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11 Statistical Tests and Algorithm Comparison

11.1 Overview

This fourth lecture in the model evaluation part of this machine learning class provides
overviews of several statistical hypothesis testing approaches, with applications to machine
learning model and algorithm comparisons. This includes statistical tests based on target
predictions for independent test sets (the downsides of using a single test set for model
comparisons was discussed in previous sections) as well as methods for algorithm compar-
isons by fitting and evaluating models via cross-validation. Lastly, the last section of this
lecture introduces nested cross-validation, which has become a common and recommended
a method of choice for algorithm comparisons for small to moderately-sized datasets.

Then, at the end of this lecture, I provide a list of my personal suggestions concerning model
evaluation, selection, and algorithm selection summarizing the several techniques covered in
this course so far.

11.2 Testing the Difference of Proportions

There are several different statistical hypothesis testing frameworks that are being used in
practice to compare the performance of classification models, including conventional methods
such as difference of two proportions (here, the proportions are the estimated generalization
accuracies from a test set), for which we can construct 95% confidence intervals based on
the concept of the Normal Approximation to the Binomial that was covered in Lecture 9.

Performing a z-score test for two population proportions is inarguably the most straight-
forward way to compare to models (but certainly not the best!): In a nutshell, if the 95%
confidence intervals of the accuracies of two models do not overlap, we can reject the null
hypothesis that the performance of both classifiers is equal at a confidence level of α = 0.05
(or 5% probability). Violations of assumptions aside (for instance that the test set samples
are not independent), as Thomas Dietterich noted based on empirical results in a simulated

http://stat.wisc.edu/~sraschka/teaching/stat479-fs2018/


Sebastian Raschka STAT479 FS18. L11: Algorithm Comparison Page 2

study1, this test tends to have a high false positive rate (here: incorrectly detecting difference
when there is none), which is among the reasons why it is not recommended in practice.

Nonetheless, for the sake of completeness, and since it a commonly used method in prac-
tice, the general procedure is outlined below as follows (which also generally applies to the
different hypothesis tests presented later):

1. formulate the hypothesis to be tested (for instance, the null hypothesis stating that the
proportions are the same; consequently, the alternative hypothesis that the proportions
are different, if we use a two-tailed test);

2. decide upon a significance threshold (for instance, if the probability of observing a
difference more extreme than the one seen is more than 5%, then we plan to reject the
null hypothesis);

3. analyze the data, compute the test statistic (here: z-score), and compare its associated
p-value (probability) to the previously determined significance threshold;

4. based on the p-value and significance threshold, either accept or reject the null hy-
pothesis at the given confidence level and interpret the results.

The z-score is computed as the observed difference divided by the square root for their
combined variances

z =
ACC1 −ACC2√

σ2
1 + σ2

2

,

where ACC1 is the accuracy of one model and ACC2 is the accuracy of a second model
estimated from the test set. Recall that we computed the variance of the estimated of the
estimated accuracy as

σ2 =
ACC(1−ACC)

n

in Lecture 9 and then computed the confidence interval (Normal Approximation Interval)
as

ACC ± z × σ,

where z = 1.96 for a 95% confidence interval. Comparing the confidence intervals of two
accuracy estimates and checking whether they overlap is then analogous to computing the
z value for the difference in proportions and comparing the probability (p-value) to the
chosen significance threshold. So, to compute the z-score directly for the difference of two
proportions, ACC1 and ACC2, we pool these proportions (assuming that ACC1 and ACC2

are the performances of two models estimated on two independent test sets of size n1 and
n2, respectively),

ACC1,2 =
ACC1 × n1 +ACC2 × n2

n1 + n2
,

and compute the standard deviation as

σ1,2 =

√
ACC1,2(1−ACC1,2)

n1 + n2
,

such that we can compute the z-score,

1Thomas G Dietterich. “Approximate statistical tests for comparing supervised classification learning
algorithms”. In: Neural computation 10.7 (1998), pp. 1895–1923.
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z =
ACC1 −ACC2

σ1,2
.

Since, due to using the same test set (and violating the independence assumption) we have
n1 = n2 = n, so that we can simplify the z-score computation to

z =
ACC1 −ACC2√

2σ2
=

ACC1 −ACC2√
2 ·ACC1,2(1−ACC1,2))/n

.

where ACC1,2 is simply (ACC1 +ACC2)/2.

In the second step, based on the computed z value (this assumes the test errors are indepen-
dent, which is usually violated in practice as we use the same test set) we can reject the null
hypothesis that the pair of models has equal performance (here, measured in ”classification
accuracy”) at an α = 0.05 level if |z| is higher than 1.96. Alternatively, if we want to put in
the extra work, we can compute the area under the standard normal cumulative distribution
at the z-score threshold. If we find this p-value is smaller than a significance level we set
before conducting the test, then we can reject the null hypothesis at that given significance
level.

The problem with this test though is that we use the same test set to compute the accuracy
of the two classifiers; thus, it might be better to use a paired test such as a paired sample
t-test, but a more robust alternative is the McNemar test illustrated in the next section.

11.3 Comparing Two Models with the McNemar Test

So, instead of using the ”difference of proportions” test, Dietterich2 found that the McNemar
test is to be preferred. The McNemar test, introduced by Quinn McNemar in 19473, is a
non-parametric statistical test for paired comparisons that can be applied to compare the
performance of two machine learning classifiers.

Often, McNemar’s test is also referred to as ”within-subjects chi-squared test,” and it is
applied to paired nominal data based on a version of 2x2 confusion matrix (sometimes also
referred to as 2x2 contingency table) that compares the predictions of two models to each
other (not be confused with the typical confusion matrices encountered in machine learning,
which are listing false positive, true positive, false negative, and true negative counts of a
single model). The layout of the 2x2 confusion matrix suitable for McNemar’s test is shown
in Figure 1.

Given such a 2x2 confusion matrix as shown in Figure 1, we can compute the accuracy of a
Model 1 via (A + B)/(A + B + C + D), where A + B + C + D is the total number of test
examples n. Similarly, we can compute the accuracy of Model 2 as (A + C)/n. The most
interesting numbers in this table are in cells B and C, though, as A and D merely count the
number of samples where both Model 1 and Model 2 made correct or wrong predictions,
respectively. Cells B and C (the off-diagonal entries), however, tell us how the models differ.
To illustrate this point, let us take a look at the following example:

In both subpanels, A and B, in Figure 2, the accuracy of Model 1 and Model 2 are 99.6%
and 99.7%, respectively.

• Model 1 accuracy subpanel A: (9959 + 11)/10000× 100% = 99.7%

• Model 1 accuracy subpanel B: (9945 + 25)/10000× 100% = 99.7%

2Dietterich, “Approximate statistical tests for comparing supervised classification learning algorithms”.
3Quinn McNemar. “Note on the sampling error of the difference between correlated proportions or

percentages”. In: Psychometrika 12.2 (1947), pp. 153–157.
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Figure 1: Confusion matrix layout in context of McNemar’s test.
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Figure 2: Confusion matrix for exemplary classification outcomes of two models, Model 1 and
Model 2.

• Model 2 accuracy subpanel A: (9959 + 1)/10000× 100% = 99.6%

• Model 2 accuracy subpanel B: (9945 + 15)/10000× 100% = 99.6%

Now, in subpanel A, we can see that Model 1 got 11 predictions right that Model 2 got wrong.
Vice versa, Model 2 got one prediction right that Model 1 got wrong. Thus, based on this
11:1 ratio, we may conclude, based on our intuition, that Model 1 performs substantially
better than Model 1. However, in subpanel B, the Model 1:Model 2 ratio is 25:15, which
is less conclusive about which model is the better one to choose. This is a good example
where McNemar’s test can come in handy.

In McNemar’s Test, we formulate the null hypothesis that the probabilities p(B) and p(C)
– where B and C refer to the confusion matrix cells introduced in an earlier figure – are the
same, or in simplified terms: None of the two models performs better than the other. Thus,
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we might consider the alternative hypothesis that the performances of the two models are
not equal.

The McNemar test statistic (”chi-squared”) can be computed as follows:

χ2 =
(B − C)2

B + C
.

After setting a significance threshold, for example, α = 0.05, we can compute a p-value –
assuming that the null hypothesis is true, the p-value is the probability of observing the given
empirical (or a larger) χ2-squared value. If the p-value is lower than our chosen significance
level, we can reject the null hypothesis that the two models’ performances are equal.

Since the McNemar test statistic, χ2, follows a χ2 distribution with one degree of freedom
(assuming the null hypothesis and relatively large numbers in cells B and C, say ¿ 25), we
can now use our favorite software package to ”look up” the (1-tail) probability via the χ2

probability distribution with one degree of freedom.

If we did this for scenario B in the previous figure (χ2 = 2.5), we would obtain a p-value of
0.1138, which is larger than our significance threshold, and thus, we cannot reject the null
hypothesis. Now, if we computed the p-value for scenario A (χ2 = 8.3), we would obtain a
p-value of 0.0039, which is below the set significance threshold (α = 0.05) and leads to the
rejection of the null hypothesis; we can conclude that the models’ performances are different
(for instance, Model 1 performs better than Model 2).

Approximately one year after Quinn McNemar published the McNemar Test4, Allen L.
Edwards5 proposed a continuity corrected version, which is the more commonly used variant
today:

χ2 =

(
|B − C| − 1

)2
B + C

.

In particular, Edwards wrote:

This correction will have the apparent result of reducing the absolute value of
the difference, [B - C], by unity.

According to Edward, this continuity correction increases the usefulness and accuracy of
McNemar’s test if we are dealing with discrete frequencies and the data is evaluated regarding
the chi-squared distribution.

11.4 Exact p-Values via the Binomial Test

While McNemar’s test approximates the p-values reasonably well if the values in cells B and
C are larger than 50 (referring to the 2x2 confusion matrix shown earlier), for example, it
makes sense to use a computationally more expensive binomial test to compute the exact
p-values if the values of B and C are relatively small – since the chi-squared value from
McNemar’s test may not be well-approximated by the chi-squared distribution.

The exact p-value can be computed as follows (based on the fact that McNemar’s test, under
the null hypothesis, is essentially a binomial test with proportion 0.5):

4McNemar, “Note on the sampling error of the difference between correlated proportions or percentages”.
5Allen L Edwards. “Note on the “correction for continuity” in testing the significance of the difference

between correlated proportions”. In: Psychometrika 13.3 (1948), pp. 185–187.
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p = 2

n∑
i=B

(
n

i

)
0.5i(1− 0.5)n−i,

where N = B+C, and the factor 2 is used to compute the two-sided p-value (here, n is not
to be confused with the test set size n).

The heat map shown in Figure 3 illustrates the differences between the McNemar approx-
imation of the chi-squared value (with and without Edward’s continuity correction) to the
exact p-values computed via the binomial test.
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Figure 3: Differences between the McNemar approximation of the chi-squared value (with and
without Edward’s continuity correction) and the exact p-values computed via the binomial test.

As we can see in Figure 3, the p-values from the continuity-corrected version of McNemar’s
test are almost identical to the p-values from a binomial test if both B and C are larger than
50.

11.5 Multiple Hypotheses Testing

In the previous section, we discussed how we could compare two machine learning classifiers
using McNemar’s test. However, in practice, we often have more than two models that
we like to compare based on their estimated generalization performance – for instance, the
predictions on an independent test set. Now, applying the testing procedure described earlier
multiple times will result in a typical issue called ”multiple hypotheses testing.” A common
approach for dealing with such scenarios is the following:

1. Conduct an omnibus test under the null hypothesis that there is no difference between
the classification accuracies.

2. If the omnibus test led to the rejection of the null hypothesis, conduct pairwise post hoc
tests, with adjustments for multiple comparisons, to determine where the differences
between the model performances occurred. (Here, we could use McNemar’s test, for
example.)

Omnibus tests are statistical tests designed to check whether random samples depart from a
null hypothesis. A popular example of an omnibus test is the so-called Analysis of Variance
(ANOVA), which is a procedure for analyzing the differences between group means. In other
words, ANOVA is commonly used for testing the significance of the null hypothesis that the
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means of several groups are equal. To compare multiple machine learning models, Cochran’s
Q test would be a possible choice, which is essentially a generalized version of McNemar’s
test for three or more models. However, omnibus tests are overall significance tests that
do not provide information about how the different models differ – omnibus tests such as
Cochran’s Q only tell us that a group of models differs or not.

Since omnibus tests can tell us that but not how models differ, we can perform post hoc
tests if an omnibus test leads to the rejection of the null hypothesis. In other words, if
we successfully rejected the null hypothesis that the performance of three or models is the
same at a predetermined significance threshold, we may conclude that there is at least one
significant difference among the different models.

By definition, post hoc testing procedures do not require any prior plan for testing. Hence,
post hoc testing procedures may have a bad reputation and may be regarded as ”fishing
expeditions” or ”searching for the needle in the haystack,” because no hypothesis is clear
beforehand in terms of which models should be compared, so that it is required to compare
all possible pairs of models with each other, which leads to the multiple hypothesis problems
that we briefly discussed in Lecture 10 (cross-validation). However, please keep in mind
that these are all approximations and everything concerning statistical tests and
reusing test sets (independence violation) should be taken with (at least) a grain
of salt.

For the post hoc procedure, we could use one of the many correction terms, for example,
Bonferroni’s correction6 for multiple hypothesis testing. In a nutshell, where a given signifi-
cance threshold (or α-level) may be appropriate for a single comparison between to models,
it is not suitable for multiple pair-wise comparisons. For instance, using the Bonferroni cor-
rection is a means to reduce the false positive rate in multiple comparison tests by adjusting
the significance threshold to be more conservative.

The next two sections will discuss two omnibus tests, Cochran’s Q test and the F -test for
comparing multiple classifiers on the same test set proposed by Looney7.

11.6 Cochran’s Q Test for Comparing the Performance of Multiple
Classifiers

Cochran’s Q test can be regarded as a generalized version of McNemar’s test that can be
applied to compare three or more classifiers. In a sense, Cochran’s Q test is similar to
ANOVA but for paired nominal data. Similar to ANOVA, it does not provide us with
information about which groups (or models) differ – only tells us that there is a difference
among the models.

The test statistic Q is approximately, (similar to McNemar’s test), distributed as chi-squared
with M − 1 degrees of freedom, where M is the number of models we evaluate (since M = 2
for McNemar’s test, McNemar’s test statistic approximates a chi-squared distribution with
one degree of freedom).

More formally, Cochran’s Q test tests the null hypothesis (H0) that there is no difference
between the classification accuracies8:

H0 : ACC1 = ACC2 = . . . = ACCM .

6C Bonferroni. “Teoria statistica delle classi e calcolo delle probabilita”. In: Pubblicazioni del R Istituto
Superiore di Scienze Economiche e Commericiali di Firenze 8 (1936), pp. 3–62; Olive Jean Dunn. “Multiple
comparisons among means”. In: Journal of the American statistical association 56.293 (1961), pp. 52–64.

7Stephen W Looney. “A statistical technique for comparing the accuracies of several classifiers”. In:
Pattern Recognition Letters 8.1 (1988), pp. 5–9.

8Joseph L Fleiss, Bruce Levin, and Myunghee Cho Paik. Statistical Methods for Rates and Proportions.
John Wiley & Sons, 2013.
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Let {C1, . . . , CM} be a set of classifiers who have all been tested on the same dataset. If
the M classifiers do not differ in terms of their performance, then the following Q statistic
is distributed approximately as ”chi-squared” with M − 1 degrees of freedom:

Q = (M − 1)
M
∑M

i=1G
2
i − T 2

MT −
∑n

j=1M
2
j

.

Here, Gi is the number of objects out of the n test examples correctly classified by Ci =
1, . . .M ; Mj is the number of classifiers out of M that correctly classified the jth example
in the test dataset; and T is the total number of correct number of votes among the M
classifiers:

T =

M∑
i=1

; Gi =

N∑
j=1

Mj .

To perform Cochran’s Q test, we typically organize the classifier predictions in a binary
n ×M matrix (number of test examples vs. the number of classifiers). The ijth entry of
such matrix is 0 if a classifier Cj has misclassified a data example (vector) xi and 1 otherwise
(if the classifier predicted the class label f(xi) correctly).

Applied to an example dataset that was taken from9, the procedure below illustrates how
the classification results may be organized. For instance, assume we have the ground truth
labels of the test dataset ytrue

and the following predictions on the test set by 3 classifiers (yC1 , yC2 , and yC3):

ytrue = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0];

(1)

yC1
= [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0];

(2)

yC2
= [1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0];

(3)

9Ludmila I Kuncheva. Combining Pattern Classifiers: Methods and Algorithms. John Wiley & Sons,
2004.
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Table 1: Table comparing model performances of 3 classifiers used to illustrate the computation
of Cochran’s Q in Equation 5

.
C1 C2 C3 Occurrences

1 1 1 80
1 1 0 2
1 0 1 0
1 0 0 2
0 1 1 9
0 1 0 1
0 0 1 3
0 0 0 3

Classification Accuracies:

84/100× 100% = 84% 92/100× 100% = 92% 92/100× 100% = 92%

yC3 = [1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1].

(4)

We can then tabulate the correct (1) and incorrect (0) classifications as shown in Table 1.

By plugging in the respective value into the previous equation, we obtain the following Q
value:

Q = 2× 3× (842 + 922 + 922)− 2682

3× 268− (80× 9 + 11× 4 + 6× 1)
≈ 7.5294. (5)

Now, the Q value (approximating χ2) corresponds to a p-value of approximately 0.023
assuming a χ2 distribution with M − 1 = 2 degrees of freedom. Assuming that we chose a
significance level of α = 0.05, we would reject the null hypothesis that all classifiers perform
equally well, since 0.023 < α.

In practice, if we successfully rejected the null hypothesis, we could perform multiple post hoc
pair-wise tests – for example, McNemar’s test with a Bonferroni correction – to determine
which pairs have different population proportions. Unfortunately, numerous comparisons
are usually very tricky in practice. Peter H. Westfall, James F. Troendl, and Gene Pennello
wrote a nice article on how to approach such situations where we want to compare multiple
models to each other10.

As Perneger, Thomas V11 writes:

Type I errors [False Positives] cannot decrease (the whole point of Bonferroni
adjustments) without inflating type II errors (the probability of accepting the null
hypothesis when the alternative is true)12. And type II errors [False Negatives]
are no less false than type I errors.

10Peter H Westfall, James F Troendle, and Gene Pennello. “Multiple McNemar tests”. In: Biometrics
66.4 (2010), pp. 1185–1191.

11Thomas V Perneger. “What’s wrong with Bonferroni adjustments”. In: Bmj 316.7139 (1998), pp. 1236–
1238.

12Kenneth J Rothman. “No adjustments are needed for multiple comparisons”. In: Epidemiology (1990),
pp. 43–46.
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Eventually, once more it comes down to the ”no free lunch” – in this context, let us refer of
it as the ”no free lunch theorem of statistical tests.” However, statistical testing frameworks
can be a valuable aid in decision making. So, in practice, if we are honest and rigorous, the
process of multiple hypothesis testing with appropriate corrections can be a useful aid in
decision making. However, we have to be careful that we do not put too much emphasis on
such procedures when it comes to assessing evidence in data.

11.7 The F -test for Comparing Multiple Classifiers

Almost ironically, Cochran noted that in his work on the Q test13

If the data had been measured variables that appeared normally distributed,
instead of a collection of 1’s and 0’s, the F -test would be almost automatically
applied as the appropriate method. Without having looked into that matter, I
had once or twice suggested to research workers that the F -test might serve as
an approximation even when the table consists of 1’s and 0’s

The method of using the F -test for comparing two classifiers in this section is somewhat
loosely based on Looney14, whereas it shall be noted that Looney recommends an adjusted
version called F+ test.

In the context of the F -test, our null hypothesis is again that there that there is no difference
between the classification accuracies:

pi : H0 = p1 = p2 = · · · = pL.

Let {C1, . . . , CM} be a set of classifiers which have all been tested on the same dataset. If
the M classifiers do not perform differently, then the F statistic is distributed according to
an F distribution with (M − 1) and (M − 1)× n degrees of freedom, where n is the number
of examples in the test set. The calculation of the F statistic consists of several components,
which are listed below (adopted from Looney, 1998).

The sum of squares of the classifiers is computed as

SSA = N

N∑
i=1

(Mj)
2,

where Mj is the number of classifiers out of M that correctly classified object xj ∈ Xn,
where Xn = {x1, ...xn} is the test dataset on which the classifiers are tested on.

The sum of squares for the objects is then calculated as

SSB =
1

M

n∑
j=1

(Mj)
2 −M · n ·ACC2

avg,

whereACCavg is the average of the accuracies of the different modelsACCavg =
∑M

i=1ACCi.

Finally, we compute the total sum of squares,

13William G Cochran. “The comparison of percentages in matched samples”. In: Biometrika 37.3/4
(1950), pp. 256–266.

14Looney, “A statistical technique for comparing the accuracies of several classifiers”.
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SST = M · n ·ACC2
avg(1−ACC2

avg),

so that we then can compute the sum of squares for the classification–object interaction:

SSAB = SST − SSA− SSB.

To compute the F statistic, we next compute the mean SSA and mean SSAB values:

MSA =
SSA

M − 1
,

and

MSAB =
SSAB

(M − 1)(n− 1)
.

From the MSA and MSAB, we can then calculate the F -value as

F =
MSA

MSAB
.

After computing the F -value, we can then look up the p-value from an F-distribution table
for the corresponding degrees of freedom or obtain it computationally from a cumulative
F-distribution function. In practice, if we successfully rejected the null hypothesis at a
previously chosen significance threshold, we could perform multiple post hoc pair-wise tests
– for example, McNemar tests with a Bonferroni correction – to determine which pairs have
different population proportions.

11.8 Comparing Algorithms

The previously described statistical tests focused on model comparisons and thus do not take
the variance of the training sets into account, which can be an issue especially if training
sets are small and learning algorithms are susceptible to perturbations in the training sets.

However, if we consider the comparison between sets of models where each set has been
fit to different training sets, we conceptually shift from a model compared to an algorithm
comparison task. This is often desirable, though. For instance, assume we develop a new
learning algorithm or want to decide which learning algorithm is best to ship with our new
software (a trivial example would be an email program with a learning algorithm that learns
how to filter spam based on the user’s decisions). In this case, we are want to find out how
different algorithms perform on datasets from a similar problem domain.

One of the commonly used techniques for algorithm comparison is Thomas Dietterich’s
5x2-Fold Cross-Validation method (5x2cv for short) that was introduced in his paper ”Ap-
proximate statistical tests for comparing supervised classification learning algorithms”15. It
is a nice paper that discusses all the different testing scenarios (the different circumstances
and applications for model evaluation, model selection, and algorithm selection) in the con-
text of statistical tests. The conclusions that can be drawn from empirical comparison on
simulated datasets are summarized below.

1. McNemar’s test:

15Dietterich, “Approximate statistical tests for comparing supervised classification learning algorithms”.
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• low false positive rate

• fast, only needs to be executed once

2. The difference in proportions test:

• high false positive rate (here, incorrectly detected a difference when there is none)

• cheap to compute, though

3. Resampled paired t-test:

• high false positive rate

• computationally very expensive

4. k-fold cross-validated t-test:

• somewhat elated false positive rate

• requires refitting to training sets; k times more computations than McNemar’s
test

5. 5x2cv paired t-test

• low false positive rate (similar to McNemar’s test)

• slightly more powerful than McNemar’s test; recommended if computational ef-
ficiency (runtime) is not an issue (10 times more computations than McNemar’s
test)

The bottom line is that McNemar’s test is a good choice if the datasets are relatively large
and/or the model fitting can only be conducted once. If the repeated fitting of the models is
possible, the 5x2cv test is a good choice as it also considers the effect of varying or resampled
training sets on the model fitting.

For completeness, the next section will summarize the mechanics of the tests we have not
covered thus far.

11.9 Resampled Paired t-Test

Resampled paired t-test procedure (also called k-hold-out paired t-test) is a popular method
for comparing the performance of two models (classifiers or regressors); however, this method
has many drawbacks and is not recommended to be used in practice as Dietterich16 noted.

To explain how this method works, let us consider two classifiers C1 and C2. Further, we
have a labeled dataset S. In the common hold-out method, we typically split the dataset
into 2 parts: a training and a test set. In the resampled paired t-test procedure, we repeat
this splitting procedure (with typically 2/3 training data and 1/3 test data) k times (usually
30 or more). In each iteration, we fit both C1 and C2 on the same training set and evaluate
these on the same test set. Then, we compute the difference in performance between C1

and C2 in each iteration so that we obtain k difference measures. Now, by making the
assumption that these k differences were independently drawn and follow an approximately
normal distribution, we can compute the following t statistic with k − 1 degrees of freedom
according to Student’s t-test, under the null hypothesis that the models C1 and C2 have
equal performance:

t =
ACCavg

√
k√∑k

i=1(ACCi −ACCavg)2/(k − 1)
.

16Dietterich, “Approximate statistical tests for comparing supervised classification learning algorithms”.
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Here, ACCi computes the difference between the model accuracies in the ith iteration
ACCi = ACCi,C1

− ACCi,C2
and ACCavg represents the average difference between the

classifier performances ACCavg = 1
k

∑k
i=1ACCi.

Once we computed the t statistic, we can calculate the p-value and compare it to our chosen
significance level, for example, α = 0.05. If the p-value is smaller than α, we reject the null
hypothesis and accept that there is a significant difference between the two models.

The problem with this method, and the reason why it is not recommended to be used
in practice, is that it violates the assumptions of Student’s t-test, as the differences of the
model performances are not normally distributed because the accuracies are not independent
(since we compute them on the same test set). Also, the differences between the accuracies
themselves are also not independent since the test sets overlap upon resampling. Hence, in
practice, it is not recommended to use this test in practice.

11.10 k-fold Cross-validated Paired t-Test

Similar to the resampled paired t-test, the k-fold cross-validated paired t-test is a statistical
testing technique that is very common in (older) literature. While it addresses some of the
drawbacks of the resampled paired t-test procedure, this method has still the problem that
the training sets overlap and is hence also not recommended to be used in practice17.

Again, for completeness, the method is outlined below. The procedure is basically equivalent
to that of the resampled paired t-test procedure except that we use k-fold cross validation
instead of simple resampling, such that if we compute the t value,

t =
ACCavg

√
k√∑k

i=1(ACCi −ACCavg)2/(k − 1)
,

k is equal to the number of cross-validation rounds.

11.11 Dietterich’s 5x2-Fold Cross-Validated Paired t-Test

The 5x2cv paired t-test is a procedure for comparing the performance of two models (clas-
sifiers or regressors) that was proposed by Dietterich (Dietterich, 1998) to address short-
comings in other methods such as the resampled paired t-test and the k-fold cross-validated
paired t-test, which were outlined in the previous two sections.

While the overall approach is similar to the previously described t-test variants, in the 5x2cv
paired t-test, we repeat the splitting (50% training and 50% test data) five times.

In each of the 5 iterations, we fit two classifiers C1 and C2 to the training split and evaluate
their performance on the test split. Then, we rotate the training and test sets (the training
set becomes the test set and vice versa) compute the performance again, which results in
two performance difference measures:

ACCA = ACCA,C1
−ACCA,C2

,

and

ACCB = ACCB,C1 −ACCB,C2 .

17Dietterich, “Approximate statistical tests for comparing supervised classification learning algorithms”.
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Then, we estimate the estimate mean and variance of the differences:

ACCavg = (ACCA +ACCB)/2,

and

s2 = (ACCA −ACCavg)2 + (ACCB −ACC2
avg)2.

The variance of the difference is computed for the 5 iterations and then used to compute
the t statistic as follows:

t =
ACCA,1√

(1/5)
∑5

i=1 s
2
i

,

where ACCA,1 is the ACCA obtained from the first iteration.

The t statistic approximately follows as t distribution with 5 degrees of freedom, under the
null hypothesis that the models C1 and C2 have equal performance. Using the t statistic,
the p-value can then be computed and compared with a previously chosen significance level,
for example, α = 0.05. If the p-value is smaller than α, we reject the null hypothesis and
accept that there is a significant difference in the two models.

11.12 Alpaydin’s Combined 5x2cv F -test

The 5x2cv combined F -test is a procedure for comparing the performance of models (clas-
sifiers or regressors) that was proposed by Alpaydin18 as a more robust alternative to Diet-
terich’s 5x2cv paired t-test procedure outlined in the previous section.

To explain how this mechanics of this method, let us consider two classifiers 1 and 2 and
re-use the notation from the previous section. The F statistic is then computed as follows:

f =

∑5
i=1

∑2
j=1(ACCi,j)

2

2
∑5

i=1 s
2
i

,

which is approximately F distributed with 10 and 5 degrees of freedom.

11.13 Effect size

While (unfortunately rarely done in practice), we may also want to consider effect sizes
since large samples elevate p-values and can make everything seem statistically significant.
In other words, ”theoretical significance” does not imply ”practical significance.” As effect
size is a more of an objective topic that depends on the problem/task/question at hand, a
detailed discussion is obviously out of the scope of this lecture.

11.14 Nested Cross-Validation

In practical applications, we usually never have the luxury of having a large (or, ideally
infinitely) sized test set, which would provide us with an unbiased estimate of the true gen-
eralization error of a model. Hence, we are always on a quest of finding ”better” workaround

18Ethem Alpaydin. “Combined 5x2cv F test for comparing supervised classification learning algorithms”.
In: Neural Computation 11.8 (1999), pp. 1885–1892.
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for dealing with size-limited datasets: Reserving too much data for training results in un-
reliable estimates of the generalization performance, and setting aside too much data for
testing results in too little data for training, which hurts the model performance.

Almost always, we also do not know the ideal settings of the learning algorithm for a
given problem or problem domain. Hence, we need to use an available training set for
hyperparameter tuning and model selection. We established earlier that we could use k-fold
cross-validation as a method for these tasks. However, if we select the ”best hyperparameter
settings” based on the average k-fold performance or the *same* test set, we introduce a
bias into the procedure, and our model performance estimates will not be unbiased anymore.
Mainly, we can think of model selection as another training procedure, and hence, we would
need a decently-sized, independent test set that we have not seen before to get an unbiased
estimate of the models’ performance. Often, this is not affordable.

In recent years, a technique called nested cross-validation has emerged as one of the popular
or somewhat recommended methods for comparing machine learning algorithms; it was
likely first described by Iizuka19 and Varma and Simon20 when working with small datasets.
The nested cross-validation procedure offers a workaround for small-dataset situations that
shows a low bias in practice where reserving data for independent test sets is not feasible.

Varma and Simon found that the nested cross-validation approach can reduce the bias,
compared to regular k-fold cross-validation when used for both hyperparameter tuning and
evaluation, can be considerably be reduced. As the researchers state, ”A nested CV proce-
dure provides an almost unbiased estimate of the true error”21.

The method of nested cross-validation is relatively straight-forward as it merely is a nesting
of two k-fold cross-validation loops: the inner loop is responsible for the model selection,
and the outer loop is responsible for estimating the generalization accuracy, as shown in
Figure 4.

Note that in this particular case, this is a 5x2 setup (5-fold cross-validation in the outer loop,
and 2-fold cross-validation in the inner loop). However, this is not the same as Dietterich’s
5x2cv method, which is an often confused scenario such that I want to highlight it here.

11.15 Conclusions

The diagram in Figure 5 summarizes my personal recommendations based on the concepts
and literature that was reviewed.

It should be stressed that parametric tests for comparing model performances usually violate
one or more independent assumptions (the models are not independent because the same
training set was used, and the estimated generalization performances are not independent
because the same test set was used.). In an ideal world, we would have access to the
data generating distribution or at least an almost infinite pool of new data. However, in
most practical applications, the size of the dataset is limited; hence, we can use one of the
statistical tests discussed in this lecture as a heuristic to aid our decision making.

Note that the recommendations I listed in the figure above are suggestions and depend
on the problem at hand. For instance, large test datasets (where ”large” is relative but
might refer to thousands or millions of data records), can provide reliable estimates of the
generalization performance, whereas using a single training and test set when only a few data
records are available can be problematic for several reasons discussed throughout Lecture

19Norio Iizuka et al. “Oligonucleotide microarray for prediction of early intrahepatic recurrence of hepa-
tocellular carcinoma after curative resection”. In: The lancet 361.9361 (2003), pp. 923–929.

20Sudhir Varma and Richard Simon. “Bias in error estimation when using cross-validation for model
selection”. In: BMC bioinformatics 7.1 (2006), p. 91.

21Varma and Simon, “Bias in error estimation when using cross-validation for model selection”.
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Original set
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as an estimate of the generalization 
performance

Tune parameters

Figure 4: Illustration of nested cross-validation.

9 (bootstrapping) and Lecture 10 (cross-validation). If the dataset is very small, it might
not be feasible to set aside data for testing, and in such cases, we can use k-fold cross-
validation with a large k or Leave-one-out cross-validation as a workaround for evaluating
the generalization performance. However, using these procedures, we have to bear in mind
that we then do not compare between models but different algorithms that produce different
models on the training folds. Nonetheless, the average performance over the different test
folds can serve as an estimate for the generalization performance (Section ??) discussed
the various implications for the bias and the variance of this estimate as a function of the
number of folds).

For model comparisons, we usually do not have multiple independent test sets to evaluate
the models on, so we can again resort to cross-validation procedures such as k-fold cross-
validation, the 5x2cv method, or nested cross-validation. As Gael Varoquaux22 writes:

Cross-validation is not a silver bullet. However, it is the best tool available,
because it is the only non-parametric method to test for model generalization.

22Gaël Varoquaux. “Cross-validation failure: small sample sizes lead to large error bars”. In: Neuroimage
(2017).
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Figure 5: A recommended subset of techniques to be used to address different aspects of model
evaluation in the context of small and large datasets. The abbreviation ”MC” stands for ”Model
Comparison,” and ”AC” stands for ”Algorithm Comparison,” to distinguish these two tasks.
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