STAT 453: Introduction to Deep Learning and Generative Models Sebastian Raschka <u>http://stat.wisc.edu/~sraschka/teaching</u>



## Lecture 19

## **RNNs and Transformers for Sequence-to-Sequence Modeling**

### **Lecture Topics**

- 1. Sequence Generation with RNNs
- 2. Character RNN in PyTorch
- 3. RNNs with Attention
- 4. Attention is All We Need
- 5. Transformer Models
- 6. Transformer in PyTorch

### Many-to-Many RNNs for Generating Text

### **1. Sequence Generation with RNNs**

- 2. Character RNN in PyTorch
- 3. RNNs with Attention
- 4. Attention is All We Need
- 5. Transformer Models
- 6. Transformer in PyTorch

## **Different Types of Sequence Modeling Tasks**





The Unreasonable Effectiveness of Recurrent Neural Networks by Andrej Karpathy (http://karpathy.github.io/2015/05/21/rnn-effectiveness/)



many-to-many

"training"



### -many-to-many "one"

"generating new text"



At each time step Softmax output (probability) for each possible"next letter"

> For the next input, ignore the prediction but use the "correct" next letter from the dataset

many-to-many

"training"

Sebastian Raschka STAT 453: Intro to Deep Learning



To generate new text, now, sample from the softmax outputs and provide the letter as input to the next time step

# many-to-many

"generating new text"



To generate new text, now, sample from the softmax outputs and provide the letter as input to the next time step

## many-to-many

"generating new text"

Note that this approach works with both Wordand Character-RNNs

### Advantages and Disadvantages of Character RNNs over Word RNNs

- + Character embeddings (only 24 letters plus punctuation in English language) require less memory compared to word embeddings
- + Smaller output layers for the same reason as above
- Can create weird & nonsense words
- Worse at capturing long-distance dependencies

## **Implementing Character RNNs in PyTorch**

1. Sequence Generation with RNNs

### 2. Character RNN in PyTorch

- 3. RNNs with Attention
- 4. Attention is All We Need
- 5. Transformer Models
- 6. Transformer in PyTorch

## **LSTM Class**

### https://pytorch.org/docs/stable/generated/torch.nn.LSTM.html

#### Parameters

- input\_size The number of expected features in the input x
- hidden\_size The number of features in the hidden state h
- num\_layers Number of recurrent layers. E.g., setting num\_layers=2 would mean stacking two LSTMs together to form a *stacked LSTM*, with the second LSTM taking in outputs of the first LSTM and computing the final results. Default: 1
- **bias** If False, then the layer does not use bias weights b\_ih and b\_hh. Default: True
- batch\_first If True, then the input and output tensors are provided as (batch, seq, feature).
   Default: False
- dropout If non-zero, introduces a *Dropout* layer on the outputs of each LSTM layer except the last layer, with dropout probability equal to dropout. Default: 0
- bidirectional If True, becomes a bidirectional LSTM. Default: False
- proj\_size If > 0, will use LSTM with projections of corresponding size. Default: 0

Examples:

```
>>> rnn = nn.LSTM(10, 20, 2)
>>> input = torch.randn(5, 3, 10)
>>> h0 = torch.randn(2, 3, 20)
>>> c0 = torch.randn(2, 3, 20)
>>> output, (hn, cn) = rnn(input, (h0, c0))
```

### **LSTM Class**

### Examples:

>>> rnn = nn.LSTM(10, 20, 2)
>>> input = torch.randn(5, 3, 10)
>>> h0 = torch.randn(2, 3, 20)
>>> c0 = torch.randn(2, 3, 20)
>>> output, (hn, cn) = rnn(input, (h0, c0))



## **LSTMCell Class**

### https://pytorch.org/docs/stable/generated/torch.nn.LSTMCell.html

Inputs: input, (h\_0, c\_0)

- input of shape (batch, input\_size): tensor containing input features
- h\_0 of shape (*batch, hidden\_size*): tensor containing the initial hidden state for each element in the batch.
- c\_0 of shape (*batch, hidden\_size*): tensor containing the initial cell state for each element in the batch.

If (h\_o, c\_o) is not provided, both **h\_0** and **c\_0** default to zero.

```
Outputs: (h_1, c_1)
```

- h\_1 of shape (batch, hidden\_size): tensor containing the next hidden state for each element in the batch
- **c\_1** of shape (*batch, hidden\_size*): tensor containing the next cell state for each element in the batch

Examples:

### **LSTMCell Class**

Examples:





# Translation with a Sequence to Sequence Network and Attention (English to French)

https://pytorch.org/tutorials/intermediate/seq2seq\_translation\_tutorial.html

### Dealing Better with Long Sequences by Outfitting RNNs with an Attention Mechanism

- 1. Sequence Generation with RNNs
- 2. Character RNN in PyTorch

### **3. RNNs with Attention**

- 4. Attention is All We Need
- 5. Transformer Models
- 6. Transformer in PyTorch

## Many-to-Many Architecture for Language Translation

**Translated sentence** 



Input sentence

Translation with a Sequence to Sequence Network and Attention (English to French)

https://pytorch.org/tutorials/intermediate/seq2seq\_translation\_tutorial.html

# Input: Today is a great day

### Translation: Heute ist ein großartiger Tag

Sebastian Raschka STAT 453: Intro to Deep Learning

Input:

If you've ever studied a foreign language, you've probably encountered a "false friend" at some point.

Translation:

Wenn Sie jemals eine Fremdsprache gelernt haben, sind Sie wahrscheinlich irgendwann auf einen "falschen Freund" gestoßen. Challenge in language translation: memorize whole input sentence in one hidden state



 Originally developed for language translation: Bahdanau, D., Cho, K., & Bengio, Y. (2014). Neural machine translation by jointly learning to align and translate. <u>https://arxiv.org/abs/1409.0473</u>

"... allowing a model to automatically (soft-)search for parts of a source sentence that are relevant to predicting a target word ..."



Figure 2: The BLEU scores of the generated translations on the test set with respect to the lengths of the sentences. The results are on the full test set which includes sentences having unknown words to the models.

Assign attention weight to each word, to know how much "attention" the model should pay to each word (i.e., for each word, the network learns a "context")

 Originally developed for language translation: Bahdanau, D., Cho, K., & Bengio, Y. (2014). Neural machine translation by jointly learning to align and translate. <u>https://arxiv.org/abs/1409.0473</u>









### **Computing attention weights**



$$\alpha_{t,t'} = \frac{\exp(e_{t,t'})}{\sum_{t'=1}^{T} \exp(e_{t,t'})}$$

Figure: Bahdanau, D., Cho, K., & Bengio, Y. (2014). Neural machine translation by jointly learning to align and translate. <u>https://arxiv.org/abs/1409.0473</u>

### Using Attention Without the RNN -- Self-Attention Mechanism & Transformers

- 1. Sequence Generation with RNNs
- 2. Character RNN in PyTorch
- 3. RNNs with Attention
- 4. Attention is All We Need

### 4.1. Basic Form of Self-Attention

- 4.2. Self-Attention & Scaled Dot-Product Attention
- 4.3. Multi-Head Attention
- 5. Transformer Models
  - 5.1. The Transformer Architecture
  - 5.2. Some Popular Transformer Models: BERT, GPT, and BART
- 6. Transformer in PyTorch

## "Original" (RNN) Attention Mechanism



### Getting rid of the sequential parts ...

• No recurrence, no convolution



### **Attention Is All You Need**

Ashish Vaswani\*Noam Shazeer\*Niki Parmar\*Jakob Uszkoreit\*Google BrainGoogle BrainGoogle ResearchGoogle Researchavaswani@google.comnoam@google.comnikip@google.comusz@google.com

Llion Jones\* Google Research llion@google.com Aidan N. Gomez<sup>\*</sup><sup>†</sup> University of Toronto aidan@cs.toronto.edu **Łukasz Kaiser**\* Google Brain lukaszkaiser@google.com

Illia Polosukhin\* <sup>‡</sup> illia.polosukhin@gmail.com

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin, I. (2017). Attention is all you need. In *Advances in neural information processing systems* (pp. 5998-6008).

https://arxiv.org/abs/1706.03762

# Since ~2018, Transformers have been growing in popularity ... and size



## Self-Attention Mechanism -- Very Basic Form

### Main procedure:

- 1) Derive attention <u>weights</u>: similarity between current input and all other inputs (next slide)
- 2) Normalize weights via softmax (next slide)
- 3) Compute attention value from normalized weights and corresponding inputs (below)

Self-attention as weighted sum:

$$A_i = \sum_{j=1}^{i} a_{ij} \mathbf{x}_j$$

T

output corresponding to the i-th input

weight based on similarity between current input  $x_i$  and all other inputs

### Self-Attention Mechanism -- Very Basic Form

Self-attention as weighted sum:

$$\mathbf{A}_i = \sum_{j=0}^T a_{ij} \mathbf{x}_j$$

output corresponding to the i-th input

How to compute the attention weights?

weight based on similarity between current input  $x_i$  and all other inputs

here as simple dot product:

$$e_{ij} = \boldsymbol{x}_i^{\mathsf{T}} \boldsymbol{x}_j$$

repeat this for all inputs  $j \in \{1...T\}$ , then normalize

$$a_{ij} = \frac{\exp\left(e_{ij}\right)}{\sum_{j=1}^{T} \exp\left(e_{ij}\right)} = \operatorname{softmax}\left(\left[e_{ij}\right]_{j=1...T}\right)$$





Image source: Raschka & Mirjalili 2019. Python Machine Learning, 3rd edition

### Using Attention Without the RNN -- Self-Attention Mechanism & Transformers

- 1. Sequence Generation with RNNs
- 2. Character RNN in PyTorch
- 3. RNNs with Attention
- 4. Attention is All We Need
  - 4.1. Basic Form of Self-Attention

### 4.2. Self-Attention & Scaled Dot-Product Attention

- 4.3. Multi-Head Attention
- 5. Transformer Models
  - 5.1. The Transformer Architecture
  - 5.2. Some Popular Transformer Models: BERT, GPT, and BART
- 6. Transformer in PyTorch

# **Self-Attention Mechanism** $o^{(i)} = \sum_{i=0}^{T} \mathcal{W}_{ij}$ Wery Basic Form

self-attention: relating different positions within a single sequence (vs. between in- and output sequences)



### **Attention Is All You Need**

Ashish Vaswani\* Google Brain avaswani@google.com Noam Shazeer\* Google Brain noam@google.com Niki Parmar\* Google Research nikip@google.com Jakob Uszkoreit\* Google Research usz@google.com

Llion Jones\* Google Research llion@google.com Aidan N. Gomez<sup>\* †</sup> University of Toronto aidan@cs.toronto.edu **Łukasz Kaiser**\* Google Brain lukaszkaiser@google.com

Illia Polosukhin\*<sup>‡</sup> illia.polosukhin@gmail.com

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin, I. (2017). Attention is all you need. In *Advances in neural information processing systems* (pp. 5998-6008).

#### https://arxiv.org/abs/1706.03762

- Previous basic version did not involve any learnable parameters, so not very useful for learning a language model
- We are now adding 3 trainable weight matrices that are multiplied with the input sequence embeddings ( $x_i$ 's)

query = 
$$W^q x_i$$
  
key =  $W^k x_i$   
value =  $W^v x_i$ 



 $d_e$  = embedding size (original transformer = 512)





Attention score matrix: 
$$A = \begin{bmatrix} A_1 \\ A_2 \\ A_3 \end{bmatrix}$$

### Self-Attention Mechanism (Scaled Dot Product Attention)

 $d_e$  = embedding size T = input sequence size





Sebastian Raschka STAT 453: Intro to Deep Learning

### **Scaled Dot-Product Attention**



## Using Attention Without the RNN -- Self-Attention Mechanism & Transformers

- 1. Sequence Generation with RNNs
- 2. Character RNN in PyTorch
- 3. RNNs with Attention

### 4. Attention is All We Need

- 4.1. Basic Form of Self-Attention
- 4.2. Self-Attention & Scaled Dot-Product Attention

### 4.3. Multi-Head Attention

- 5. Transformer Models
  - 5.1. The Transformer Architecture
  - 5.2. Some Popular Transformer Models: BERT, GPT, and BART
- 6. Transformer in PyTorch

### Self-Attention Mechanism (Scaled Dot Product Attention)

 $d_e$  = embedding size T = input sequence size





Sebastian Raschka STAT 453: Intro to Deep Learning

## **Multi-Head Attention**

- Apply self-attention multiple times in parallel (similar to multiple kernels for channels in CNNs)
- For each head (self-attention layer), use different  $W^q, W^k, W^v$ , then concatenate the results,  $A_{(i)}$
- 8 attention heads in the original transformer, i.e.,  $W^q_{(1)}, W^k_{(1)}, W^v_{(1)}, \dots W^q_{(8)}, W^k_{(8)}, W^v_{(8)}$
- Allows attending to different parts in the sequence differently



Figure 2: (left) Scaled Dot-Product Attention. (right) Multi-Head Attention consists of several attention layers running in parallel.





## Using Attention Without the RNN -- Self-Attention Mechanism & Transformers

- 1. Sequence Generation with RNNs
- 2. Character RNN in PyTorch
- 3. RNNs with Attention
- 4. Attention is All We Need
  - 4.1. Basic Form of Self-Attention
  - 4.2. Self-Attention & Scaled Dot-Product Attention
  - 4.3. Multi-Head Attention

### 5. Transformer Models

#### **5.1. The Transformer Architecture**

- 5.2. Some Popular Transformer Models: BERT, GPT, and BART
- 6. Transformer in PyTorch

### **Attention Is All You Need**

Ashish Vaswani\*Noam Shazeer\*Niki Parmar\*Jakob Uszkoreit\*Google BrainGoogle BrainGoogle ResearchGoogle Researchavaswani@google.comnoam@google.comnikip@google.comusz@google.com

Llion Jones\* Google Research llion@google.com Aidan N. Gomez<sup>\*</sup><sup>†</sup> University of Toronto aidan@cs.toronto.edu Łukasz Kaiser\* Google Brain lukaszkaiser@google.com

Illia Polosukhin\*<sup>‡</sup> illia.polosukhin@gmail.com

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin, I. (2017). Attention is all you need. In *Advances in neural information processing systems* (pp. 5998-6008).

https://arxiv.org/abs/1706.03762

Sebastian Raschka STAT 453: Intro to Deep Learning

### **Scaled Dot-Product Attention Recap**









### **Masked Multi-head attention**



Mask subsequent sequence elements. I.e., only allow to attend to positions up to and including the current position. This is achieved by setting softmax values for those to  $-\infty$ 

Figure 1: The Transformer - model architecture.



### Add Positional Encoding Matrix to Word Embedding Matrix

- Scaled dot-product and fully-connected layer are permutation invariant
- Sinusoidal positional encoding is a vector of small values (constants) added to the embeddings
- As a result, same word will have slightly different embeddings depending on where they occur in the sentence



Figure 1: The Transformer - model architecture.



Figure 1: The Transformer - model architecture.



Figure 5: Many of the attention heads exhibit behaviour that seems related to the structure of the sentence. We give two such examples above, from two different heads from the encoder self-attention at layer 5 of 6. The heads clearly learned to perform different tasks.

## Using Attention Without the RNN -- Self-Attention Mechanism & Transformers

- 1. Sequence Generation with RNNs
- 2. Character RNN in PyTorch
- 3. RNNs with Attention
- 4. Attention is All We Need
  - 4.1. Basic Form of Self-Attention
  - 4.2. Self-Attention & Scaled Dot-Product Attention
  - 4.3. Multi-Head Attention

### 5. Transformer Models

5.1. The Transformer Architecture

### 5.2. Some Popular Transformer Models: BERT, GPT, and BART

6. Transformer in PyTorch

## Recap





### The Two Keys to Success Behind Transformers

- 1. Self-attention for encoding long-range dependencies
- 2. Self-supervision for leveraging large unlabeled datasets

### **Transformer Training Approach**

- 1. Pre-training on large unlabeled datasets (self-supervised learning)
- 2. Training for downstream-tasks on labeled data (supervised learning)
  - a) fine-tuning approach
  - b) feature-based approach

### 5.2 Some Popular Transformer Models: BERT, GPT, and BART

- 5.2.2 GPT-v1: Generative Pre-Trained Transformer
- 5.2.3 BERT: Bidirectional Encoder Representations from Transformers
- 5.2.4 GPT-v2: Language Models are Unsupervised Multitask Learners
- 5.2.5 GPT-v3: Language Models are Few-Shot Learners
- 5.2.6 BART: Combining Bidirectional and Auto-Regressive Transformers
- 5.2.7: Closing Words -- The Recent Growth of Language Transformers

5.2 Some Popular Transformer Models: BERT, GPT, and BART

## 5.2.2 GPT-v1:

## **Generative Pre-Trained Transformer**

Sebastian Raschka STAT 453: Intro to Deep Learning

## **GPT** (<u>Generative</u> <u>Pre-trained</u> <u>Transformer</u>)

- Developed by OpenAl
- Unidirectional: trained to predict next word in a sentence

### GPT (110 million parameters)

Radford, A., Narasimhan, K., Salimans, T., & Sutskever, I. (2018). Improving language understanding by generative pre-training. <u>https://cdn.openai.com/research-covers/language-unsupervised/</u> language\_understanding\_paper.pdf

#### GPT-2 1.5 billion parameters)

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., & Sutskever, I. (2019). Language models are unsupervised multitask learners. *OpenAI blog*, 1(8), 9.

https://cdn.openai.com/better-language-models/language models are unsupervised multitask learners.pdf

#### GPT-3 (175 billion parameters)

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., ... & Amodei, D. (2020). Language models are few-shot learners. arXiv preprint arXiv:2005.14165. <u>https://arxiv.org/abs/2005.14165</u>

## **GPT-v1 Key Concepts**

- Bottleneck: Lack of labeled data
- 2-step training process ("semi-supervised")
  - 1. Generative pre-training (on unlabeled data); unsupervised/"self-supervised" learning
  - 2. Discriminative fine-tuning (on labeled data), supervised learning
- Pre-training on large BookCorpus dataset (7000 books)
- Based on decoder architecture from original Transformer ("Attention Is All You Need")

## **GPT-v1 Architecture and Downstream Tasks**



Figure 1: (left) Transformer architecture and training objectives used in this work. (right) Input transformations for fine-tuning on different tasks. We convert all structured inputs into token sequences to be processed by our pre-trained model, followed by a linear+softmax layer.

Radford, A., Narasimhan, K., Salimans, T., & Sutskever, I. (2018). Improving language understanding by generative pre-training. <u>https://cdn.openai.com/research-covers/language-unsupervised/language\_understanding\_paper.pdf</u>

## **GPT-v1 Ablation Study**

Table 5: Analysis of various model ablations on different tasks. Avg. score is a unweighted average of all the results. (mc= Mathews correlation, acc=Accuracy, pc=Pearson correlation)

| Method                                                                   | Avg. Score                  | CoLA<br>(mc)                | SST2<br>(acc)               | MRPC<br>(F1)                | STSB<br>(pc)                | QQP<br>(F1)          | MNLI<br>(acc)        | QNLI<br>(acc)        | RTE<br>(acc)         |
|--------------------------------------------------------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|-----------------------------|----------------------|----------------------|----------------------|----------------------|
| Transformer w/ aux LM (full)                                             | 74.7                        | 45.4                        | 91.3                        | 82.3                        | 82.0                        | 70.3                 | 81.8                 | 88.1                 | 56.0                 |
| Transformer w/o pre-training<br>Transformer w/o aux LM<br>LSTM w/ aux LM | 59.9<br><b>75.0</b><br>69.1 | 18.9<br><b>47.9</b><br>30.3 | 84.0<br><b>92.0</b><br>90.5 | 79.4<br><b>84.9</b><br>83.2 | 30.9<br><b>83.2</b><br>71.8 | 65.5<br>69.8<br>68.1 | 75.7<br>81.1<br>73.7 | 71.2<br>86.9<br>81.1 | 53.8<br>54.4<br>54.6 |

5.2 Some Popular Transformer Models: BERT, GPT, and BART

## 5.2.3 BERT: Bidirectional Encoder Representations from Transformers

Sebastian Raschka STAT 453: Intro to Deep Learning



### (Bidirectional Encoder Representations from Transformers)

Paper: Devlin J, Chang MW, Lee K, Toutanova K. BERT: Pre-training of deep bidirectional transformers for language understanding. <u>https://arxiv.org/abs/1810.04805</u> (Google Research, 2018)

- multi-layer bidirectional transformer encoder
- architecture almost identical to original transformer & GPT, except
  - bidirectional masking (known as "Cloze" task, Taylor 1953\*)
  - next sentence prediction as additional pre-training task

\* Wilson L Taylor. 1953. Cloze procedure: A new tool for measuring readability. Journalism Bulletin, 30(4):415–433.

### **BERT Inputs**



Figure 2: BERT input representation. The input embeddings are the sum of the token embeddings, the segmentation embeddings and the position embeddings.

#### Token embeddings are WordPiece embeddings\* with vocabulary size of 30,000

\* Wu Y, Schuster M, Chen Z, Le QV, Norouzi M, Macherey W, Krikun M, Cao Y, Gao Q, Macherey K, Klingner J. Google's neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:1609.08144. 2016 <u>https://arxiv.org/abs/1609.08144</u>

### **BERT Pre-Training Tasks**

### **Pre-training datasets**

- BookCorpus (800 million words)
- Wikipedia (2500 million words)

### **Pre-training tasks**

- Masked language model ("Cloze")
- Next sentence prediction

### **BERT Pre-Training Task #1**

**Masked Language Model** 

Input sentence: A quick brown fox jumps over the lazy dog



### **BERT Pre-Training Task #1**

Masked Language Model

Input sentence:

**Randomly masked:** 



### **BERT Pre-Training Task #2**

**Next Sentence Prediction** 

Balanced binary classification task (50% IsNext, 50% NotNext)

Input = [CLS] the man went to [MASK] store [SEP] he bought a gallon [MASK] milk [SEP] Label = IsNext

Input = [CLS] the man [MASK] to the store [SEP] penguin [MASK] are flight ##less birds [SEP] Label = NotNext

### **BERT Pre-Training & Downstream Tasks**



Figure 1: Overall pre-training and fine-tuning procedures for BERT. Apart from output layers, the same architectures are used in both pre-training and fine-tuning. The same pre-trained model parameters are used to initialize models for different down-stream tasks. During fine-tuning, all parameters are fine-tuned. [CLS] is a special symbol added in front of every input example, and [SEP] is a special separator token (e.g. separating questions/answers).

### **Transformer Training Approach**

- 1. **Pre-training** on large unlabeled datasets (self-supervised learning)
- 2. Training for downstream-tasks on labeled data (supervised learning)
  - a) fine-tuning approach
  - b) feature-based approach (nowadays also called "fine-tuning")

### **BERT Pre-Training & Fine-Tuning Approach**

- Add classification layer
- Train end-to-end on labeled dataset for downstream task (update ALL parameters)



### **BERT vs GPT-v1 Performance**

| System               | MNLI-(m/mm) | QQP  | QNLI | SST-2 | CoLA | STS-B | MRPC | RTE  | Average |
|----------------------|-------------|------|------|-------|------|-------|------|------|---------|
|                      | 392k        | 363k | 108k | 67k   | 8.5k | 5.7k  | 3.5k | 2.5k | -       |
| Pre-OpenAI SOTA      | 80.6/80.1   | 66.1 | 82.3 | 93.2  | 35.0 | 81.0  | 86.0 | 61.7 | 74.0    |
| BiLSTM+ELMo+Attn     | 76.4/76.1   | 64.8 | 79.8 | 90.4  | 36.0 | 73.3  | 84.9 | 56.8 | 71.0    |
| OpenAI GPT           | 82.1/81.4   | 70.3 | 87.4 | 91.3  | 45.4 | 80.0  | 82.3 | 56.0 | 75.1    |
| BERT <sub>BASE</sub> | 84.6/83.4   | 71.2 | 90.5 | 93.5  | 52.1 | 85.8  | 88.9 | 66.4 | 79.6    |
| BERTLARGE            | 86.7/85.9   | 72.1 | 92.7 | 94.9  | 60.5 | 86.5  | 89.3 | 70.1 | 82.1    |

Table 1: GLUE Test results, scored by the evaluation server (https://gluebenchmark.com/leaderboard). The number below each task denotes the number of training examples. The "Average" column is slightly different than the official GLUE score, since we exclude the problematic WNLI set.<sup>8</sup> BERT and OpenAI GPT are single-model, single task. F1 scores are reported for QQP and MRPC, Spearman correlations are reported for STS-B, and accuracy scores are reported for the other tasks. We exclude entries that use BERT as one of their components.

# **BERT Pre-Training & Feature-based Training**

- Keep BERT frozen after pre-training
- Create BERT embeddings for labeled dataset for downstream task and train new model on these embeddings (in original paper,

2-layer biLSTM on embeddings from concatenated last 4 layers performed best)



| System                                         | Dev F1 | Test F1 |
|------------------------------------------------|--------|---------|
| ELMo (Peters et al., 2018a)                    | 95.7   | 92.2    |
| CVT (Clark et al., 2018)                       | -      | 92.6    |
| CSE (Akbik et al., 2018)                       | -      | 93.1    |
| Fine-tuning approach                           |        |         |
| BERTLARGE                                      | 96.6   | 92.8    |
| BERT <sub>BASE</sub>                           | 96.4   | 92.4    |
| Feature-based approach (BERT <sub>BASE</sub> ) |        |         |
| Embeddings                                     | 91.0   | -       |
| Second-to-Last Hidden                          | 95.6   | -       |
| Last Hidden                                    | 94.9   | -       |
| Weighted Sum Last Four Hidden                  | 95.9   | -       |
| Concat Last Four Hidden                        | 96.1   | -       |
| Weighted Sum All 12 Layers                     | 95.5   | -       |

Table 7: CoNLL-2003 Named Entity Recognition results. Hyperparameters were selected using the Dev set. The reported Dev and Test scores are averaged over 5 random restarts using those hyperparameters. 5.2 Some Popular Transformer Models: BERT, GPT, and BART

# 5.2.4 GPT-v2: Language Models are Unsupervised Multitask Learners

Sebastian Raschka STAT 453: Intro to Deep Learning

# **GPT** (<u>Generative</u> <u>Pre-trained</u> <u>Transformer</u>)

- Developed by OpenAl
- Unidirectional: trained to predict next word in a sentence

#### GPT (110 million parameters)

Radford, A., Narasimhan, K., Salimans, T., & Sutskever, I. (2018). Improving language understanding by generative pre-training. <u>https://cdn.openai.com/research-covers/language-unsupervised/</u> language\_understanding\_paper.pdf

#### GPT-2 (1.5 billion parameters)

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., & Sutskever, I. (2019). Language models are unsupervised multitask learners. *OpenAI blog*, 1(8), 9.

https://cdn.openai.com/better-language-models/language models are unsupervised multitask learners.pdf

#### GPT-3 (175 billion parameters)

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., ... & Amodei, D. (2020). Language models are few-shot learners. arXiv preprint arXiv:2005.14165. <u>https://arxiv.org/abs/2005.14165</u>

### **GPT-v1 Architecture and Downstream Tasks**



Figure 1: (left) Transformer architecture and training objectives used in this work. (right) Input transformations for fine-tuning on different tasks. We convert all structured inputs into token sequences to be processed by our pre-trained model, followed by a linear+softmax layer.

Radford, A., Narasimhan, K., Salimans, T., & Sutskever, I. (2018). Improving language understanding by generative pre-training. <u>https://cdn.openai.com/research-covers/language-unsupervised/language\_understanding\_paper.pdf</u>

### **GPT-v2 Key Concepts**

- Unidirectional like GPT-v1
- Compared to GPT-v1
  - Larger model (the larger the better)
  - Larger unlabeled dataset (the larger the better)
  - No fine-tuning (use zero-shot transfer instead)

### **GPT-v2** Architecture

- Overall, similar to GPT-v1 (which is based on original Transformer decoder)
- Some small rearranging of layer norm and residual layers
- Increase vocabulary size from 30,000 -> 50,257
- Increase context size from 512 -> 1024 tokens
- Overall, 1.5 billion instead of 110 million parameters

### **GPT-v2 Training Dataset**

- WebText (millions of webpages)
- Emphasized dataset quality
- Based on Reddit posts with more than 3 karma
  - Get 45 million links to websites
    - After preprocessing and cleaning: 8 million documents
    - 40 Gb of text

### **Zero-Shot Task Transfer**

In contrast to GPT-v1, no specific instruction / rearranging for specific tasks

https://huggingface.co/models?filter=zero-shot-classification

Choose an example



**Update**: Zero-shot classification is now supported in our API and you can experiment with a number of compatible models on our Model Hub.

Recently, the NLP science community has begun to pay increasing attention to zero-shot and few-shot applications, such as in the paper from OpenAI introducing GPT-3. This demo shows how in the paper from openAI introducing GPT-3. This demo shows how is transformers can be used for zero-shot topic classification, the task of predicting a topic that the model has not been trained on.

#### **Zero Shot Topic Classification**

| Custo    | om                |                |    |      |   | •       |
|----------|-------------------|----------------|----|------|---|---------|
| Text     |                   |                |    |      |   |         |
| What     | t is the color of | f grass?       |    |      |   |         |
| Possible | topics (separated | by`,`)         |    |      |   |         |
| gree     | n,red,blue,notl   | ning,pink,purp | le |      |   | 34/1000 |
| 🗸 All    | low multiple co   | prrect topics  |    |      |   |         |
| Тс       | op Predictions    | 5              |    |      |   |         |
|          | green             |                |    | 72.9 | % |         |
|          | red 1.6%          |                |    |      |   |         |
| no       | othing 0.6%       |                |    |      |   |         |

blue 0.5%

purple 0.3%

Lab



#### Language Models are Unsupervised Multitask Learners

Language Models are Unsupervised Multitask Learners

|       | LAMBADA | LAMBADA      | CBT-CN | CBT-NE | WikiText2 | PTB          | enwik8      | text8       | WikiText103  | 1BW <sup>*</sup> |
|-------|---------|--------------|--------|--------|-----------|--------------|-------------|-------------|--------------|------------------|
|       | (PPL)   | (ACC)        | (ACC)  | (ACC)  | (PPL)     | (PPL)        | (BPB)       | (BPC)       | (PPL)        | (PPL)            |
| SOTA  | 99.8    | 59.23        | 85.7   | 82.3   | 39.14     | 46.54        | 0.99        | 1.08        | 18.3         | 21.8             |
| 117M  | 35.13   | 45.99        | 87.65  | 83.4   | 29.41     | 65.85        | 1.16        | 1.17        | 37.50        | 75.20            |
| 345M  | 15.60   | 55.48        | 92.35  | 87.1   | 22.76     | 47.33        | 1.01        | <b>1.06</b> | 26.37        | 55.72            |
| 762M  | 10.87   | <b>60.12</b> | 93.45  | 88.0   | 19.93     | <b>40.31</b> | <b>0.97</b> | <b>1.02</b> | 22.05        | 44.575           |
| 1542M | 8.63    | <b>63.24</b> | 93.30  | 89.05  | 18.34     | <b>35.76</b> | <b>0.93</b> | <b>0.98</b> | <b>17.48</b> | 42.16            |

\* bad 1BW performance probably due to sentence-level reshuffling in that dataset, so larger, long-range contexts are lost

5.2 Some Popular Transformer Models: BERT, GPT, and BART

### 5.2.5 GPT-v3: Language Models are Few-Shot Learners

Sebastian Raschka STAT 453: Intro to Deep Learning

# **GPT (**<u>Generative Pre-trained Transformer</u>)

- Developed by OpenAl
- Unidirectional: trained to predict next word in a sentence

#### GPT (110 million parameters)

Radford, A., Narasimhan, K., Salimans, T., & Sutskever, I. (2018). Improving language understanding by generative pre-training. <u>https://cdn.openai.com/research-covers/language-unsupervised/</u> language\_understanding\_paper.pdf

#### GPT-2 1.5 billion parameters)

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., & Sutskever, I. (2019). Language models are unsupervised multitask learners. *OpenAI blog*, 1(8), 9.

https://cdn.openai.com/better-language-models/language models are unsupervised multitask learners.pdf

#### GPT-3 (175 billion parameters)

Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., ... & Amodei, D. (2020). Language models are few-shot learners. arXiv preprint arXiv:2005.14165. <u>https://arxiv.org/abs/2005.14165</u>

### **GPT-v3 Architecture**

- Overall, similar to GPT-v2
- 175 billion instead 1.5 billion parameters (more layers etc.)
- Double the context size (2048 instead of 1024)
- Larger word embeddings (12.8k instead of 1.6k)
- Attention pattern from Sparse Transformer\*

\*Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. Generating Long Sequences With Sparse Transformers, 2019.

### **GPT-v3 Training Datasets**

| Dataset                 | Quantity<br>(tokens) | Weight in training mix | Epochs elapsed when<br>training for 300B tokens |
|-------------------------|----------------------|------------------------|-------------------------------------------------|
| Common Crawl (filtered) | 410 billion          | 60%                    | 0.44                                            |
| WebText2                | 19 billion           | 22%                    | 2.9                                             |
| Books1                  | 12 billion           | 8%                     | 1.9                                             |
| Books2                  | 55 billion           | 8%                     | 0.43                                            |
| Wikipedia               | 3 billion            | 3%                     | 3.4                                             |

**Table 2.2: Datasets used to train GPT-3**. "Weight in training mix" refers to the fraction of examples during training that are drawn from a given dataset, which we intentionally do not make proportional to the size of the dataset. As a result, when we train for 300 billion tokens, some datasets are seen up to 3.4 times during training while other datasets are seen less than once.

### Implicit Task Learning (... While Learning to Predict the Next Word)



**Figure 1.1: Language model meta-learning.** During unsupervised pre-training, a language model develops a broad set of skills and pattern recognition abilities. It then uses these abilities at inference time to rapidly adapt to or recognize the desired task. We use the term "in-context learning" to describe the inner loop of this process, which occurs within the forward-pass upon each sequence. The sequences in this diagram are not intended to be representative of the data a model would see during pre-training, but are intended to show that there are sometimes repeated sub-tasks embedded within a single sequence.

### **Showing Examples vs Fine-Tuning**

The three settings we explore for in-context learning

#### Zero-shot

The model predicts the answer given only a natural language description of the task. No gradient updates are performed.

| 1 | Translate English to French: | ← task description |
|---|------------------------------|--------------------|
| 2 | cheese =>                    | ← prompt           |

Traditional fine-tuning (not used for GPT-3)

#### Fine-tuning

The model is trained via repeated gradient updates using a large corpus of example tasks.



#### One-shot

In addition to the task description, the model sees a single example of the task. No gradient updates are performed.

 1
 Translate English to French:

 ← task description

 2
 sea otter => loutre de mer

 ← example

 3
 cheese =>

 ← prompt

#### Few-shot

In addition to the task description, the model sees a few examples of the task. No gradient updates are performed.



**Figure 2.1: Zero-shot, one-shot and few-shot, contrasted with traditional fine-tuning**. The panels above show four methods for performing a task with a language model – fine-tuning is the traditional method, whereas zero-, one-, and few-shot, which we study in this work, require the model to perform the task with only forward passes at test time. We typically present the model with a few dozen examples in the few shot setting. Exact phrasings for all task descriptions, examples and prompts can be found in Appendix G.

### Some of the Many Results ...



**Figure 3.3:** On TriviaQA GPT3's performance grows smoothly with model size, suggesting that language models continue to absorb knowledge as their capacity increases. One-shot and few-shot performance make significant gains over zero-shot behavior, matching and exceeding the performance of the SOTA fine-tuned open-domain model, RAG  $[LPP^+20]$ 

5.2 Some Popular Transformer Models: BERT, GPT, and BART

# 5.2.6 BART: Combining Bidirectional and Auto-Regressive Transformers

Sebastian Raschka STAT 453: Intro to Deep Learning

### BART: Combining Bidirectional and Auto-Regressive Transformers

Lewis, M., Liu, Y., Goyal, N., Ghazvininejad, M., Mohamed, A., Levy, O., Stoyanov, V., & Zettlemoyer, L. (2019). BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension. <u>http://arxiv.org/abs/1910.13461</u>

Facebook AI's BART combines Google's BERT and OpenAI's GPT

#### BERT's bidirectional, autoencoder nature is ...

+ good for downstream tasks (e.g., classification) that require info about the whole sequence

- not so good for generation tasks where generated word should only depend on previously generated words

#### GPT's unidirectional, autoregressive approach is ...

- + good for text generation
- not so good for tasks that require info of whole sequence, e.g., classification

BART is the best of both worlds

#### **BART: BERT Encoder + GPT Decoder + Noise Transformations**





(a) BERT: Random tokens are replaced with masks, and the document is encoded bidirectionally. Missing tokens are predicted independently, so BERT cannot easily be used for generation. (b) GPT: Tokens are predicted auto-regressively, meaning GPT can be used for generation. However words can only condition on leftward context, so it cannot learn bidirectional interactions.



(c) BART: Inputs to the encoder need not be aligned with decoder outputs, allowing arbitary noise transformations. Here, a document has been corrupted by replacing spans of text with mask symbols. The corrupted document (left) is encoded with a bidirectional model, and then the likelihood of the original document (right) is calculated with an autoregressive decoder. For fine-tuning, an uncorrupted document is input to both the encoder and decoder, and we use representations from the final hidden state of the decoder.





Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L. and Polosukhin, I., 2017. Attention Is All You Need.

#### Noise Transformations in BART for Pre-Training on Unlabeled Data



Figure 2: Transformations for noising the input that we experiment with. These transformations can be composed.

Like a denoising autoencoder, it optimizes reconstruction loss

### **BART Performance Under Different Noise Transformations**

| Model                                  | <b>SQuAD 1.1</b><br>F1 | MNLI<br>Acc | ELI5<br>PPL | <b>XSum</b><br>PPL | ConvAI2<br>PPL | CNN/DM<br>PPL |
|----------------------------------------|------------------------|-------------|-------------|--------------------|----------------|---------------|
| BERT Base (Devlin et al., 2019)        | 88.5                   | 84.3        | -           | -                  | -              | -             |
| Masked Language Model                  | 90.0                   | 83.5        | 24.77       | 7.87               | 12.59          | 7.06          |
| Masked Seq2seq                         | 87.0                   | 82.1        | 23.40       | 6.80               | 11.43          | 6.19          |
| Language Model                         | 76.7                   | 80.1        | 21.40       | 7.00               | 11.51          | 6.56          |
| Permuted Language Model                | 89.1                   | 83.7        | 24.03       | 7.69               | 12.23          | 6.96          |
| Multitask Masked Language Model        | 89.2                   | 82.4        | 23.73       | 7.50               | 12.39          | 6.74          |
| BART Base                              |                        |             |             |                    |                |               |
| w/ Token Masking                       | 90.4                   | 84.1        | 25.05       | 7.08               | 11.73          | 6.10          |
| w/ Token Deletion                      | 90.4                   | 84.1        | 24.61       | 6.90               | 11.46          | 5.87          |
| w/ Text Infilling                      | 90.8                   | 84.0        | 24.26       | 6.61               | 11.05          | 5.83          |
| w/ Document Rotation                   | 77.2                   | 75.3        | 53.69       | 17.14              | 19.87          | 10.59         |
| w/ Sentence Shuffling                  | 85.4                   | 81.5        | 41.87       | 10.93              | 16.67          | 7.89          |
| w/ Text Infilling + Sentence Shuffling | 90.8                   | 83.8        | 24.17       | 6.62               | 11.12          | 5.41          |

#### **Fine-Tuning on Labeled Data**



(a) To use BART for classification problems, the same input is fed into the encoder and decoder, and the representation from the final output is used.

(b) For machine translation, we learn a small additional encoder that replaces the word embeddings in BART. The new encoder can use a disjoint vocabulary.

Figure 3: Fine tuning BART for classification and translation.

#### **BART Performance for Discriminative Tasks**

|         | <b>SQuAD 1.1</b><br>EM/F1 | <b>SQuAD 2.0</b><br>EM/F1 | <b>MNLI</b><br>m/mm | SST<br>Acc | QQP<br>Acc | QNLI<br>Acc | STS-B<br>Acc | RTE<br>Acc | MRPC<br>Acc | CoLA<br>Mcc |
|---------|---------------------------|---------------------------|---------------------|------------|------------|-------------|--------------|------------|-------------|-------------|
| BERT    | 84.1/90.9                 | 79.0/81.8                 | 86.6/-              | 93.2       | 91.3       | 92.3        | 90.0         | 70.4       | 88.0        | 60.6        |
| UniLM   | _/_                       | 80.5/83.4                 | 87.0/85.9           | 94.5       | -          | 92.7        | -            | 70.9       | -           | 61.1        |
| XLNet   | <b>89.0</b> /94.5         | 86.1/88.8                 | 89.8/-              | 95.6       | 91.8       | 93.9        | 91.8         | 83.8       | 89.2        | 63.6        |
| RoBERTa | 88.9/ <b>94.6</b>         | 86.5/89.4                 | 90.2/90.2           | 96.4       | 92.2       | 94.7        | 92.4         | 86.6       | 90.9        | 68.0        |
| BART    | 88.8/ <b>94.6</b>         | 86.1/89.2                 | 89.9/90.1           | 96.6       | 92.5       | 94.9        | 91.2         | 87.0       | 90.4        | 62.8        |

Table 2: Results for large models on SQuAD and GLUE tasks. BART performs comparably to RoBERTa and XLNet, suggesting that BART's uni-directional decoder layers do not reduce performance on discriminative tasks.

#### **BART Performance for Generative Tasks**

|                                    | CN         | N/DailyN | Mail  | XSum       |       |       |
|------------------------------------|------------|----------|-------|------------|-------|-------|
|                                    | <b>R</b> 1 | R2       | RL    | <b>R</b> 1 | R2    | RL    |
| Lead-3                             | 40.42      | 17.62    | 36.67 | 16.30      | 1.60  | 11.95 |
| PTGEN (See et al., 2017)           | 36.44      | 15.66    | 33.42 | 29.70      | 9.21  | 23.24 |
| PTGEN+COV (See et al., 2017)       | 39.53      | 17.28    | 36.38 | 28.10      | 8.02  | 21.72 |
| UniLM                              | 43.33      | 20.21    | 40.51 | -          | -     | -     |
| BERTSUMABS (Liu & Lapata, 2019)    | 41.72      | 19.39    | 38.76 | 38.76      | 16.33 | 31.15 |
| BERTSUMEXTABS (Liu & Lapata, 2019) | 42.13      | 19.60    | 39.18 | 38.81      | 16.50 | 31.27 |
| BART                               | 44.16      | 21.28    | 40.90 | 45.14      | 22.27 | 37.25 |

Table 3: Results on two standard summarization datasets. BART outperforms previous work on summarization on two tasks and all metrics, with gains of roughly 6 points on the more abstractive dataset.

|                     | ConvAI2  |           |  |  |  |  |
|---------------------|----------|-----------|--|--|--|--|
|                     | Valid F1 | Valid PPL |  |  |  |  |
| Seq2Seq + Attention | 16.02    | 35.07     |  |  |  |  |
| Best System         | 19.09    | 17.51     |  |  |  |  |
| BART                | 20.72    | 11.85     |  |  |  |  |

Table 4: BART outperforms previous work on conversational response generation. Perplexities are renormalized based on official tokenizer for ConvAI2.

|                   | ELI5       |     |      |  |  |  |
|-------------------|------------|-----|------|--|--|--|
|                   | <b>R</b> 1 | R2  | RL   |  |  |  |
| Best Extractive   | 23.5       | 3.1 | 17.5 |  |  |  |
| Language Model    | 27.8       | 4.7 | 23.1 |  |  |  |
| Seq2Seq           | 28.3       | 5.1 | 22.8 |  |  |  |
| Seq2Seq Multitask | 28.9       | 5.4 | 23.1 |  |  |  |
| BART              | 30.6       | 6.2 | 24.3 |  |  |  |

Table 5: BART achieves state-of-the-art results on the challenging ELI5 abstractive question answering dataset. Comparison models are from Fan et al. (2019).

5.2 Some Popular Transformer Models: BERT, GPT, and BART

# 5.2.7: Closing Words -- The Recent Growth of Language Transformers

Sebastian Raschka STAT 453: Intro to Deep Learning

### **Transformers for Longer Sequences**

#### Transformer-XL:

- encoder-free, decoder-only model
- trained to predict next word in sentence
- uses hidden states to remember previous (512-token) text segment
- "Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context", Dai et al. 2019. <u>https://arxiv.org/abs/1901.02860</u>

#### Longformer:

- instead of attention mechanism that scales quadratically, uses attention mechanism that scales linearly with sequence length
- uses extremely long text segments (thousands of tokens); similar to RoBERTa
- "Longformer: The Long-Document Transformer", Beltagy et al. 2020. <u>https://arxiv.org/abs/2004.05150</u>

#### GPT-3 (175 billion)



#### Image Source: https://medium.com/huggingface/distilbert-8cf3380435b5

Sebastian Raschka STAT 453: Intro to Deep Learning

TECH ARTIFICIAL INTELLIGENCE

# OpenAl's text-generating system GPT-3 is now spewing out 4.5 billion words a day

Robot-generated writing looks set to be the next big thing

By James Vincent | Mar 29, 2021, 8:24am EDT

https://www.theverge.com/2021/3/29/22356180/openai-gpt-3-text-generation-words-day

#### THE COST OF TRAINING NLP MODELS A CONCISE OVERVIEW

Or Sharir AI21 Labs ors@ai21.com Barak Peleg AI21 Labs barakp@ai21.com Yoav Shoham AI21 Labs yoavs@ai21.com

April 2020

http://arxiv.org/abs/2004.08900

# Costs: Not for the faint hearted

- \$2.5k \$50k (110 million parameter model)
- \$10k \$200k (340 million parameter model)
- \$80k \$1.6m (1.5 billion parameter model)

### **Transformers for Better Efficiency**

#### **Reformer:**

- dot-product attention is replaced with locality-sensitive hashing (LSH) attention
- this achieves attention with O(nlog(n)) instead of O(n<sup>2</sup>) memory cost
   Kitaev, N., Kaiser, Ł. and Levskaya, A., 2020. Reformer: The efficient transformer.
   arXiv preprint arXiv:2001.04451. <u>https://arxiv.org/abs/2001.04451</u>

#### **ALBERT:**

- 5x smaller size as BERT at same performance, due to compression via pruning
- Lan, Z., Chen, M., Goodman, S., Gimpel, K., Sharma, P. and Soricut, R., 2019. Albert: A lite BERT for self-supervised learning of language representations. arXiv preprint arXiv:1909.11942. <u>https://arxiv.org/abs/1909.11942</u>

- 1. Sequence Generation with RNNs
- 2. Character RNN in PyTorch
- 3. RNNs with Attention
- 4. Attention is All We Need
  - 4.1. Basic Form of Self-Attention
  - 4.2. Self-Attention & Scaled Dot-Product Attention
  - 4.3. Multi-Head Attention
- 5. Transformer Models
  - 5.1. The Transformer Architecture
  - 5.2. Some Popular Transformer Models: BERT, GPT, and BART

#### 6. Transformer in PyTorch