXE3RslB7qh9KU0Giq/p5IcKDUOPBNZ3qtmvdS8T+vE+v+uZcwEcWaCjJb1I850iFKI0E9JinRfGwIJpKZWxEZYomJNsEVTAjO/MuLpFkpO9Vy5ea0VLvM4sjDARzBCThwBjW4hjo0gMAjPMMrvFlP1ov1bn3MWnNWNrMPf2B9/gBzlZfp</latexit>

Z 2 R3⇥3
<latexit sha1_base64="vwrP9DRYafacnLzQX3ZRNL0Zjas=">AAACBXicbVC7TsNAEDyHVwgvAyUUJyIkqshOkKCMoKEMiDxEbKLz5ZKccj5bd2ukyHJDw6/QUIAQLf9Ax99weRSQMNJKo5ld7e4EseAaHOfbyi0tr6yu5dcLG5tb2zv27l5DR4mirE4jEalWQDQTXLI6cBCsFStGwkCwZjC8HPvNB6Y0j+QtjGLmh6QveY9TAkbq2Id32OMSeyGBQRCkN9l9WvGAh0zjStaxi07JmQAvEndGimiGWsf+8roRTUImgQqiddt1YvBTooBTwbKCl2gWEzokfdY2VBKzx08nX2T42Chd3IuUKQl4ov6eSEmo9SgMTOf4Wj3vjcX/vHYCvXM/5TJOgEk6XdRLBIYIjyPBXa4YBTEyhFDFza2YDogiFExwBROCO//yImmUS26lVL4+LVYvZnHk0QE6QifIRWeoiq5QDdURRY/oGb2iN+vJerHerY9pa86azeyjP7A+fwCcHJgC</latexit>
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Cross-Correlation vs Convolution

"feature map"

Z[i, j]
<latexit sha1_base64="pgja+B12YuauQl9BN2y3pM0zL0U=">AAAB7nicbVBNSwMxEJ2tX7V+VT16CRbBg5TdKuix6MVjBfuB26Vk02wbm2SXJCuUpT/CiwdFvPp7vPlvTNs9aOuDgcd7M8zMCxPOtHHdb6ewsrq2vlHcLG1t7+zulfcPWjpOFaFNEvNYdUKsKWeSNg0znHYSRbEIOW2Ho5up336iSrNY3ptxQgOBB5JFjGBjpfaDz87QY9ArV9yqOwNaJl5OKpCj0St/dfsxSQWVhnCste+5iQkyrAwjnE5K3VTTBJMRHlDfUokF1UE2O3eCTqzSR1GsbEmDZurviQwLrccitJ0Cm6Fe9Kbif56fmugqyJhMUkMlmS+KUo5MjKa/oz5TlBg+tgQTxeytiAyxwsTYhEo2BG/x5WXSqlW982rt7qJSv87jKMIRHMMpeHAJdbiFBjSBwAie4RXenMR5cd6dj3lrwclnDuEPnM8faFKO9Q==</latexit>

A 2 R3⇥3
<latexit sha1_base64="w4C4gcSFPGJnEK+9pILhLFkPnXM=">AAACBXicbVA9SwNBEJ2LXzF+RS21WAyCVbhLBC2jNpZRzAfkzrC32SRL9vaO3T0hHGls/Cs2ForY+h/s/DfuJVdo4oOBx3szzMzzI86Utu1vK7e0vLK6ll8vbGxube8Ud/eaKowloQ0S8lC2fawoZ4I2NNOctiNJceBz2vJHV6nfeqBSsVDc6XFEvQAPBOszgrWRusXDC+QygdwA66HvJ7eT+6TqahZQhaqTbrFkl+0p0CJxMlKCDPVu8cvthSQOqNCEY6U6jh1pL8FSM8LppODGikaYjPCAdgwV2OzxkukXE3RslB7qh9KU0Giq/p5IcKDUOPBNZ3qtmvdS8T+vE+v+uZcwEcWaCjJb1I850iFKI0E9JinRfGwIJpKZWxEZYomJNsEVTAjO/MuLpFkpO9Vy5ea0VLvM4sjDARzBCThwBjW4hjo0gMAjPMMrvFlP1ov1bn3MWnNWNrMPf2B9/gBzlZfp</latexit>

Z 2 R3⇥3
<latexit sha1_base64="vwrP9DRYafacnLzQX3ZRNL0Zjas=">AAACBXicbVC7TsNAEDyHVwgvAyUUJyIkqshOkKCMoKEMiDxEbKLz5ZKccj5bd2ukyHJDw6/QUIAQLf9Ax99weRSQMNJKo5ld7e4EseAaHOfbyi0tr6yu5dcLG5tb2zv27l5DR4mirE4jEalWQDQTXLI6cBCsFStGwkCwZjC8HPvNB6Y0j+QtjGLmh6QveY9TAkbq2Id32OMSeyGBQRCkN9l9WvGAh0zjStaxi07JmQAvEndGimiGWsf+8roRTUImgQqiddt1YvBTooBTwbKCl2gWEzokfdY2VBKzx08nX2T42Chd3IuUKQl4ov6eSEmo9SgMTOf4Wj3vjcX/vHYCvXM/5TJOgEk6XdRLBIYIjyPBXa4YBTEyhFDFza2YDogiFExwBROCO//yImmUS26lVL4+LVYvZnHk0QE6QifIRWeoiq5QDdURRY/oGb2iN+vJerHerY9pa86azeyjP7A+fwCcHJgC</latexit>

Z[i, j] =
kX

u=�k

kX

v=�k

K[u, v]A[i+ u, j + v]
<latexit sha1_base64="yrGEywl1Y1LByNhPCkHvbOrPHc4="></latexit>

Z[i, j] = K ⌦A
<latexit sha1_base64="i/izFKQB/27hVxepexqMFOTaYd8=">AAAB/nicbVBNS8NAEN34WetXVDx5WSyCBylJFfQiVL0IXirYD0xD2Wy37dpNNuxOhBIK/hUvHhTx6u/w5r9x2+agrQ8GHu/NMDMviAXX4Djf1tz8wuLScm4lv7q2vrFpb23XtEwUZVUqhVSNgGgmeMSqwEGwRqwYCQPB6kH/auTXH5nSXEZ3MIiZH5JuxDucEjBSy9699/gRfvDxOb7BTQk8ZBpftOyCU3TGwLPEzUgBZai07K9mW9IkZBFQQbT2XCcGPyUKOBVsmG8mmsWE9kmXeYZGxKzx0/H5Q3xglDbuSGUqAjxWf0+kJNR6EAamMyTQ09PeSPzP8xLonPkpj+IEWEQnizqJwCDxKAvc5opREANDCFXc3IppjyhCwSSWNyG40y/Pklqp6B4XS7cnhfJlFkcO7aF9dIhcdIrK6BpVUBVRlKJn9IrerCfrxXq3Piatc1Y2s4P+wPr8AYAlk+g=</latexit>

Cross-Correlation:
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Cross-Correlation vs Convolution

Z[i, j] =
kX

u=�k

kX

v=�k

K[u, v]A[i+ u, j + v]
<latexit sha1_base64="yrGEywl1Y1LByNhPCkHvbOrPHc4="></latexit>

Z[i, j] = K ⌦A
<latexit sha1_base64="i/izFKQB/27hVxepexqMFOTaYd8=">AAAB/nicbVBNS8NAEN34WetXVDx5WSyCBylJFfQiVL0IXirYD0xD2Wy37dpNNuxOhBIK/hUvHhTx6u/w5r9x2+agrQ8GHu/NMDMviAXX4Djf1tz8wuLScm4lv7q2vrFpb23XtEwUZVUqhVSNgGgmeMSqwEGwRqwYCQPB6kH/auTXH5nSXEZ3MIiZH5JuxDucEjBSy9699/gRfvDxOb7BTQk8ZBpftOyCU3TGwLPEzUgBZai07K9mW9IkZBFQQbT2XCcGPyUKOBVsmG8mmsWE9kmXeYZGxKzx0/H5Q3xglDbuSGUqAjxWf0+kJNR6EAamMyTQ09PeSPzP8xLonPkpj+IEWEQnizqJwCDxKAvc5opREANDCFXc3IppjyhCwSSWNyG40y/Pklqp6B4XS7cnhfJlFkcO7aF9dIhcdIrK6BpVUBVRlKJn9IrerCfrxXq3Piatc1Y2s4P+wPr8AYAlk+g=</latexit>

Cross-Correlation:

-1,-1

0,0

-1,0 -1,1

1,11,01,-1

0,-1 0,1

1) 2) 3)

4) 5) 6)

7) 8) 9)

Looping direction  
indicated in red
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Cross-Correlation vs Convolution
Z[i, j] =

kX

u=�k

kX

v=�k

K[u, v]A[i+ u, j + v]
<latexit sha1_base64="yrGEywl1Y1LByNhPCkHvbOrPHc4="></latexit>

Z[i, j] = K ⌦A
<latexit sha1_base64="i/izFKQB/27hVxepexqMFOTaYd8=">AAAB/nicbVBNS8NAEN34WetXVDx5WSyCBylJFfQiVL0IXirYD0xD2Wy37dpNNuxOhBIK/hUvHhTx6u/w5r9x2+agrQ8GHu/NMDMviAXX4Djf1tz8wuLScm4lv7q2vrFpb23XtEwUZVUqhVSNgGgmeMSqwEGwRqwYCQPB6kH/auTXH5nSXEZ3MIiZH5JuxDucEjBSy9699/gRfvDxOb7BTQk8ZBpftOyCU3TGwLPEzUgBZai07K9mW9IkZBFQQbT2XCcGPyUKOBVsmG8mmsWE9kmXeYZGxKzx0/H5Q3xglDbuSGUqAjxWf0+kJNR6EAamMyTQ09PeSPzP8xLonPkpj+IEWEQnizqJwCDxKAvc5opREANDCFXc3IppjyhCwSSWNyG40y/Pklqp6B4XS7cnhfJlFkcO7aF9dIhcdIrK6BpVUBVRlKJn9IrerCfrxXq3Piatc1Y2s4P+wPr8AYAlk+g=</latexit>

Cross-Correlation:

-1,-1

0,0

-1,0 -1,1

1,11,01,-1

0,-1 0,1

1)2)3)

4)5)6)

7)8)9)

Looping direction  
indicated in red

Convolution:
Z[i, j] =

kX

u=�k

kX

v=�k

K[u, v]A[i� u, j � v]
<latexit sha1_base64="gciLvvrtiG4n9L4bASqngj19+7w="></latexit>

Z[i, j] = K ⇤A
<latexit sha1_base64="vZGNFWQeTgSkyiycymTGu76B7qc=">AAAB+HicbVDLSgNBEOyNrxgfWfXoZTAIIhJ2o6AXIepF8BLBPHCzhNnJbDJm9sHMrBCXfIkXD4p49VO8+TdOkj1oYkFDUdVNd5cXcyaVZX0buYXFpeWV/GphbX1js2hubTdklAhC6yTikWh5WFLOQlpXTHHaigXFgcdp0xtcjf3mIxWSReGdGsbUDXAvZD4jWGmpYxbvHXaEHlx0jm7QIbromCWrbE2A5omdkRJkqHXMr3Y3IklAQ0U4ltKxrVi5KRaKEU5HhXYiaYzJAPeoo2mIAyrddHL4CO1rpYv8SOgKFZqovydSHEg5DDzdGWDVl7PeWPzPcxLln7kpC+NE0ZBMF/kJRypC4xRQlwlKFB9qgolg+lZE+lhgonRWBR2CPfvyPGlUyvZxuXJ7UqpeZnHkYRf24ABsOIUqXEMN6kAggWd4hTfjyXgx3o2PaWvOyGZ24A+Mzx9QvZDp</latexit>

Basically, we are flipping the kernel (or the 
receptive field) horizontally and vertically
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Cross-Correlation vs Convolution
Deep Learning Jargon: convolution in DL is actually cross-correlation

"Real" convolution has the nice associative property: 
(A ⇤B) ⇤ C = A ⇤ (B ⇤ C)

<latexit sha1_base64="NmDEdG9hUsHl7PiAA9yVIT7ok0s=">AAAB+nicbVDLSsNAFJ3UV62vVJduBovQZlGSKuhG6GPjsoJ9QBvKZDpph04mYWailNhPceNCEbd+iTv/xmmbhbYeuHA4517uvceLGJXKtr+NzMbm1vZOdje3t39weGTmj9syjAUmLRyyUHQ9JAmjnLQUVYx0I0FQ4DHS8SaNud95IELSkN+raUTcAI049SlGSksDM1+sWfWS1YA3sGYV61ajNDALdtleAK4TJyUFkKI5ML/6wxDHAeEKMyRlz7Ej5SZIKIoZmeX6sSQRwhM0Ij1NOQqIdJPF6TN4rpUh9EOhiyu4UH9PJCiQchp4ujNAaixXvbn4n9eLlX/tJpRHsSIcLxf5MYMqhPMc4JAKghWbaoKwoPpWiMdIIKx0WjkdgrP68jppV8rORblyd1mo1tM4suAUnIEicMAVqIJb0AQtgMEjeAav4M14Ml6Md+Nj2Zox0pkT8AfG5w8dmJCs</latexit>

In DL, we usually don't care about that (as opposed to many traditional 
computer vision and signal processing applications). 

Also, cross-correlation is easier to implement. 
 
Maybe the term "convolution" for cross-correlation became popular, 
because "Cross-Correlational Neural Network" sounds weird ;)
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Lavin, Andrew, and Scott Gray. "Fast algorithms for convolutional neural networks." 
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016.
https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/
Lavin_Fast_Algorithms_for_CVPR_2016_paper.pdf

Computing Convolutions on the GPU
• There are many different approaches to compute (approximate) 

convolution operations 

• DL libraries usually use NVIDIA's CUDA & CuDNN libraries, which  
implement many different convolution algorithms 

• These algorithms are usually more efficient than the CPU variants 
(convolutions on the CPU e.g., in CPU usually take up much more memory  
due to the algorithm choice compared to using the GPU)

If you are interested, you can find more info in:

https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Lavin_Fast_Algorithms_for_CVPR_2016_paper.pdf
https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Lavin_Fast_Algorithms_for_CVPR_2016_paper.pdf
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Computing Convolutions on the GPU
• CuDNN is more geared towards engineers & speed rather than scientists 

and is unfortunately not deterministic/reproducible by default 

• I.e., it determines which convolution algorithm to choose during run-time 
automatically, based on predicted speeds given the data flow 

• For reproducibility and consistent results, I recommend setting the 
deterministic flag (speed is about the same, often even a bit faster, 
sometimes a bit slower)

import torch
import torch.nn as nn
import torch.nn.functional as F

if torch.cuda.is_available():
    torch.backends.cudnn.deterministic = True
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Canziani, A., Paszke, A., & Culurciello, E. (2016). An analysis of deep neural network models for practical 
applications. arXiv preprint arXiv:1605.07678.Figure 1: Top1 vs. network. Single-crop top-1 vali-

dation accuracies for top scoring single-model archi-
tectures. We introduce with this chart our choice of
colour scheme, which will be used throughout this
publication to distinguish effectively different archi-
tectures and their correspondent authors. Notice that
networks of the same group share the same hue, for
example ResNet are all variations of pink.

Figure 2: Top1 vs. operations, size / parameters.

Top-1 one-crop accuracy versus amount of operations
required for a single forward pass. The size of the
blobs is proportional to the number of network pa-
rameters; a legend is reported in the bottom right cor-
ner, spanning from 5⇥10

6 to 155⇥10
6 params. Both

these figures share the same y-axis, and the grey dots
highlight the centre of the blobs.

single run of VGG-161 (Simonyan & Zisserman, 2014) and GoogLeNet (Szegedy et al., 2014) are
8.70% and 10.07% respectively, revealing that VGG-16 performs better than GoogLeNet. When
models are run with 10-crop sampling,2 then the errors become 9.33% and 9.15% respectively, and
therefore VGG-16 will perform worse than GoogLeNet, using a single central-crop. For this reason,
we decided to base our analysis on re-evaluations of top-1 accuracies3 for all networks with a single
central-crop sampling technique (Zagoruyko, 2016).

For inference time and memory usage measurements we have used Torch7 (Collobert et al., 2011)
with cuDNN-v5 (Chetlur et al., 2014) and CUDA-v8 back-end. All experiments were conducted on
a JetPack-2.3 NVIDIA Jetson TX1 board (nVIDIA): an embedded visual computing system with
a 64-bit ARM R� A57 CPU, a 1 T-Flop/s 256-core NVIDIA Maxwell GPU and 4 GB LPDDR4
of shared RAM. We use this resource-limited device to better underline the differences between
network architecture, but similar results can be obtained on most recent GPUs, such as the NVIDIA
K40 or Titan X, to name a few. Operation counts were obtained using an open-source tool that we
developed (Paszke, 2016). For measuring the power consumption, a Keysight 1146B Hall effect
current probe has been used with a Keysight MSO-X 2024A 200MHz digital oscilloscope with a
sampling period of 2 s and 50 kSa/s sample rate. The system was powered by a Keysight E3645A
GPIB controlled DC power supply.

3 RESULTS

In this section we report our results and comparisons. We analysed the following DDNs: AlexNet
(Krizhevsky et al., 2012), batch normalised AlexNet (Zagoruyko, 2016), batch normalised Network
In Network (NIN) (Lin et al., 2013), ENet (Paszke et al., 2016) for ImageNet (Culurciello, 2016),
GoogLeNet (Szegedy et al., 2014), VGG-16 and -19 (Simonyan & Zisserman, 2014), ResNet-18,
-34, -50, -101 and -152 (He et al., 2015), Inception-v3 (Szegedy et al., 2015) and Inception-v4
(Szegedy et al., 2016) since they obtained the highest performance, in these four years, on the
ImageNet (Russakovsky et al., 2015) challenge.

1 In the original paper this network is called VGG-D, which is the best performing network. Here we prefer
to highlight the number of layer utilised, so we will call it VGG-16 in this publication.

2 From a given image multiple patches are extracted: four corners plus central crop and their horizontal
mirrored twins.

3 Accuracy and error rate always sum to 100, therefore in this paper they are used interchangeably.

2

Common Architectures Revisited

We will discuss some additional common CNN architectures since 
the field evolved quite a bit since 2012 ...
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Canziani, A., Paszke, A., & Culurciello, E. (2016). An analysis of deep neural network models for practical 
applications. arXiv preprint arXiv:1605.07678.

Figure 1: Top1 vs. network. Single-crop top-1 vali-
dation accuracies for top scoring single-model archi-
tectures. We introduce with this chart our choice of
colour scheme, which will be used throughout this
publication to distinguish effectively different archi-
tectures and their correspondent authors. Notice that
networks of the same group share the same hue, for
example ResNet are all variations of pink.

Figure 2: Top1 vs. operations, size / parameters.

Top-1 one-crop accuracy versus amount of operations
required for a single forward pass. The size of the
blobs is proportional to the number of network pa-
rameters; a legend is reported in the bottom right cor-
ner, spanning from 5⇥10

6 to 155⇥10
6 params. Both

these figures share the same y-axis, and the grey dots
highlight the centre of the blobs.

single run of VGG-161 (Simonyan & Zisserman, 2014) and GoogLeNet (Szegedy et al., 2014) are
8.70% and 10.07% respectively, revealing that VGG-16 performs better than GoogLeNet. When
models are run with 10-crop sampling,2 then the errors become 9.33% and 9.15% respectively, and
therefore VGG-16 will perform worse than GoogLeNet, using a single central-crop. For this reason,
we decided to base our analysis on re-evaluations of top-1 accuracies3 for all networks with a single
central-crop sampling technique (Zagoruyko, 2016).

For inference time and memory usage measurements we have used Torch7 (Collobert et al., 2011)
with cuDNN-v5 (Chetlur et al., 2014) and CUDA-v8 back-end. All experiments were conducted on
a JetPack-2.3 NVIDIA Jetson TX1 board (nVIDIA): an embedded visual computing system with
a 64-bit ARM R� A57 CPU, a 1 T-Flop/s 256-core NVIDIA Maxwell GPU and 4 GB LPDDR4
of shared RAM. We use this resource-limited device to better underline the differences between
network architecture, but similar results can be obtained on most recent GPUs, such as the NVIDIA
K40 or Titan X, to name a few. Operation counts were obtained using an open-source tool that we
developed (Paszke, 2016). For measuring the power consumption, a Keysight 1146B Hall effect
current probe has been used with a Keysight MSO-X 2024A 200MHz digital oscilloscope with a
sampling period of 2 s and 50 kSa/s sample rate. The system was powered by a Keysight E3645A
GPIB controlled DC power supply.

3 RESULTS

In this section we report our results and comparisons. We analysed the following DDNs: AlexNet
(Krizhevsky et al., 2012), batch normalised AlexNet (Zagoruyko, 2016), batch normalised Network
In Network (NIN) (Lin et al., 2013), ENet (Paszke et al., 2016) for ImageNet (Culurciello, 2016),
GoogLeNet (Szegedy et al., 2014), VGG-16 and -19 (Simonyan & Zisserman, 2014), ResNet-18,
-34, -50, -101 and -152 (He et al., 2015), Inception-v3 (Szegedy et al., 2015) and Inception-v4
(Szegedy et al., 2016) since they obtained the highest performance, in these four years, on the
ImageNet (Russakovsky et al., 2015) challenge.

1 In the original paper this network is called VGG-D, which is the best performing network. Here we prefer
to highlight the number of layer utilised, so we will call it VGG-16 in this publication.

2 From a given image multiple patches are extracted: four corners plus central crop and their horizontal
mirrored twins.

3 Accuracy and error rate always sum to 100, therefore in this paper they are used interchangeably.

2

You will work with this in HW4

Common Architectures Revisited

number of 
model parameters
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Common Architectures Revisited

Canziani, A., Paszke, A., & Culurciello, E. (2016). An analysis of deep neural network models for practical 
applications. arXiv preprint arXiv:1605.07678.

Figure 1: Top1 vs. network. Single-crop top-1 vali-
dation accuracies for top scoring single-model archi-
tectures. We introduce with this chart our choice of
colour scheme, which will be used throughout this
publication to distinguish effectively different archi-
tectures and their correspondent authors. Notice that
networks of the same group share the same hue, for
example ResNet are all variations of pink.

Figure 2: Top1 vs. operations, size / parameters.

Top-1 one-crop accuracy versus amount of operations
required for a single forward pass. The size of the
blobs is proportional to the number of network pa-
rameters; a legend is reported in the bottom right cor-
ner, spanning from 5⇥10

6 to 155⇥10
6 params. Both

these figures share the same y-axis, and the grey dots
highlight the centre of the blobs.

single run of VGG-161 (Simonyan & Zisserman, 2014) and GoogLeNet (Szegedy et al., 2014) are
8.70% and 10.07% respectively, revealing that VGG-16 performs better than GoogLeNet. When
models are run with 10-crop sampling,2 then the errors become 9.33% and 9.15% respectively, and
therefore VGG-16 will perform worse than GoogLeNet, using a single central-crop. For this reason,
we decided to base our analysis on re-evaluations of top-1 accuracies3 for all networks with a single
central-crop sampling technique (Zagoruyko, 2016).

For inference time and memory usage measurements we have used Torch7 (Collobert et al., 2011)
with cuDNN-v5 (Chetlur et al., 2014) and CUDA-v8 back-end. All experiments were conducted on
a JetPack-2.3 NVIDIA Jetson TX1 board (nVIDIA): an embedded visual computing system with
a 64-bit ARM R� A57 CPU, a 1 T-Flop/s 256-core NVIDIA Maxwell GPU and 4 GB LPDDR4
of shared RAM. We use this resource-limited device to better underline the differences between
network architecture, but similar results can be obtained on most recent GPUs, such as the NVIDIA
K40 or Titan X, to name a few. Operation counts were obtained using an open-source tool that we
developed (Paszke, 2016). For measuring the power consumption, a Keysight 1146B Hall effect
current probe has been used with a Keysight MSO-X 2024A 200MHz digital oscilloscope with a
sampling period of 2 s and 50 kSa/s sample rate. The system was powered by a Keysight E3645A
GPIB controlled DC power supply.

3 RESULTS

In this section we report our results and comparisons. We analysed the following DDNs: AlexNet
(Krizhevsky et al., 2012), batch normalised AlexNet (Zagoruyko, 2016), batch normalised Network
In Network (NIN) (Lin et al., 2013), ENet (Paszke et al., 2016) for ImageNet (Culurciello, 2016),
GoogLeNet (Szegedy et al., 2014), VGG-16 and -19 (Simonyan & Zisserman, 2014), ResNet-18,
-34, -50, -101 and -152 (He et al., 2015), Inception-v3 (Szegedy et al., 2015) and Inception-v4
(Szegedy et al., 2016) since they obtained the highest performance, in these four years, on the
ImageNet (Russakovsky et al., 2015) challenge.

1 In the original paper this network is called VGG-D, which is the best performing network. Here we prefer
to highlight the number of layer utilised, so we will call it VGG-16 in this publication.

2 From a given image multiple patches are extracted: four corners plus central crop and their horizontal
mirrored twins.

3 Accuracy and error rate always sum to 100, therefore in this paper they are used interchangeably.

2
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VGG-16
PyTorch implementation: https://github.com/rasbt/stat479-deep-learning-
ss19/blob/master/L13_intro-cnn/code/vgg16.ipynb

Simonyan, Karen, and Andrew Zisserman. "Very deep convolutional networks for large-scale 
image recognition." arXiv preprint arXiv:1409.1556 (2014).

Published as a conference paper at ICLR 2015

Table 1: ConvNet configurations (shown in columns). The depth of the configurations increases
from the left (A) to the right (E), as more layers are added (the added layers are shown in bold). The
convolutional layer parameters are denoted as “conv⟨receptive field size⟩-⟨number of channels⟩”.
The ReLU activation function is not shown for brevity.

ConvNet Configuration
A A-LRN B C D E

11 weight 11 weight 13 weight 16 weight 16 weight 19 weight
layers layers layers layers layers layers

input (224× 224 RGB image)
conv3-64 conv3-64 conv3-64 conv3-64 conv3-64 conv3-64

LRN conv3-64 conv3-64 conv3-64 conv3-64
maxpool

conv3-128 conv3-128 conv3-128 conv3-128 conv3-128 conv3-128
conv3-128 conv3-128 conv3-128 conv3-128

maxpool
conv3-256 conv3-256 conv3-256 conv3-256 conv3-256 conv3-256
conv3-256 conv3-256 conv3-256 conv3-256 conv3-256 conv3-256

conv1-256 conv3-256 conv3-256
conv3-256

maxpool
conv3-512 conv3-512 conv3-512 conv3-512 conv3-512 conv3-512
conv3-512 conv3-512 conv3-512 conv3-512 conv3-512 conv3-512

conv1-512 conv3-512 conv3-512
conv3-512

maxpool
conv3-512 conv3-512 conv3-512 conv3-512 conv3-512 conv3-512
conv3-512 conv3-512 conv3-512 conv3-512 conv3-512 conv3-512

conv1-512 conv3-512 conv3-512
conv3-512

maxpool
FC-4096
FC-4096
FC-1000
soft-max

Table 2: Number of parameters (in millions).
Network A,A-LRN B C D E
Number of parameters 133 133 134 138 144

such layers have a 7 × 7 effective receptive field. So what have we gained by using, for instance, a
stack of three 3×3 conv. layers instead of a single 7×7 layer? First, we incorporate three non-linear
rectification layers instead of a single one, which makes the decision function more discriminative.
Second, we decrease the number of parameters: assuming that both the input and the output of a
three-layer 3× 3 convolution stack has C channels, the stack is parametrised by 3

(

32C2
)

= 27C2

weights; at the same time, a single 7 × 7 conv. layer would require 72C2 = 49C2 parameters, i.e.
81% more. This can be seen as imposing a regularisation on the 7× 7 conv. filters, forcing them to
have a decomposition through the 3× 3 filters (with non-linearity injected in between).

The incorporation of 1 × 1 conv. layers (configuration C, Table 1) is a way to increase the non-
linearity of the decision function without affecting the receptive fields of the conv. layers. Even
though in our case the 1× 1 convolution is essentially a linear projection onto the space of the same
dimensionality (the number of input and output channels is the same), an additional non-linearity is
introduced by the rectification function. It should be noted that 1×1 conv. layers have recently been
utilised in the “Network in Network” architecture of Lin et al. (2014).

Small-size convolution filters have been previously used by Ciresan et al. (2011), but their nets
are significantly less deep than ours, and they did not evaluate on the large-scale ILSVRC
dataset. Goodfellow et al. (2014) applied deep ConvNets (11 weight layers) to the task of
street number recognition, and showed that the increased depth led to better performance.
GoogLeNet (Szegedy et al., 2014), a top-performing entry of the ILSVRC-2014 classification task,
was developed independently of our work, but is similar in that it is based on very deep ConvNets

3

Advantages:  
very simple architecture, 
3x3 convs, stride=1,  
"same" padding, 2x2 max pooling

Disadvantage:  
very large number of parameters  
and slow 
(see previous slide)

https://github.com/rasbt/stat479-deep-learning-ss19/blob/master/L13_intro-cnn/code/vgg16.ipynb
https://github.com/rasbt/stat479-deep-learning-ss19/blob/master/L13_intro-cnn/code/vgg16.ipynb
https://github.com/rasbt/stat479-deep-learning-ss19/blob/master/L13_intro-cnn/code/vgg16.ipynb
https://arxiv.org/abs/1409.1556
https://arxiv.org/abs/1409.1556
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VGG-16
PyTorch implementation: https://github.com/rasbt/stat479-deep-learning-
ss19/blob/master/L13_intro-cnn/code/vgg16.ipynb

Simonyan, Karen, and Andrew Zisserman. "Very deep convolutional networks for large-scale 
image recognition." arXiv preprint arXiv:1409.1556 (2014).

Visualization from 
https://www.cs.toronto.edu/~frossard/post/vgg16/

https://github.com/rasbt/stat479-deep-learning-ss19/blob/master/L13_intro-cnn/code/vgg16.ipynb
https://github.com/rasbt/stat479-deep-learning-ss19/blob/master/L13_intro-cnn/code/vgg16.ipynb
https://github.com/rasbt/stat479-deep-learning-ss19/blob/master/L13_intro-cnn/code/vgg16.ipynb
https://arxiv.org/abs/1409.1556
https://arxiv.org/abs/1409.1556
https://www.cs.toronto.edu/~frossard/post/vgg16/
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Common Architectures Revisited

Canziani, A., Paszke, A., & Culurciello, E. (2016). An analysis of deep neural network models for practical 
applications. arXiv preprint arXiv:1605.07678.

Figure 1: Top1 vs. network. Single-crop top-1 vali-
dation accuracies for top scoring single-model archi-
tectures. We introduce with this chart our choice of
colour scheme, which will be used throughout this
publication to distinguish effectively different archi-
tectures and their correspondent authors. Notice that
networks of the same group share the same hue, for
example ResNet are all variations of pink.

Figure 2: Top1 vs. operations, size / parameters.

Top-1 one-crop accuracy versus amount of operations
required for a single forward pass. The size of the
blobs is proportional to the number of network pa-
rameters; a legend is reported in the bottom right cor-
ner, spanning from 5⇥10

6 to 155⇥10
6 params. Both

these figures share the same y-axis, and the grey dots
highlight the centre of the blobs.

single run of VGG-161 (Simonyan & Zisserman, 2014) and GoogLeNet (Szegedy et al., 2014) are
8.70% and 10.07% respectively, revealing that VGG-16 performs better than GoogLeNet. When
models are run with 10-crop sampling,2 then the errors become 9.33% and 9.15% respectively, and
therefore VGG-16 will perform worse than GoogLeNet, using a single central-crop. For this reason,
we decided to base our analysis on re-evaluations of top-1 accuracies3 for all networks with a single
central-crop sampling technique (Zagoruyko, 2016).

For inference time and memory usage measurements we have used Torch7 (Collobert et al., 2011)
with cuDNN-v5 (Chetlur et al., 2014) and CUDA-v8 back-end. All experiments were conducted on
a JetPack-2.3 NVIDIA Jetson TX1 board (nVIDIA): an embedded visual computing system with
a 64-bit ARM R� A57 CPU, a 1 T-Flop/s 256-core NVIDIA Maxwell GPU and 4 GB LPDDR4
of shared RAM. We use this resource-limited device to better underline the differences between
network architecture, but similar results can be obtained on most recent GPUs, such as the NVIDIA
K40 or Titan X, to name a few. Operation counts were obtained using an open-source tool that we
developed (Paszke, 2016). For measuring the power consumption, a Keysight 1146B Hall effect
current probe has been used with a Keysight MSO-X 2024A 200MHz digital oscilloscope with a
sampling period of 2 s and 50 kSa/s sample rate. The system was powered by a Keysight E3645A
GPIB controlled DC power supply.

3 RESULTS

In this section we report our results and comparisons. We analysed the following DDNs: AlexNet
(Krizhevsky et al., 2012), batch normalised AlexNet (Zagoruyko, 2016), batch normalised Network
In Network (NIN) (Lin et al., 2013), ENet (Paszke et al., 2016) for ImageNet (Culurciello, 2016),
GoogLeNet (Szegedy et al., 2014), VGG-16 and -19 (Simonyan & Zisserman, 2014), ResNet-18,
-34, -50, -101 and -152 (He et al., 2015), Inception-v3 (Szegedy et al., 2015) and Inception-v4
(Szegedy et al., 2016) since they obtained the highest performance, in these four years, on the
ImageNet (Russakovsky et al., 2015) challenge.

1 In the original paper this network is called VGG-D, which is the best performing network. Here we prefer
to highlight the number of layer utilised, so we will call it VGG-16 in this publication.

2 From a given image multiple patches are extracted: four corners plus central crop and their horizontal
mirrored twins.

3 Accuracy and error rate always sum to 100, therefore in this paper they are used interchangeably.

2



Sebastian Raschka           STAT 479: Deep Learning            SS 2019  24

ResNets
He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. "Deep residual learning for image recognition." 
In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770-778. 2016.
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Figure 2. Residual learning: a building block.

are comparably good or better than the constructed solution
(or unable to do so in feasible time).

In this paper, we address the degradation problem by
introducing a deep residual learning framework. In-
stead of hoping each few stacked layers directly fit a
desired underlying mapping, we explicitly let these lay-
ers fit a residual mapping. Formally, denoting the desired
underlying mapping as H(x), we let the stacked nonlinear
layers fit another mapping of F(x) := H(x)−x. The orig-
inal mapping is recast into F(x)+x. We hypothesize that it
is easier to optimize the residual mapping than to optimize
the original, unreferenced mapping. To the extreme, if an
identity mapping were optimal, it would be easier to push
the residual to zero than to fit an identity mapping by a stack
of nonlinear layers.

The formulation of F(x)+x can be realized by feedfor-
ward neural networks with “shortcut connections” (Fig. 2).
Shortcut connections [2, 33, 48] are those skipping one or
more layers. In our case, the shortcut connections simply
perform identity mapping, and their outputs are added to
the outputs of the stacked layers (Fig. 2). Identity short-
cut connections add neither extra parameter nor computa-
tional complexity. The entire network can still be trained
end-to-end by SGD with backpropagation, and can be eas-
ily implemented using common libraries (e.g., Caffe [19])
without modifying the solvers.

We present comprehensive experiments on ImageNet
[35] to show the degradation problem and evaluate our
method. We show that: 1) Our extremely deep residual nets
are easy to optimize, but the counterpart “plain” nets (that
simply stack layers) exhibit higher training error when the
depth increases; 2) Our deep residual nets can easily enjoy
accuracy gains from greatly increased depth, producing re-
sults substantially better than previous networks.

Similar phenomena are also shown on the CIFAR-10 set
[20], suggesting that the optimization difficulties and the
effects of our method are not just akin to a particular dataset.
We present successfully trained models on this dataset with
over 100 layers, and explore models with over 1000 layers.

On the ImageNet classification dataset [35], we obtain
excellent results by extremely deep residual nets. Our 152-
layer residual net is the deepest network ever presented on
ImageNet, while still having lower complexity than VGG
nets [40]. Our ensemble has 3.57% top-5 error on the

ImageNet test set, and won the 1st place in the ILSVRC

2015 classification competition. The extremely deep rep-
resentations also have excellent generalization performance
on other recognition tasks, and lead us to further win the

1st places on: ImageNet detection, ImageNet localization,

COCO detection, and COCO segmentation in ILSVRC &
COCO 2015 competitions. This strong evidence shows that
the residual learning principle is generic, and we expect that
it is applicable in other vision and non-vision problems.

2. Related Work

Residual Representations. In image recognition, VLAD
[18] is a representation that encodes by the residual vectors
with respect to a dictionary, and Fisher Vector [30] can be
formulated as a probabilistic version [18] of VLAD. Both
of them are powerful shallow representations for image re-
trieval and classification [4, 47]. For vector quantization,
encoding residual vectors [17] is shown to be more effec-
tive than encoding original vectors.

In low-level vision and computer graphics, for solv-
ing Partial Differential Equations (PDEs), the widely used
Multigrid method [3] reformulates the system as subprob-
lems at multiple scales, where each subproblem is respon-
sible for the residual solution between a coarser and a finer
scale. An alternative to Multigrid is hierarchical basis pre-
conditioning [44, 45], which relies on variables that repre-
sent residual vectors between two scales. It has been shown
[3, 44, 45] that these solvers converge much faster than stan-
dard solvers that are unaware of the residual nature of the
solutions. These methods suggest that a good reformulation
or preconditioning can simplify the optimization.

Shortcut Connections. Practices and theories that lead to
shortcut connections [2, 33, 48] have been studied for a long
time. An early practice of training multi-layer perceptrons
(MLPs) is to add a linear layer connected from the network
input to the output [33, 48]. In [43, 24], a few interme-
diate layers are directly connected to auxiliary classifiers
for addressing vanishing/exploding gradients. The papers
of [38, 37, 31, 46] propose methods for centering layer re-
sponses, gradients, and propagated errors, implemented by
shortcut connections. In [43], an “inception” layer is com-
posed of a shortcut branch and a few deeper branches.

Concurrent with our work, “highway networks” [41, 42]
present shortcut connections with gating functions [15].
These gates are data-dependent and have parameters, in
contrast to our identity shortcuts that are parameter-free.
When a gated shortcut is “closed” (approaching zero), the
layers in highway networks represent non-residual func-
tions. On the contrary, our formulation always learns
residual functions; our identity shortcuts are never closed,
and all information is always passed through, with addi-
tional residual functions to be learned. In addition, high-

2771

With their simple trick of 
allowing skip connections 
(the possibility to learn 
identity functions and 
skip layers that are 
not useful), ResNets 
allow us to to implement 
very, very deep  
architectures

http://openaccess.thecvf.com/content_cvpr_2016/html/He_Deep_Residual_Learning_CVPR_2016_paper.html
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http://openaccess.thecvf.com/content_cvpr_2016/html/He_Deep_Residual_Learning_CVPR_2016_paper.html
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ResNets

Convolution Batch Norm ReLU Convolution Batch Norm ReLUx +

shortcut

a(l+2) = �
�
z(l+2) + a(l)

�
<latexit sha1_base64="xaVAckoILm+t/okPmgZyRE9Yq78=">AAACGHicbVDLSsNAFJ3UV62vqEs3g0VoKdSkCroRim5cVrAPaGKZTCd16OTBzESoIZ/hxl9x40IRt935N07SINp6YOBwzrncuccJGRXSML60wtLyyupacb20sbm1vaPv7nVEEHFM2jhgAe85SBBGfdKWVDLSCzlBnsNI1xlfpX73gXBBA/9WTkJie2jkU5diJJU00I/RXVxhtUY1gRfQEnTkIcuho8rjj1yDWaSapHp1oJeNupEBLhIzJ2WQozXQp9YwwJFHfIkZEqJvGqG0Y8QlxYwkJSsSJER4jEakr6iPPCLsODssgUdKGUI34Or5Embq74kYeUJMPEclPSTvxbyXiv95/Ui653ZM/TCSxMezRW7EoAxg2hIcUk6wZBNFEOZU/RXie8QRlqrLkirBnD95kXQadfOk3rg5LTcv8zqK4AAcggowwRlogmvQAm2AwRN4AW/gXXvWXrUP7XMWLWj5zD74A236DVTEnXY=</latexit>

In general: 
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ResNets

Convolution Batch Norm ReLU Convolution Batch Norm ReLUx +

shortcut

a(l+2) = �
�
z(l+2) + a(l)

�
<latexit sha1_base64="xaVAckoILm+t/okPmgZyRE9Yq78=">AAACGHicbVDLSsNAFJ3UV62vqEs3g0VoKdSkCroRim5cVrAPaGKZTCd16OTBzESoIZ/hxl9x40IRt935N07SINp6YOBwzrncuccJGRXSML60wtLyyupacb20sbm1vaPv7nVEEHFM2jhgAe85SBBGfdKWVDLSCzlBnsNI1xlfpX73gXBBA/9WTkJie2jkU5diJJU00I/RXVxhtUY1gRfQEnTkIcuho8rjj1yDWaSapHp1oJeNupEBLhIzJ2WQozXQp9YwwJFHfIkZEqJvGqG0Y8QlxYwkJSsSJER4jEakr6iPPCLsODssgUdKGUI34Or5Embq74kYeUJMPEclPSTvxbyXiv95/Ui653ZM/TCSxMezRW7EoAxg2hIcUk6wZBNFEOZU/RXie8QRlqrLkirBnD95kXQadfOk3rg5LTcv8zqK4AAcggowwRlogmvQAm2AwRN4AW/gXXvWXrUP7XMWLWj5zD74A236DVTEnXY=</latexit>

= �
�
a(l+1)W (l+2) + b(l+2) + a(l)

�
<latexit sha1_base64="yxHJNH8tDff77iNrrorUMvyNV/U=">AAACJXicbZDLSsNAFIYn9VbrLerSzWARWgolqYIuFIpuXFawF2himUwn7dDJhZmJUEJexo2v4saFRQRXvoqTNIi2Hhj45j//Yeb8TsiokIbxqRVWVtfWN4qbpa3tnd09ff+gI4KIY9LGAQt4z0GCMOqTtqSSkV7ICfIcRrrO5Cbtdx8JFzTw7+U0JLaHRj51KUZSSQP98gpago48ZDl0VEEPcYXVzGoCuxk1FNWg88PqklmqSWqvDvSyUTeygstg5lAGebUG+swaBjjyiC8xQ0L0TSOUdoy4pJiRpGRFgoQIT9CI9BX6yCPCjrMtE3iilCF0A66OL2Gm/p6IkSfE1HOU00NyLBZ7qfhfrx9J98KOqR9Gkvh4/pAbMSgDmEYGh5QTLNlUAcKcqr9CPEYcYamCLakQzMWVl6HTqJun9cbdWbl5ncdRBEfgGFSACc5BE9yCFmgDDJ7AC3gDM+1Ze9XetY+5taDlM4fgT2lf3+w2oTE=</latexit>

If all weights and the bias are zero, then
= �

�
a(l)

�
= a(l)

<latexit sha1_base64="HMO9tsawTohd5TWLlhXwB7nPjt8=">AAACDXicbVDLSsNAFJ34rPUVdelmsArtpiRV0E2h6MZlBfuAJpbJdJIOnUnCzEQooT/gxl9x40IRt+7d+TdO2gjaemDg3HPu5c49XsyoVJb1ZSwtr6yurRc2iptb2zu75t5+W0aJwKSFIxaJrockYTQkLUUVI91YEMQ9Rjre6CrzO/dESBqFt2ocE5ejIKQ+xUhpqW8e16EjacCR49GgDNFdWmaVSVZUYP2n7Jslq2pNAReJnZMSyNHsm5/OIMIJJ6HCDEnZs61YuSkSimJGJkUnkSRGeIQC0tM0RJxIN51eM4EnWhlAPxL6hQpO1d8TKeJSjrmnOzlSQznvZeJ/Xi9R/oWb0jBOFAnxbJGfMKgimEUDB1QQrNhYE4QF1X+FeIgEwkoHWNQh2PMnL5J2rWqfVms3Z6XGZR5HARyCI1AGNjgHDXANmqAFMHgAT+AFvBqPxrPxZrzPWpeMfOYA/IHx8Q1XNpnT</latexit>

due to ReLU
(identity function)
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ResNets

Convolution Batch Norm ReLU Convolution Batch Norm ReLUx +

shortcut

a(l+2) = �
�
z(l+2) + a(l)

�
<latexit sha1_base64="xaVAckoILm+t/okPmgZyRE9Yq78=">AAACGHicbVDLSsNAFJ3UV62vqEs3g0VoKdSkCroRim5cVrAPaGKZTCd16OTBzESoIZ/hxl9x40IRt935N07SINp6YOBwzrncuccJGRXSML60wtLyyupacb20sbm1vaPv7nVEEHFM2jhgAe85SBBGfdKWVDLSCzlBnsNI1xlfpX73gXBBA/9WTkJie2jkU5diJJU00I/RXVxhtUY1gRfQEnTkIcuho8rjj1yDWaSapHp1oJeNupEBLhIzJ2WQozXQp9YwwJFHfIkZEqJvGqG0Y8QlxYwkJSsSJER4jEakr6iPPCLsODssgUdKGUI34Or5Embq74kYeUJMPEclPSTvxbyXiv95/Ui653ZM/TCSxMezRW7EoAxg2hIcUk6wZBNFEOZU/RXie8QRlqrLkirBnD95kXQadfOk3rg5LTcv8zqK4AAcggowwRlogmvQAm2AwRN4AW/gXXvWXrUP7XMWLWj5zD74A236DVTEnXY=</latexit>

We assume these have the same dimension 
(e.g., via "same" convolution)
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ResNets

Convolution Batch Norm ReLU Convolution Batch Norm ReLUx +

Convolution Batch Norm ReLU Convolution Batch Norm ReLUx +

Convolution Batch Norm

shortcut

shortcut

alternative residual blocks with skip connections such that the input passed via 
the shortcut is resized to dimensions of the main path's output
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ResNet Block Implementation

PyTorch implementations of the previous slides:  

https://github.com/rasbt/stat479-deep-learning-ss19/blob/master/
L13_intro-cnn/code/resnet-blocks.ipynb

https://github.com/rasbt/stat479-deep-learning-ss19/blob/master/L13_intro-cnn/code/resnet-blocks.ipynb
https://github.com/rasbt/stat479-deep-learning-ss19/blob/master/L13_intro-cnn/code/resnet-blocks.ipynb
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ResNet-34 and ResNet-152

PyTorch implementations:  

https://github.com/rasbt/stat479-deep-learning-ss19/blob/master/
L13_intro-cnn/code/resnet-34.ipynb 
 
https://github.com/rasbt/stat479-deep-learning-ss19/blob/master/
L13_intro-cnn/code/resnet-152.ipynb 
 
(Note that I had to implement them rather quickly yesterday; thus, I didn't 
tune hyperparameters, and the performance can be improved a lot, e.g., by  
using some of the image augmentation steps from your home work, among 
others)

https://github.com/rasbt/stat479-deep-learning-ss19/blob/master/L13_intro-cnn/code/resnet-34.ipynb
https://github.com/rasbt/stat479-deep-learning-ss19/blob/master/L13_intro-cnn/code/resnet-34.ipynb
https://github.com/rasbt/stat479-deep-learning-ss19/blob/master/L13_intro-cnn/code/resnet-152.ipynb
https://github.com/rasbt/stat479-deep-learning-ss19/blob/master/L13_intro-cnn/code/resnet-152.ipynb
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Common Architectures Revisited

Canziani, A., Paszke, A., & Culurciello, E. (2016). An analysis of deep neural network models for practical 
applications. arXiv preprint arXiv:1605.07678.

Figure 1: Top1 vs. network. Single-crop top-1 vali-
dation accuracies for top scoring single-model archi-
tectures. We introduce with this chart our choice of
colour scheme, which will be used throughout this
publication to distinguish effectively different archi-
tectures and their correspondent authors. Notice that
networks of the same group share the same hue, for
example ResNet are all variations of pink.

Figure 2: Top1 vs. operations, size / parameters.

Top-1 one-crop accuracy versus amount of operations
required for a single forward pass. The size of the
blobs is proportional to the number of network pa-
rameters; a legend is reported in the bottom right cor-
ner, spanning from 5⇥10

6 to 155⇥10
6 params. Both

these figures share the same y-axis, and the grey dots
highlight the centre of the blobs.

single run of VGG-161 (Simonyan & Zisserman, 2014) and GoogLeNet (Szegedy et al., 2014) are
8.70% and 10.07% respectively, revealing that VGG-16 performs better than GoogLeNet. When
models are run with 10-crop sampling,2 then the errors become 9.33% and 9.15% respectively, and
therefore VGG-16 will perform worse than GoogLeNet, using a single central-crop. For this reason,
we decided to base our analysis on re-evaluations of top-1 accuracies3 for all networks with a single
central-crop sampling technique (Zagoruyko, 2016).

For inference time and memory usage measurements we have used Torch7 (Collobert et al., 2011)
with cuDNN-v5 (Chetlur et al., 2014) and CUDA-v8 back-end. All experiments were conducted on
a JetPack-2.3 NVIDIA Jetson TX1 board (nVIDIA): an embedded visual computing system with
a 64-bit ARM R� A57 CPU, a 1 T-Flop/s 256-core NVIDIA Maxwell GPU and 4 GB LPDDR4
of shared RAM. We use this resource-limited device to better underline the differences between
network architecture, but similar results can be obtained on most recent GPUs, such as the NVIDIA
K40 or Titan X, to name a few. Operation counts were obtained using an open-source tool that we
developed (Paszke, 2016). For measuring the power consumption, a Keysight 1146B Hall effect
current probe has been used with a Keysight MSO-X 2024A 200MHz digital oscilloscope with a
sampling period of 2 s and 50 kSa/s sample rate. The system was powered by a Keysight E3645A
GPIB controlled DC power supply.

3 RESULTS

In this section we report our results and comparisons. We analysed the following DDNs: AlexNet
(Krizhevsky et al., 2012), batch normalised AlexNet (Zagoruyko, 2016), batch normalised Network
In Network (NIN) (Lin et al., 2013), ENet (Paszke et al., 2016) for ImageNet (Culurciello, 2016),
GoogLeNet (Szegedy et al., 2014), VGG-16 and -19 (Simonyan & Zisserman, 2014), ResNet-18,
-34, -50, -101 and -152 (He et al., 2015), Inception-v3 (Szegedy et al., 2015) and Inception-v4
(Szegedy et al., 2016) since they obtained the highest performance, in these four years, on the
ImageNet (Russakovsky et al., 2015) challenge.

1 In the original paper this network is called VGG-D, which is the best performing network. Here we prefer
to highlight the number of layer utilised, so we will call it VGG-16 in this publication.

2 From a given image multiple patches are extracted: four corners plus central crop and their horizontal
mirrored twins.

3 Accuracy and error rate always sum to 100, therefore in this paper they are used interchangeably.

2
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Side Note: It is Possible to Replace Fully 
Connected Layers by Convolutional Layers

Fully connected layer

wT
1 x+ b1

<latexit sha1_base64="En8xjNMtAnoObRZ7W5LhpkbtT0E=">AAACCHicbVDLSsNAFJ3UV62vqEsXDhZBEEpSBV0W3bis0Be0MUymk3boZBJmJmoJWbrxV9y4UMStn+DOv3HSRtDWAwNnzrmXe+/xIkalsqwvo7CwuLS8Ulwtra1vbG6Z2zstGcYCkyYOWSg6HpKEUU6aiipGOpEgKPAYaXujy8xv3xIhacgbahwRJ0ADTn2KkdKSa+73AqSGnp/cpa5904A/3/sUHkPPtV2zbFWsCeA8sXNSBjnqrvnZ64c4DghXmCEpu7YVKSdBQlHMSFrqxZJECI/QgHQ15Sgg0kkmh6TwUCt96IdCP67gRP3dkaBAynHg6cpsTznrZeJ/XjdW/rmTUB7FinA8HeTHDKoQZqnAPhUEKzbWBGFB9a4QD5FAWOnsSjoEe/bkedKqVuyTSvX6tFy7yOMogj1wAI6ADc5ADVyBOmgCDB7AE3gBr8aj8Wy8Ge/T0oKR9+yCPzA+vgG5hJkf</latexit>

where

wT
2 x+ b2

<latexit sha1_base64="w9jYR3nTs25JhVUBGj0bJu/2Obc=">AAACCHicbVDLSsNAFJ3UV62vqEsXDhZBEEoSBV0W3bis0Be0MUymk3boZBJmJmoJWbrxV9y4UMStn+DOv3HSVtDWAwNnzrmXe+/xY0alsqwvo7CwuLS8Ulwtra1vbG6Z2ztNGSUCkwaOWCTaPpKEUU4aiipG2rEgKPQZafnDy9xv3RIhacTrahQTN0R9TgOKkdKSZ+53Q6QGfpDeZZ5zU4c/3/sMHkPfczyzbFWsMeA8saekDKaoeeZntxfhJCRcYYak7NhWrNwUCUUxI1mpm0gSIzxEfdLRlKOQSDcdH5LBQ630YBAJ/biCY/V3R4pCKUehryvzPeWsl4v/eZ1EBeduSnmcKMLxZFCQMKgimKcCe1QQrNhIE4QF1btCPEACYaWzK+kQ7NmT50nTqdgnFef6tFy9mMZRBHvgABwBG5yBKrgCNdAAGDyAJ/ACXo1H49l4M94npQVj2rML/sD4+Aa8n5kh</latexit>

W1 =


w1,1 w1,2

w1,3 w1,4

�

<latexit sha1_base64="P25N0fbBpEZMogqD0d32xbYxFGU="></latexit>

W2 =


w2,1 w2,2

w2,3 w2,4

�

<latexit sha1_base64="chChSTZ4lsrXuTisM5DYCe9F9dk=">AAACP3icbZDNS8MwGMZTP+f8mnr0EhyKBxltJ+hFEL14nOA2YR0lzd7OYJqWJFVH6X/mxX/Bm1cvHhTx6s1sK36/EHj4ve+b5HmChDOlbfvBmpicmp6ZLc2V5xcWl5YrK6stFaeSQpPGPJbnAVHAmYCmZprDeSKBRAGHdnB5POy3r0AqFoszPUigG5G+YCGjRBvkV1peRPRFEGbt3HfxAfYC6DORBYZKdpOXr/3M3cFOjrfwWLq55xW0/kV387IHove551eqds0eFf4rnEJUUVENv3Lv9WKaRiA05USpjmMnupsRqRnlYG5PFSSEXpI+dIwUJALVzUb+c7xpSA+HsTRHaDyi3zcyEik1iAIzOXSrfveG8L9eJ9XhfjdjIkk1CDp+KEw51jEehol7TALVfGAEoZKZv2J6QSSh2kReNiE4vy3/FS235tRr7ulu9fCoiKOE1tEG2kYO2kOH6AQ1UBNRdIse0TN6se6sJ+vVehuPTljFzhr6Udb7Bzt5rKQ=</latexit>

remember, these also involve dot 
products between the receptive 
fields and kernels

W1 ⇤ x+ b1
<latexit sha1_base64="HbNSBTIzLtBjs59pl8QpsXEsj+U=">AAACCHicbVDLSsNAFL2pr1pfUZcuHCyCKJSkCrosunFZwT6gDWEynbRDJw9mJmIJWbrxV9y4UMStn+DOv3HaRtDWAwNnzrmXe+/xYs6ksqwvo7CwuLS8Ulwtra1vbG6Z2ztNGSWC0AaJeCTaHpaUs5A2FFOctmNBceBx2vKGV2O/dUeFZFF4q0YxdQLcD5nPCFZacs39boDVwPPTVuba6Bj9fO8zdII813bNslWxJkDzxM5JGXLUXfOz24tIEtBQEY6l7NhWrJwUC8UIp1mpm0gaYzLEfdrRNMQBlU46OSRDh1rpIT8S+oUKTdTfHSkOpBwFnq4c7ylnvbH4n9dJlH/hpCyME0VDMh3kJxypCI1TQT0mKFF8pAkmguldERlggYnS2ZV0CPbsyfOkWa3Yp5XqzVm5dpnHUYQ9OIAjsOEcanANdWgAgQd4ghd4NR6NZ+PNeJ+WFoy8Zxf+wPj4BuFvmJc=</latexit>

W2 ⇤ x+ b2
<latexit sha1_base64="soFNKwGHy3fCNMYUbtb5wnrOR0E=">AAACCHicbVDLSsNAFJ3UV62vqEsXDhZBFEoSBV0W3bisYB/QhjCZTtqhk0mYmYglZOnGX3HjQhG3foI7/8ZJG0FbDwycOede7r3HjxmVyrK+jNLC4tLySnm1sra+sbllbu+0ZJQITJo4YpHo+EgSRjlpKqoY6cSCoNBnpO2PrnK/fUeEpBG/VeOYuCEacBpQjJSWPHO/FyI19IO0nXkOPIY/3/sMnkDfczyzatWsCeA8sQtSBQUanvnZ60c4CQlXmCEpu7YVKzdFQlHMSFbpJZLECI/QgHQ15Sgk0k0nh2TwUCt9GERCP67gRP3dkaJQynHo68p8Tznr5eJ/XjdRwYWbUh4ninA8HRQkDKoI5qnAPhUEKzbWBGFB9a4QD5FAWOnsKjoEe/bkedJyavZpzbk5q9YvizjKYA8cgCNgg3NQB9egAZoAgwfwBF7Aq/FoPBtvxvu0tGQUPbvgD4yPb+SKmJk=</latexit>
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Side Note: It is Possible to Replace Fully 
Connected Layers by Convolutional Layers

Fully connected layer

wT
1 x+ b1

<latexit sha1_base64="En8xjNMtAnoObRZ7W5LhpkbtT0E=">AAACCHicbVDLSsNAFJ3UV62vqEsXDhZBEEpSBV0W3bis0Be0MUymk3boZBJmJmoJWbrxV9y4UMStn+DOv3HSRtDWAwNnzrmXe+/xIkalsqwvo7CwuLS8Ulwtra1vbG6Z2zstGcYCkyYOWSg6HpKEUU6aiipGOpEgKPAYaXujy8xv3xIhacgbahwRJ0ADTn2KkdKSa+73AqSGnp/cpa5904A/3/sUHkPPtV2zbFWsCeA8sXNSBjnqrvnZ64c4DghXmCEpu7YVKSdBQlHMSFrqxZJECI/QgHQ15Sgg0kkmh6TwUCt96IdCP67gRP3dkaBAynHg6cpsTznrZeJ/XjdW/rmTUB7FinA8HeTHDKoQZqnAPhUEKzbWBGFB9a4QD5FAWOnsSjoEe/bkedKqVuyTSvX6tFy7yOMogj1wAI6ADc5ADVyBOmgCDB7AE3gBr8aj8Wy8Ge/T0oKR9+yCPzA+vgG5hJkf</latexit>

wT
2 x+ b2

<latexit sha1_base64="w9jYR3nTs25JhVUBGj0bJu/2Obc=">AAACCHicbVDLSsNAFJ3UV62vqEsXDhZBEEoSBV0W3bis0Be0MUymk3boZBJmJmoJWbrxV9y4UMStn+DOv3HSVtDWAwNnzrmXe+/xY0alsqwvo7CwuLS8Ulwtra1vbG6Z2ztNGSUCkwaOWCTaPpKEUU4aiipG2rEgKPQZafnDy9xv3RIhacTrahQTN0R9TgOKkdKSZ+53Q6QGfpDeZZ5zU4c/3/sMHkPfczyzbFWsMeA8saekDKaoeeZntxfhJCRcYYak7NhWrNwUCUUxI1mpm0gSIzxEfdLRlKOQSDcdH5LBQ630YBAJ/biCY/V3R4pCKUehryvzPeWsl4v/eZ1EBeduSnmcKMLxZFCQMKgimKcCe1QQrNhIE4QF1btCPEACYaWzK+kQ7NmT50nTqdgnFef6tFy9mMZRBHvgABwBG5yBKrgCNdAAGDyAJ/ACXo1H49l4M94npQVj2rML/sD4+Aa8n5kh</latexit>

Or, we can concatenate the inputs 
into 1x1 images with 4 channels and 
then use 2 kernels  
(remember, each kernel then also 
has 4 channels)

Example: https://github.com/rasbt/stat479-deep-learning-ss19/blob/master/L13_intro-cnn/
code/fc-to-conv.ipynb

https://github.com/rasbt/stat479-deep-learning-ss19/blob/master/L13_intro-cnn/code/fc-to-conv.ipynb
https://github.com/rasbt/stat479-deep-learning-ss19/blob/master/L13_intro-cnn/code/fc-to-conv.ipynb
https://github.com/rasbt/stat479-deep-learning-ss19/blob/master/L13_intro-cnn/code/fc-to-conv.ipynb
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Network in Network (NiN)
Lin, Min, Qiang Chen, and Shuicheng Yan. "Network in network." arXiv preprint arXiv:1312.4400 (2013).

Key Ideas

• A convolution kernel can be thought of as a generalized linear model (GLM) 
• Using a "sophisticated" nonlinear function approximator (e.g., an MLP) may  

enhance the abstraction ability of the local model 
• => Replace GLM by "micro network" (sliding an MLP over the feature map)

1)
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Key Ideas

• A convolution kernel can be thought of as a generalized linear model (GLM) 
• Using a "sophisticated" nonlinear function approximator (e.g., an MLP) may  

enhance the abstraction ability of the local model 
• => Replace GLM by "micro network" (sliding an MLP over the feature map)

1)

2)
• Replace the MLP "micro structure" via convolutions  

(explanation on the previous slides) 
• Replace the fully connected layers in the last layers by  

global average pooling
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(a) Linear convolution layer

 . 
. .

 . 
. .

(b) Mlpconv layer

Figure 1: Comparison of linear convolution layer and mlpconv layer. The linear convolution layer
includes a linear filter while the mlpconv layer includes a micro network (we choose the multilayer
perceptron in this paper). Both layers map the local receptive field to a confidence value of the latent
concept.

over the input in a similar manner as CNN and are then fed into the next layer. The overall structure
of the NIN is the stacking of multiple mlpconv layers. It is called “Network In Network” (NIN) as
we have micro networks (MLP), which are composing elements of the overall deep network, within
mlpconv layers,

Instead of adopting the traditional fully connected layers for classification in CNN, we directly
output the spatial average of the feature maps from the last mlpconv layer as the confidence of
categories via a global average pooling layer, and then the resulting vector is fed into the softmax
layer. In traditional CNN, it is difficult to interpret how the category level information from the
objective cost layer is passed back to the previous convolution layer due to the fully connected
layers which act as a black box in between. In contrast, global average pooling is more meaningful
and interpretable as it enforces correspondance between feature maps and categories, which is made
possible by a stronger local modeling using the micro network. Furthermore, the fully connected
layers are prone to overfitting and heavily depend on dropout regularization [4] [5], while global
average pooling is itself a structural regularizer, which natively prevents overfitting for the overall
structure.

2 Convolutional Neural Networks

Classic convolutional neuron networks [1] consist of alternatively stacked convolutional layers and
spatial pooling layers. The convolutional layers generate feature maps by linear convolutional filters
followed by nonlinear activation functions (rectifier, sigmoid, tanh, etc.). Using the linear rectifier
as an example, the feature map can be calculated as follows:

fi,j,k = max(wT
k xi,j , 0). (1)

Here (i, j) is the pixel index in the feature map, xij stands for the input patch centered at location
(i, j), and k is used to index the channels of the feature map.

This linear convolution is sufficient for abstraction when the instances of the latent concepts are
linearly separable. However, representations that achieve good abstraction are generally highly non-
linear functions of the input data. In conventional CNN, this might be compensated by utilizing
an over-complete set of filters [6] to cover all variations of the latent concepts. Namely, individual
linear filters can be learned to detect different variations of a same concept. However, having too
many filters for a single concept imposes extra burden on the next layer, which needs to consider all
combinations of variations from the previous layer [7]. As in CNN, filters from higher layers map
to larger regions in the original input. It generates a higher level concept by combining the lower
level concepts from the layer below. Therefore, we argue that it would be beneficial to do a better
abstraction on each local patch, before combining them into higher level concepts.

In the recent maxout network [8], the number of feature maps is reduced by maximum pooling
over affine feature maps (affine feature maps are the direct results from linear convolution without
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• Using a "sophisticated" nonlinear function approximator (e.g., an MLP) may  
enhance the abstraction ability of the local model
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Keeping the max activations in overlapping pools may have this effect: The strongest feature 

inside a broader neighborhood will be the only one kept it in the pooled output. This is 

typically desired for the CNN functionality, but it can also have a negative side effect because 

fine details in lower resolutions or entire rows or columns of lower activations could be 

discarded. The latest type of pooling that has been successfully used in the CNN context is 

global average pooling (GLAVP). Proposed as part of the NiN baseline architecture, it is used 

after the last convolutional layer [33]. The GLAVP layer calculates the average of each 

feature activation map and these values are fed directly into the classification output layer. 

This can remove the need for fully connected layers in a CNN based classifier. It is 

considered by the authors as a structural regularizer of the CNN, transforming feature 

activations into confidence maps, by creating correspondences between features and classes. 

 

 

Figure 16: Global average pooling layer replacing the fully connected layers. The output layer 
implements a Softmax operation with 𝑝1, 𝑝2, … , 𝑝𝑛 the predicted probabilities for each class. 

 Seeking an analogy in nature for pooling layers, it has been already studied by 

Neuroscience a property of biological neurons called lateral inhibition. The transmitted 

activations of feed-forward cells are pooled and an inhibitory signal is sent back to them, thus 

modifying the amount of input that reaches the receiver cells [45]. Neurons that have stronger 

responses tend to inhibit the response of neighboring neurons. We can think of max pooling 

as an implementation of lateral inhibition, where the max response fully inhibits its non-max 

neighborhood. 

  Properties of human visual perception like brightness induction have been linked in a 

recent study to lateral inhibition in the retina [45]. Various optical illusions that appear from 

differences in brightness levels were assumed to be caused by lateral inhibition. 

Global Average Pooling in Last Layer

Figure Source: Singh, Anshuman Vikram. "Content-based image retrieval using deep learning." (2015).

http://scholarworks.rit.edu/theses/8828/


Sebastian Raschka           STAT 479: Deep Learning            SS 2019  39

Network in Network (NiN)
Lin, Min, Qiang Chen, and Shuicheng Yan. "Network in network." arXiv preprint arXiv:1312.4400 (2013).

 . 
. .

 . 
. .

 . 
. .

 . 
. .

 . 
. .

 . 
. .  . 
. .

....

Figure 2: The overall structure of Network In Network. In this paper the NINs include the stacking
of three mlpconv layers and one global average pooling layer.

Comparison to maxout layers: the maxout layers in the maxout network performs max pooling
across multiple affine feature maps [8]. The feature maps of maxout layers are calculated as follows:

fi,j,k = max
m

(wT
km

xi,j). (3)

Maxout over linear functions forms a piecewise linear function which is capable of modeling any
convex function. For a convex function, samples with function values below a specific threshold
form a convex set. Therefore, by approximating convex functions of the local patch, maxout has
the capability of forming separation hyperplanes for concepts whose samples are within a convex
set (i.e. l2 balls, convex cones). Mlpconv layer differs from maxout layer in that the convex func-
tion approximator is replaced by a universal function approximator, which has greater capability in
modeling various distributions of latent concepts.

3.2 Global Average Pooling

Conventional convolutional neural networks perform convolution in the lower layers of the network.
For classification, the feature maps of the last convolutional layer are vectorized and fed into fully
connected layers followed by a softmax logistic regression layer [4] [8] [11]. This structure bridges
the convolutional structure with traditional neural network classifiers. It treats the convolutional
layers as feature extractors, and the resulting feature is classified in a traditional way.

However, the fully connected layers are prone to overfitting, thus hampering the generalization abil-
ity of the overall network. Dropout is proposed by Hinton et al. [5] as a regularizer which randomly
sets half of the activations to the fully connected layers to zero during training. It has improved the
generalization ability and largely prevents overfitting [4].

In this paper, we propose another strategy called global average pooling to replace the traditional
fully connected layers in CNN. The idea is to generate one feature map for each corresponding
category of the classification task in the last mlpconv layer. Instead of adding fully connected layers
on top of the feature maps, we take the average of each feature map, and the resulting vector is fed
directly into the softmax layer. One advantage of global average pooling over the fully connected
layers is that it is more native to the convolution structure by enforcing correspondences between
feature maps and categories. Thus the feature maps can be easily interpreted as categories confidence
maps. Another advantage is that there is no parameter to optimize in the global average pooling
thus overfitting is avoided at this layer. Futhermore, global average pooling sums out the spatial
information, thus it is more robust to spatial translations of the input.

We can see global average pooling as a structural regularizer that explicitly enforces feature maps to
be confidence maps of concepts (categories). This is made possible by the mlpconv layers, as they
makes better approximation to the confidence maps than GLMs.

3.3 Network In Network Structure

The overall structure of NIN is a stack of mlpconv layers, on top of which lie the global average
pooling and the objective cost layer. Sub-sampling layers can be added in between the mlpconv
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• Replace the fully connected layers in the last layers by  
global average pooling

1 node per class (like usually) 
+ softmax
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https://github.com/rasbt/stat479-deep-learning-ss19/blob/master/L13_intro-cnn/
code/nin-cifar10.ipynb

Example Implementation:

(a) Linear convolution layer

 . 
. .

 . 
. .

(b) Mlpconv layer

Figure 1: Comparison of linear convolution layer and mlpconv layer. The linear convolution layer
includes a linear filter while the mlpconv layer includes a micro network (we choose the multilayer
perceptron in this paper). Both layers map the local receptive field to a confidence value of the latent
concept.

over the input in a similar manner as CNN and are then fed into the next layer. The overall structure
of the NIN is the stacking of multiple mlpconv layers. It is called “Network In Network” (NIN) as
we have micro networks (MLP), which are composing elements of the overall deep network, within
mlpconv layers,

Instead of adopting the traditional fully connected layers for classification in CNN, we directly
output the spatial average of the feature maps from the last mlpconv layer as the confidence of
categories via a global average pooling layer, and then the resulting vector is fed into the softmax
layer. In traditional CNN, it is difficult to interpret how the category level information from the
objective cost layer is passed back to the previous convolution layer due to the fully connected
layers which act as a black box in between. In contrast, global average pooling is more meaningful
and interpretable as it enforces correspondance between feature maps and categories, which is made
possible by a stronger local modeling using the micro network. Furthermore, the fully connected
layers are prone to overfitting and heavily depend on dropout regularization [4] [5], while global
average pooling is itself a structural regularizer, which natively prevents overfitting for the overall
structure.

2 Convolutional Neural Networks

Classic convolutional neuron networks [1] consist of alternatively stacked convolutional layers and
spatial pooling layers. The convolutional layers generate feature maps by linear convolutional filters
followed by nonlinear activation functions (rectifier, sigmoid, tanh, etc.). Using the linear rectifier
as an example, the feature map can be calculated as follows:

fi,j,k = max(wT
k xi,j , 0). (1)

Here (i, j) is the pixel index in the feature map, xij stands for the input patch centered at location
(i, j), and k is used to index the channels of the feature map.

This linear convolution is sufficient for abstraction when the instances of the latent concepts are
linearly separable. However, representations that achieve good abstraction are generally highly non-
linear functions of the input data. In conventional CNN, this might be compensated by utilizing
an over-complete set of filters [6] to cover all variations of the latent concepts. Namely, individual
linear filters can be learned to detect different variations of a same concept. However, having too
many filters for a single concept imposes extra burden on the next layer, which needs to consider all
combinations of variations from the previous layer [7]. As in CNN, filters from higher layers map
to larger regions in the original input. It generates a higher level concept by combining the lower
level concepts from the layer below. Therefore, we argue that it would be beneficial to do a better
abstraction on each local patch, before combining them into higher level concepts.

In the recent maxout network [8], the number of feature maps is reduced by maximum pooling
over affine feature maps (affine feature maps are the direct results from linear convolution without
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• Replace the MLP "micro structure" via convolutions  
(explanation on the previous slides)
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Why it might work well in practice

Using the micro-networks allow us to extract more sophisticated 
features (non-linear functions); we may need fewer extractors  
and can avoid learning too simple or redundant abstractions

Fully-connected layers have a lot of parameters and may cause  
overfitting, replacing those by global average pooling might 
help with better generalization 
(nice side-effect: we can make the network be somewhat agnostic to the input size)

https://arxiv.org/abs/1312.4400
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descent with momentum – reaches state of the art performance without the need for complicated
activation functions, any response normalization or max-pooling. We empirically study the effect
of transitioning from a more standard architecture to our simplified CNN by performing an ablation
study on CIFAR-10 and compare our model to the state of the art on CIFAR-10, CIFAR-100 and
the ILSVRC-2012 ImageNet dataset. Our results both confirm the effectiveness of using small con-
volutional layers as recently proposed by Simonyan & Zisserman (2014) and give rise to interesting
new questions about the necessity of pooling in CNNs. Since dimensionality reduction is performed
via strided convolution rather than max-pooling in our architecture it also naturally lends itself to
studying questions about the invertibility of neural networks (Estrach et al., 2014). For a first step in
that direction we study properties of our network using a deconvolutional approach similar to Zeiler
& Fergus (2014).

2 MODEL DESCRIPTION - THE ALL CONVOLUTIONAL NETWORK

The models we use in our experiments differ from standard CNNs in several key aspects. First –
and most interestingly – we replace the pooling layers, which are present in practically all modern
CNNs used for object recognition, with standard convolutional layers with stride two. To understand
why this procedure can work it helps to recall the standard formulation for defining convolution and
pooling operations in CNNs. Let f denote a feature map produced by some layer of a CNN. It can
be described as a 3-dimensional array of size W ⇥H⇥N where W and H are the width and height
and N is the number of channels (in case f is the output of a convolutional layer, N is the number of
filters in this layer). Then p-norm subsampling (or pooling) with pooling size k (or half-length k/2)
and stride r applied to the feature map f is a 3-dimensional array s(f) with the following entries:

si,j,u(f) =

0

@
bk/2cX

h=�bk/2c

bk/2cX

w=�bk/2c

|fg(h,w,i,j,u)|p
1

A
1/p

, (1)

where g(h,w, i, j, u) = (r · i + h, r · j + w, u) is the function mapping from positions in s to
positions in f respecting the stride, p is the order of the p-norm (for p ! 1, it becomes the
commonly used max pooling). If r > k, pooling regions do not overlap; however, current CNN
architectures typically include overlapping pooling with k = 3 and r = 2. Let us now compare the
pooling operation defined by Eq. 1 to the standard definition of a convolutional layer c applied to
feature map f given as:

ci,j,o(f) = �

0

@
bk/2cX

h=�bk/2c

bk/2cX

w=�bk/2c

NX

u=1

✓h,w,u,o · fg(h,w,i,j,u)

1

A , (2)

where ✓ are the convolutional weights (or the kernel weights, or filters), �(·) is the activation func-
tion, typically a rectified linear activation ReLU �(x) = max(x, 0), and o 2 [1,M ] is the number
of output feature (or channel) of the convolutional layer. When formalized like this it becomes clear
that both operations depend on the same elements of the previous layer feature map. The pooling
layer can be seen as performing a feature-wise convolution 1 in which the activation function is
replaced by the p-norm. One can therefore ask the question whether and why such special layers
need to be introduced into the network. While a complete answer of this question is not easy to give
(see the experiments and discussion for further details and remarks) we assume that in general there
exist three possible explanations why pooling can help in CNNs: 1) the p-norm makes the represen-
tation in a CNN more invariant; 2) the spatial dimensionality reduction performed by pooling makes
covering larger parts of the input in higher layers possible; 3) the feature-wise nature of the pooling
operation (as opposed to a convolutional layer where features get mixed) could make optimization
easier. Assuming that only the second part – the dimensionality reduction performed by pooling –
is crucial for achieving good performance with CNNs (a hypothesis that we later test in our experi-
ments) one can now easily see that pooling can be removed from a network without abandoning the
spatial dimensionality reduction by two means:

1. We can remove each pooling layer and increase the stride of the convolutional layer that
preceded it accordingly.

1That is, a convolution where ✓h,w,u,o = 1 if u equals o and zero otherwise.

2

definition of max-pooling with 
stride=2 to when p ! 1
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descent with momentum – reaches state of the art performance without the need for complicated
activation functions, any response normalization or max-pooling. We empirically study the effect
of transitioning from a more standard architecture to our simplified CNN by performing an ablation
study on CIFAR-10 and compare our model to the state of the art on CIFAR-10, CIFAR-100 and
the ILSVRC-2012 ImageNet dataset. Our results both confirm the effectiveness of using small con-
volutional layers as recently proposed by Simonyan & Zisserman (2014) and give rise to interesting
new questions about the necessity of pooling in CNNs. Since dimensionality reduction is performed
via strided convolution rather than max-pooling in our architecture it also naturally lends itself to
studying questions about the invertibility of neural networks (Estrach et al., 2014). For a first step in
that direction we study properties of our network using a deconvolutional approach similar to Zeiler
& Fergus (2014).

2 MODEL DESCRIPTION - THE ALL CONVOLUTIONAL NETWORK

The models we use in our experiments differ from standard CNNs in several key aspects. First –
and most interestingly – we replace the pooling layers, which are present in practically all modern
CNNs used for object recognition, with standard convolutional layers with stride two. To understand
why this procedure can work it helps to recall the standard formulation for defining convolution and
pooling operations in CNNs. Let f denote a feature map produced by some layer of a CNN. It can
be described as a 3-dimensional array of size W ⇥H⇥N where W and H are the width and height
and N is the number of channels (in case f is the output of a convolutional layer, N is the number of
filters in this layer). Then p-norm subsampling (or pooling) with pooling size k (or half-length k/2)
and stride r applied to the feature map f is a 3-dimensional array s(f) with the following entries:

si,j,u(f) =

0

@
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h=�bk/2c

bk/2cX

w=�bk/2c

|fg(h,w,i,j,u)|p
1

A
1/p

, (1)

where g(h,w, i, j, u) = (r · i + h, r · j + w, u) is the function mapping from positions in s to
positions in f respecting the stride, p is the order of the p-norm (for p ! 1, it becomes the
commonly used max pooling). If r > k, pooling regions do not overlap; however, current CNN
architectures typically include overlapping pooling with k = 3 and r = 2. Let us now compare the
pooling operation defined by Eq. 1 to the standard definition of a convolutional layer c applied to
feature map f given as:

ci,j,o(f) = �

0

@
bk/2cX

h=�bk/2c

bk/2cX

w=�bk/2c

NX

u=1

✓h,w,u,o · fg(h,w,i,j,u)

1

A , (2)

where ✓ are the convolutional weights (or the kernel weights, or filters), �(·) is the activation func-
tion, typically a rectified linear activation ReLU �(x) = max(x, 0), and o 2 [1,M ] is the number
of output feature (or channel) of the convolutional layer. When formalized like this it becomes clear
that both operations depend on the same elements of the previous layer feature map. The pooling
layer can be seen as performing a feature-wise convolution 1 in which the activation function is
replaced by the p-norm. One can therefore ask the question whether and why such special layers
need to be introduced into the network. While a complete answer of this question is not easy to give
(see the experiments and discussion for further details and remarks) we assume that in general there
exist three possible explanations why pooling can help in CNNs: 1) the p-norm makes the represen-
tation in a CNN more invariant; 2) the spatial dimensionality reduction performed by pooling makes
covering larger parts of the input in higher layers possible; 3) the feature-wise nature of the pooling
operation (as opposed to a convolutional layer where features get mixed) could make optimization
easier. Assuming that only the second part – the dimensionality reduction performed by pooling –
is crucial for achieving good performance with CNNs (a hypothesis that we later test in our experi-
ments) one can now easily see that pooling can be removed from a network without abandoning the
spatial dimensionality reduction by two means:

1. We can remove each pooling layer and increase the stride of the convolutional layer that
preceded it accordingly.

1That is, a convolution where ✓h,w,u,o = 1 if u equals o and zero otherwise.

2

definition of a convolutional 
layer with stride=2
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descent with momentum – reaches state of the art performance without the need for complicated
activation functions, any response normalization or max-pooling. We empirically study the effect
of transitioning from a more standard architecture to our simplified CNN by performing an ablation
study on CIFAR-10 and compare our model to the state of the art on CIFAR-10, CIFAR-100 and
the ILSVRC-2012 ImageNet dataset. Our results both confirm the effectiveness of using small con-
volutional layers as recently proposed by Simonyan & Zisserman (2014) and give rise to interesting
new questions about the necessity of pooling in CNNs. Since dimensionality reduction is performed
via strided convolution rather than max-pooling in our architecture it also naturally lends itself to
studying questions about the invertibility of neural networks (Estrach et al., 2014). For a first step in
that direction we study properties of our network using a deconvolutional approach similar to Zeiler
& Fergus (2014).

2 MODEL DESCRIPTION - THE ALL CONVOLUTIONAL NETWORK

The models we use in our experiments differ from standard CNNs in several key aspects. First –
and most interestingly – we replace the pooling layers, which are present in practically all modern
CNNs used for object recognition, with standard convolutional layers with stride two. To understand
why this procedure can work it helps to recall the standard formulation for defining convolution and
pooling operations in CNNs. Let f denote a feature map produced by some layer of a CNN. It can
be described as a 3-dimensional array of size W ⇥H⇥N where W and H are the width and height
and N is the number of channels (in case f is the output of a convolutional layer, N is the number of
filters in this layer). Then p-norm subsampling (or pooling) with pooling size k (or half-length k/2)
and stride r applied to the feature map f is a 3-dimensional array s(f) with the following entries:

si,j,u(f) =

0
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where g(h,w, i, j, u) = (r · i + h, r · j + w, u) is the function mapping from positions in s to
positions in f respecting the stride, p is the order of the p-norm (for p ! 1, it becomes the
commonly used max pooling). If r > k, pooling regions do not overlap; however, current CNN
architectures typically include overlapping pooling with k = 3 and r = 2. Let us now compare the
pooling operation defined by Eq. 1 to the standard definition of a convolutional layer c applied to
feature map f given as:

ci,j,o(f) = �
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NX

u=1
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where ✓ are the convolutional weights (or the kernel weights, or filters), �(·) is the activation func-
tion, typically a rectified linear activation ReLU �(x) = max(x, 0), and o 2 [1,M ] is the number
of output feature (or channel) of the convolutional layer. When formalized like this it becomes clear
that both operations depend on the same elements of the previous layer feature map. The pooling
layer can be seen as performing a feature-wise convolution 1 in which the activation function is
replaced by the p-norm. One can therefore ask the question whether and why such special layers
need to be introduced into the network. While a complete answer of this question is not easy to give
(see the experiments and discussion for further details and remarks) we assume that in general there
exist three possible explanations why pooling can help in CNNs: 1) the p-norm makes the represen-
tation in a CNN more invariant; 2) the spatial dimensionality reduction performed by pooling makes
covering larger parts of the input in higher layers possible; 3) the feature-wise nature of the pooling
operation (as opposed to a convolutional layer where features get mixed) could make optimization
easier. Assuming that only the second part – the dimensionality reduction performed by pooling –
is crucial for achieving good performance with CNNs (a hypothesis that we later test in our experi-
ments) one can now easily see that pooling can be removed from a network without abandoning the
spatial dimensionality reduction by two means:

1. We can remove each pooling layer and increase the stride of the convolutional layer that
preceded it accordingly.

1That is, a convolution where ✓h,w,u,o = 1 if u equals o and zero otherwise.

2

definition of max-pooling with 
stride=2 to when p ! 1
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descent with momentum – reaches state of the art performance without the need for complicated
activation functions, any response normalization or max-pooling. We empirically study the effect
of transitioning from a more standard architecture to our simplified CNN by performing an ablation
study on CIFAR-10 and compare our model to the state of the art on CIFAR-10, CIFAR-100 and
the ILSVRC-2012 ImageNet dataset. Our results both confirm the effectiveness of using small con-
volutional layers as recently proposed by Simonyan & Zisserman (2014) and give rise to interesting
new questions about the necessity of pooling in CNNs. Since dimensionality reduction is performed
via strided convolution rather than max-pooling in our architecture it also naturally lends itself to
studying questions about the invertibility of neural networks (Estrach et al., 2014). For a first step in
that direction we study properties of our network using a deconvolutional approach similar to Zeiler
& Fergus (2014).

2 MODEL DESCRIPTION - THE ALL CONVOLUTIONAL NETWORK

The models we use in our experiments differ from standard CNNs in several key aspects. First –
and most interestingly – we replace the pooling layers, which are present in practically all modern
CNNs used for object recognition, with standard convolutional layers with stride two. To understand
why this procedure can work it helps to recall the standard formulation for defining convolution and
pooling operations in CNNs. Let f denote a feature map produced by some layer of a CNN. It can
be described as a 3-dimensional array of size W ⇥H⇥N where W and H are the width and height
and N is the number of channels (in case f is the output of a convolutional layer, N is the number of
filters in this layer). Then p-norm subsampling (or pooling) with pooling size k (or half-length k/2)
and stride r applied to the feature map f is a 3-dimensional array s(f) with the following entries:

si,j,u(f) =

0

@
bk/2cX

h=�bk/2c

bk/2cX

w=�bk/2c

|fg(h,w,i,j,u)|p
1

A
1/p

, (1)

where g(h,w, i, j, u) = (r · i + h, r · j + w, u) is the function mapping from positions in s to
positions in f respecting the stride, p is the order of the p-norm (for p ! 1, it becomes the
commonly used max pooling). If r > k, pooling regions do not overlap; however, current CNN
architectures typically include overlapping pooling with k = 3 and r = 2. Let us now compare the
pooling operation defined by Eq. 1 to the standard definition of a convolutional layer c applied to
feature map f given as:

ci,j,o(f) = �

0

@
bk/2cX

h=�bk/2c

bk/2cX

w=�bk/2c

NX

u=1

✓h,w,u,o · fg(h,w,i,j,u)

1

A , (2)

where ✓ are the convolutional weights (or the kernel weights, or filters), �(·) is the activation func-
tion, typically a rectified linear activation ReLU �(x) = max(x, 0), and o 2 [1,M ] is the number
of output feature (or channel) of the convolutional layer. When formalized like this it becomes clear
that both operations depend on the same elements of the previous layer feature map. The pooling
layer can be seen as performing a feature-wise convolution 1 in which the activation function is
replaced by the p-norm. One can therefore ask the question whether and why such special layers
need to be introduced into the network. While a complete answer of this question is not easy to give
(see the experiments and discussion for further details and remarks) we assume that in general there
exist three possible explanations why pooling can help in CNNs: 1) the p-norm makes the represen-
tation in a CNN more invariant; 2) the spatial dimensionality reduction performed by pooling makes
covering larger parts of the input in higher layers possible; 3) the feature-wise nature of the pooling
operation (as opposed to a convolutional layer where features get mixed) could make optimization
easier. Assuming that only the second part – the dimensionality reduction performed by pooling –
is crucial for achieving good performance with CNNs (a hypothesis that we later test in our experi-
ments) one can now easily see that pooling can be removed from a network without abandoning the
spatial dimensionality reduction by two means:

1. We can remove each pooling layer and increase the stride of the convolutional layer that
preceded it accordingly.

1That is, a convolution where ✓h,w,u,o = 1 if u equals o and zero otherwise.

2

definition of a convolutional 
layer with stride=2

We can think of "strided convolutions" as learnable pooling
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2. We can replace the pooling layer by a normal convolution with stride larger than one (i.e.
for a pooling layer with k = 3 and r = 2 we replace it with a convolution layer with
corresponding stride and kernel size and number of output channels equal to the number of
input channels)

The first option has the downside that we significantly reduce the overlap of the convolutional layer
that preceded the pooling layer. It is equivalent to a pooling operation in which only the top-left
feature response is considered and can result in less accurate recognition. The second option does
not suffer from this problem, since all existing convolutional layers stay unchanged, but results in
an increase of overall network parameters. It is worth noting that replacing pooling by convolution
adds inter-feature dependencies unless the weight matrix ✓ is constrained. We emphasize that that
this replacement can also be seen as learning the pooling operation rather than fixing it; which has
previously been considered using different parameterizations in the literature 2 (LeCun et al., 1998;
Gülçehre et al., 2014; Jia et al., 2012). We will evaluate both options in our experiments, ensuring
a fair comparison w.r.t. the number of network parameters. Although we are not aware of exist-
ing studies containing such controlled experiments on replacing pooling with convolution layers it
should be noted that the idea of removing pooling is not entirely unprecedented: First, the nomencla-
ture in early work on CNNs LeCun et al. (1998) (referring to pooling layers as subsampling layers
already) suggests the usage of different operations for subsampling. Second, albeit only consider-
ing small networks, experiments on using only convolution layers (with occasional subsampling)
in an architecture similar to traditional CNNs already appeared in work on the “neural abstraction
pyramid”Behnke (2003).

The second difference of the network model we consider to standard CNNs is that – similar to mod-
els recently used for achieving state-of-the-art performance in the ILSVRC-2012 competition (Si-
monyan & Zisserman, 2014; Szegedy et al., 2014) – we make use of small convolutional layers with
k < 5 which can greatly reduce the number of parameters in a network and thus serve as a form
of regularization. Additionally, to unify the architecture further, we make use of the fact that if the
image area covered by units in the topmost convolutional layer covers a portion of the image large
enough to recognize its content (i.e. the object we want to recognize) then fully connected layers
can also be replaced by simple 1-by-1 convolutions. This leads to predictions of object classes at
different positions which can then simply be averaged over the whole image. This scheme was first
described by Lin et al. (2014) and further regularizes the network as the one by one convolution
has much less parameters than a fully connected layer. Overall our architecture is thus reduced to
consist only of convolutional layers with rectified linear non-linearities and an averaging + softmax
layer to produce predictions over the whole image.

Table 1: The three base networks used for classification on CIFAR-10 and CIFAR-100.
Model

A B C
Input 32⇥ 32 RGB image

5⇥ 5 conv. 96 ReLU 5⇥ 5 conv. 96 ReLU 3⇥ 3 conv. 96 ReLU
1⇥ 1 conv. 96 ReLU 3⇥ 3 conv. 96 ReLU

3⇥ 3 max-pooling stride 2
5⇥ 5 conv. 192 ReLU 5⇥ 5 conv. 192 ReLU 3⇥ 3 conv. 192 ReLU

1⇥ 1 conv. 192 ReLU 3⇥ 3 conv. 192 ReLU
3⇥ 3 max-pooling stride 2
3⇥ 3 conv. 192 ReLU
1⇥ 1 conv. 192 ReLU
1⇥ 1 conv. 10 ReLU

global averaging over 6⇥ 6 spatial dimensions
10 or 100-way softmax

2Although in order to implement “proper pooling” in the same sense as commonly considered in the litera-
ture a special nonlinearity (e.g. a squaring operation) needs to be considered. A simple convolution layer with
rectified linear activation cannot by itself implement a p-norm computation.

3
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3 EXPERIMENTS

In order to quantify the effect of simplifying the model architecture we perform experiments on three
datasets: CIFAR-10, CIFAR-100 (Krizhevsky & Hinton, 2009) and ILSVRC-2012 ImageNet (Deng
et al., 2009) . Specifically, we use CIFAR-10 to perform an in-depth study of different models, since
a large model on this dataset can be trained with moderate computing costs of ⇡ 10 hours on a
modern GPU. We then test the best model found on CIFAR-10 and CIFAR-100 with and without
augmentations and perform a first preliminary experiment on the ILSVRC-2012 ImageNet dataset.
We performed all experiments using the Caffe (Jia et al., 2014) framework.

3.1 EXPERIMENTAL SETUP

In experiments on CIFAR-10 and CIFAR-100 we use three different base network models which are
intended to reflect current best practices for setting up CNNs for object recognition. Architectures
of these networks are described in Table 1. Starting from model A (the simplest model) the depth
and number of parameters in the network gradually increases to model C. Several things are to be
noted here. First, as described in the table, all base networks we consider use a 1-by-1 convolution at
the top to produce 10 outputs of which we then compute an average over all positions and a softmax
to produce class-probabilities (see Section 2 for the rationale behind this approach). We performed
additional experiments with fully connected layers instead of 1-by-1 convolutions but found these
models to consistently perform 0.5% � 1% worse than their fully convolutional counterparts. This
is in line with similar findings from prior work (Lin et al., 2014). We hence do not report these
numbers here to avoid cluttering the experiments. Second, it can be observed that model B from
the table is a variant of the Network in Network architecture proposed by Lin et al. (2014) in which
only one 1-by-1 convolution is performed after each “normal” convolution layer. Third, model C
replaces all 5⇥ 5 convolutions by simple 3⇥ 3 convolutions. This serves two purposes: 1) it unifies
the architecture to consist only of layers operating on 3 ⇥ 3 spatial neighborhoods of the previous
layer feature map (with occasional subsampling); 2) if max-pooling is replaced by a convolutional
layer, then 3⇥ 3 is the minimum filter size to allow overlapping convolution with stride 2. We also
highlight that model C resembles the very deep models used by Simonyan & Zisserman (2014) in
this years ImageNet competition.

Table 2: Model description of the three networks derived from base model C used for evaluating the
importance of pooling in case of classification on CIFAR-10 and CIFAR-100. The derived models
for base models A and B are built analogously. The higher layers are the same as in Table 1 .

Model

Strided-CNN-C ConvPool-CNN-C All-CNN-C
Input 32⇥ 32 RGB image

3⇥ 3 conv. 96 ReLU 3⇥ 3 conv. 96 ReLU 3⇥ 3 conv. 96 ReLU
3⇥ 3 conv. 96 ReLU 3⇥ 3 conv. 96 ReLU 3⇥ 3 conv. 96 ReLU

with stride r = 2 3⇥ 3 conv. 96 ReLU
3⇥ 3 max-pooling stride 2 3⇥ 3 conv. 96 ReLU

with stride r = 2
3⇥ 3 conv. 192 ReLU 3⇥ 3 conv. 192 ReLU 3⇥ 3 conv. 192 ReLU
3⇥ 3 conv. 192 ReLU 3⇥ 3 conv. 192 ReLU 3⇥ 3 conv. 192 ReLU

with stride r = 2 3⇥ 3 conv. 192 ReLU
3⇥ 3 max-pooling stride 2 3⇥ 3 conv. 192 ReLU

with stride r = 2
...

For each of the base models we then experiment with three additional variants. The additional
(derived) models for base model C are described in in Table 2. The derived models for base models
A and B are built analogously but not shown in the table to avoid cluttering the paper. In general the
additional models for each base model consist of:

• A model in which max-pooling is removed and the stride of the convolution layers pre-
ceding the max-pool layers is increased by 1 (to ensure that the next layer covers the same
spatial region of the input image as before). This is column “Strided-CNN-C” in the table.

4
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3 EXPERIMENTS

In order to quantify the effect of simplifying the model architecture we perform experiments on three
datasets: CIFAR-10, CIFAR-100 (Krizhevsky & Hinton, 2009) and ILSVRC-2012 ImageNet (Deng
et al., 2009) . Specifically, we use CIFAR-10 to perform an in-depth study of different models, since
a large model on this dataset can be trained with moderate computing costs of ⇡ 10 hours on a
modern GPU. We then test the best model found on CIFAR-10 and CIFAR-100 with and without
augmentations and perform a first preliminary experiment on the ILSVRC-2012 ImageNet dataset.
We performed all experiments using the Caffe (Jia et al., 2014) framework.

3.1 EXPERIMENTAL SETUP

In experiments on CIFAR-10 and CIFAR-100 we use three different base network models which are
intended to reflect current best practices for setting up CNNs for object recognition. Architectures
of these networks are described in Table 1. Starting from model A (the simplest model) the depth
and number of parameters in the network gradually increases to model C. Several things are to be
noted here. First, as described in the table, all base networks we consider use a 1-by-1 convolution at
the top to produce 10 outputs of which we then compute an average over all positions and a softmax
to produce class-probabilities (see Section 2 for the rationale behind this approach). We performed
additional experiments with fully connected layers instead of 1-by-1 convolutions but found these
models to consistently perform 0.5% � 1% worse than their fully convolutional counterparts. This
is in line with similar findings from prior work (Lin et al., 2014). We hence do not report these
numbers here to avoid cluttering the experiments. Second, it can be observed that model B from
the table is a variant of the Network in Network architecture proposed by Lin et al. (2014) in which
only one 1-by-1 convolution is performed after each “normal” convolution layer. Third, model C
replaces all 5⇥ 5 convolutions by simple 3⇥ 3 convolutions. This serves two purposes: 1) it unifies
the architecture to consist only of layers operating on 3 ⇥ 3 spatial neighborhoods of the previous
layer feature map (with occasional subsampling); 2) if max-pooling is replaced by a convolutional
layer, then 3⇥ 3 is the minimum filter size to allow overlapping convolution with stride 2. We also
highlight that model C resembles the very deep models used by Simonyan & Zisserman (2014) in
this years ImageNet competition.

Table 2: Model description of the three networks derived from base model C used for evaluating the
importance of pooling in case of classification on CIFAR-10 and CIFAR-100. The derived models
for base models A and B are built analogously. The higher layers are the same as in Table 1 .

Model

Strided-CNN-C ConvPool-CNN-C All-CNN-C
Input 32⇥ 32 RGB image

3⇥ 3 conv. 96 ReLU 3⇥ 3 conv. 96 ReLU 3⇥ 3 conv. 96 ReLU
3⇥ 3 conv. 96 ReLU 3⇥ 3 conv. 96 ReLU 3⇥ 3 conv. 96 ReLU

with stride r = 2 3⇥ 3 conv. 96 ReLU
3⇥ 3 max-pooling stride 2 3⇥ 3 conv. 96 ReLU

with stride r = 2
3⇥ 3 conv. 192 ReLU 3⇥ 3 conv. 192 ReLU 3⇥ 3 conv. 192 ReLU
3⇥ 3 conv. 192 ReLU 3⇥ 3 conv. 192 ReLU 3⇥ 3 conv. 192 ReLU

with stride r = 2 3⇥ 3 conv. 192 ReLU
3⇥ 3 max-pooling stride 2 3⇥ 3 conv. 192 ReLU

with stride r = 2
...

For each of the base models we then experiment with three additional variants. The additional
(derived) models for base model C are described in in Table 2. The derived models for base models
A and B are built analogously but not shown in the table to avoid cluttering the paper. In general the
additional models for each base model consist of:

• A model in which max-pooling is removed and the stride of the convolution layers pre-
ceding the max-pool layers is increased by 1 (to ensure that the next layer covers the same
spatial region of the input image as before). This is column “Strided-CNN-C” in the table.

4

Remove pooliong & increase stride of the previous layer

https://arxiv.org/abs/1412.6806
https://arxiv.org/abs/1412.6806


Sebastian Raschka           STAT 479: Deep Learning            SS 2019  47

"All-Convolutional Network"
Springenberg, Jost Tobias, Alexey Dosovitskiy, Thomas Brox, and Martin Riedmiller. "Striving for simplicity: The all 
convolutional net." arXiv preprint arXiv:1412.6806 (2014).

Experimental Ablation Study with 3 Base Models: 
Shown are the modifications for Model C

Accepted as a workshop contribution at ICLR 2015

3 EXPERIMENTS

In order to quantify the effect of simplifying the model architecture we perform experiments on three
datasets: CIFAR-10, CIFAR-100 (Krizhevsky & Hinton, 2009) and ILSVRC-2012 ImageNet (Deng
et al., 2009) . Specifically, we use CIFAR-10 to perform an in-depth study of different models, since
a large model on this dataset can be trained with moderate computing costs of ⇡ 10 hours on a
modern GPU. We then test the best model found on CIFAR-10 and CIFAR-100 with and without
augmentations and perform a first preliminary experiment on the ILSVRC-2012 ImageNet dataset.
We performed all experiments using the Caffe (Jia et al., 2014) framework.

3.1 EXPERIMENTAL SETUP

In experiments on CIFAR-10 and CIFAR-100 we use three different base network models which are
intended to reflect current best practices for setting up CNNs for object recognition. Architectures
of these networks are described in Table 1. Starting from model A (the simplest model) the depth
and number of parameters in the network gradually increases to model C. Several things are to be
noted here. First, as described in the table, all base networks we consider use a 1-by-1 convolution at
the top to produce 10 outputs of which we then compute an average over all positions and a softmax
to produce class-probabilities (see Section 2 for the rationale behind this approach). We performed
additional experiments with fully connected layers instead of 1-by-1 convolutions but found these
models to consistently perform 0.5% � 1% worse than their fully convolutional counterparts. This
is in line with similar findings from prior work (Lin et al., 2014). We hence do not report these
numbers here to avoid cluttering the experiments. Second, it can be observed that model B from
the table is a variant of the Network in Network architecture proposed by Lin et al. (2014) in which
only one 1-by-1 convolution is performed after each “normal” convolution layer. Third, model C
replaces all 5⇥ 5 convolutions by simple 3⇥ 3 convolutions. This serves two purposes: 1) it unifies
the architecture to consist only of layers operating on 3 ⇥ 3 spatial neighborhoods of the previous
layer feature map (with occasional subsampling); 2) if max-pooling is replaced by a convolutional
layer, then 3⇥ 3 is the minimum filter size to allow overlapping convolution with stride 2. We also
highlight that model C resembles the very deep models used by Simonyan & Zisserman (2014) in
this years ImageNet competition.

Table 2: Model description of the three networks derived from base model C used for evaluating the
importance of pooling in case of classification on CIFAR-10 and CIFAR-100. The derived models
for base models A and B are built analogously. The higher layers are the same as in Table 1 .

Model

Strided-CNN-C ConvPool-CNN-C All-CNN-C
Input 32⇥ 32 RGB image

3⇥ 3 conv. 96 ReLU 3⇥ 3 conv. 96 ReLU 3⇥ 3 conv. 96 ReLU
3⇥ 3 conv. 96 ReLU 3⇥ 3 conv. 96 ReLU 3⇥ 3 conv. 96 ReLU

with stride r = 2 3⇥ 3 conv. 96 ReLU
3⇥ 3 max-pooling stride 2 3⇥ 3 conv. 96 ReLU

with stride r = 2
3⇥ 3 conv. 192 ReLU 3⇥ 3 conv. 192 ReLU 3⇥ 3 conv. 192 ReLU
3⇥ 3 conv. 192 ReLU 3⇥ 3 conv. 192 ReLU 3⇥ 3 conv. 192 ReLU

with stride r = 2 3⇥ 3 conv. 192 ReLU
3⇥ 3 max-pooling stride 2 3⇥ 3 conv. 192 ReLU

with stride r = 2
...

For each of the base models we then experiment with three additional variants. The additional
(derived) models for base model C are described in in Table 2. The derived models for base models
A and B are built analogously but not shown in the table to avoid cluttering the paper. In general the
additional models for each base model consist of:

• A model in which max-pooling is removed and the stride of the convolution layers pre-
ceding the max-pool layers is increased by 1 (to ensure that the next layer covers the same
spatial region of the input image as before). This is column “Strided-CNN-C” in the table.

4

Remove pooling & add a strided conv. layer
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3 EXPERIMENTS

In order to quantify the effect of simplifying the model architecture we perform experiments on three
datasets: CIFAR-10, CIFAR-100 (Krizhevsky & Hinton, 2009) and ILSVRC-2012 ImageNet (Deng
et al., 2009) . Specifically, we use CIFAR-10 to perform an in-depth study of different models, since
a large model on this dataset can be trained with moderate computing costs of ⇡ 10 hours on a
modern GPU. We then test the best model found on CIFAR-10 and CIFAR-100 with and without
augmentations and perform a first preliminary experiment on the ILSVRC-2012 ImageNet dataset.
We performed all experiments using the Caffe (Jia et al., 2014) framework.

3.1 EXPERIMENTAL SETUP

In experiments on CIFAR-10 and CIFAR-100 we use three different base network models which are
intended to reflect current best practices for setting up CNNs for object recognition. Architectures
of these networks are described in Table 1. Starting from model A (the simplest model) the depth
and number of parameters in the network gradually increases to model C. Several things are to be
noted here. First, as described in the table, all base networks we consider use a 1-by-1 convolution at
the top to produce 10 outputs of which we then compute an average over all positions and a softmax
to produce class-probabilities (see Section 2 for the rationale behind this approach). We performed
additional experiments with fully connected layers instead of 1-by-1 convolutions but found these
models to consistently perform 0.5% � 1% worse than their fully convolutional counterparts. This
is in line with similar findings from prior work (Lin et al., 2014). We hence do not report these
numbers here to avoid cluttering the experiments. Second, it can be observed that model B from
the table is a variant of the Network in Network architecture proposed by Lin et al. (2014) in which
only one 1-by-1 convolution is performed after each “normal” convolution layer. Third, model C
replaces all 5⇥ 5 convolutions by simple 3⇥ 3 convolutions. This serves two purposes: 1) it unifies
the architecture to consist only of layers operating on 3 ⇥ 3 spatial neighborhoods of the previous
layer feature map (with occasional subsampling); 2) if max-pooling is replaced by a convolutional
layer, then 3⇥ 3 is the minimum filter size to allow overlapping convolution with stride 2. We also
highlight that model C resembles the very deep models used by Simonyan & Zisserman (2014) in
this years ImageNet competition.

Table 2: Model description of the three networks derived from base model C used for evaluating the
importance of pooling in case of classification on CIFAR-10 and CIFAR-100. The derived models
for base models A and B are built analogously. The higher layers are the same as in Table 1 .

Model

Strided-CNN-C ConvPool-CNN-C All-CNN-C
Input 32⇥ 32 RGB image

3⇥ 3 conv. 96 ReLU 3⇥ 3 conv. 96 ReLU 3⇥ 3 conv. 96 ReLU
3⇥ 3 conv. 96 ReLU 3⇥ 3 conv. 96 ReLU 3⇥ 3 conv. 96 ReLU

with stride r = 2 3⇥ 3 conv. 96 ReLU
3⇥ 3 max-pooling stride 2 3⇥ 3 conv. 96 ReLU

with stride r = 2
3⇥ 3 conv. 192 ReLU 3⇥ 3 conv. 192 ReLU 3⇥ 3 conv. 192 ReLU
3⇥ 3 conv. 192 ReLU 3⇥ 3 conv. 192 ReLU 3⇥ 3 conv. 192 ReLU

with stride r = 2 3⇥ 3 conv. 192 ReLU
3⇥ 3 max-pooling stride 2 3⇥ 3 conv. 192 ReLU

with stride r = 2
...

For each of the base models we then experiment with three additional variants. The additional
(derived) models for base model C are described in in Table 2. The derived models for base models
A and B are built analogously but not shown in the table to avoid cluttering the paper. In general the
additional models for each base model consist of:

• A model in which max-pooling is removed and the stride of the convolution layers pre-
ceding the max-pool layers is increased by 1 (to ensure that the next layer covers the same
spatial region of the input image as before). This is column “Strided-CNN-C” in the table.

4

Remove pooling & add a strided conv. layer
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• A model in which max-pooling is replaced by a convolution layer. This is column “All-
CNN-C” in the table.

• A model in which a dense convolution is placed before each max-pooling layer (the ad-
ditional convolutions have the same kernel size as the respective pooling layer). This is
model “ConvPool-CNN-C” in the table. Experiments with this model are necessary to en-
sure that the effect we measure is not solely due to increasing model size when going from
a “normal” CNN to its “All-CNN” counterpart.

Finally, to test whether a network solely using convolutions also performs well on a larger scale
recognition problem we trained an up-scaled version of ALL-CNN-B on the ILSVRC 2012 part of
the ImageNet database. Although we expect that a larger network using only 3 ⇥ 3 convolutions
and having stride 1 in the first layer (and thus similar in style to Simonyan & Zisserman (2014))
would perform even better on this dataset, training it would take several weeks and could thus not
be completed in time for this manuscript.

3.2 CLASSIFICATION RESULTS

3.2.1 CIFAR-10

Table 3: Comparison between the base and derived models on the CIFAR-10 dataset.

CIFAR-10 classification error

Model Error (%) # parameters
without data augmentation
Model A 12.47% ⇡ 0.9 M
Strided-CNN-A 13.46% ⇡ 0.9 M
ConvPool-CNN-A 10.21% ⇡ 1.28 M
ALL-CNN-A 10.30% ⇡ 1.28 M
Model B 10.20% ⇡ 1 M
Strided-CNN-B 10.98% ⇡ 1 M
ConvPool-CNN-B 9.33% ⇡ 1.35 M
ALL-CNN-B 9.10% ⇡ 1.35 M
Model C 9.74% ⇡ 1.3 M
Strided-CNN-C 10.19% ⇡ 1.3 M
ConvPool-CNN-C 9.31% ⇡ 1.4 M
ALL-CNN-C 9.08% ⇡ 1.4 M

In our first experiment we compared all models from Section 3.1 on the CIFAR-10 dataset without
using any augmentations. All networks were trained using stochastic gradient descent with fixed
momentum of 0.9. The learning rate � was adapted using a schedule S = e1, e2, e3 in which � is
multiplied by a fixed multiplier of 0.1 after e1.e2 and e3 epochs respectively. To keep the amount of
computation necessary to perform our comparison bearable 3 we only treat � as a changeable hyper-
parameter for each method. The learning rate schedule and the total amount of training epochs were
determined in a preliminary experiment using base model A and then fixed for all other experiments.
We used S = [200, 250, 300] and trained all networks for a total of 350 epochs. It should be noted
that this strategy is not guaranteed to result in the best performance for all methods and thus care
must be taken when interpreting the the following results from our experiments. The learning rate �
was individually adapted for each model by searching over the fixed set � 2 [0.25, 0.1, 0.05, 0.01].
In the following we only report the results for the best � for each method. Dropout (Hinton et al.,
2012) was used to regularize all networks. We applied dropout to the input image as well as af-
ter each pooling layer (or after the layer replacing the pooling layer respectively). The dropout
probabilities were 20% for dropping out inputs and 50% otherwise. We also experimented with
additional dropout (i.e. dropout on all layers or only on the 1⇥ 1 convolution layer) which however
did not result in increased accuracy4 . Additionally all models were regularized with weight decay

3Training one network on CIFAR-10 can take up to 10 hours on a modern GPU.
4In the case were dropout of 0.5 is applied to all layers accuracy even dropped, suggesting that the gradients

become too noisy in this case
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"All-Convolutional Network"
Springenberg, Jost Tobias, Alexey Dosovitskiy, Thomas Brox, and Martin Riedmiller. "Striving for simplicity: The all 
convolutional net." arXiv preprint arXiv:1412.6806 (2014).
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• A model in which max-pooling is replaced by a convolution layer. This is column “All-
CNN-C” in the table.

• A model in which a dense convolution is placed before each max-pooling layer (the ad-
ditional convolutions have the same kernel size as the respective pooling layer). This is
model “ConvPool-CNN-C” in the table. Experiments with this model are necessary to en-
sure that the effect we measure is not solely due to increasing model size when going from
a “normal” CNN to its “All-CNN” counterpart.

Finally, to test whether a network solely using convolutions also performs well on a larger scale
recognition problem we trained an up-scaled version of ALL-CNN-B on the ILSVRC 2012 part of
the ImageNet database. Although we expect that a larger network using only 3 ⇥ 3 convolutions
and having stride 1 in the first layer (and thus similar in style to Simonyan & Zisserman (2014))
would perform even better on this dataset, training it would take several weeks and could thus not
be completed in time for this manuscript.

3.2 CLASSIFICATION RESULTS

3.2.1 CIFAR-10

Table 3: Comparison between the base and derived models on the CIFAR-10 dataset.

CIFAR-10 classification error

Model Error (%) # parameters
without data augmentation
Model A 12.47% ⇡ 0.9 M
Strided-CNN-A 13.46% ⇡ 0.9 M
ConvPool-CNN-A 10.21% ⇡ 1.28 M
ALL-CNN-A 10.30% ⇡ 1.28 M
Model B 10.20% ⇡ 1 M
Strided-CNN-B 10.98% ⇡ 1 M
ConvPool-CNN-B 9.33% ⇡ 1.35 M
ALL-CNN-B 9.10% ⇡ 1.35 M
Model C 9.74% ⇡ 1.3 M
Strided-CNN-C 10.19% ⇡ 1.3 M
ConvPool-CNN-C 9.31% ⇡ 1.4 M
ALL-CNN-C 9.08% ⇡ 1.4 M

In our first experiment we compared all models from Section 3.1 on the CIFAR-10 dataset without
using any augmentations. All networks were trained using stochastic gradient descent with fixed
momentum of 0.9. The learning rate � was adapted using a schedule S = e1, e2, e3 in which � is
multiplied by a fixed multiplier of 0.1 after e1.e2 and e3 epochs respectively. To keep the amount of
computation necessary to perform our comparison bearable 3 we only treat � as a changeable hyper-
parameter for each method. The learning rate schedule and the total amount of training epochs were
determined in a preliminary experiment using base model A and then fixed for all other experiments.
We used S = [200, 250, 300] and trained all networks for a total of 350 epochs. It should be noted
that this strategy is not guaranteed to result in the best performance for all methods and thus care
must be taken when interpreting the the following results from our experiments. The learning rate �
was individually adapted for each model by searching over the fixed set � 2 [0.25, 0.1, 0.05, 0.01].
In the following we only report the results for the best � for each method. Dropout (Hinton et al.,
2012) was used to regularize all networks. We applied dropout to the input image as well as af-
ter each pooling layer (or after the layer replacing the pooling layer respectively). The dropout
probabilities were 20% for dropping out inputs and 50% otherwise. We also experimented with
additional dropout (i.e. dropout on all layers or only on the 1⇥ 1 convolution layer) which however
did not result in increased accuracy4 . Additionally all models were regularized with weight decay

3Training one network on CIFAR-10 can take up to 10 hours on a modern GPU.
4In the case were dropout of 0.5 is applied to all layers accuracy even dropped, suggesting that the gradients

become too noisy in this case

5

Removing maxpooling and increasing 
the stride of the previous layer 
performs worse
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"All-Convolutional Network"
Springenberg, Jost Tobias, Alexey Dosovitskiy, Thomas Brox, and Martin Riedmiller. "Striving for simplicity: The all 
convolutional net." arXiv preprint arXiv:1412.6806 (2014).

Accepted as a workshop contribution at ICLR 2015

• A model in which max-pooling is replaced by a convolution layer. This is column “All-
CNN-C” in the table.

• A model in which a dense convolution is placed before each max-pooling layer (the ad-
ditional convolutions have the same kernel size as the respective pooling layer). This is
model “ConvPool-CNN-C” in the table. Experiments with this model are necessary to en-
sure that the effect we measure is not solely due to increasing model size when going from
a “normal” CNN to its “All-CNN” counterpart.

Finally, to test whether a network solely using convolutions also performs well on a larger scale
recognition problem we trained an up-scaled version of ALL-CNN-B on the ILSVRC 2012 part of
the ImageNet database. Although we expect that a larger network using only 3 ⇥ 3 convolutions
and having stride 1 in the first layer (and thus similar in style to Simonyan & Zisserman (2014))
would perform even better on this dataset, training it would take several weeks and could thus not
be completed in time for this manuscript.

3.2 CLASSIFICATION RESULTS

3.2.1 CIFAR-10

Table 3: Comparison between the base and derived models on the CIFAR-10 dataset.

CIFAR-10 classification error

Model Error (%) # parameters
without data augmentation
Model A 12.47% ⇡ 0.9 M
Strided-CNN-A 13.46% ⇡ 0.9 M
ConvPool-CNN-A 10.21% ⇡ 1.28 M
ALL-CNN-A 10.30% ⇡ 1.28 M
Model B 10.20% ⇡ 1 M
Strided-CNN-B 10.98% ⇡ 1 M
ConvPool-CNN-B 9.33% ⇡ 1.35 M
ALL-CNN-B 9.10% ⇡ 1.35 M
Model C 9.74% ⇡ 1.3 M
Strided-CNN-C 10.19% ⇡ 1.3 M
ConvPool-CNN-C 9.31% ⇡ 1.4 M
ALL-CNN-C 9.08% ⇡ 1.4 M

In our first experiment we compared all models from Section 3.1 on the CIFAR-10 dataset without
using any augmentations. All networks were trained using stochastic gradient descent with fixed
momentum of 0.9. The learning rate � was adapted using a schedule S = e1, e2, e3 in which � is
multiplied by a fixed multiplier of 0.1 after e1.e2 and e3 epochs respectively. To keep the amount of
computation necessary to perform our comparison bearable 3 we only treat � as a changeable hyper-
parameter for each method. The learning rate schedule and the total amount of training epochs were
determined in a preliminary experiment using base model A and then fixed for all other experiments.
We used S = [200, 250, 300] and trained all networks for a total of 350 epochs. It should be noted
that this strategy is not guaranteed to result in the best performance for all methods and thus care
must be taken when interpreting the the following results from our experiments. The learning rate �
was individually adapted for each model by searching over the fixed set � 2 [0.25, 0.1, 0.05, 0.01].
In the following we only report the results for the best � for each method. Dropout (Hinton et al.,
2012) was used to regularize all networks. We applied dropout to the input image as well as af-
ter each pooling layer (or after the layer replacing the pooling layer respectively). The dropout
probabilities were 20% for dropping out inputs and 50% otherwise. We also experimented with
additional dropout (i.e. dropout on all layers or only on the 1⇥ 1 convolution layer) which however
did not result in increased accuracy4 . Additionally all models were regularized with weight decay

3Training one network on CIFAR-10 can take up to 10 hours on a modern GPU.
4In the case were dropout of 0.5 is applied to all layers accuracy even dropped, suggesting that the gradients

become too noisy in this case
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Replacing maxpooling with an 
convolutional layer (stride=2) improves 
the performance 
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"All-Convolutional Network"
Springenberg, Jost Tobias, Alexey Dosovitskiy, Thomas Brox, and Martin Riedmiller. "Striving for simplicity: The all 
convolutional net." arXiv preprint arXiv:1412.6806 (2014).
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• A model in which max-pooling is replaced by a convolution layer. This is column “All-
CNN-C” in the table.

• A model in which a dense convolution is placed before each max-pooling layer (the ad-
ditional convolutions have the same kernel size as the respective pooling layer). This is
model “ConvPool-CNN-C” in the table. Experiments with this model are necessary to en-
sure that the effect we measure is not solely due to increasing model size when going from
a “normal” CNN to its “All-CNN” counterpart.

Finally, to test whether a network solely using convolutions also performs well on a larger scale
recognition problem we trained an up-scaled version of ALL-CNN-B on the ILSVRC 2012 part of
the ImageNet database. Although we expect that a larger network using only 3 ⇥ 3 convolutions
and having stride 1 in the first layer (and thus similar in style to Simonyan & Zisserman (2014))
would perform even better on this dataset, training it would take several weeks and could thus not
be completed in time for this manuscript.

3.2 CLASSIFICATION RESULTS

3.2.1 CIFAR-10

Table 3: Comparison between the base and derived models on the CIFAR-10 dataset.

CIFAR-10 classification error

Model Error (%) # parameters
without data augmentation
Model A 12.47% ⇡ 0.9 M
Strided-CNN-A 13.46% ⇡ 0.9 M
ConvPool-CNN-A 10.21% ⇡ 1.28 M
ALL-CNN-A 10.30% ⇡ 1.28 M
Model B 10.20% ⇡ 1 M
Strided-CNN-B 10.98% ⇡ 1 M
ConvPool-CNN-B 9.33% ⇡ 1.35 M
ALL-CNN-B 9.10% ⇡ 1.35 M
Model C 9.74% ⇡ 1.3 M
Strided-CNN-C 10.19% ⇡ 1.3 M
ConvPool-CNN-C 9.31% ⇡ 1.4 M
ALL-CNN-C 9.08% ⇡ 1.4 M

In our first experiment we compared all models from Section 3.1 on the CIFAR-10 dataset without
using any augmentations. All networks were trained using stochastic gradient descent with fixed
momentum of 0.9. The learning rate � was adapted using a schedule S = e1, e2, e3 in which � is
multiplied by a fixed multiplier of 0.1 after e1.e2 and e3 epochs respectively. To keep the amount of
computation necessary to perform our comparison bearable 3 we only treat � as a changeable hyper-
parameter for each method. The learning rate schedule and the total amount of training epochs were
determined in a preliminary experiment using base model A and then fixed for all other experiments.
We used S = [200, 250, 300] and trained all networks for a total of 350 epochs. It should be noted
that this strategy is not guaranteed to result in the best performance for all methods and thus care
must be taken when interpreting the the following results from our experiments. The learning rate �
was individually adapted for each model by searching over the fixed set � 2 [0.25, 0.1, 0.05, 0.01].
In the following we only report the results for the best � for each method. Dropout (Hinton et al.,
2012) was used to regularize all networks. We applied dropout to the input image as well as af-
ter each pooling layer (or after the layer replacing the pooling layer respectively). The dropout
probabilities were 20% for dropping out inputs and 50% otherwise. We also experimented with
additional dropout (i.e. dropout on all layers or only on the 1⇥ 1 convolution layer) which however
did not result in increased accuracy4 . Additionally all models were regularized with weight decay

3Training one network on CIFAR-10 can take up to 10 hours on a modern GPU.
4In the case were dropout of 0.5 is applied to all layers accuracy even dropped, suggesting that the gradients

become too noisy in this case

5

Replacing maxpooling with an 
convolutional layer (stride=2) improves 
the performance  
(this may be unfair because of the 
additional parameters)
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"All-Convolutional Network"
Springenberg, Jost Tobias, Alexey Dosovitskiy, Thomas Brox, and Martin Riedmiller. "Striving for simplicity: The all 
convolutional net." arXiv preprint arXiv:1412.6806 (2014).
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• A model in which max-pooling is replaced by a convolution layer. This is column “All-
CNN-C” in the table.

• A model in which a dense convolution is placed before each max-pooling layer (the ad-
ditional convolutions have the same kernel size as the respective pooling layer). This is
model “ConvPool-CNN-C” in the table. Experiments with this model are necessary to en-
sure that the effect we measure is not solely due to increasing model size when going from
a “normal” CNN to its “All-CNN” counterpart.

Finally, to test whether a network solely using convolutions also performs well on a larger scale
recognition problem we trained an up-scaled version of ALL-CNN-B on the ILSVRC 2012 part of
the ImageNet database. Although we expect that a larger network using only 3 ⇥ 3 convolutions
and having stride 1 in the first layer (and thus similar in style to Simonyan & Zisserman (2014))
would perform even better on this dataset, training it would take several weeks and could thus not
be completed in time for this manuscript.

3.2 CLASSIFICATION RESULTS

3.2.1 CIFAR-10

Table 3: Comparison between the base and derived models on the CIFAR-10 dataset.

CIFAR-10 classification error

Model Error (%) # parameters
without data augmentation
Model A 12.47% ⇡ 0.9 M
Strided-CNN-A 13.46% ⇡ 0.9 M
ConvPool-CNN-A 10.21% ⇡ 1.28 M
ALL-CNN-A 10.30% ⇡ 1.28 M
Model B 10.20% ⇡ 1 M
Strided-CNN-B 10.98% ⇡ 1 M
ConvPool-CNN-B 9.33% ⇡ 1.35 M
ALL-CNN-B 9.10% ⇡ 1.35 M
Model C 9.74% ⇡ 1.3 M
Strided-CNN-C 10.19% ⇡ 1.3 M
ConvPool-CNN-C 9.31% ⇡ 1.4 M
ALL-CNN-C 9.08% ⇡ 1.4 M

In our first experiment we compared all models from Section 3.1 on the CIFAR-10 dataset without
using any augmentations. All networks were trained using stochastic gradient descent with fixed
momentum of 0.9. The learning rate � was adapted using a schedule S = e1, e2, e3 in which � is
multiplied by a fixed multiplier of 0.1 after e1.e2 and e3 epochs respectively. To keep the amount of
computation necessary to perform our comparison bearable 3 we only treat � as a changeable hyper-
parameter for each method. The learning rate schedule and the total amount of training epochs were
determined in a preliminary experiment using base model A and then fixed for all other experiments.
We used S = [200, 250, 300] and trained all networks for a total of 350 epochs. It should be noted
that this strategy is not guaranteed to result in the best performance for all methods and thus care
must be taken when interpreting the the following results from our experiments. The learning rate �
was individually adapted for each model by searching over the fixed set � 2 [0.25, 0.1, 0.05, 0.01].
In the following we only report the results for the best � for each method. Dropout (Hinton et al.,
2012) was used to regularize all networks. We applied dropout to the input image as well as af-
ter each pooling layer (or after the layer replacing the pooling layer respectively). The dropout
probabilities were 20% for dropping out inputs and 50% otherwise. We also experimented with
additional dropout (i.e. dropout on all layers or only on the 1⇥ 1 convolution layer) which however
did not result in increased accuracy4 . Additionally all models were regularized with weight decay

3Training one network on CIFAR-10 can take up to 10 hours on a modern GPU.
4In the case were dropout of 0.5 is applied to all layers accuracy even dropped, suggesting that the gradients

become too noisy in this case

5

Replacing maxpooling with an 
convolutional layer (stride=2) improves 
the performance  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Difference to "All-Convolutional Network"
Springenberg, Jost Tobias, Alexey Dosovitskiy, Thomas Brox, and Martin Riedmiller. "Striving for simplicity: The all 
convolutional net." arXiv preprint arXiv:1412.6806 (2014).

Code example https://github.com/rasbt/stat479-deep-learning-ss19/blob/
master/L13_intro-cnn/code/convnet-allconv.ipynb

https://arxiv.org/abs/1412.6806
https://arxiv.org/abs/1412.6806
https://github.com/rasbt/stat479-deep-learning-ss19/blob/master/L13_intro-cnn/code/convnet-allconv.ipynb
https://github.com/rasbt/stat479-deep-learning-ss19/blob/master/L13_intro-cnn/code/convnet-allconv.ipynb
https://github.com/rasbt/stat479-deep-learning-ss19/blob/master/L13_intro-cnn/code/convnet-allconv.ipynb


Sebastian Raschka           STAT 479: Deep Learning            SS 2019  55

Common Architectures Revisited

Canziani, A., Paszke, A., & Culurciello, E. (2016). An analysis of deep neural network models for practical 
applications. arXiv preprint arXiv:1605.07678.

Figure 1: Top1 vs. network. Single-crop top-1 vali-
dation accuracies for top scoring single-model archi-
tectures. We introduce with this chart our choice of
colour scheme, which will be used throughout this
publication to distinguish effectively different archi-
tectures and their correspondent authors. Notice that
networks of the same group share the same hue, for
example ResNet are all variations of pink.

Figure 2: Top1 vs. operations, size / parameters.

Top-1 one-crop accuracy versus amount of operations
required for a single forward pass. The size of the
blobs is proportional to the number of network pa-
rameters; a legend is reported in the bottom right cor-
ner, spanning from 5⇥10

6 to 155⇥10
6 params. Both

these figures share the same y-axis, and the grey dots
highlight the centre of the blobs.

single run of VGG-161 (Simonyan & Zisserman, 2014) and GoogLeNet (Szegedy et al., 2014) are
8.70% and 10.07% respectively, revealing that VGG-16 performs better than GoogLeNet. When
models are run with 10-crop sampling,2 then the errors become 9.33% and 9.15% respectively, and
therefore VGG-16 will perform worse than GoogLeNet, using a single central-crop. For this reason,
we decided to base our analysis on re-evaluations of top-1 accuracies3 for all networks with a single
central-crop sampling technique (Zagoruyko, 2016).

For inference time and memory usage measurements we have used Torch7 (Collobert et al., 2011)
with cuDNN-v5 (Chetlur et al., 2014) and CUDA-v8 back-end. All experiments were conducted on
a JetPack-2.3 NVIDIA Jetson TX1 board (nVIDIA): an embedded visual computing system with
a 64-bit ARM R� A57 CPU, a 1 T-Flop/s 256-core NVIDIA Maxwell GPU and 4 GB LPDDR4
of shared RAM. We use this resource-limited device to better underline the differences between
network architecture, but similar results can be obtained on most recent GPUs, such as the NVIDIA
K40 or Titan X, to name a few. Operation counts were obtained using an open-source tool that we
developed (Paszke, 2016). For measuring the power consumption, a Keysight 1146B Hall effect
current probe has been used with a Keysight MSO-X 2024A 200MHz digital oscilloscope with a
sampling period of 2 s and 50 kSa/s sample rate. The system was powered by a Keysight E3645A
GPIB controlled DC power supply.

3 RESULTS

In this section we report our results and comparisons. We analysed the following DDNs: AlexNet
(Krizhevsky et al., 2012), batch normalised AlexNet (Zagoruyko, 2016), batch normalised Network
In Network (NIN) (Lin et al., 2013), ENet (Paszke et al., 2016) for ImageNet (Culurciello, 2016),
GoogLeNet (Szegedy et al., 2014), VGG-16 and -19 (Simonyan & Zisserman, 2014), ResNet-18,
-34, -50, -101 and -152 (He et al., 2015), Inception-v3 (Szegedy et al., 2015) and Inception-v4
(Szegedy et al., 2016) since they obtained the highest performance, in these four years, on the
ImageNet (Russakovsky et al., 2015) challenge.

1 In the original paper this network is called VGG-D, which is the best performing network. Here we prefer
to highlight the number of layer utilised, so we will call it VGG-16 in this publication.

2 From a given image multiple patches are extracted: four corners plus central crop and their horizontal
mirrored twins.

3 Accuracy and error rate always sum to 100, therefore in this paper they are used interchangeably.

2
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GoogLeNet / Inception v1

 56

3 key ideas: 

1.   1x1 in the middle of the network 
2.   global average pooling instead of fully connected layers 
3.   inception module

Note that the name inception doesn't have to make 
sense and is unrelated to the main concept;  
according to the authors, it comes from an internet 
meme that is in turn based on a movie called 
"Inception"

Szegedy, Christian, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru Erhan, 
Vincent Vanhoucke, and Andrew Rabinovich. "Going deeper with convolutions." In Proceedings of the IEEE 
conference on computer vision and pattern recognition, pp. 1-9. 2015.

https://www.cs.unc.edu/~wliu/papers/GoogLeNet.pdf
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GoogLeNet / Inception v1
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• 1x1 convolutions: An efficient way to reduce the number of channels 
(from NiN) 

• Global Average Pooling at the last layer (from NiN) 

• Use of auxiliary losses that are added to the total loss 

• New: Inception module

Key Ideas/Features:

Szegedy, Christian, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru Erhan, 
Vincent Vanhoucke, and Andrew Rabinovich. "Going deeper with convolutions." In Proceedings of the IEEE 
conference on computer vision and pattern recognition, pp. 1-9. 2015.

https://www.cs.unc.edu/~wliu/papers/GoogLeNet.pdf
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GoogLeNet / Inception v1

 58

Szegedy, Christian, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru Erhan, 
Vincent Vanhoucke, and Andrew Rabinovich. "Going deeper with convolutions." In Proceedings of the IEEE 
conference on computer vision and pattern recognition, pp. 1-9. 2015.
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ber of filters in the previous stage. The merging of output
of the pooling layer with outputs of the convolutional lay-
ers would lead to an inevitable increase in the number of
outputs from stage to stage. While this architecture might
cover the optimal sparse structure, it would do it very inef-
ficiently, leading to a computational blow up within a few
stages.

This leads to the second idea of the Inception architec-
ture: judiciously reducing dimension wherever the compu-
tational requirements would increase too much otherwise.
This is based on the success of embeddings: even low di-
mensional embeddings might contain a lot of information
about a relatively large image patch. However, embed-
dings represent information in a dense, compressed form
and compressed information is harder to process. The rep-
resentation should be kept sparse at most places (as required
by the conditions of [2]) and compress the signals only
whenever they have to be aggregated en masse. That is,
1⇥1 convolutions are used to compute reductions before
the expensive 3⇥3 and 5⇥5 convolutions. Besides being
used as reductions, they also include the use of rectified lin-
ear activation making them dual-purpose. The final result is
depicted in Figure 2(b).

In general, an Inception network is a network consist-
ing of modules of the above type stacked upon each other,
with occasional max-pooling layers with stride 2 to halve
the resolution of the grid. For technical reasons (memory

efficiency during training), it seemed beneficial to start us-
ing Inception modules only at higher layers while keeping
the lower layers in traditional convolutional fashion. This is
not strictly necessary, simply reflecting some infrastructural
inefficiencies in our current implementation.

A useful aspect of this architecture is that it allows for
increasing the number of units at each stage significantly
without an uncontrolled blow-up in computational com-
plexity at later stages. This is achieved by the ubiquitous
use of dimensionality reduction prior to expensive convolu-
tions with larger patch sizes. Furthermore, the design fol-
lows the practical intuition that visual information should
be processed at various scales and then aggregated so that
the next stage can abstract features from the different scales
simultaneously.

The improved use of computational resources allows for
increasing both the width of each stage as well as the num-
ber of stages without getting into computational difficulties.
One can utilize the Inception architecture to create slightly
inferior, but computationally cheaper versions of it. We
have found that all the available knobs and levers allow for
a controlled balancing of computational resources resulting
in networks that are 3� 10⇥ faster than similarly perform-
ing networks with non-Inception architecture, however this
requires careful manual design at this point.

5. GoogLeNet

By the“GoogLeNet” name we refer to the particular in-
carnation of the Inception architecture used in our submis-
sion for the ILSVRC 2014 competition. We also used one
deeper and wider Inception network with slightly superior
quality, but adding it to the ensemble seemed to improve the
results only marginally. We omit the details of that network,
as empirical evidence suggests that the influence of the ex-
act architectural parameters is relatively minor. Table 1 il-
lustrates the most common instance of Inception used in the
competition. This network (trained with different image-
patch sampling methods) was used for 6 out of the 7 models
in our ensemble.

All the convolutions, including those inside the Incep-
tion modules, use rectified linear activation. The size of the
receptive field in our network is 224⇥224 in the RGB color
space with zero mean. “#3⇥3 reduce” and “#5⇥5 reduce”
stands for the number of 1⇥1 filters in the reduction layer
used before the 3⇥3 and 5⇥5 convolutions. One can see
the number of 1⇥1 filters in the projection layer after the
built-in max-pooling in the pool proj column. All these re-
duction/projection layers use rectified linear activation as
well.

The network was designed with computational efficiency
and practicality in mind, so that inference can be run on in-
dividual devices including even those with limited compu-
tational resources, especially with low-memory footprint.

Szegedy, Christian, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru Erhan, 
Vincent Vanhoucke, and Andrew Rabinovich. "Going deeper with convolutions." In Proceedings of the IEEE 
conference on computer vision and pattern recognition, pp. 1-9. 2015.
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ber of filters in the previous stage. The merging of output
of the pooling layer with outputs of the convolutional lay-
ers would lead to an inevitable increase in the number of
outputs from stage to stage. While this architecture might
cover the optimal sparse structure, it would do it very inef-
ficiently, leading to a computational blow up within a few
stages.

This leads to the second idea of the Inception architec-
ture: judiciously reducing dimension wherever the compu-
tational requirements would increase too much otherwise.
This is based on the success of embeddings: even low di-
mensional embeddings might contain a lot of information
about a relatively large image patch. However, embed-
dings represent information in a dense, compressed form
and compressed information is harder to process. The rep-
resentation should be kept sparse at most places (as required
by the conditions of [2]) and compress the signals only
whenever they have to be aggregated en masse. That is,
1⇥1 convolutions are used to compute reductions before
the expensive 3⇥3 and 5⇥5 convolutions. Besides being
used as reductions, they also include the use of rectified lin-
ear activation making them dual-purpose. The final result is
depicted in Figure 2(b).

In general, an Inception network is a network consist-
ing of modules of the above type stacked upon each other,
with occasional max-pooling layers with stride 2 to halve
the resolution of the grid. For technical reasons (memory

efficiency during training), it seemed beneficial to start us-
ing Inception modules only at higher layers while keeping
the lower layers in traditional convolutional fashion. This is
not strictly necessary, simply reflecting some infrastructural
inefficiencies in our current implementation.

A useful aspect of this architecture is that it allows for
increasing the number of units at each stage significantly
without an uncontrolled blow-up in computational com-
plexity at later stages. This is achieved by the ubiquitous
use of dimensionality reduction prior to expensive convolu-
tions with larger patch sizes. Furthermore, the design fol-
lows the practical intuition that visual information should
be processed at various scales and then aggregated so that
the next stage can abstract features from the different scales
simultaneously.

The improved use of computational resources allows for
increasing both the width of each stage as well as the num-
ber of stages without getting into computational difficulties.
One can utilize the Inception architecture to create slightly
inferior, but computationally cheaper versions of it. We
have found that all the available knobs and levers allow for
a controlled balancing of computational resources resulting
in networks that are 3� 10⇥ faster than similarly perform-
ing networks with non-Inception architecture, however this
requires careful manual design at this point.

5. GoogLeNet

By the“GoogLeNet” name we refer to the particular in-
carnation of the Inception architecture used in our submis-
sion for the ILSVRC 2014 competition. We also used one
deeper and wider Inception network with slightly superior
quality, but adding it to the ensemble seemed to improve the
results only marginally. We omit the details of that network,
as empirical evidence suggests that the influence of the ex-
act architectural parameters is relatively minor. Table 1 il-
lustrates the most common instance of Inception used in the
competition. This network (trained with different image-
patch sampling methods) was used for 6 out of the 7 models
in our ensemble.

All the convolutions, including those inside the Incep-
tion modules, use rectified linear activation. The size of the
receptive field in our network is 224⇥224 in the RGB color
space with zero mean. “#3⇥3 reduce” and “#5⇥5 reduce”
stands for the number of 1⇥1 filters in the reduction layer
used before the 3⇥3 and 5⇥5 convolutions. One can see
the number of 1⇥1 filters in the projection layer after the
built-in max-pooling in the pool proj column. All these re-
duction/projection layers use rectified linear activation as
well.

The network was designed with computational efficiency
and practicality in mind, so that inference can be run on in-
dividual devices including even those with limited compu-
tational resources, especially with low-memory footprint.

Szegedy, Christian, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru Erhan, 
Vincent Vanhoucke, and Andrew Rabinovich. "Going deeper with convolutions." In Proceedings of the IEEE 
conference on computer vision and pattern recognition, pp. 1-9. 2015.
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ber of filters in the previous stage. The merging of output
of the pooling layer with outputs of the convolutional lay-
ers would lead to an inevitable increase in the number of
outputs from stage to stage. While this architecture might
cover the optimal sparse structure, it would do it very inef-
ficiently, leading to a computational blow up within a few
stages.

This leads to the second idea of the Inception architec-
ture: judiciously reducing dimension wherever the compu-
tational requirements would increase too much otherwise.
This is based on the success of embeddings: even low di-
mensional embeddings might contain a lot of information
about a relatively large image patch. However, embed-
dings represent information in a dense, compressed form
and compressed information is harder to process. The rep-
resentation should be kept sparse at most places (as required
by the conditions of [2]) and compress the signals only
whenever they have to be aggregated en masse. That is,
1⇥1 convolutions are used to compute reductions before
the expensive 3⇥3 and 5⇥5 convolutions. Besides being
used as reductions, they also include the use of rectified lin-
ear activation making them dual-purpose. The final result is
depicted in Figure 2(b).

In general, an Inception network is a network consist-
ing of modules of the above type stacked upon each other,
with occasional max-pooling layers with stride 2 to halve
the resolution of the grid. For technical reasons (memory

efficiency during training), it seemed beneficial to start us-
ing Inception modules only at higher layers while keeping
the lower layers in traditional convolutional fashion. This is
not strictly necessary, simply reflecting some infrastructural
inefficiencies in our current implementation.

A useful aspect of this architecture is that it allows for
increasing the number of units at each stage significantly
without an uncontrolled blow-up in computational com-
plexity at later stages. This is achieved by the ubiquitous
use of dimensionality reduction prior to expensive convolu-
tions with larger patch sizes. Furthermore, the design fol-
lows the practical intuition that visual information should
be processed at various scales and then aggregated so that
the next stage can abstract features from the different scales
simultaneously.

The improved use of computational resources allows for
increasing both the width of each stage as well as the num-
ber of stages without getting into computational difficulties.
One can utilize the Inception architecture to create slightly
inferior, but computationally cheaper versions of it. We
have found that all the available knobs and levers allow for
a controlled balancing of computational resources resulting
in networks that are 3� 10⇥ faster than similarly perform-
ing networks with non-Inception architecture, however this
requires careful manual design at this point.

5. GoogLeNet

By the“GoogLeNet” name we refer to the particular in-
carnation of the Inception architecture used in our submis-
sion for the ILSVRC 2014 competition. We also used one
deeper and wider Inception network with slightly superior
quality, but adding it to the ensemble seemed to improve the
results only marginally. We omit the details of that network,
as empirical evidence suggests that the influence of the ex-
act architectural parameters is relatively minor. Table 1 il-
lustrates the most common instance of Inception used in the
competition. This network (trained with different image-
patch sampling methods) was used for 6 out of the 7 models
in our ensemble.

All the convolutions, including those inside the Incep-
tion modules, use rectified linear activation. The size of the
receptive field in our network is 224⇥224 in the RGB color
space with zero mean. “#3⇥3 reduce” and “#5⇥5 reduce”
stands for the number of 1⇥1 filters in the reduction layer
used before the 3⇥3 and 5⇥5 convolutions. One can see
the number of 1⇥1 filters in the projection layer after the
built-in max-pooling in the pool proj column. All these re-
duction/projection layers use rectified linear activation as
well.

The network was designed with computational efficiency
and practicality in mind, so that inference can be run on in-
dividual devices including even those with limited compu-
tational resources, especially with low-memory footprint.
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receptive
field

in
ournetw

ork
is
224⇥

224
in

the
R

G
B

color
space

w
ith

zero
m

ean.“#
3⇥

3
reduce”

and
“#

5⇥
5

reduce”
stands

for
the

num
ber

of
1⇥

1
filters

in
the

reduction
layer

used
before

the
3⇥

3
and

5⇥
5

convolutions.
O

ne
can

see
the

num
ber

of
1⇥

1
filters

in
the

projection
layer

after
the

built-in
m

ax-pooling
in

the
poolprojcolum

n.
A

llthese
re-

duction/projection
layers

use
rectified

linear
activation

as
w

ell.The
netw

ork
w

asdesigned
w

ith
com

putationalefficiency
and

practicality
in

m
ind,so

thatinference
can

be
run

on
in-

dividualdevices
including

even
those

w
ith

lim
ited

com
pu-

tational
resources,

especially
w

ith
low

-m
em

ory
footprint.

Feature maps from parallel paths are concatenated

https://www.cs.unc.edu/~wliu/papers/GoogLeNet.pdf
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