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7 Ensemble Methods

7.1 Introduction

• In broad terms, using ensemble methods is about combining models to an ensemble
such that the ensemble has a better performance than an individual model on average.

• The main categories of ensemble methods involve voting schemes among high-variance
models to prevent “outlier” predictions and overfitting, and the other involves boosting
“weak learners” to become “strong learners.”

7.2 Majority Voting

• We will use the term “majority” throughout this lecture in the context of voting to
refer to both majority and plurality voting.1

• Plurality: mode, the class that receives the most votes; for binary classification, ma-
jority and plurality are the same

Unanimity

Majority

Plurality

Figure 1: Illustration of unanimity, majority, and plurality voting

1In the UK, people distinguish between majority and plurality voting via the terms ”absolute” and
”relative” majority, respectively, https://en.wikipedia.org/wiki/Plurality (voting).

http://stat.wisc.edu/~sraschka/teaching/stat479-fs2018/
https://en.wikipedia.org/wiki/Plurality_(voting)
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Figure 2: Illustration of the majority voting concept. Here, assume n different classifiers,
{h1, h2, ..., hm} where hi(x) = ŷi.

In lecture 2, (Nearest Neighbor Methods) we learned that the majority (or plurality) voting
can simply be expressed as the mode:

ŷf = mode{h1(x), h2(x), ...hn(x)}. (1)

The following illustration demonstrates why majority voting can be effective (under certain
assumptions).

• Given are n independent classifiers (h1, ..., hn) with a base error rate ε.

• Here, independent means that the errors are uncorrelated

• Assume a binary classification task

Assuming the error rate is better than random guessing (i.e., lower than 0.5 for binary
classification),

∀εi ∈ {ε1, ε2, ..., εn}, εi < 0.5, (2)

the error of the ensemble can be computed using a binomial probability distribution since
the ensemble makes a wrong prediction if more than 50% of the n classifiers make a wrong
prediction.

The probability that we make a wrong prediction via the ensemble if k classifiers predict
the same class label (where k > dn/2e because of majority voting ) is then

P (k) =

(
n

k

)
εk(1− ε)n−k, (3)

where
(
n
k

)
is the binomial coefficient

(
n

k

)
=

n!

(n− k)!k!
. (4)
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However, we need to consider all cases k ∈ {dn/2e, ..., n} (cumulative prob. distribution) to
compute the ensemble error

εens =

n∑
k

(
n

k

)
εk(1− ε)n−k. (5)

Consider the following example with n=11 and ε = 0.25, where the ensemble error decreases
substantially compared to the error rate of the individual models:

εens =

11∑
k=6

(
11

k

)
0.25k(1− 0.25)11−k = 0.034. (6)
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Figure 3: error-rate

7.3 Soft Majority Voting

For well calibrated classifiers we can also use the predicted class membership probabilities
to infer the class label,

ŷ = arg max
j

n∑
i=1

wipi,j , (7)

where pi,j is the predicted class membership probability for class label j by the ith classifier.
Here wi is an optional weighting parameter. If we set

wi = 1/n,∀wi ∈ {w1, ..., wn}
then all probabilities are weighted uniformly.

To illustrate this, let us assume we have a binary classification problem with class labels
j ∈ {0, 1} and an ensemble of three classifiers hi(i ∈ {1, 2, 3}):

h1(x)→ [0.9, 0.1], h2(x)→ [0.8, 0.2], h3(x)→ [0.4, 0.6]. (8)

We can then calculate the individual class membership probabilities as follows:
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p(j = 0|x) = 0.2·0.9+0.2·0.8+0.6·0.4 = 0.58, p(j = 1|x) = 0.2·0.1+0.2·0.2+0.6·0.6 = 0.42.
(9)

The predicted class label is then

ŷ = arg max
j

{
p(j = 0|x), p(j = 1|x)

}
= 0. (10)

7.4 Bagging

• Bagging relies on a concept similar to majority voting but uses the same learning
algorithm (typically a decision tree algorithm) to fit models on different subsets of the
training data (bootstrap samples).

• Bagging can improve the accuracy of unstable models that tend to overfit2.

Algorithm 1 Bagging

1: Let n be the number of bootstrap samples
2:

3: for i=1 to n do
4: Draw bootstrap sample of size m, Di

5: Train base classifier hi on Di

6: ŷ = mode{h1(x), ..., hn(x)}

1

Figure 4: The bagging algorithm.
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Figure 5: Illustration of bootstrap sampling

• If we sample from a uniform distribution, we can compute the probability that a given
example from a dataset of size n is not drawn as a bootstrap sample as

P (not chosen) =

(
1− 1

n

)n

, (11)

which is asymptotically equivalent to

1

e
≈ 0.368 as n→∞. (12)

2Leo Breiman. “Bagging predictors”. In: Machine learning 24.2 (1996), pp. 123–140.
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Vice versa, we can then compute the probability that a sample is chosen as

P (chosen) = 1−
(

1− 1

n

)n

≈ 0.632. (13)

Figure 6: Proportion of unique training examples in a bootstrap sample.
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Figure 7: Illustration of bootstrapping in the context of bagging.
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Figure 8: The concept of bagging. Here, assume n different classifiers, {h1, h2, ..., hm} where
hi(x) = ŷi.

7.5 Bias and Variance Intuition

• “Bias and variance” will be discussed in more detail in the next lecture, where we
will decompose loss functions into their variance and bias components and see how it
relates to overfitting and underfitting.
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Figure 9: Bias and variance intuition.

• One can say that individual, unpruned decision tree “have high variance” (in this
context, the individual decision trees “tend to overfit”); a bagging model has a lower
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variance than the individual trees and is less prone to overfitting – again, bias and
variance decomposition will be discussed in more detail next lecture.

7.6 Boosting

• There are two broad categories of boosting: Adaptive boosting and gradient boosting.

• Adaptive and gradient boosting rely on the same concept of boosting “weak learners”
(such as decision tree stumps) to “strong learners.”

• Boosting is an iterative process, where the training set is reweighted, at each iteration,
based on mistakes a weak leaner made (i.e., misclassifications); the two approaches,
adaptive and gradient boosting, differ mainly regarding how the weights are updated
and how the classifiers are combined.

• Since we have not discussed gradient-based optimization, in this lecture, we will focus
on adaptive boosting.

• In particular, we will focus on AdaBoost as initially described by Freund and Schapire
in 19973.

• If you are familiar with gradient-based optimization and interested in gradient boost-
ing, I recommend reading Friedman’s work4 and the more recent paper on XGBoost5,
which is essentially a computationally efficient implementation of the original gradient
boost algorithm.

�37

General Boosting

Training Sample

Weighted 
Training Sample

Weighted 
Training Sample

h 1(x)

h 2(x)

h m(x)
h m(x) = sig n(

m

∑
j= 1

wj h j(x))
h m(x) = arg max

i (
m

∑
j= 1

wj I[h j(x) = i])
for h (x) ∈ {−1,1}

or h (x) = i, i ∈ {1,...,n}for

Figure 10: A general outline of the boosting procedure for n iterations.

Intuitively, we can outline the general boosting procedure as follows:

• Initialize a weight vector with uniform weights

3Yoav Freund and Robert E Schapire. “A decision-theoretic generalization of on-line learning and an
application to boosting”. In: Journal of computer and system sciences 55.1 (1997), pp. 119–139.

4Jerome H Friedman. “Greedy function approximation: a gradient boosting machine”. In: Annals of
statistics (2001), pp. 1189–1232.

5Tianqi Chen and Carlos Guestrin. “Xgboost: A scalable tree boosting system”. In: Proceedings of the
22nd acm sigkdd international conference on knowledge discovery and data mining. ACM. 2016, pp. 785–
794.



Sebastian Raschka STAT479 FS18. L01: Intro to Machine Learning Page 8

• Loop:

– Apply weak learner to weighted training examples (instead of orig. training set,
may draw bootstrap samples with weighted probability)

– Increase weight for misclassified examples

• (Weighted) majority voting on trained classifiers

7.6.1 AdaBoost (Adaptive Boosting)

Figure 11: AdaBoost algorithm.
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Figure 12: Illustration of the AdaBoost algorithms for three iterations on a toy dataset. The size
of the symbols (circles shall represent training examples from one class, and triangles shall represent
training examples from another class) is proportional to the weighting of the training examples at
each round. The 4th subpanel shows a combination/ensemble of the hypotheses from subpanels
1-3.
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7.7 Random Forests

7.7.1 Overview

• Random forests are among the most widely used machine learning algorithm, probably
due to their relatively good performance “out of the box” and ease of use (not much
tuning required to get good results).

• In the context of bagging, random forests are relatively easy to understand conceptu-
ally: the random forest algorithm can be understood as bagging with decision trees,
but instead of growing the decision trees by basing the splitting criterion on the com-
plete feature set, we use random feature subsets.

• To summarize, in random forests, we fit decision trees on different bootstrap samples,
and in addition, for each decision tree, we select a random subset of features at each
node to decide upon the optimal split; while the size of the feature subset to consider
at each node is a hyperparameter that we can tune, a “rule-of-thumb” suggestion is
to use NumFeatures = log2m+ 1.

7.7.2 Does random forest select a subset of features for every tree or every
node?

Earlier random decision forests by Tin Kam Ho6 used the “random subspace method,” where
each tree got a random subset of features.

“The essence of the method is to build multiple trees in randomly selected sub-
spaces of the feature space.” – Tin Kam Ho

However, a few years later, Leo Breiman described the procedure of selecting different subsets
of features for each node (while a tree was given the full set of features) — Leo Breiman’s
formulation has become the “trademark” random forest algorithm that we typically refer to
these days when we speak of “random forest7:”

“. . . random forest with random features is formed by selecting at random, at
each node, a small group of input variables to split on.”

7.7.3 Generalization Error

• The reason why random forests may work better in practice than a regular bagging
model, for example, may be explained by the additional randomization that further
diversifies the individual trees (i.e., decorrelates them).

• In Breiman’s random forest paper, the upper bound of the generalization error is given
as

PE ≤ ρ̄ · (1− s2)

s2
, (14)

where ρ̄ is the average correlation among trees and s measures the strength of the trees as
classifiers. I.e., the average predictive performance concerning the classifiers’ margin. We

6Tin Kam Ho. “Random decision forests”. In: Document analysis and recognition, 1995., proceedings of
the third international conference on. Vol. 1. IEEE. 1995, pp. 278–282.

7Leo Breiman. “Random forests”. In: Machine learning 45.1 (2001), pp. 5–32.
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do not need to get into the details of how p̄ and s are calculated to get an intuition for
their relationship. I.e., the lower correlation, the lower the error. Similarly, the higher the
strength of the ensemble or trees, the lower the error. So, randomization of the feature
subspaces may decrease the “strength” of the individual trees, but at the same time, it
reduces the correlation of the trees. Then, compared to bagging, random forests may be at
the sweet spot where the correlation and strength decreases result in a better net result.

7.7.4 Feature Importance via Random Forests

While random forests are naturally less interpretable than individual decision trees, where
we can trace a decision via a rule sets, it is possible (and common) to compute the so-called
“feature importance” of the inputs – that means, we can infer how important a feature is for
the overall prediction. However, this is a topic that will be discussed later in the “Feature
Selection” lecture.

7.7.5 Extremely Randomized Trees (ExtraTrees)

• A few years after random forests were developed, an even “more random” procedure
was developed called Extremely Randomized Trees8.

• Compared to regular random forests, the ExtraTrees algorithm selects a random fea-
ture at each decision tree nodes for splitting; hence, it is very fast because there is no
information gain computation and feature comparison step.

• Intuitively, one might say that ExtraTrees have another “random component” (com-
pared to random forests) to further reduce the correlation among trees – however, it
might decrease the strength of the individual trees (if you think back of the general-
ization error bound discussed in the previous section on random forests).

7.8 Stacking

7.8.1 Overview

• Stacking9 is a special case of ensembling where we combine an ensemble of models
through a so-called meta-classifier.

• In general, in stacking, we have “base learners” that learn from the initial training
set, and the resulting models then make predictions that serve as input features to a
“meta-learner.”

8geurts2006extremel.
9wolpert1992stacked.
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7.8.2 Naive Stacking

Algorithm 1 ”Naive” Stacking

1: Input: Training set D = {〈x[1],y[1]〉, ..., 〈x[n],y[n]〉}
2: Output: Ensemble classifier hE

3:

4: Step 1: Learn base-classifiers
5: for t ← 1 to T do

6: Fit base model ht on D
7: Step 2: construct new dataset D′ from D
8: for i ← 1 to n do

9: add 〈x′[i],y[i]〉 to new dataset, where x
′[i] = {h1(x

[i]), ..., hT (x
[i])}

10: Step 3: learn meta-classifier hE

11: return hE(D′)

1

Training set

h1 h2 hn. . .

y1 y2 yn. . .

Meta-Classifier

yf

New
 data

Classification 
models

Predictions

Final prediction

Figure 13: The basic concept of stacking is illustrated below, analogous to the voting classifier at
the beginning of this lecture. Note that here, in contrast to majority voting, we have a meta-classifier
that takes the predictions of the models produced by the base learners (h1...hn) as inputs.

The problem with the naive stacking algorithm outlined above is that it has a high tendency
to suffer from extensive overfitting. The reason for a potentially high degree of overfitting is
that if the base learners overfit, then the meta-classifier heavily relies on these predictions
made by the base-classifiers. A better alternative would be to use stacking with k -fold
cross-validation or leave-one-out cross-validation.
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Figure 14: Illustratio of k -fold cross-validation
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Figure 15: Illustration of leave-one-out cross-validation, which is a special case of k -fold cross-
validation, where k = n (where n is the number of examples in the training set).

7.8.3 Stacking with Cross-Validation

• The use of cross-validation (or leave-one-out cross-validation) is highly recommended
for performing stacking, to avoid overfitting.
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Algorithm 1 Stacking with cross-validation

1: Input: Training set D = {〈x[1],y[1]〉, ..., 〈x[n],y[n]〉}
2: Output: Ensemble classifier hE

3:

4: Step 1: Learn base-classifiers
5: Construct new dataset D′ = {}
6: Randomly split D into k equal-size subsets: D = {D1, ...,Dk}
7: for j ← 1 to k do

8: for t ← 1 to T do

9: Fit base model ht on D \Dk

10: for i ← 1 to n ∈ |D \Dk| do
11: Add 〈x′[i],y[i]〉 to new dataset D′, where x′[i] = {h1(x

[i]), ..., hT (x
[i])}

12: Step 3: learn meta-classifier hE

13: return hE(D′)

1

Figure 16: stacking-algo-cv
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Figure 17: Illustration of stacking with cross-validation.

7.9 Resources

7.9.1 Assigned Reading

• Python Machine Learning, 2nd Ed., Chapter 7

7.9.2 Further Reading

Listed below are optional reading materials for students interested in more in-depth coverage
of the ensemble methods we discussed (not required for homework or the exam).
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• Breiman, L. (1996). Bagging predictors. Machine learning, 24 (2), 123-140.

• Wolpert, D. H. (1992). Stacked generalization. Neural networks, 5 (2), 241-259.

• Breiman, L. (2001). Random forests. Machine learning, 45 (1), 5-32.

• Freund, Y., Schapire, R., & Abe, N. (1999). A short introduction to boosting. Journal-
Japanese Society For Artificial Intelligence, 14 (771-780), 1612.

• Friedman, J. H. (2001). Greedy function approximation: a gradient boosting machine.
Annals of statistics, 1189-1232.

• Chen, T., & Guestrin, C. (2016). Xgboost: A scalable tree boosting system. In
Proceedings of the 22nd ACM sigkdd international conference on knowledge discovery
and data mining (pp. 785-794). ACM.
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