Lecture 13 Introduction to Convolutional Neural Networks Part 2

STAT 479: Deep Learning, Spring 2019

Sebastian Raschka

http://stat.wisc.edu/~sraschka/teaching/stat479-ss2019/

Sebastian Raschka STAT 479: Deep Learning SS 2019

1

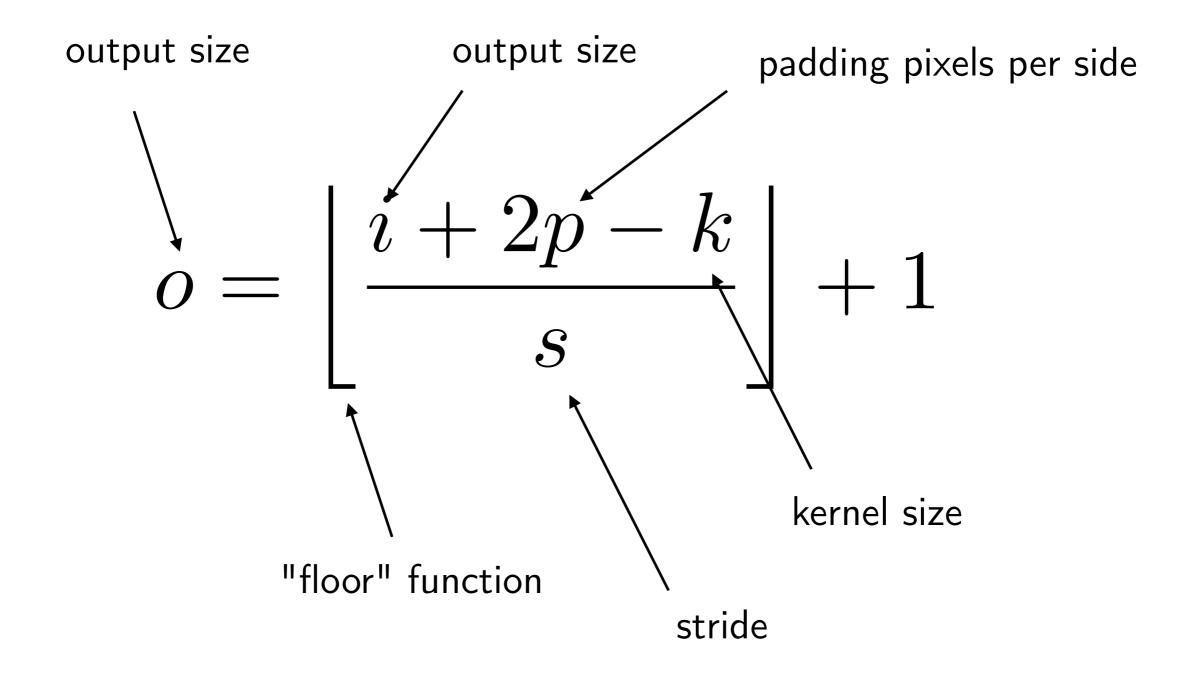
A Simple CNN in PyTorch

```
class ConvNet(torch.nn.Module):
    def init (self, num classes):
        super(ConvNet, self). init ()
        # calculate same padding:
        \# (w - k + 2*p)/s + 1 = 0
        \# \Rightarrow p = (s(o-1) - w + k)/2
        # 28x28x1 => 28x28x4
        self.conv 1 = torch.nn.Conv2d(in channels=1,
                                       out channels=4,
                                       kernel_size=(3, 3),
                                       stride=(1, 1),
                                       padding=1) \# (1(28-1) - 28 + 3) / 2 = 1
        # 28x28x4 \implies 14x14x4
        self.pool 1 = torch.nn.MaxPool2d(kernel size=(2, 2),
                                          stride=(2, 2),
                                          padding=0) \# (2(14-1) - 28 + 2) = 0
        # 14x14x4 => 14x14x8
        self.conv 2 = torch.nn.Conv2d(in channels=4,
                                       out channels=8,
                                       kernel size=(3, 3),
                                       stride=(1, 1),
                                       padding=1) \# (1(14-1) - 14 + 3) / 2 = 1
        # 14x14x8 => 7x7x8
        self.pool 2 = torch.nn.MaxPool2d(kernel size=(2, 2),
                                          stride=(2, 2),
                                          padding=0) \# (2(7-1) - 14 + 2) = 0
        self.linear 1 = torch.nn.Linear(7*7*8, num classes)
```

(forward method on the next slide)

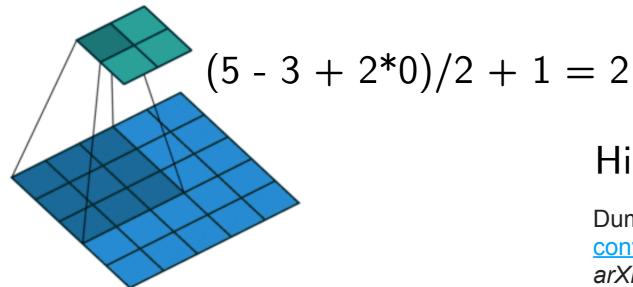
Sebastian RaschkaSTAT 479: Deep LearningSS 2019

A Simple CNN in PyTorch


```
def forward(self, x):
    out = self.conv_1(x)
    out = F.relu(out)
    out = self.pool_1(out)
    out = self.conv_2(out)
    out = F.relu(out)
    out = self.pool_2(out)
    logits = self.linear_1(out.view(-1, 7*7*8))
    probas = F.softmax(logits, dim=1)
    return logits, probas
```

```
torch.manual_seed(random_seed)
model = ConvNet(num_classes=num_classes)
```

(model parameters on the previous slide)


Working example: <u>https://github.com/rasbt/stat479-deep-learning-ss19/blob/master/L13_intro-</u> <u>cnn/code/cnn-with-diff-init/default.ipynb</u>

Padding

$$(4-3+2*0)/1+1=2$$

$$(5-4+2*2)/1+1=6$$
No padding, stride=1
$$(5-4+2*2)/1+1=6$$
padding=2, stride=1

No padding, stride=2

Highly recommended:

Dumoulin, Vincent, and Francesco Visin. "A guide to convolution arithmetic for deep learning." arXiv preprint arXiv:1603.07285 (2016).

Sebastian Raschka STAT 479: Deep Learning SS 2019

Padding Jargon

<u>"valid" convolution</u>: no padding (feature map may shrink)

<u>"same" convolution:</u> padding such that the output size is equal to the input size

Common kernel size conventions: 3x3, 5x5, 7x7 (sometimes 1x1 in later layers to reduce channels)

Padding

$$o = \left\lfloor \frac{i + 2p - k}{s} \right\rfloor + 1$$

Assume you want to use a convolutional operation with stride 1 and maintain the input dimensions in the output feature map:

How much padding do you need for "same" convolution?

$$o = i + 2p - k + 1$$

$$\Leftrightarrow p = (o - i + k - 1)/2$$
$$\Leftrightarrow p = (k - 1)/2$$

Padding

$$o = i + 2p - k + 1$$

$$\Leftrightarrow p = (o - i + k - 1)/2$$

$$\Leftrightarrow p = (k - 1)/2$$

Probably explains why common kernel size conventions are 3x3, 5x5, 7x7 (sometimes 1x1 in later layers to reduce channels)

Spatial Dropout -- Dropout2D

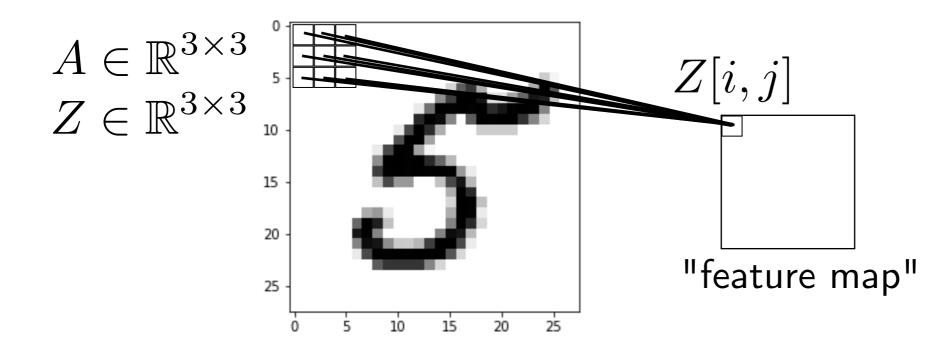
- Problem with regular dropout and CNNs: Adjacent pixels are likely highly correlated (thus, may not help with reducing the "dependency" much as originally intended by dropout)
- Hence, it may be better to drop entire feature maps

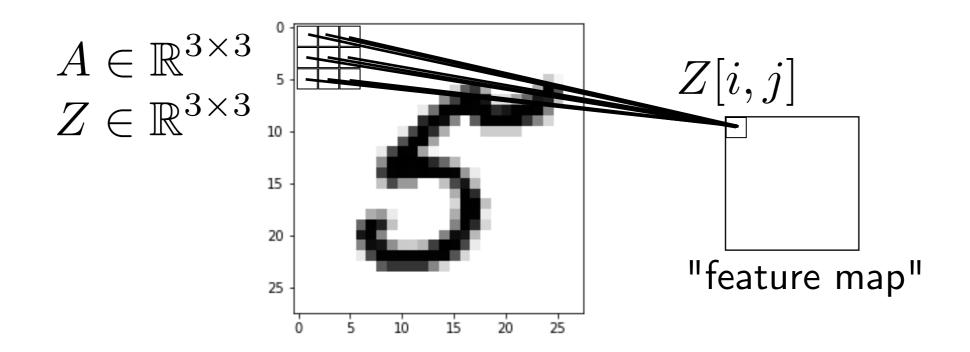
Idea comes from

Tompson, Jonathan, Ross Goroshin, Arjun Jain, Yann LeCun, and Christoph Bregler. "<u>Efficient object localization using convolutional networks</u>." In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*, pp. 648-656. 2015.

Spatial Dropout -- Dropout2D

• Dropout2d will drop full feature maps (channels)

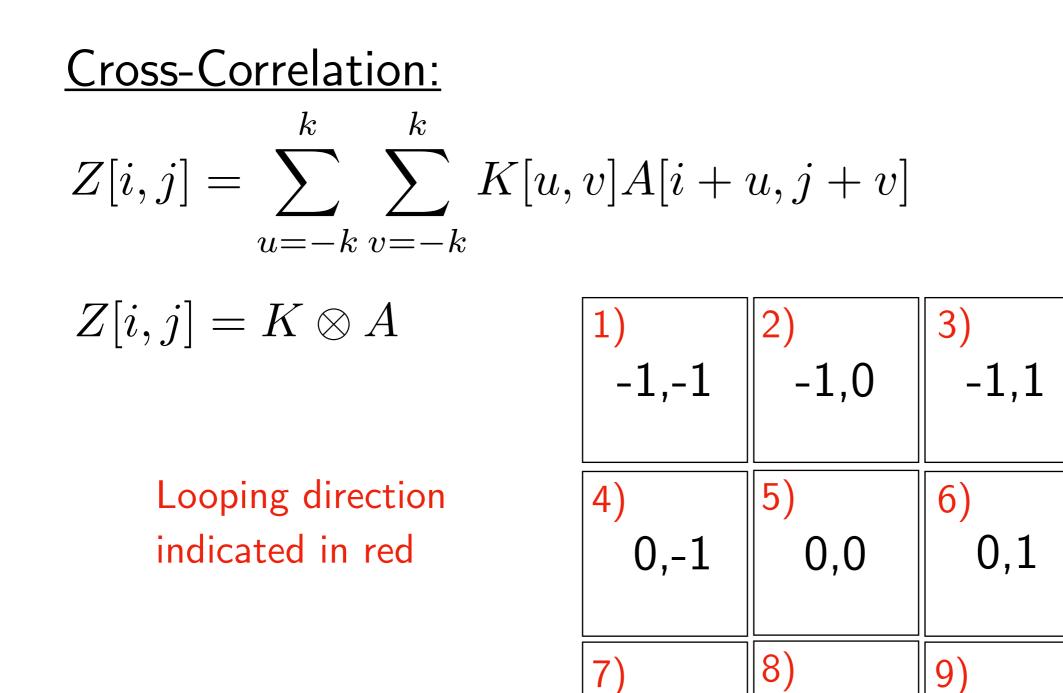

import torch


```
m = torch.nn.Dropout2d(p=0.5)
input = torch.randn(1, 3, 5, 5)
output = m(input)
```

output

[0.0000, [0.0000,	-0.0000, -0.0000, 0.0000,	0.0000, 0.0000, -0.0000,	0.0000, -0.0000, 0.0000,	-0.0000], 0.0000], 0.0000], -0.0000], -0.0000],
[[-3.5274, [-1.2455,	0.8163, 6.3875,	0.2440, -2.6224,	1.2410, 0.0261,	1.5022], 1.7487],
[0.3720, [-1.2817,	-1.5606, -3.5804,	0.7630, 0.4367,	0.9177, -0.1384,	-1.5232], -0.1387], -0.8148]],
[0.0000, [-0.0000,	-0.0000, -0.0000, -0.0000,	-0.0000, 0.0000, 0.0000,	-0.0000, -0.0000, 0.0000,	0.0000], -0.0000],

Deep Learning Jargon: convolution in DL is actually cross-correlation Cross-correlation is our sliding dot product over the image



Cross-Correlation: k k $Z[i,j] = \sum \sum K[u,v]A[i+u,j+v]$ u = -k v = -k

 $Z[i,j] = K \otimes A$

Sebastian Raschka STAT 479: Deep Learning

STAT 479: Deep Learning

1,0

1,1

$$\frac{\text{Cross-Correlation:}}{\text{Convolution:}} \quad Z[i,j] = \sum_{u=-k}^{k} \sum_{v=-k}^{k} K[u,v]A[i+u,j+v] \qquad Z[i,j] = K \otimes A$$

$$\frac{\text{Convolution:}}{Z[i,j]} = \sum_{u=-k}^{k} \sum_{v=-k}^{k} K[u,v]A[i-u,j-v]$$

$$Z[i,j] = K * A \qquad \qquad 9) \qquad 8) \qquad 7)$$

$$-1,-1 \qquad -1,0 \qquad -1,1$$
Basically, we are flipping the kernel (or the receptive field) horizontally and vertically
$$\frac{6}{0,-1} \qquad 5) \qquad 4)$$

$$0,-1 \qquad 0,0 \qquad 0,1$$

$$\frac{3}{1,-1} \qquad 1,0 \qquad 1,1$$

Sebastian Raschka

STAT 479: Deep Learning SS 2019

Deep Learning Jargon: convolution in DL is actually cross-correlation

"Real" convolution has the nice associative property:

(A * B) * C = A * (B * C)

In DL, we usually don't care about that (as opposed to many traditional computer vision and signal processing applications).

Also, cross-correlation is easier to implement.

Maybe the term "convolution" for cross-correlation became popular, because "Cross-Correlational Neural Network" sounds weird ;)

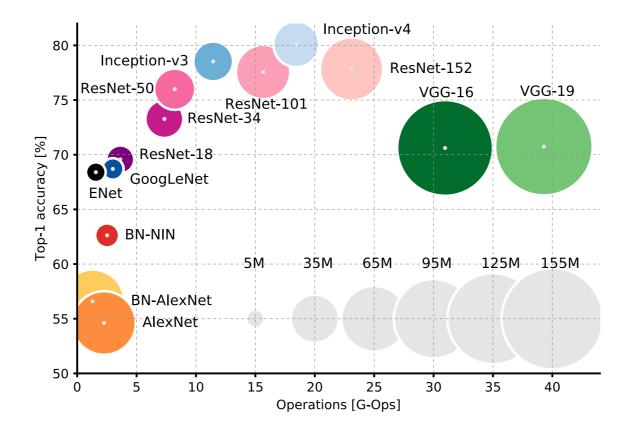
Computing Convolutions on the GPU

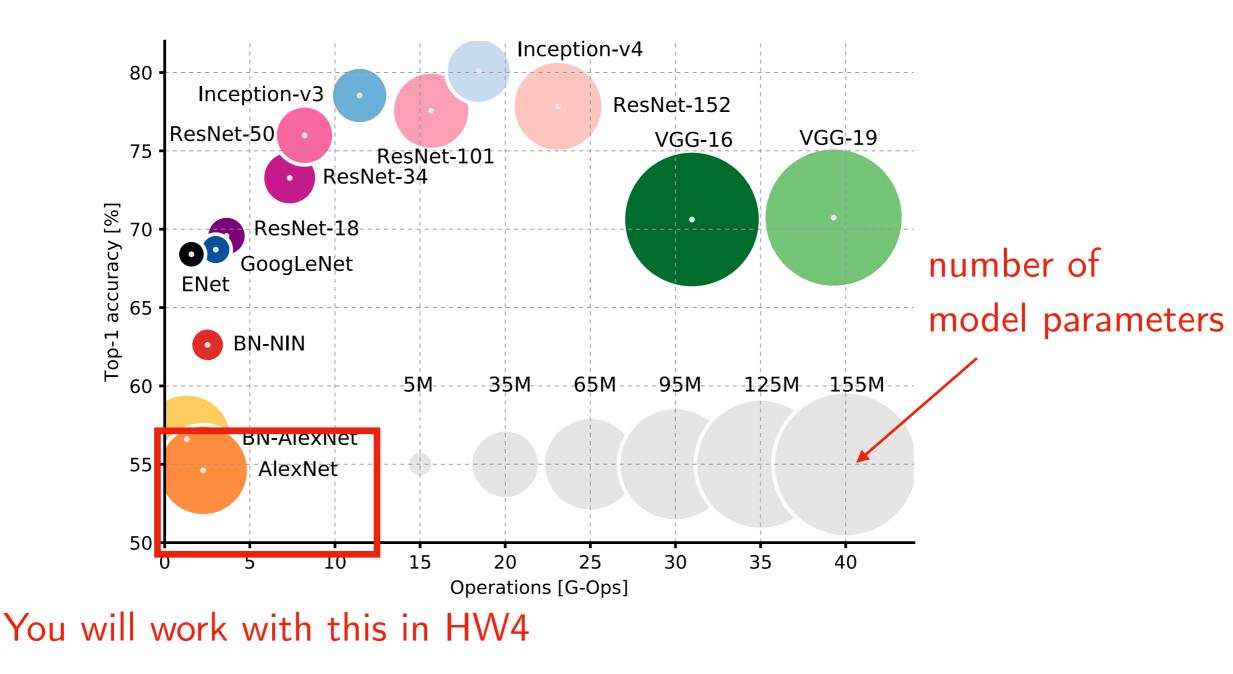
- There are many different approaches to compute (approximate) convolution operations
- DL libraries usually use NVIDIA's CUDA & CuDNN libraries, which implement many different convolution algorithms
- These algorithms are usually more efficient than the CPU variants (convolutions on the CPU e.g., in CPU usually take up much more memory due to the algorithm choice compared to using the GPU)

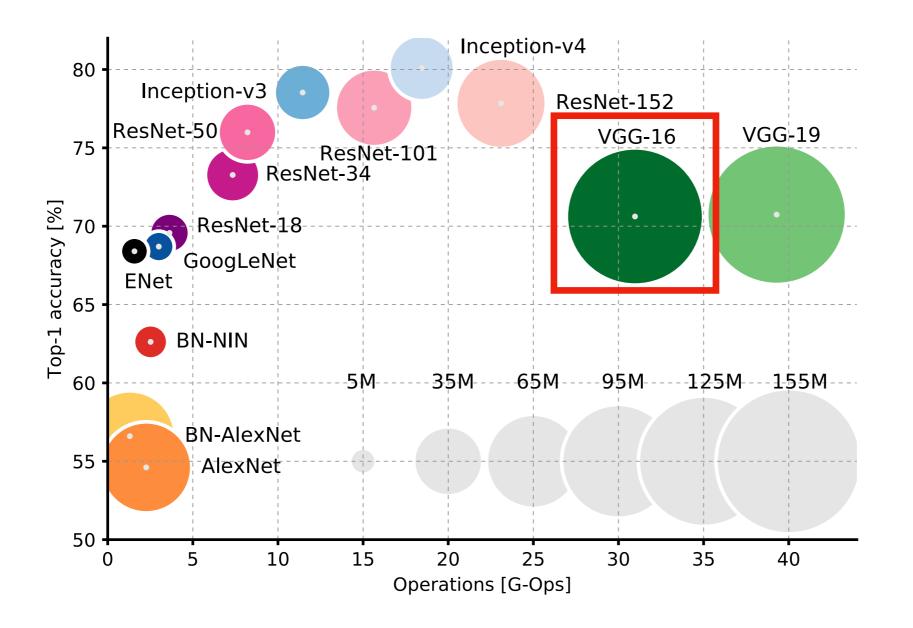
If you are interested, you can find more info in:

Lavin, Andrew, and Scott Gray. "Fast algorithms for convolutional neural networks." *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*. 2016. <u>https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/</u> <u>Lavin_Fast_Algorithms_for_CVPR_2016_paper.pdf</u>

SS 2019


Computing Convolutions on the GPU


- CuDNN is more geared towards engineers & speed rather than scientists and is unfortunately not deterministic/reproducible by default
- I.e., it determines which convolution algorithm to choose during run-time automatically, based on predicted speeds given the data flow
- For reproducibility and consistent results, I recommend setting the deterministic flag (speed is about the same, often even a bit faster, sometimes a bit slower)


import torch
import torch.nn as nn
import torch.nn.functional as F

if torch.cuda.is_available():
 torch.backends.cudnn.deterministic = True

We will discuss some additional common CNN architectures since the field evolved quite a bit since 2012 ...

VGG-16

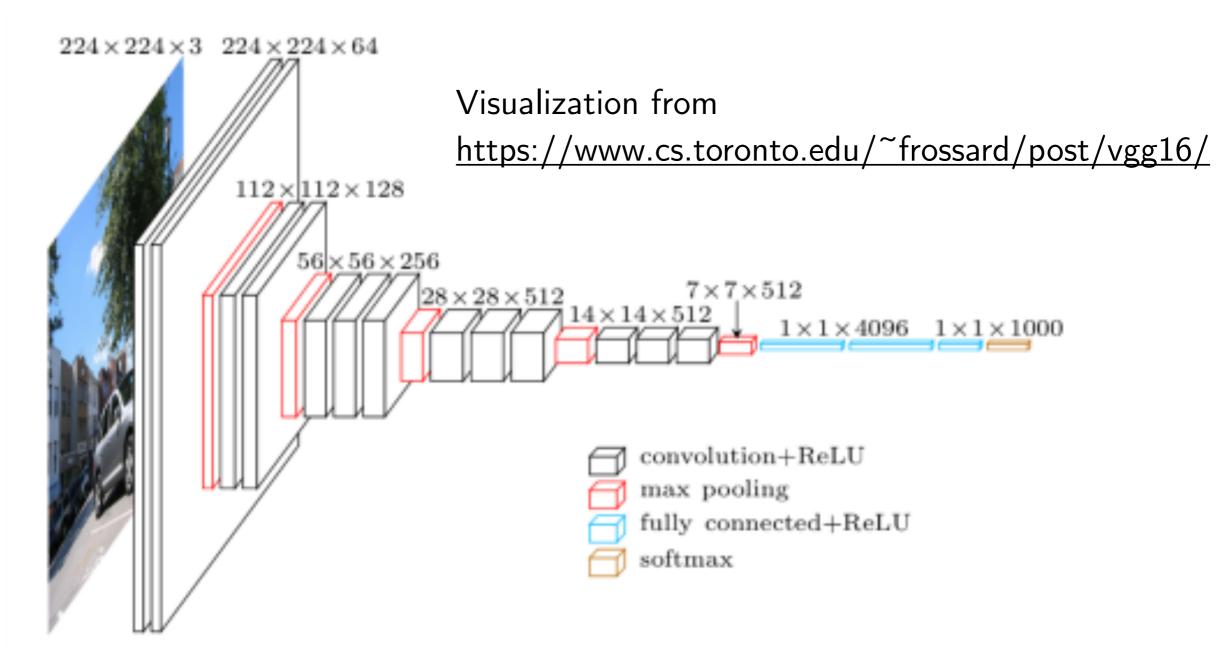
PyTorch implementation: <u>https://github.com/rasbt/stat479-deep-learning-</u> <u>ss19/blob/master/L13_intro-cnn/code/vgg16.ipynb</u>

A A-LRN B C D E 11 weight layers 11 weight layers 13 weight layers 16 weight layers 16 weight layers 19 weight layers conv3-64 conv3-128 conv3-128 conv3-128 conv3-128 conv3-128 conv3-128 conv3-256 conv3-256 conv3-256 conv3-256 conv3-256 conv3-256 conv3-256 conv3-512								
$\begin{array}{ c c c c c c } \hline 11 weight layers layers$								
layers layers <thlayers< th=""> <thlayers< th=""> <thlayers< t<="" td=""><td></td><td></td><td>2</td><td>Ũ</td><td>2</td><td>_</td></thlayers<></thlayers<></thlayers<>			2	Ũ	2	_		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	11 weight	11 weight	13 weight		16 weight	19 weight		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	layers	layers	layers	layers	layers	layers		
LRN conv3-64 conv3-64 conv3-64 conv3-64 conv3-64 conv3-128 conv3-256 conv3-512		i	ge)					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	conv3-64	conv3-64	conv3-64	conv3-64	conv3-64	conv3-64		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		LRN	conv3-64	conv3-64	conv3-64	conv3-64		
conv3-128 conv3-128 conv3-128 conv3-128 conv3-128 conv3-128 conv3-256 conv3-512 conv3								
conv3-256 conv3-512 conv3-512 <t< td=""><td>conv3-128</td><td>conv3-128</td><td>conv3-128</td><td>conv3-128</td><td>conv3-128</td><td>conv3-128</td></t<>	conv3-128	conv3-128	conv3-128	conv3-128	conv3-128	conv3-128		
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			conv3-128	conv3-128	conv3-128	conv3-128		
conv3-256 conv3-512 <	maxpool				-			
Image: Conv3-512	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256		
Image: Marking Conv3-512 Image: Conv3-512	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256	conv3-256		
conv3-512				conv1-25	conv3-256	conv3-256		
conv3-512 conv3-512 <t< td=""><td></td><td></td><td></td><td></td><td></td><td>conv3-256</td></t<>						conv3-256		
conv3-512 <	maxpool							
Image: conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512		
Image: Marking Conv3-512 Image: Co	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512		
conv3-512				conv1-512	conv3-512	conv3-512		
conv3-512 conv3-512 <t< td=""><td></td><td></td><td></td><td></td><td></td><td>conv3-512</td></t<>						conv3-512		
conv3-512	maxpool							
conv1-51: conv3-512 conv3-512 maxpool FC-4096 FC-4096 FC-4096 FC-1000 FC-1000	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512		
maxpool conv3-512 FC-4096 FC-4096 FC-1000 FC-1000	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512	conv3-512		
maxpool FC-4096 FC-4096 FC-1000				conv1-512	conv3-512	conv3-512		
FC-4096 FC-4096 FC-1000						conv3-512		
FC-4096 FC-1000		-						
FC-1000								
-								
	FC-1000							
soft-max								

<u>Advantages:</u>

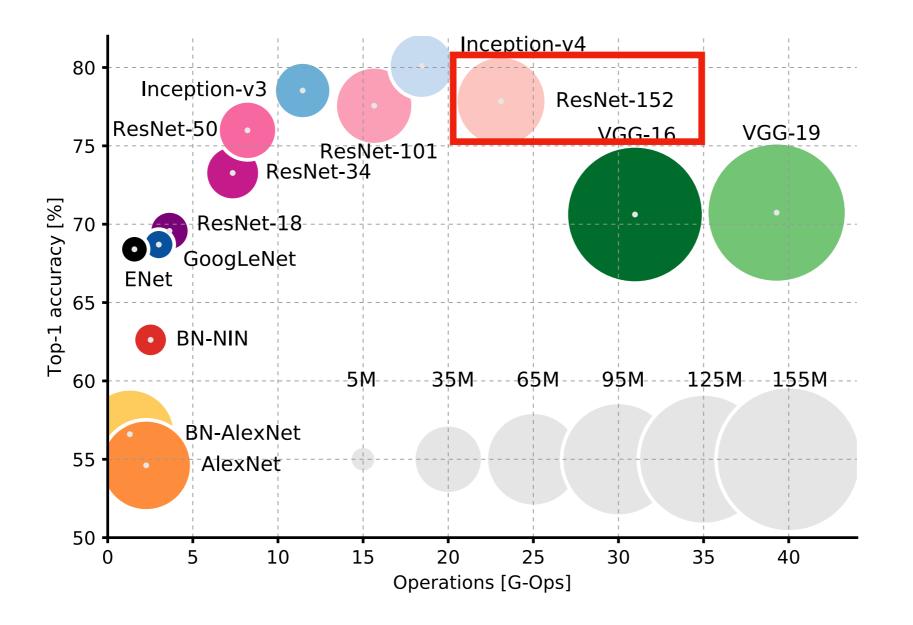
very simple architecture, 3x3 convs, stride=1. "same" padding, 2x2 max pooling

Disadvantage:


very large number of parameters and slow

(see previous slide)

Simonyan, Karen, and Andrew Zisserman. "Very deep convolutional networks for large-scale <u>image recognition</u>." arXiv preprint arXiv:1409.1556 (2014).


VGG-16

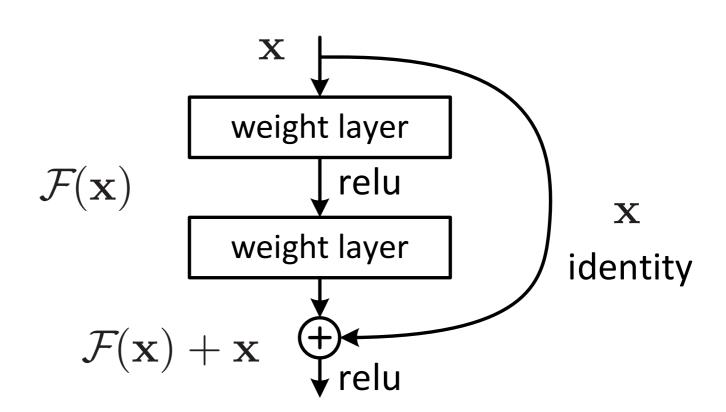
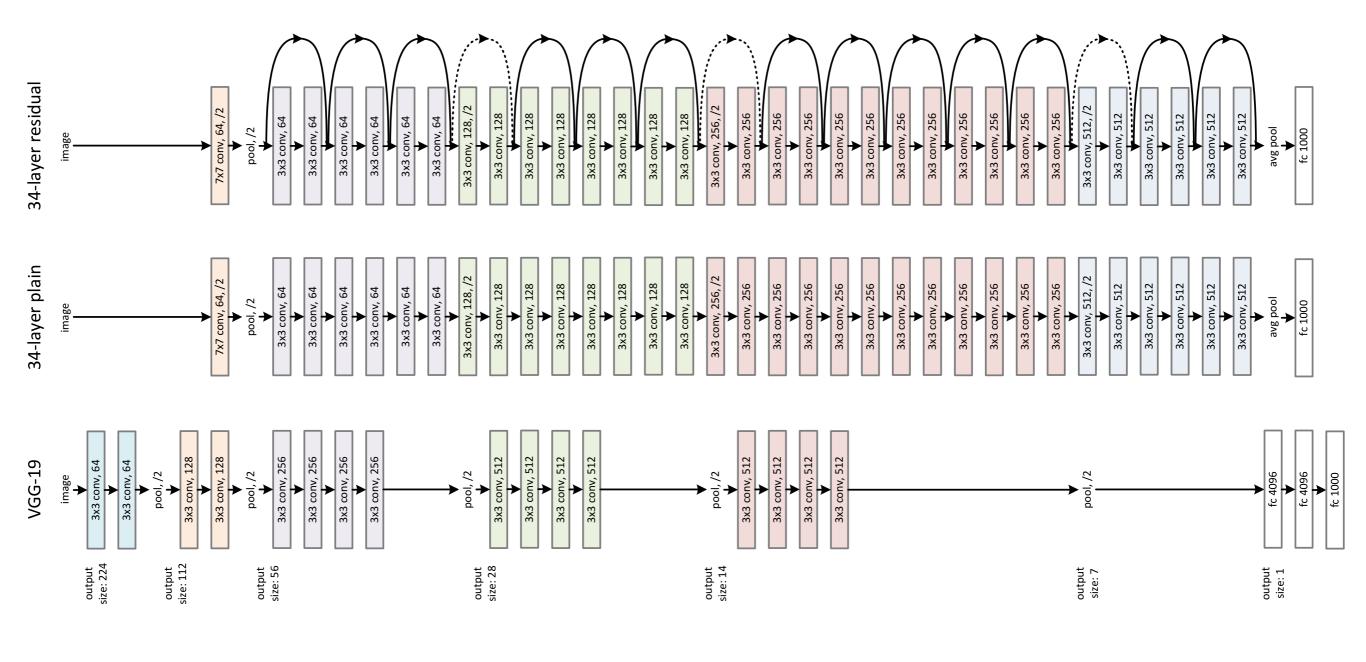
PyTorch implementation: <u>https://github.com/rasbt/stat479-deep-learning-ss19/blob/master/L13_intro-cnn/code/vgg16.ipynb</u>

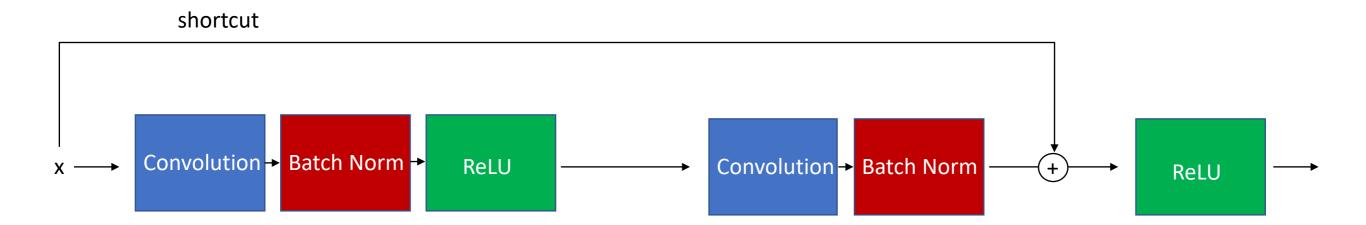
Simonyan, Karen, and Andrew Zisserman. "<u>Very deep convolutional networks for large-scale</u> <u>image recognition</u>." *arXiv preprint arXiv:1409.1556* (2014).

Sebastian Raschka STAT 479: Deep Learning SS 2019

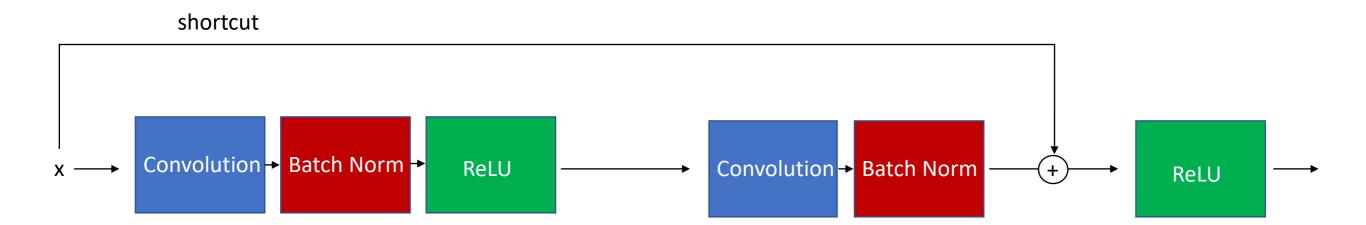
He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. "Deep residual learning for image recognition." In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 770-778. 2016.

With their simple trick of allowing skip connections (the possibility to learn identity functions and skip layers that are not useful), ResNets allow us to to implement very, very deep architectures


Figure 2. Residual learning: a building block.

He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. "Deep residual learning for image recognition." In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 770-778. 2016.



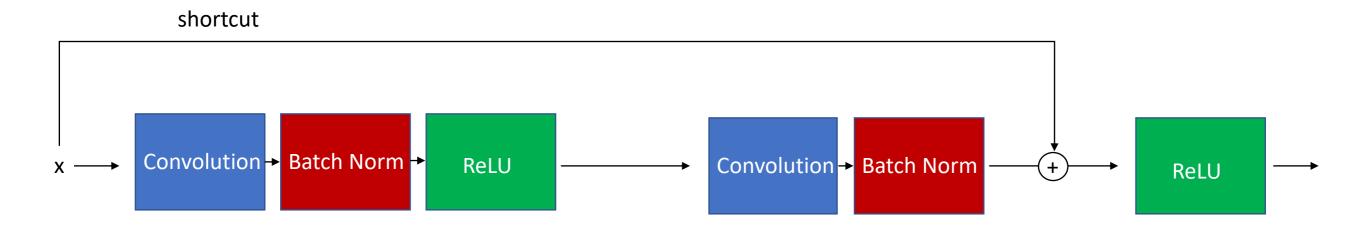
STAT 479: Deep Learning

SS 2019

In general:
$$a^{(l+2)} = \sigma(z^{(l+2)} + a^{(l)})$$

$$a^{(l+2)} = \sigma \left(z^{(l+2)} + a^{(l)} \right)$$

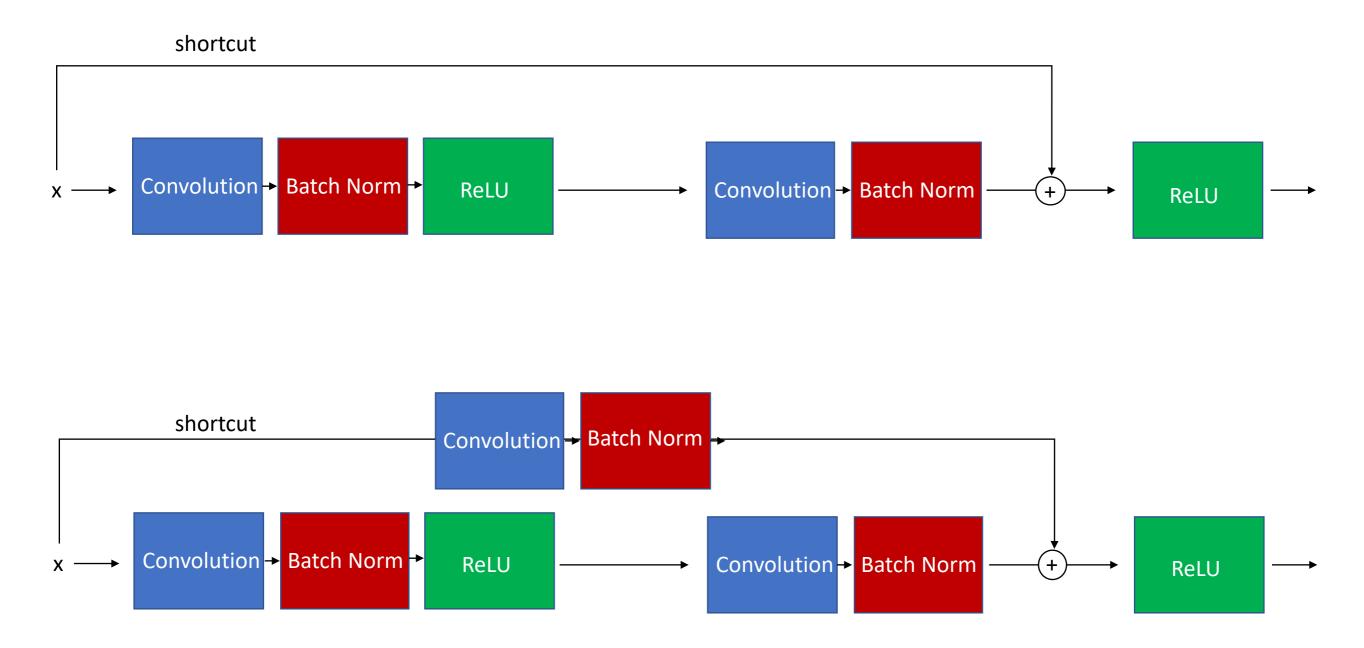
= $\sigma \left(a^{(l+1)} W^{(l+2)} + b^{(l+2)} + a^{(l)} \right)$


If all weights and the bias are zero, then

$$= \sigma(a^{(l)}) = a^{(l)} \qquad \text{(identity function)}$$

due to ReLU

Sebastian Raschka


STAT 479: Deep Learning

SS 2019

$$a^{(l+2)} = \sigma(z^{(l+2)} + a^{(l)})$$

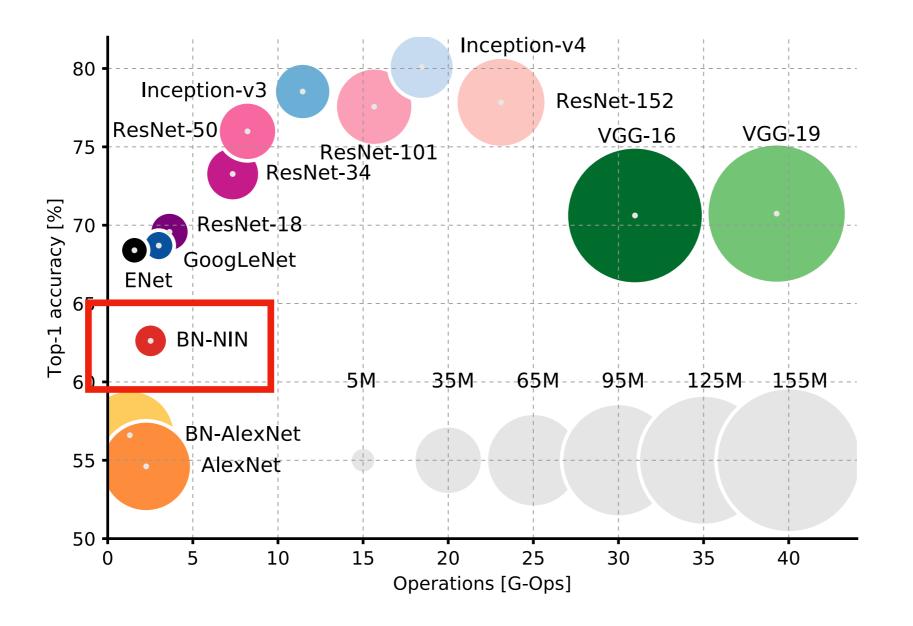
We assume these have the same dimension (e.g., via "same" convolution)

alternative residual blocks with skip connections such that the input passed via the shortcut is resized to dimensions of the main path's output

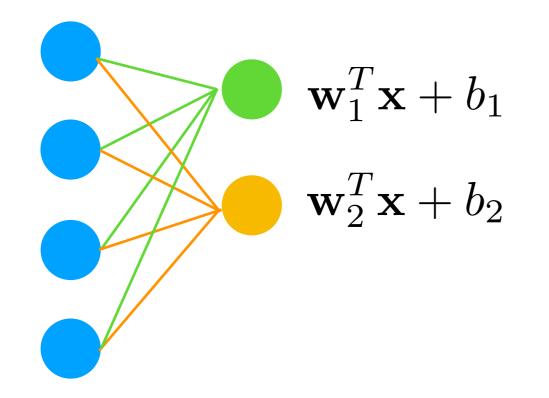
ResNet Block Implementation

PyTorch implementations of the previous slides:

<u>https://github.com/rasbt/stat479-deep-learning-ss19/blob/master/</u> L13_intro-cnn/code/resnet-blocks.ipynb


ResNet-34 and ResNet-152

PyTorch implementations:

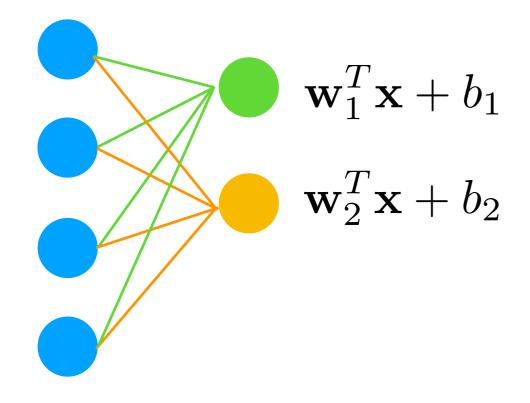

<u>https://github.com/rasbt/stat479-deep-learning-ss19/blob/master/</u> L13_intro-cnn/code/resnet-34.ipynb

<u>https://github.com/rasbt/stat479-deep-learning-ss19/blob/master/</u> L13_intro-cnn/code/resnet-152.ipynb

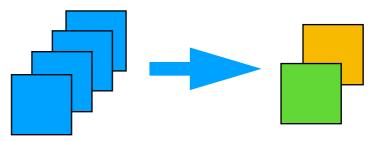
(Note that I had to implement them rather quickly yesterday; thus, I didn't tune hyperparameters, and the performance can be improved a lot, e.g., by using some of the image augmentation steps from your home work, among others)

Side Note: It is Possible to Replace Fully Connected Layers by Convolutional Layers

remember, these also involve dot products between the receptive fields and kernels $\mathbf{W}_2 * \mathbf{x} + b_2$ $\mathbf{W}_1 * \mathbf{x} + b_1$


Fully connected layer

where $\mathbf{W}_{1} = \begin{bmatrix} w_{1,1} & w_{1,2} \\ w_{1,3} & w_{1,4} \end{bmatrix}$ $\mathbf{W}_{2} = \begin{bmatrix} w_{2,1} & w_{2,2} \\ w_{2,3} & w_{2,4} \end{bmatrix}$


STAT 479: Deep Learning

SS 2019

Side Note: It is Possible to Replace Fully Connected Layers by Convolutional Layers

Fully connected layer

Or, we can concatenate the inputs into 1x1 images with 4 channels and then use 2 kernels (remember, each kernel then also has 4 channels)

Example: <u>https://github.com/rasbt/stat479-deep-learning-ss19/blob/master/L13_intro-cnn/</u> <u>code/fc-to-conv.ipynb</u>

Network in Network (NiN)

Lin, Min, Qiang Chen, and Shuicheng Yan. "Network in network." arXiv preprint arXiv:1312.4400 (2013).

Key Ideas

1)

- A convolution kernel can be thought of as a generalized linear model (GLM)
- Using a "sophisticated" nonlinear function approximator (e.g., an MLP) may enhance the abstraction ability of the local model
- => Replace GLM by "micro network" (sliding an MLP over the feature map)

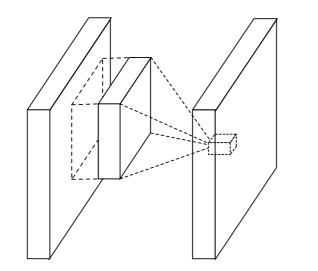
Network in Network (NiN)

Lin, Min, Qiang Chen, and Shuicheng Yan. "<u>Network in network</u>." *arXiv preprint arXiv:1312.4400* (2013).

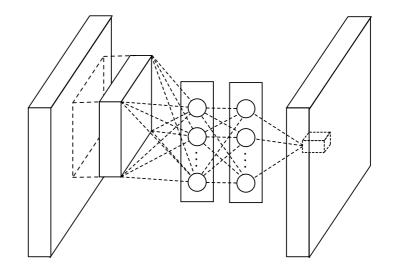
Key Ideas

- A convolution kernel can be thought of as a generalized linear model (GLM)
- Using a "sophisticated" nonlinear function approximator (e.g., an MLP) may enhance the abstraction ability of the local model
- => Replace GLM by "micro network" (sliding an MLP over the feature map)

2)


1)

- Replace the MLP "micro structure" via convolutions (explanation on the previous slides)
- Replace the fully connected layers in the last layers by <u>global average pooling</u>


Sebastian Raschka

STAT 479: Deep Learning

Lin, Min, Qiang Chen, and Shuicheng Yan. "<u>Network in network</u>." *arXiv preprint arXiv:1312.4400* (2013).

(a) Linear convolution layer

(b) Mlpconv layer

Figure 1: Comparison of linear convolution layer and mlpconv layer. The linear convolution layer includes a linear filter while the mlpconv layer includes a micro network (we choose the multilayer perceptron in this paper). Both layers map the local receptive field to a confidence value of the latent concept.

 Using a "sophisticated" nonlinear function approximator (e.g., an MLP) may enhance the abstraction ability of the local model

Global Average Pooling in Last Layer

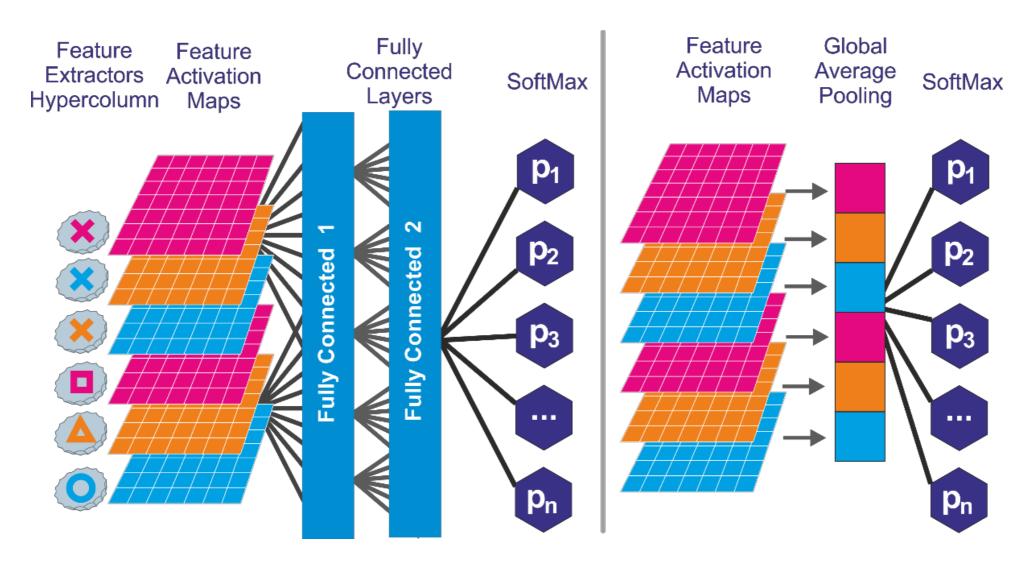


Figure 16: Global average pooling layer replacing the fully connected layers. The output layer implements a Softmax operation with p_1, p_2, \dots, p_n the predicted probabilities for each class.

Figure Source: Singh, Anshuman Vikram. "Content-based image retrieval using deep learning." (2015).

Lin, Min, Qiang Chen, and Shuicheng Yan. "<u>Network in network</u>." *arXiv preprint arXiv:1312.4400* (2013).

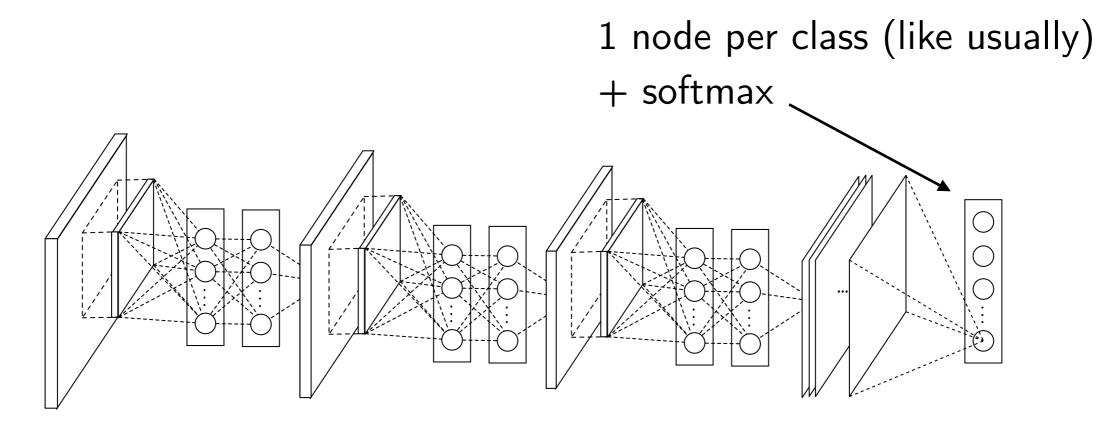


Figure 2: The overall structure of Network In Network. In this paper the NINs include the stacking of three mlpconv layers and one global average pooling layer.

 Replace the fully connected layers in the last layers by <u>global average pooling</u>

Lin, Min, Qiang Chen, and Shuicheng Yan. "Network in network." arXiv preprint arXiv:1312.4400 (2013).

Example Implementation:

<u>https://github.com/rasbt/stat479-deep-learning-ss19/blob/master/L13_intro-cnn/</u> <u>code/nin-cifar10.ipynb</u>

 Replace the MLP "micro structure" via convolutions (explanation on the previous slides)

```
class NiN(nn.Module):
   def init (self, num classes):
        super(NiN, self). init ()
        self.num classes = num classes
        self.classifier = nn.Sequential(
                nn.Conv2d(3, 192, kernel size=5, stride=1, padding=2),
                nn.ReLU(inplace=True),
                nn.Conv2d(192, 160, kernel size=1, stride=1, padding=0),
                nn.ReLU(inplace=True),
                nn.Conv2d(160, 96, kernel_size=1, stride=1, padding=0),
                nn.ReLU(inplace=True),
                nn.MaxPool2d(kernel_size=3, stride=2, padding=1),
                nn.Dropout(0.5),
                nn.Conv2d(96, 192, kernel size=5, stride=1, padding=2).
                Sebastian Raschka STAT 479: Deep Learning
                                                              SS 2019
```

Lin, Min, Qiang Chen, and Shuicheng Yan. "<u>Network in network</u>." *arXiv preprint arXiv:1312.4400* (2013).

Why it might work well in practice

Using the <u>micro-networks allow</u> us to extract more sophisticated features (non-linear functions); we may need fewer extractors and can avoid learning too simple or redundant abstractions

Fully-connected layers have a lot of parameters and may cause overfitting, replacing those by <u>global average pooling</u> might help with better generalization (nice side-effect: we can make the network be somewhat agnostic to the input size)

Different but related idea: "All-Convolutional Network"

Springenberg, Jost Tobias, Alexey Dosovitskiy, Thomas Brox, and Martin Riedmiller. "<u>Striving for simplicity: The all</u> <u>convolutional net.</u>" *arXiv preprint arXiv:1412.6806* (2014).

<u>Key Idea</u>: Replace Maxpooling by strided convolutions (i.e., conv layers with stride=2)

$$s_{i,j,u}(f) = \left(\sum_{h=-\lfloor k/2 \rfloor}^{\lfloor k/2 \rfloor} \sum_{w=-\lfloor k/2 \rfloor}^{\lfloor k/2 \rfloor} |f_{g(h,w,i,j,u)}|^p\right)^{1/p},$$

definition of max-pooling with stride=2 to when $p \to \infty$

$$c_{i,j,o}(f) = \sigma \left(\sum_{h=-\lfloor k/2 \rfloor}^{\lfloor k/2 \rfloor} \sum_{w=-\lfloor k/2 \rfloor}^{\lfloor k/2 \rfloor} \sum_{u=1}^{N} \theta_{h,w,u,o} \cdot f_{g(h,w,i,j,u)} \right)$$

definition of a convolutional layer with stride=2

Different but related idea: "All-Convolutional Network"

Springenberg, Jost Tobias, Alexey Dosovitskiy, Thomas Brox, and Martin Riedmiller. "<u>Striving for simplicity: The all</u> <u>convolutional net.</u>" *arXiv preprint arXiv:1412.6806* (2014).

<u>Key Idea</u>: Replace Maxpooling by strided convolutions (i.e., conv layers with stride=2)

$$s_{i,j,u}(f) = \left(\sum_{h=-\lfloor k/2 \rfloor}^{\lfloor k/2 \rfloor} \sum_{w=-\lfloor k/2 \rfloor}^{\lfloor k/2 \rfloor} |f_{g(h,w,i,j,u)}|^p\right)^{1/p},$$

definition of max-pooling with stride=2 to when $p \to \infty$

$$c_{i,j,o}(f) = \sigma \left(\sum_{h=-\lfloor k/2 \rfloor}^{\lfloor k/2 \rfloor} \sum_{w=-\lfloor k/2 \rfloor}^{\lfloor k/2 \rfloor} \sum_{u=1}^{N} \theta_{h,w,u,o} \cdot f_{g(h,w,i,j,u)} \right)$$

definition of a convolutional layer with stride=2

We can think of "strided convolutions" as learnable pooling

Springenberg, Jost Tobias, Alexey Dosovitskiy, Thomas Brox, and Martin Riedmiller. "<u>Striving for simplicity: The all</u> <u>convolutional net.</u>" *arXiv preprint arXiv:1412.6806* (2014).

Experimental Ablation Study with 3 Base Models:

Table 1: The three base networks used for classification on CIFAR-10 and CIFAR-100.

Model				
A B		С		
	Input 32×32 RGB image			
5×5 conv. 96 ReLU	5×5 conv. 96 ReLU	3×3 conv. 96 ReLU		
	1×1 conv. 96 ReLU	3×3 conv. 96 ReLU		
	3×3 max-pooling stride 2	2		
5×5 conv. 192 ReLU	5×5 conv. 192 ReLU	3×3 conv. 192 ReLU		
	1×1 conv. 192 ReLU	3×3 conv. 192 ReLU		
	3×3 max-pooling stride 2	2		
	3×3 conv. 192 ReLU			
1×1 conv. 192 ReLU				
1×1 conv. 10 ReLU				
global averaging over 6×6 spatial dimensions				
10 or 100-way softmax				
Sebastian Raschka	STAT 479: Deep Learning	SS 2019		

Springenberg, Jost Tobias, Alexey Dosovitskiy, Thomas Brox, and Martin Riedmiller. "Striving for simplicity: The all convolutional net." arXiv preprint arXiv:1412.6806 (2014).

Experimental Ablation Study with 3 Base Models: Shown are the modifications for Model C

Model				
Strided-CNN-C	All-CNN-C			
	Input 32×32 RGB image			
3×3 conv. 96 ReLU	3×3 conv. 96 ReLU	3×3 conv. 96 ReLU		
3×3 conv. 96 ReLU	3×3 conv. 96 ReLU	3×3 conv. 96 ReLU		
with stride $r = 2$	3×3 conv. 96 ReLU			
3×3 max-pooling stride 2		3×3 conv. 96 ReLU		
	with stride $r = 2$			
3×3 conv. 192 ReLU	3×3 conv. 192 ReLU	3×3 conv. 192 ReLU		
3×3 conv. 192 ReLU	3×3 conv. 192 ReLU	3×3 conv. 192 ReLU		
with stride $r = 2$	3×3 conv. 192 ReLU			
	3×3 max-pooling stride 2			
		with stride $r = 2$		

Springenberg, Jost Tobias, Alexey Dosovitskiy, Thomas Brox, and Martin Riedmiller. "<u>Striving for simplicity: The all</u> <u>convolutional net.</u>" *arXiv preprint arXiv:1412.6806* (2014).

Experimental Ablation Study with 3 Base Models: Shown are the modifications for Model C

Remove pooliong & increase stride of the previous layer

Model					
Strided-CNN-C	Strided-CNN-C ConvPool-CNN-C				
	Input 32×32 RGB image				
3×3 conv. 96 ReLU	3×3 conv. 96 ReLU	3×3 conv. 96 ReLU			
3×3 conv. 96 ReLU	3×3 conv. 96 ReLU 3×3 conv. 96 ReLU				
with stride $r = 2$	with stride $r = 2$ 3×3 conv. 96 ReLU				
	3×3 max-pooling stride 2	3×3 conv. 96 ReLU			
		with stride $r = 2$			
3×3 conv. 192 ReLU	3×3 conv. 192 ReLU	3×3 conv. 192 ReLU			
3×3 conv. 192 ReLU	3×3 conv. 192 ReLU	3×3 conv. 192 ReLU			
with stride $r = 2$	3×3 conv. 192 ReLU				
	3×3 max-pooling stride 2	3×3 conv. 192 ReLU			
		with stride $r = 2$			

Springenberg, Jost Tobias, Alexey Dosovitskiy, Thomas Brox, and Martin Riedmiller. "Striving for simplicity: The all convolutional net." arXiv preprint arXiv:1412.6806 (2014).

Experimental Ablation Study with 3 Base Models: Shown are the modifications for Model C

Remove pooling & add a strided conv. layer,

	Model			
Strided-CNN-C	All-CNN-C			
	Input 32×32 RGB image			
3×3 conv. 96 ReLU	3×3 conv. 96 ReLU	3×3 conv. 96 ReLU		
3×3 conv. 96 ReLU	3×3 conv. 96 ReLU	3×3 conv. 96 ReLU		
with stride $r = 2$	with stride $r = 2$ 3×3 conv. 96 ReLU			
	3×3 conv. 96 ReLU			
		with stride $r = 2$		
3×3 conv. 192 ReLU	3×3 conv. 192 ReLU	3×3 conv. 192 ReLU		
3×3 conv. 192 ReLU	3×3 conv. 192 ReLU 3×3 conv. 192 ReLU			
with stride $r = 2$	with stride $r = 2$ 3×3 conv. 192 ReLU			
	3×3 max-pooling stride 2	3×3 conv. 192 ReLU		
		with stride $r = 2$		

Springenberg, Jost Tobias, Alexey Dosovitskiy, Thomas Brox, and Martin Riedmiller. "Striving for simplicity: The all convolutional net." arXiv preprint arXiv:1412.6806 (2014).

Experimental Ablation Study with 3 Base Models: Shown are the modifications for Model C

Remove pooling & add a strided conv. layer,

	Model			
Strided-CNN-C	All-CNN-C			
	Input 32×32 RGB image			
3×3 conv. 96 ReLU	3×3 conv. 96 ReLU	3×3 conv. 96 ReLU		
3×3 conv. 96 ReLU	3×3 conv. 96 ReLU	3×3 conv. 96 ReLU		
with stride $r = 2$	with stride $r = 2$ 3×3 conv. 96 ReLU			
	3×3 conv. 96 ReLU			
		with stride $r = 2$		
3×3 conv. 192 ReLU	3×3 conv. 192 ReLU	3×3 conv. 192 ReLU		
3×3 conv. 192 ReLU	3×3 conv. 192 ReLU 3×3 conv. 192 ReLU			
with stride $r = 2$	with stride $r = 2$ 3×3 conv. 192 ReLU			
	3×3 max-pooling stride 2	3×3 conv. 192 ReLU		
		with stride $r = 2$		

Springenberg, Jost Tobias, Alexey Dosovitskiy, Thomas Brox, and Martin Riedmiller. "Striving for simplicity: The all <u>convolutional net.</u>" *arXiv preprint arXiv:1412.6806* (2014).

Table 3: Comparison between the base and derived models on the CIFAR-10 dataset.

CIFAR-10 classification error					
Model	Error (%)	# parameters			
without data augmentation					
Model A	12.47%	$\approx 0.9 \text{ M}$			
Strided-CNN-A	13.46%	pprox 0.9 M			
ConvPool-CNN-A	10.21 %	pprox 1.28 M			
ALL-CNN-A	10.30%	pprox 1.28 M			
Model B	10.20%	$\approx 1 \text{ M}$			
Strided-CNN-B	10.98%	$\approx 1 \text{ M}$			
ConvPool-CNN-B	9.33%	pprox 1.35 M			
ALL-CNN-B	9.10 %	pprox 1.35 M			
Model C	9.74%	$\approx 1.3 \text{ M}$			
Strided-CNN-C	10.19%	$pprox 1.3 \ { m M}$			
ConvPool-CNN-C	9.31%	$\approx 1.4 \text{ M}$			
ALL-CNN-C	9.08 %	$\approx 1.4 \text{ M}$			

CIEAD 10 alocation annon

Springenberg, Jost Tobias, Alexey Dosovitskiy, Thomas Brox, and Martin Riedmiller. "Striving for simplicity: The all convolutional net." arXiv preprint arXiv:1412.6806 (2014).

Model	Error (%)	# parameters			
without data augmentation					
Model A	12.47%	$\approx 0.9 \text{ M}$			
Strided-CNN-A	13.46%	$pprox 0.9 \ \mathrm{M}$			
ConvPool-CNN-A	10.21 %	pprox 1.28 M			
ALL-CNN-A	10.30%	pprox 1.28 M			
Model B	10.20%	$\approx 1 \text{ M}$			
Strided-CNN-B	10.98%	$\approx 1 \text{ M}$			
ConvPool-CNN-B	9.33%	pprox 1.35 M			
ALL-CNN-B	9.10 %	pprox 1.35 M			
Model C	9.74%	$\approx 1.3 \text{ M}$			
Strided-CNN-C 🔶	10.19%	$\approx 1.3 \text{ M}$			
ConvPool-CNN-C	9.31%	$\approx 1.4 \mathrm{M}$			
ALL-CNN-C	9.08 %	$pprox 1.4 \ { m M}$			

CIFAR-10 classification error

Removing maxpooling and increasing the stride of the previous layer performs worse

Springenberg, Jost Tobias, Alexey Dosovitskiy, Thomas Brox, and Martin Riedmiller. "<u>Striving for simplicity: The all</u> <u>convolutional net.</u>" *arXiv preprint arXiv:1412.6806* (2014).

Model	Error (%)	# parameters	
without data augme	ntation		-
Model A	12.47%	$\approx 0.9 \text{ M}$	-
Strided-CNN-A	13.46%	pprox 0.9 M	
ConvPool-CNN-A	10.21 %	pprox 1.28 M	
ALL-CNN-A	10.30%	pprox 1.28 M	
Model B	10.20%	$\approx 1 \text{ M}$	-
Strided-CNN-B	10.98%	$\approx 1 \text{ M}$	
ConvPool-CNN-B	9.33%	$pprox 1.35 \ \mathrm{M}$	
ALL-CNN-B	9.10 %	pprox 1.35 M	
Model C	9.74%	$\approx 1.3 \text{ M}$	-
Strided-CNN-C	10.19%	$pprox 1.3 \ \mathrm{M}$	
ConvPool-CNN-C	9.31%	$\approx 1.4 \text{ M}$	Replacing maxpooling with an
ALL-CNN-C	9.08 %	$pprox 1.4 \ { m M}$	
			- convolutional layer (stride=2) improves
			the performance

CIFAR-10 classification error

Springenberg, Jost Tobias, Alexey Dosovitskiy, Thomas Brox, and Martin Riedmiller. "<u>Striving for simplicity: The all</u> <u>convolutional net.</u>" *arXiv preprint arXiv:1412.6806* (2014).

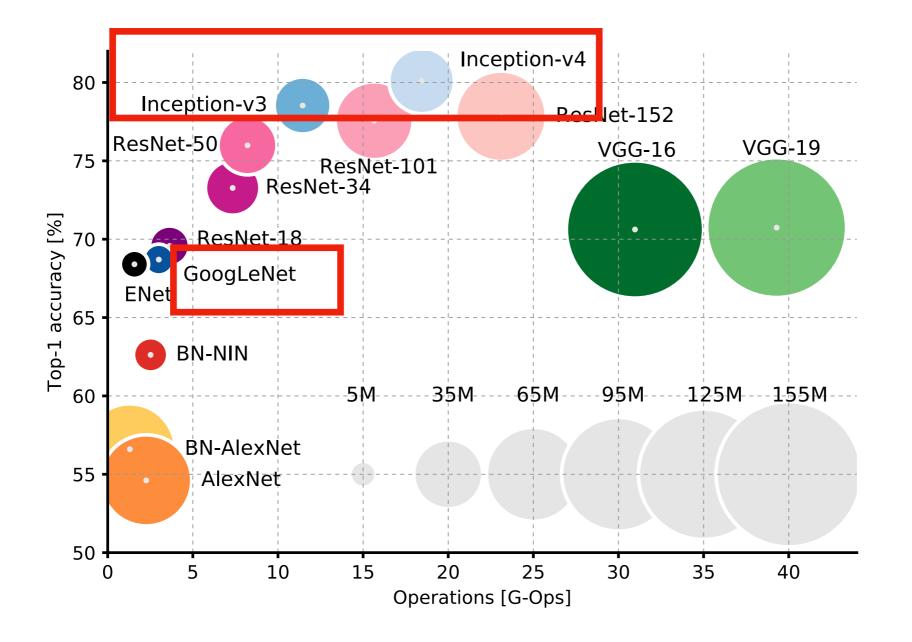
Model	Error (%)	# parameters	
without data augment	ntation		-
Model A	12.47%	$\approx 0.9 \text{ M}$	-
Strided-CNN-A	13.46%	pprox 0.9 M	
ConvPool-CNN-A	10.21 %	pprox 1.28 M	
ALL-CNN-A	10.30%	pprox 1.28 M	
Model B	10.20%	$\approx 1 \text{ M}$	-
Strided-CNN-B	10.98%	$\approx 1 \text{ M}$	
ConvPool-CNN-B	9.33%	pprox 1.35 M	
ALL-CNN-B	9.10 %	pprox 1.35 M	
Model C	9.74%	pprox 1.3 M	Replacing maxpooling with an
Strided-CNN-C	10.19%	pprox 1.3 M	
ConvPool-CNN-C	9.31%	$\approx 1.4 \text{ M}$	convolutional layer (stride=2) improves
ALL-CNN-C	9.08 %	≈ 1.4 M	
			- the performance
			(this may be unfair because of the
			additional parameters)
			• • •

CIFAR-10 classification error

Springenberg, Jost Tobias, Alexey Dosovitskiy, Thomas Brox, and Martin Riedmiller. "Striving for simplicity: The all convolutional net." arXiv preprint arXiv:1412.6806 (2014).

Model	Error (%)	# parameters			
without data augmentation					
Model A	12.47%	$\approx 0.9 \text{ M}$			
Strided-CNN-A	13.46%	pprox 0.9 M			
ConvPool-CNN-A	10.21 %	pprox 1.28 M			
ALL-CNN-A	10.30%	pprox 1.28 M			
Model B	10.20%	$\approx 1 \text{ M}$			
Strided-CNN-B	10.98%	$\approx 1 \text{ M}$			
ConvPool-CNN-B	9.33%	$pprox 1.35 \ \mathrm{M}$			
ALL-CNN-B	9.10 %	pprox 1.35 M			
Model C	9.74%	$\approx 1.3 \text{ M}$			
Strided-CNN-C	10.19%	$pprox 1.3 \ { m M}$			
ConvPool-CNN-C	9.31%	$\approx 1.4 \text{ M}$			
ALL-CNN-C	9.08%	$\approx 1.4 \text{ M}$			

CIFAR-10 classification error


Replacing maxpooling with an convolutional layer (stride=2) improves the performance

Difference to "All-Convolutional Network"

Springenberg, Jost Tobias, Alexey Dosovitskiy, Thomas Brox, and Martin Riedmiller. "<u>Striving for simplicity: The all</u> <u>convolutional net.</u>" *arXiv preprint arXiv:1412.6806* (2014).

Code example https://github.com/rasbt/stat479-deep-learning-ss19/blob/ master/L13_intro-cnn/code/convnet-allconv.ipynb

Common Architectures Revisited

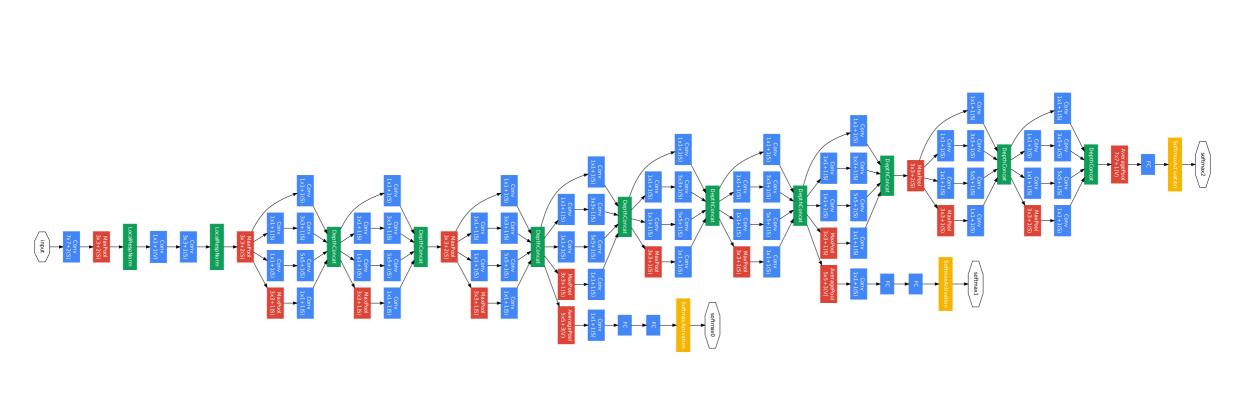
Canziani, A., Paszke, A., & Culurciello, E. (2016). An analysis of deep neural network models for practical applications. *arXiv preprint arXiv:1605.07678*.

Szegedy, Christian, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. "<u>Going deeper with convolutions.</u>" In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 1-9. 2015.

<u>3 key ideas:</u>

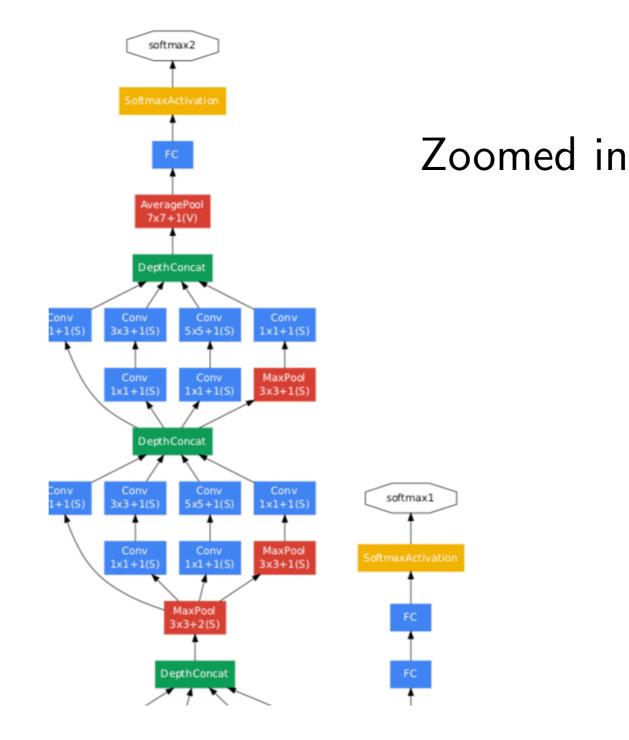
- 1. 1x1 in the middle of the network
- 2. global average pooling instead of fully connected layers
- 3. inception module

Note that the name <u>inception</u> doesn't have to make sense and is unrelated to the main concept; according to the authors, it comes from an internet meme that is in turn based on a movie called "Inception"

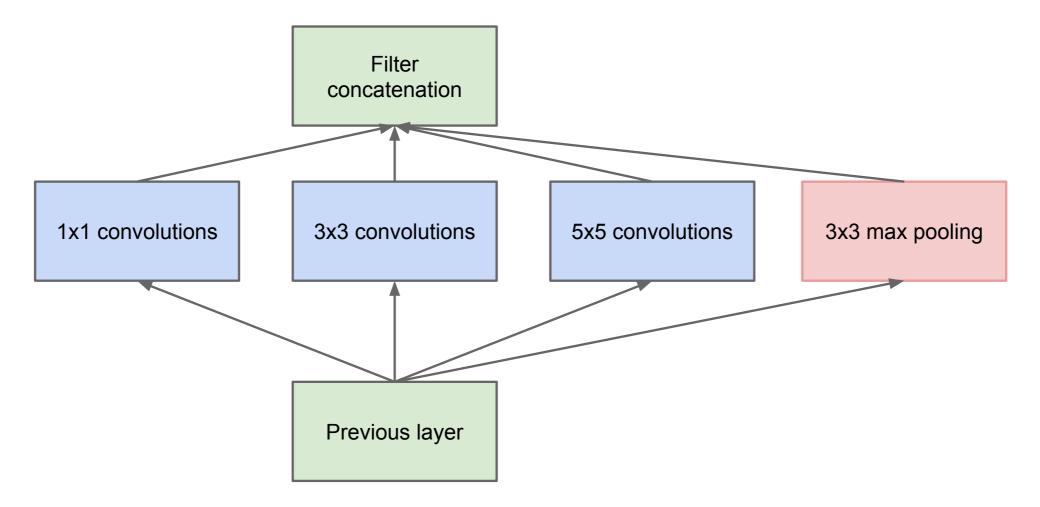

Szegedy, Christian, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. "<u>Going deeper with convolutions.</u>" In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 1-9. 2015.

Key Ideas/Features:

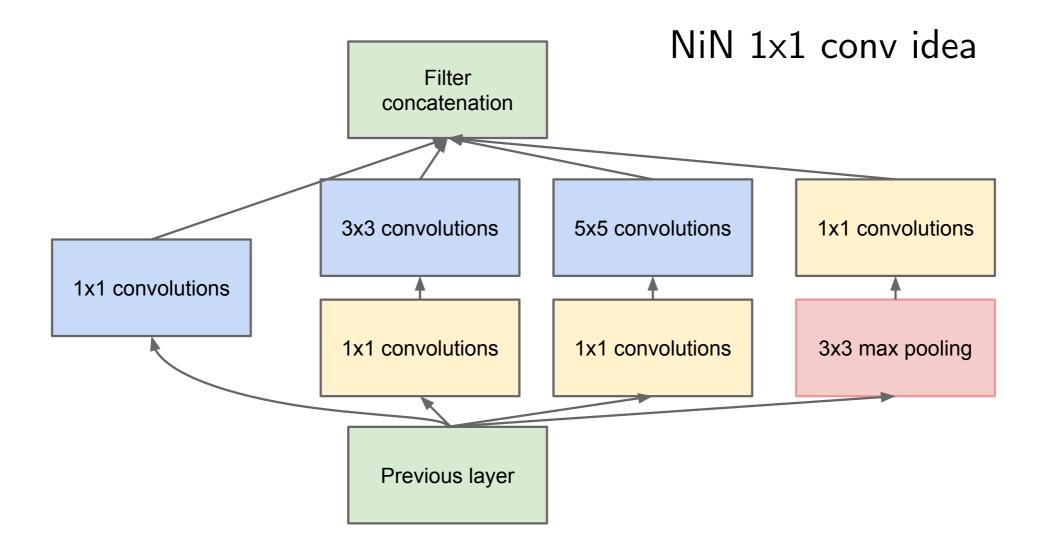
- 1x1 convolutions: An efficient way to reduce the number of channels (from NiN)
- Global Average Pooling at the last layer (from NiN)
- Use of auxiliary losses that are added to the total loss
- New: Inception module


Szegedy, Christian, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. "<u>Going deeper with convolutions.</u>" In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 1-9. 2015.

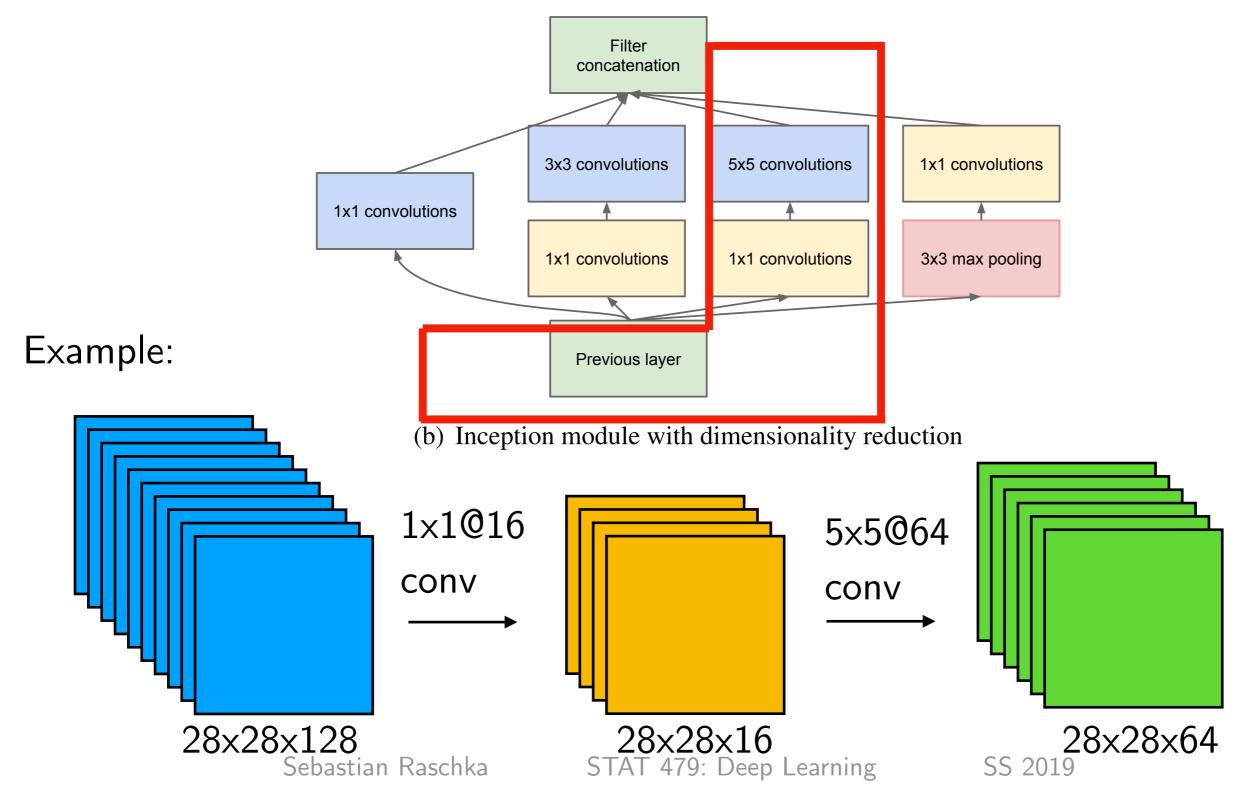
Full Architecture


SS 2019

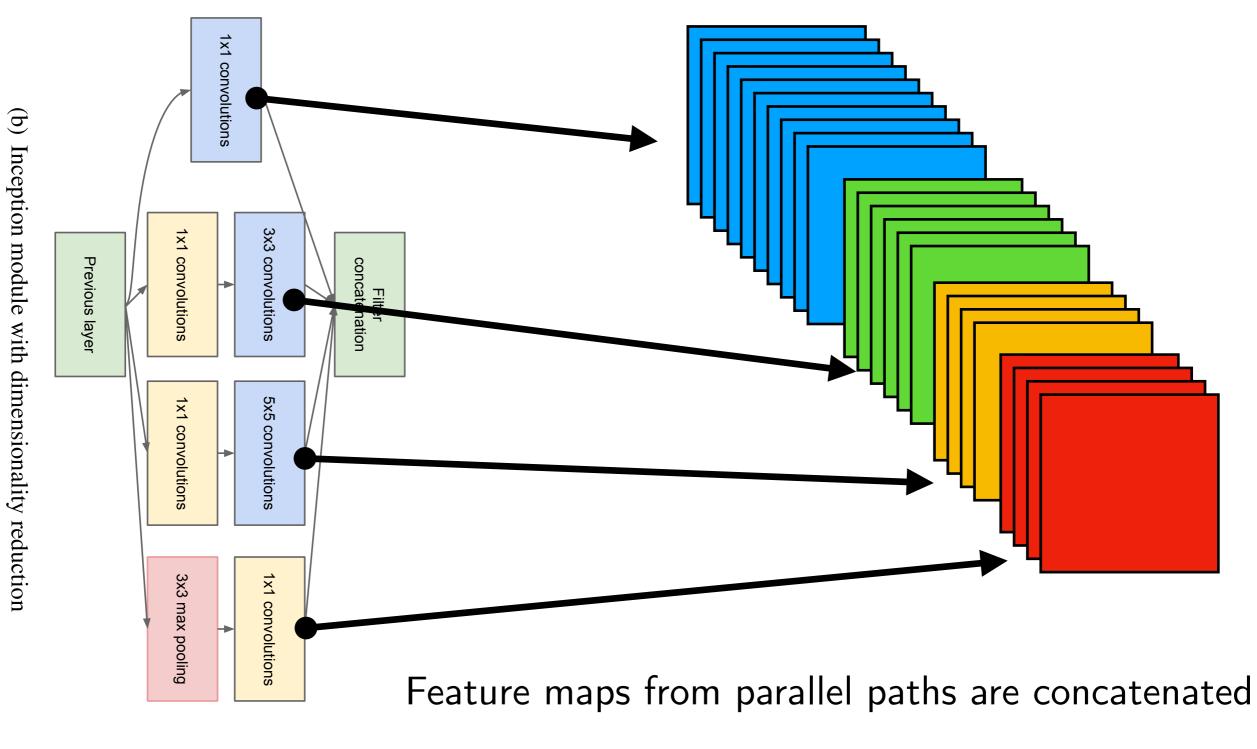
Szegedy, Christian, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. "<u>Going deeper with convolutions.</u>" In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 1-9. 2015.


STAT 479: Deep Learning

Szegedy, Christian, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. "<u>Going deeper with convolutions.</u>" In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 1-9. 2015.


(a) Inception module, naïve version

Szegedy, Christian, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. "<u>Going deeper with convolutions.</u>" In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 1-9. 2015.



(b) Inception module with dimensionality reduction

Szegedy, Christian, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. "<u>Going deeper with convolutions.</u>" In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 1-9. 2015.

Szegedy, Christian, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. "<u>Going deeper with convolutions.</u>" In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 1-9. 2015.

To be continued ...