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1 L01: What is Machine Learning? An Overview.

1.1 Machine Learning – The Big Picture

One of the main motivations why we develop (computer) programs to automate various
kinds of processes. Originally developed as a subfield of Artificial Intelligence (AI), one of
the goals behind machine learning was to replace the need for developing computer programs
“manually.” Considering that programs are being developed to automate processes, we can
think of machine learning as the process of “automating automation.” In other words,
machine learning lets computers “create” programs (often, the intent for developing these
programs is making predictions) themselves. In other words, machine learning is the process
of turning data into programs.

It is said that the term machine learning was first coined by Arthur Lee Samuel, a pioneer in
the AI field, in 19591. One quote that almost every introductory machine learning resource
cites is the following, which summarizes the concept behind machine learning nicely and
concisely:

Machine learning is the field of study that gives computers the ability to learn
without being explicitly programmed. 2 — Arthur L. Samuel, AI pioneer, 1959

Now, before we introduce machine learning more formally, here is what some other people
said about the field:

The field of machine learning is concerned with the question of how to construct
computer programs that automatically improve with experience.
— Tom Mitchell, Professor Machine Learning at Carnegie Mellon University and
author of the popular “Machine Learning” textbook

1Arthur L Samuel. “Some studies in machine learning using the game of checkers”. In: IBM Journal of
research and development 3.3 (1959), pp. 210–229.

2This is not a direct quote but a paraphrased version of Samuel’s sentence ”Programming computers to
learn from experience should eventually eliminate the need for much of this detailed programming effort.”

http://stat.wisc.edu/~sraschka/teaching/stat479-fs2018/
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Machine learning is the hot new thing.
— John L. Hennessy, President of Stanford (2000–2016)

A breakthrough in machine learning would be worth ten Microsofts.
— Bill Gates, Microsoft Co-Founder

Figure 1: Machine learning vs. “classic” programming.

A bit more concrete is Tom Mitchell’s description from his Machine Learning book3:

A computer program is said to learn from experience E with respect to some
class of tasks T and performance measure P , if its performance at tasks in T , as
measured by P , improves with experience E.
— Tom Mitchell, Machine Learning Professor at Carnegie Mellon University

To illustrate this quote with an example, consider the problem of recognizing handwritten
digits:

• Task T : classifying handwritten digits from images

• Performance measure P : percentage of digits classified correctly

• Training experience E: dataset of digits given classifications, e.g., MNIST4

3Tom M Mitchell et al. “Machine learning. 1997”. In: Burr Ridge, IL: McGraw Hill 45.37 (1997),
pp. 870–877.

4Yann LeCun et al. “Gradient-based learning applied to document recognition”. In: Proceedings of the
IEEE 86.11 (1998), pp. 2278–2324.
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Figure 2: Examples of digits from the MNIST database

1.2 Applications of Machine Learning

After the field of machine learning was “founded” more than a half a century ago, we can
now find applications of machine learning in almost every aspect of hour life. Popular
applications of machine learning include the following:

• Email spam detection

• Face detection and matching (e.g., iPhone X)

• Web search (e.g., DuckDuckGo, Bing, Google)

• Sports predictions

• Post office (e.g., sorting letters by zip codes)

• ATMs (e.g., reading checks)

• Credit card fraud

• Stock predictions

• Smart assistants (Apple Siri, Amazon Alexa, . . . )

• Product recommendations (e.g., Netflix, Amazon)

• Self-driving cars (e.g., Uber, Tesla)

• Language translation (Google translate)

• Sentiment analysis

• Drug design

• Medical diagnoses

• . . .

While we go over some of these applications in class, it is a good exercise to think about
how machine learning could be applied in these problem areas or tasks listed above:

• What is the desired outcome?

• What could the dataset look like?

• Is this a supervised or unsupervised problem, and what algorithms would you use?
(Something to revisit later in this semester.)

• How would you measure success?

• What are potential challenges or pitfalls?
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1.3 Overview of the Categories of Machine Learning

The three broad categories of machine learning are summarized in the following figure:
Supervised learing, unsupervised learning, and reinforcement learning. Note that in this
class, we will primarily focus on supervised learning, which is the “most developed” branch
of machine learning. While we will also cover various unsupervised learning algorithms,
reinforcement learning will be out of the scope of this class.

Labeled data

Direct feedback

Predict outcome/future

No labels/targets

No feedback

Find hidden structure in data

Decision process

Reward system

Learn series of actions

Reinforcement Learning

Unsupervised Learning

Supervised Learning

Figure 3: Categories of Machine Learning (Source: Raschka & Mirjalili: Python Machine Learning,
2nd Ed.)

1.3.1 Supervised Learning

Supervised learning is the subcategory of machine learning that focuses on learning a classifi-
cation or regression model, that is, learning from labeled training data (i.e., inputs that also
contain the desired outputs or targets; basically, “examples” of what we want to predict).

x

x

1

2

Figure 4: Illustration of a binary classification problem (plus, minus) and two feature variable (x1

and x2). (Source: Raschka & Mirjalili: Python Machine Learning, 2nd Ed.).
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x

y

Figure 5: Illustration of a linear regression model with one feature variable (x1) and the target
variable y. The dashed-line indicates the functional form of the linear regression model. (Source:
Raschka & Mirjalili: Python Machine Learning, 2nd Ed.).

1.3.2 Unsupervised learning

In contrast to supervised learning, unsupervised learning is a branch of machine learning
that is concerned with unlabeled data. Common tasks in unsupervised learning are clustering
analysis (assigning group memberships) and dimensionality reduction (compressing data
onto a lower-dimensional subspace or manifold).

x

x

1

2

Figure 6: Illustration of clustering, where the dashed lines indicate potential group membership
assignments of unlabeled data points. (Source: Raschka & Mirjalili: Python Machine Learning,
2nd Ed.).
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1.3.3 Reinforcement learning

Reinforcement is the process of learning from rewards while performing a series of actions.
In reinforcement learning, we do not tell the learner or agent, for example, a (ro)bot, which
action to take but merely assign a reward to each action and/or the overall outcome. Instead
of having “correct/false” label for each step, the learner must discover or learn a behavior
that maximizes the reward for a series of actions. In that sense, it is not a supervised setting
and somewhat related to unsupervised learning; however, reinforcement learning really is
its own category of machine learning. Reinforcement learning will not be covered further in
this class.

Typical applications of reinforcement learning involve playing games (chess, Go, Atari video
games) and some form of robots, e.g., drones, warehouse robots, and more recently self-
driving cars.

Agent

Environment

Reward
State

Action

Figure 7: Illustration of reinforcement learning (Source: Raschka & Mirjalili: Python Machine
Learning, 2nd Ed.).

1.3.4 Semi-supervised learning

Losely speaking, semi-supervised learning can be described as a mix between supervised and
unsupervised learning. In semi-supervised learning tasks, some training examples contain
outputs, but some do not. We then use the labeled training subset to label the unlabeled
portion of the training set, which we then also utilize for model training.

1.4 Introduction to Supervised Learning

Unless noted otherwise (later in future lectures), we will focus on supervised learning and
classification, the most prevalent form of machine learning, from now on.

In supervised learning, we are given a labeled training dataset from which a machine learn-
ing algorithm can learn a model that can predict labels of unlabeled data points. These
unlabeled data points could be either test data points (for which we actually have labels
but we withold them for testing purposes) or unlabeled data we will collect in future. For
example, given a corpus of spam and non-spam email, a supervised learning task would be
to learn a model that predicts to which class (spam or non-spam) new emails belong.

More formally, we define h as the “hypothesis,” a function that we use to approximate some
unknown function

f(x) = y, (1)

where x is a vector of input features associated with a training example or dataset instance
(for example, the pixel values of an image) and y is the outcome we want to predict (e.g.,
what class of object we see in an image). In other words, h(x) is a function that predicts y.
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In classification, we define the hypothesis function as

h : X → Y, (2)

where X = Rm and Y = {1, ..., k} with class labels k. in the special case of binary classifi-
cation, we have Y = {0, 1} (or Y = {−1, 1}).

And in regression, the task is to learn a function

h : Rm → R. (3)

Given a training set
D = {< x[i], y[i] >, i = 1, . . . , n}, (4)

we denote the ith training example as < x[i], y[i] >. Please note that the superscript [i] is
unrelated to exponentiation, and we choose this rather unconvential notational convention
for reasons that will become apparent later in this lecture. Note that a critical assumption
for (most) machine learning theory is that the training examples are i.i.d. (independent and
indentically distributed).

Machine Learning 
Algorithm

New Data Predictive Model Prediction

Labels

Training Data

Figure 8: Rough overview of the supervised learning process.

Labels

Raw 
Data

Training Dataset

Test Dataset

Labels

New Data

Labels

Learning 
Algorithm

Preprocessing Learning Evaluation Prediction

Final Model

Feature Extraction and Scaling
Feature Selection
Dimensionality Reduction
Sampling

Model Selection
Cross-Validation
Performance Metrics
Hyperparameter Optimization

Figure 9: More detailed ilustration of the supervised learning process.
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A crucial assumption we make in supervised learning is that the training examples have the
same distribution as the test (future) examples. In real-world applications, this assumption
is oftentimes violated, which is one of the common challenges in the field.

1.4.1 Statistical Learning Notation

Please note that the notation varies wildly across the literature, since machine learning is
a field that is popular across so many disciplines. For example, in the context of statistical
learning theory, we can think of the dataset D = {< x[1], y[1] >,< x[2], y[2] > . . . , <
x[n], y[n] >} as a sample from the population of all possible input-target pairs, and x[i] and
y[i] are instances of two random variables X ∈ X and Y ∈ Y and that the training pairs are
drawn from a joint distribution P (X,Y ) = P (X)P (Y |X).

Given an error term ε we can then formulate the following relationship:

Y = f(X) + ε. (5)

The goal in statistical learning is then to estimate f , which can then be used to predict Y :

f̂(X) = Ŷ . (6)

1.5 Data Representation and Mathematical Notation

In previous section, we defined refered to the ith pair in a labeled training set D as <
x[i], y[i] >.

We will adopt the convention to use italics for scalars, boldface characters for vectors, and
uppercase boldface fonts for matrices.

• x: A scalar denoting a single training example with 1 feature (e.g., the height of a
person)

• x: A training example with m features (e.g,. with m = 3 we could represent the
height, weight, and age of a person), represented as a column vector (i.e., a matrix
with 1 column, x ∈ Rm),

x =


x1
x2
...
xm

 . (7)

(Note that most programming languages, incl. Python, start indexing at 0!)

• X: Design matrix, X ∈ Rn×m, which stores n training examples, where m is the
number of features.

X =


xT
1

xT
2
...

xT
n

 . (8)
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Note that in order to distinguish the feature index and the training example index, we will
use a square-bracket superscript notation to refer to the ith training example and a regular
subscript notation to refer to the jth feature:

X =


x
[1]
1 x

[1]
2 · · · x

[1]
m

x
[2]
1 x

[2]
2 · · · x

[2]
m

...
...

. . .
...

x
[n]
1 x

[n]
2 · · · x

[n]
m

 . (9)

The corresponding targets are represented in a column vector y, y ∈ Rn :

y =


y[1]

y[2]

...
y[n]

 . (10)

1.6 Hypothesis space

In the previous section on supervised learning, we defined the hypothesis h(x) to predict
a target y. Machine learning algorithms sample from a hypothesis space that is usually
smaller than the entire space of all possible hypotheses H – an exhaustive search covering
all h ∈ H would be computationally infeasible since H grows exponentially with the size
(dimensionality) of the training set. This is illustrated in the following paragraph.

Assume we are given a dataset with 4 features and 3 class labels, the class label (y ∈
{Setosa,Versicolor,Virginica}). Also, assume all features are binary. Given 4 features with
binary values (True, False), we have 24 = 16 different feature combinations (see table below).
Now, of the 16 rules, we have three classes to consider (Setosa, Versicolor, Virginica). Hence,
we have 316 = 43, 046, 721 potential combinations of 16 rules that we can evaluate (this is
the size hypothesis space, |H| = 43, 046, 721)!

Table 1: Example of decision rules for the Iris flower data dataset.

sepal length <5
cm

sepal width <5
cm

petal length <5
cm

petal width <5
cm

Class
Label

True True True True Setosa
True True True False Versicolor
True True False True Setosa
. . . . . . . . . . . .

Now, imagine the features are not binary but real-valued. The hypothesis space will become
so big that it would be impossible to evaluate it exhaustively. Hence, we use machine
learning to reduce the search space within the hypothesis space. (A neural network with a
single hidden layer, a finite number of neurons, and non-linear activation functions such as
sigmoid units, was proved to be a universal function approximator5. However, the concept
of universal function approximation6 does not imply practicality, usefulness, or adequate
performance in practical problems.

5George Cybenko. “Approximations by superpositions of a sigmoidal function”. In: Mathematics of
Control, Signals and Systems 2 (1989), pp. 183–192.

6Balázs Csanád Csáji. “Approximation with artificial neural networks”. In: Faculty of Sciences, Etvs
Lornd University, Hungary 24 (2001), p. 48.
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Entire hypothesis space

Hypothesis space
a particular learning
algorithm can sample

Hypothesis space
a particular learning
algorithm category
has access to

Particular hypothesis
(i.e., a model/classifier)

Figure 10: Selecting a hypothesis from a hypothesis space.

Typically, the number of training examples required is proportional to the flexibility of the
learning algorithms. I.e., we need more training for models with

• a large number of parameters to fit;

• a large number of “knobs” to tune (hyperparameters);

• a large size of the hypothesis set to select from.

(As a rule of thumb, the more parameter to fit and/or hyperparameters to tune, the larger
the set of hypotheses to choose from).

1.7 Classes of Machine Learning Algorithms

Below are some classes of algorithms that were are going to discuss in this class:

• Generalized linear models (e.g., logistic regression)

• Support vector machines (e.g., linear SVM, RBF-kernel SVM)

• Artificial neural networks (e.g., multi-layer perceptrons)

• Tree- or rule-based models (e.g., decision trees)

• Graphical models (e.g., Bayesian networks)

• Ensembles (e.g., Random Forest)

• Instance-based learners (e.g., K-nearest neighbors)

1.7.1 Algorithm Categorization Schemes

To aid our conceptual understsanding, each of the algorithms can be categorized into various
categories.
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• eager vs lazy;

• batch vs online;

• parametric vs nonparametric;

• discriminative vs generative.

These concepts or categorizations will become more clear once we discussed a few of the
different algorithms. However, below are brief descriptions of the various categorizations
listed above.

Eager vs lazy learners. Eager learners are algorithms that process training data imme-
diately whereas lazy learners defer the processing step until the prediction. In fact, lazy
learners do not have an explicit training step other than storing the training data. A pop-
ular example of a lazy learner is the Nearest Neighbor algorithm, which we will discuss in
the next lecture.

Batch vs online learning. Batch learning refers to the fact that the model is learned
on the entire set of training examples. Online learners, in contrast, learn from one training
example at the time. It is not uncommon, in practical applications, to learn a model via
batch learning and then update it later using online learning.

Parametric vs nonparametric models. Parametric models are “fixed” models, where
we assume a certain functional form for f(x) = y. For example, linear regression can be
considered as a parametric model with h(x) = w1x1 + ... + wmxm + b. Nonparametric
models are more “flexible” and do not have a pre-specfied number of parameters. In fact,
the number of parameters grows typically with the size of the training set. For example,
a decision tree would be an example of a nonparametric model, where each decision node
(e.g., a binary “True/False” assertion) can be regarded as a parameter.

Discriminative vs generative. Generative models (classically) describe methods that
model the joint distribution P (X,Y ) = P (Y )P (X|Y ) = P (X)P (Y |X) for training pairs
< x[i], y[i] > 7. Discriminative models are taking a more “direct” approach for modeling
P (Y |X) directly. While generative models provide typically more insights and allow sam-
pling from the joint distribution, discriminative models are typically easier to compute and
produce more accurate predictions. Helpful for understanding discriminative models is the
following analogy: discriminative modeling is like trying to extract information from text in
a foreign language without learning that language.

1.7.2 Pedro Domingo’s 5 Tribes of Machine Learning

Another useful way to think about different machine learning algorithms is Pedro Domingons
categorization of machine learning algorithms into five tribes, which he defined in his book
“The Master Algorithm”8.

• Evolutionaries: e.g., genetic algorithms

• Eonnectionists: e.g., neural networks

• Symbolists: e.g., logic

• Bayesians: e.g., graphical models

7However, in recent years, the term ”generative model” has also been used to describe models that learn
an approximation of X and sample training examples x ∼ X. Examples of such models are Generative
Adversarial Networks and Variational Autoencoders; deep learning models that are not covered in this class.

8Pedro Domingos. The master algorithm: How the quest for the ultimate learning machine will remake
our world. Basic Books, 2015.
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• Analogizers: e.g., support vector machines

Figure 11: 5 Tribes of Machine Learning. REPR=Representation, EVAL.=Evaluation metric,
OPTIMIZ.=Optimization algorithm. (Source: Pedro Domingos, The Master Algorithm)

1.8 Components of Machine Learning Algorithms

As it was already indicated in the figure of Pedro Domingo’s 5 Tribes of Machine Learning,
there are several different components of machine learning algorithms.

Representation. The first component is the “representation,” i.e., which hypotheses we
can represent given a certain algorithm class.

Optimization. The second component is the optimization metric that we use to fit the
model.

Evaluation. The evaluation component is the step where we evaluate the performance of
the model after model fitting.

To extend this list slightly, these are the following 5 steps that we want to think about when
approaching a machine learning application:

1. Define the problem to be solved.

2. Collect (labeled) data.

3. Choose an algorithm class.

4. Choose an optimization metric for learning the model.

5. Choose a metric for evaluating the model.
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Note that optimization objectives are usually not the same in practice. For example, the
optimization objective of the logistic regression algorithm is to minimize the negative log-
likelihood (or binary cross-entropy), whereas the evaluation metric could be the classification
accuracy or misclassification error.

Also, while the list above indicates a linear workflow, in practice, we often jump back to
previous steps and e.g., collect more data, try out different algorithms, and/or tune the
“knobs” (i.e., “hyperparameters”) of learning algorithms.

The following two subsections will provide a short overview of the optimization (training)
and evaluation parts.

1.8.1 Training

Training/fitting a classification or regression model typically involves the use of an optimiza-
tion algorithms that optimizes an objective function (e.g., maximizing the log-likelihood or
minimizing mean squared error). Some of the methods that we will cover in this course are
the following:

• Combinatorial search, greedy search (e.g., decision trees over, not within nodes);

• Unconstrained convex optimization (e.g., logistic regression);

• Constrained convex optimization (e.g., SVM);

• Nonconvex optimization, here: using backpropagation, chain rule, reverse autodiff.
(e.g., neural networks).

• Constrained nonconvex optimization (semi adversarial networks9, not covered in this
course)

There exists a number of different algorithms for each optimization task category (for exam-
ple, gradient descent or conjugate gradient, and quasi-Newton methods to optimize convex
optimization problems). Also, the objective functions that we optimize can take different
forms. Below are some examples:

• Maximize the posterior probabilities (e.g., naive Bayes)

• Maximize a fitness function (genetic programming)

• Maximize the total reward/value function (reinforcement learning)

• Maximize information gain/minimize child node impurities (CART decision tree clas-
sification)

• Minimize a mean squared error cost (or loss) function (CART, decision tree regression,
linear regression, adaptive linear neurons, . . . )

• Maximize log-likelihood or minimize cross-entropy loss (or cost) function

• Minimize hinge loss (support vector machine)

9Vahid Mirjalili et al. “Semi-Adversarial Networks: Convolutional Autoencoders for Imparting Privacy
to Face Images”. In: 2018 International Conference on Biometrics (ICB). IEEE. 2018.
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1.8.2 Evaluation

1.8.3 Intuition

There are several different evaluation metric to assess the performance of a model, and the
most common ones will be discussed in future lectures. Unless noted otherwise, though, we
will focus on the classification accuracy (ACC) or misclassification error (ERR = 1−ACC).

The classification accuracy of an algorithm is usually evaluated empirically by counting the
fraction of correctly classified instances considering all instances that the model attempted
to classify. For instance, if we have a test dataset of 100 instances and a model classified
7,000 out of 10,000 instances correctly, then we say that the model has a 70% accuracy
on that dataset. In practice, we are often interested in the generalization performance of
a model, which is the performance on new, unseen data that has the same distribution as
the training data. The simplest way to estimate the generalization accuracy is to compute
the accuracy on a reasonably sized unseen dataset (e.g., the test dataset that we set aside).
However, there are several different techniques to estimate the generalization performance
which have different strengths and weaknesses. Being such an important topic, we will
devote a seperate lecture to model evaluation.

1.8.4 Prediction Error

To introduce the notion of the prediction or misclassification error more formally, consider
the 0-1 loss function

L(ŷ, y) =


0 if ŷ = y

1 if ŷ 6= y,

(11)

where ŷ is the class label predicted by a given hypothesis h(x) = ŷ, and y is the ground
truth (correct class label). Then, the prediction error can be defined as the expected value

ERR = E
[
L(Ŷ , Y )

]
, (12)

which we can estimate from the test dataset Dtest:

ERRDtest =
1

n

n∑
i=1

L
(
ŷ[i], y[i]

)
, (13)

where n is the number of examples in the test dataset, n = |Dtest|.

As mentioned before, there are many, many more metrics, which can be more useful in
specialized contexts, which will be discussed in future lectures. Some of the most popular
metrics are:

• Accuracy (1-Error)

• ROC AUC

• Precision

• Recall

• (Cross) Entropy
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• Likelihood

• Squared Error/MSE

• L-norms

• Utility

• Fitness

• . . .

But more on other metrics in future lectures.

1.9 Different Motivations for Studying Machine Learning

There are several different motivations or approaches we take when are studying ML. While
the following bullet points attempt an overall categorization, there are many exceptions:

• Engineers: Focus on developing systems with high predictive performance for real-
world problem solving

• Mathematicians, computer scientists, and statisticians: understanding properties of
predictive models and modeling approaches

• Neuroscientists: understanding and modeling how a brain and intelligence works

Note that machine learning was originally inspired by neuroscience, when the first attempt
of an artificial neuron, the McCulloch-Pitts Neuron10, was modeled after a biological neuron
and letter lead to the popular perceptron algorithm by Frank Rosenblatt11 – more on that
in later lectures.

1.10 On Black Boxes & Interpretability

As mentioned in earlier section, when we are applying machine learning to real-world prob-
lem solving, we need to define the overall objective first and then choose the right tool for
the task. Unfortunately, as a rule of thumb, simpler models are usually associated with
lower accuracy. Hence, when we are choosing modeling approaches or learning algorithms,
we have to think about whether the emphasis is on understanding a phenomenon or mak-
ing accurate predictions. Then, the problem becomes how meaningful the insights into a
modeling procedure are if the predictions are not accurate. (I.e., what is it good for if I
understand the model if the model is wrong).

In this context, a famous quote by our department’s founder:

All models are wrong; some models are useful.
— George Box (1919-2013), Professor of Statistics at UW-Madison

10Warren S McCulloch and Walter Pitts. “A logical calculus of the ideas immanent in nervous activity”.
In: The bulletin of mathematical biophysics 5.4 (1943), pp. 115–133.

11Frank Rosenblatt. The perceptron, a perceiving and recognizing automaton Project Para. Cornell
Aeronautical Laboratory, 1957.
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Figure 12: Evolved antenna (Source: https://en.wikipedia.org/wiki/Evolved antenna) via evolu-
tionary algorithms; used on a 2006 NASA spacecraft.

Back in 2001, Leo Breiman wrote an interesting, highly recommended article called “Sta-
tistical Modeling: The Two Cultures”12 where he contrasted two different approaches with
respect the the two different goals “information” and “prediction.” He referred to the two
approaches as the “data modeling culture” and the “algorithmic modeling culture.”

Statistical Science
2001, Vol. 16, No. 3, 199–231

Statistical Modeling: The Two Cultures
Leo Breiman

Abstract. There are two cultures in the use of statistical modeling to
reach conclusions from data. One assumes that the data are generated
by a given stochastic data model. The other uses algorithmic models and
treats the data mechanism as unknown. The statistical community has
been committed to the almost exclusive use of data models. This commit-
ment has led to irrelevant theory, questionable conclusions, and has kept
statisticians from working on a large range of interesting current prob-
lems. Algorithmic modeling, both in theory and practice, has developed
rapidly in fields outside statistics. It can be used both on large complex
data sets and as a more accurate and informative alternative to data
modeling on smaller data sets. If our goal as a field is to use data to
solve problems, then we need to move away from exclusive dependence
on data models and adopt a more diverse set of tools.

1. INTRODUCTION

Statistics starts with data. Think of the data as
being generated by a black box in which a vector of
input variables x (independent variables) go in one
side, and on the other side the response variables y
come out. Inside the black box, nature functions to
associate the predictor variables with the response
variables, so the picture is like this:

y xnature

There are two goals in analyzing the data:

Prediction. To be able to predict what the responses
are going to be to future input variables;
Information. To extract some information about
how nature is associating the response variables
to the input variables.

There are two different approaches toward these
goals:

The Data Modeling Culture

The analysis in this culture starts with assuming
a stochastic data model for the inside of the black
box. For example, a common data model is that data
are generated by independent draws from

response variables = f(predictor variables,
random noise, parameters)

Leo Breiman is Professor, Department of Statistics,
University of California, Berkeley, California 94720-
4735 (e-mail: leo@stat.berkeley.edu).

The values of the parameters are estimated from
the data and the model then used for information
and/or prediction. Thus the black box is filled in like
this:

y xlinear regression 
logistic regression
Cox model

Model validation. Yes–no using goodness-of-fit
tests and residual examination.
Estimated culture population. 98% of all statisti-
cians.

The Algorithmic Modeling Culture

The analysis in this culture considers the inside of
the box complex and unknown. Their approach is to
find a function f!x"—an algorithm that operates on
x to predict the responses y. Their black box looks
like this:

y xunknown

decision trees
neural nets

Model validation. Measured by predictive accuracy.
Estimated culture population. 2% of statisticians,
many in other fields.

In this paper I will argue that the focus in the
statistical community on data models has:

• Led to irrelevant theory and questionable sci-
entific conclusions;
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Figure 13: Three screenshots from Breiman’s “Statistical Modeling: The Two Cultures” paper.
(A) the two overall motivations or goals in analyzing data. (B) The so-called “data modeling
culture.” The so-called “algorithmic modeling” culture.

The moral of the story is that whether to choose a “data model” or an “algorithmic model”
really depends on the problem we want to solve, and it’s best to use the appropriate tool
for the task. In this course, we will of course not be restricted to one kind or the other.
We will cover techniques of what would fit into the “data modeling culture” (Bayes optimal
classifiers, Bayesian networks, naive Bayes, logistic regression, etc.) as well as “algorithmic
approaches” (k-nearest neighbors, decision trees, support vector machines, etc.).

Further, Breiman mentions three lessons learned in the statistical modeling and machine
learning communities, which I summarized below:

• Rashomon effect; the the multiplicity of good models. Often we have mutliple good
models that fit the data well. If we have different models that all fit the data well,
which one should we pick?

• Occam’s razor. While we prefer favoring simple models, there is usually a conflict
between accuracy and simplicity to varying degree (in later lectures, we will learn
about techniques for selecting models within a “sweet spot” considering that this is a
trade-off)

• Bellman and the “curse of dimensionality.” Usually, having more data is con-
sidered a good thing (i.e., more information). However, more data can be harmful to
a model and make it more prone to overfitting (fitting the training data too closely

12Leo Breiman et al. “Statistical modeling: The two cultures (with comments and a rejoinder by the
author)”. In: Statistical science 16.3 (2001), pp. 199–231.
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and not generalizing well to new data that was not seen during training; fitting noise).
Note that the curse of dimensionality refers to an increasing number of feature vari-
ables given a fixed number of training examples. Some models have smart workarounds
for dealing with large feature sets. E.g., Breiman’s random forest algorithm, which
partitions the feature space to fit individual decision trees that are then later joined to
a decistion tree ensemble (the particular algorithm is called random forest), but more
on that in future lectures.

Also note that there’s a “No Free Lunch” theorem for machine learning13, meaning that
there’s no single best algorithm that works well across different problem domains.

1.11 The Relationship between Machine Learning and Other Fields

1.11.1 Machine Learning and Data Mining

Data mining focuses on the discovery of patterns in datasets or “gaining knowledge and
insights” from data – often, this involves a heavy focus on computational techniques, working
with databases, etc (nowdays, the term is more or less synonymous to “data science”). We
can then think of machine learning algorithms as tools within a data mining project. Data
mining is not “just” but also emphasis data processing, visualization, and tasks that are
traditionally not categorized as “machine learning” (for example, association rule mining).

1.11.2 Machine Learning, AI, and Deep Learning

Artificial intelligence (AI) was created as a subfield of computer science focussing on solving
tasks that humans are good at (for example, natural language processing, image recognition).
Or in other words, the goal of AI is to mimick human intelligence.

There are two subtypes of AI: Artificial general intelligence (AGI) and narrow AI. AGI refers
to an intelligence that equals humans in several tasks, i.e., multi-purpose AI. In contrast,
narrow AI is more narrowly focused on solving a particular task that humans are traditionally
good at (e.g., playing a game, or driving a car – I would not go so far and refer to “image
classification” as AI).

In general, AI can be approached in many ways. One approach is to write a computer
program that implements a set of rules devised by domain experts. Now, hand-crafting rules
can be very laborious and time consuming. The field of machine learning then emerged as
a subfield of AI – it was concerned with the development of algorithms so that computers
can automatically learn (predictive) models from data.

Assume we want to develop a program that can recognize handwritten digits from images.
One approach would be to look at all of these images and come up with a set of (nested) if-
this-than-that rules to determine which digit is displayed in a particular image (for instance,
by looking at the relative locations of pixels). Another approach would be to use a machine
learning algorithm, which can fit a predictive model based on a thousands of labeled image
samples that we may have collected in a database.

Now, there is also deep learning, which in turn is a subfield of machine learning, referring
to a particular subset of models that are particularly good at certain tasks such as image
recognition and natural language processing. We will talk more about deep learning toward
the end of this class.

13David H Wolpert. “The lack of a priori distinctions between learning algorithms”. In: Neural compu-
tation 8.7 (1996), pp. 1341–1390.
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Or in short, machine learning (and deep learning) definitely helps to develop “AI,” however,
AI doesn’t necessarily have to be developed using machine learning – although, machine
learning makes “AI” much more convenient.

Machine Learning

AI
Deep Learning

a system that is 
“intelligent” through rules

self-learning algorithms that
learn models from “data”

particular, multi-layered models 
that learn representations of data with 
multiple levels of abstraction

Figure 14: Relationship between machine learning, deep learning, and artificial intelligence. Note
that there is also overlap between Machine learning and data mining, data science, statistics, etc.
(not shown).

1.12 Roadmap for this Course

This is an outline that might change depending on how the course progresses. If we have
to skip the deep learning part, that’s okay. There will be a whole course dedicated to deep
learning offered in future.

Date Description

Part I: Introduction
Course Overview, Intro to ML
Intro to Supervised Learning: KNN

Part II: Computational Foundations
Python, Matplotlib, Jupyter Notebooks
NumPy, SciPy, Scikit-Learn
Data Preprocessing

Part III: Tree-Based Methods
Decision Trees
Ensemble Methods

Part IV: Evaluation
Model Selection & Evaluation 1
Model Selection & Evaluation 2

Part V: Dimensionality Reduction
Feature Selection
Feature Extraction

Part V: Bayesian Learning
Bayes Classifiers
Text Data & Sentiment Analysis
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Date Description

Näıve Bayes Classification
Part VI: Regression and Unsupervised Learning

Regression Analysis
Clustering

Part VII: Artificial Neural Networks
Perceptron
Adaline & Logistic Regression
SVM
Multilayer Perceptron

Part VIII: Deep Learning
Intro to TensorFlow, PyTorch
CNNs (Deep Learning)
RNNs (Deep Learning)
Training Neural Nets: “Tricks of the Trade”

1.13 Software

We will talk more about software in upcoming lectures, but at this point, I want to provide
a brief overview of the “Python for scientific computing” landscape.

Figure 15: Scientific Python packages, some of which we will discuss in class. (Image
by Jake VanderPlas; Source: https://speakerdeck.com/jakevdp/the-state-of-the-stack-scipy-2015-
keynote?slide=8). The graphic is structured in terms of “low level” to “high level.” For example,
NumPy is a numerical array library for Python. SciPy is a package with scientific computing func-
tions that extends/depends on NumPy. Scikit-learn is a machine learning library that uses both
NumPy and SciPy.

The Python-topics we will make use of in this course are the following:

• Python, IPython / Jupyter Notebooks

• NumPy, SciPy, Matplotlib, Scikit-learn, Pandas
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1.14 Glossary

Machine learning borrows concepts from many other fields and redefines what has been
known in other fields under different names. Below is a small glossary of machine learning-
specfic terms along with some key concepts to help navigate the machine learning literature.

• Training example: A row in the table representing the dataset. Synonymous to
an observation, training record, training instance, training sample (in some contexts,
sample refers to a collection of training examples).

• Training: model fitting, for parametric models similar to parameter estimation.

• Feature, x: a column in the table representing the dataset. Synonymous to predictor,
variable, input, attribute.

• Target, y: Synonymous to outcome, output, response variable, dependent variable,
(class) label, ground truth.

• Predicted output, ŷ: use this to distinguish from targets; here, means output from
the model.

• Loss function: Often used synomymously with cost function; sometimes also called
error function. In some contexts the loss for a single data point, whereas the cost
function refers to the overall (average or summed) loss over the entire dataset.

• Hypothesis: A hypothesis is a certain function that we believe (or hope) is similar
to the true function, the target function that we want to model. In context of spam
classification, it would be a classification rule we came up with that allows us to
separate spam from non-spam emails.

• Model: In the machine learning field, the terms hypothesis and model are often used
interchangeably. In other sciences, they can have different meanings: A hypothesis
could be the “educated guess” by the scientist, and the model would be the manifes-
tation of this guess to test this hypothesis.

• Learning algorithm: Again, our goal is to find or approximate the target function,
and the learning algorithm is a set of instructions that tries to model the target function
using our training dataset. A learning algorithm comes with a hypothesis space, the set
of possible hypotheses it explores to model the unknown target function by formulating
the final hypothesis.

• Classifier: A classifier is a special case of a hypothesis (nowadays, often learned by
a machine learning algorithm). A classifier is a hypothesis or discrete-valued function
that is used to assign (categorical) class labels to particular data points. In an email
classification example, this classifier could be a hypothesis for labeling emails as spam
or non-spam. Yet, a hypothesis must not necessarily be synonymous to the term
classifier. In a different application, our hypothesis could be a function for mapping
study time and educational backgrounds of students to their future, continuous-valued,
SAT scores – a continuous target variable, suited for regression analysis.

• Hyperparameters: Hyperparameters are the tuning parameters of a machine learn-
ing algorithm – for example, the regularization strength of an L2 penalty in the mean
squared error cost function of linear regression, or a value for setting the maximum
depth of a decision tree. In contrast, model parameters are the parameters that a
learning algorithm fits to the training data – the parameters of the model itself. For
example, the weight coefficients (or slope) of a linear regression line and its bias (or
y-axis intercept) term are model parameters.
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1.15 Reading Assignments

• Raschka and Mirjalili: Python Machine Learning, 2nd ed., Ch 1

• Trevor Hastie, Robert Tibshirani, and Jerome Friedman: The Elements of Statistical
Learning, Ch 01

1.16 Further Reading

Optional reading beyond the scope of this class for those who are interested.

• Statistical Modeling: The Two Cultures (2001) by Leo Breiman, https://projecteuclid.
org/euclid.ss/1009213726

https://projecteuclid.org/euclid.ss/1009213726
https://projecteuclid.org/euclid.ss/1009213726
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