
Sebastian Raschka STAT 453: Intro to Deep Learning 1

RNNs and Transformers for  
Sequence-to-Sequence Modeling

Lecture 19
with Applications in Python

Sebastian Raschka

http://stat.wisc.edu/~sraschka/teaching

STAT 453: Introduction to Deep Learning and Generative Models

http://stat.wisc.edu/~sraschka/teaching

Sebastian Raschka STAT 453: Intro to Deep Learning 2

1. Sequence Generation with RNNs

2. Character RNN in PyTorch

3. RNNs with Attention

4. Attention is All We Need

5. Transformer Models

6. Transformer in PyTorch

Lecture Topics

Sebastian Raschka STAT 453: Intro to Deep Learning 3

1. Sequence Generation with RNNs

2. Character RNN in PyTorch

3. RNNs with Attention

4. Attention is All We Need

5. Transformer Models

6. Transformer in PyTorch

Many-to-Many RNNs for Generating Text

Sebastian Raschka STAT 453: Intro to Deep Learning 4

Figure based on: 
The Unreasonable Effectiveness of Recurrent Neural Networks by Andrej Karpathy (http://karpathy.github.io/2015/05/21/rnn-effectiveness/)

many-to-one one-to-many

many-to-many many-to-many

Different Types of Sequence Modeling Tasks

Figure: Sebastian Raschka, Vahid Mirjalili. Python
Machine Learning. 3rd Edition. Birmingham, UK: Packt
Publishing, 2019

Previously, we built an 
(Word-level) RNN classifier

Sebastian Raschka STAT 453: Intro to Deep Learning 5

many-to-one one-to-many

many-to-many many-to-many

many-to-one one-to-many

many-to-many many-to-many
"one"

"training" "generating new text"

Sebastian Raschka STAT 453: Intro to Deep Learning 6

E S T

T E S

Output layer

Hidden layer

Inputs 0

0

1

1

0

0

0

1

0

0.7
0.2

0.1

0.2

0.6
0.2

0.2

0.25

0.55

Embedding layer

1.13

-2.1

4.1

-5.4

-2.5

1.5

7.8

-1.1

2.3

Character RNN

Sebastian Raschka STAT 453: Intro to Deep Learning 7

many-to-one one-to-many

many-to-many many-to-many

"training"

At each time step

Softmax output (probability)  

for each possible"next letter"

For the next input,

ignore the prediction but use the 

"correct" next letter from the dataset

Sebastian Raschka STAT 453: Intro to Deep Learning 8

many-to-one one-to-many

many-to-many many-to-many
"one"

"generating new text"

To generate new text, now,  
sample from the softmax 

outputs and provide the letter 
as input to the next time step

Sebastian Raschka STAT 453: Intro to Deep Learning 9

many-to-one one-to-many

many-to-many many-to-many
"one"

"generating new text"

To generate new text, now,  
sample from the softmax 

outputs and provide the letter 
as input to the next time step

Note that this approach
works with both Word-
and Character-RNNs

Sebastian Raschka STAT 453: Intro to Deep Learning 10

+Character embeddings (only 24 letters plus punctuation in English
language) require less memory compared to word embeddings

+Smaller output layers for the same reason as above

- Can create weird & nonsense words

- Worse at capturing long-distance dependencies

Advantages and Disadvantages of
Character RNNs over Word RNNs

Sebastian Raschka STAT 453: Intro to Deep Learning 11

1. Sequence Generation with RNNs

2. Character RNN in PyTorch

3. RNNs with Attention

4. Attention is All We Need

5. Transformer Models

6. Transformer in PyTorch

Implementing Character RNNs in PyTorch

Sebastian Raschka STAT 453: Intro to Deep Learning 12

https://pytorch.org/docs/stable/generated/torch.nn.LSTM.html

LSTM Class

https://pytorch.org/docs/stable/generated/torch.nn.LSTM.html

Sebastian Raschka STAT 453: Intro to Deep Learning 13

LSTM Class

Image source: https://stackoverflow.com/questions/48302810/whats-the-difference-between-hidden-and-output-in-pytorch-lstm

(number of layers)

https://stackoverflow.com/questions/48302810/whats-the-difference-between-hidden-and-output-in-pytorch-lstm

Sebastian Raschka STAT 453: Intro to Deep Learning 14

LSTMCell Class
https://pytorch.org/docs/stable/generated/torch.nn.LSTMCell.html

https://pytorch.org/docs/stable/generated/torch.nn.LSTMCell.html

Sebastian Raschka STAT 453: Intro to Deep Learning 15

Image source: https://stackoverflow.com/questions/48302810/whats-the-difference-between-hidden-and-output-in-pytorch-lstm

(number of layers)

LSTMCell Class

https://stackoverflow.com/questions/48302810/whats-the-difference-between-hidden-and-output-in-pytorch-lstm

Sebastian Raschka STAT 453: Intro to Deep Learning 16

Translation with a Sequence to Sequence Network and Attention 
(English to French)

https://pytorch.org/tutorials/intermediate/seq2seq_translation_tutorial.html

many-to-one one-to-many

many-to-many many-to-many

https://pytorch.org/tutorials/intermediate/seq2seq_translation_tutorial.html

Sebastian Raschka STAT 453: Intro to Deep Learning 17

1. Sequence Generation with RNNs

2. Character RNN in PyTorch

3. RNNs with Attention

4. Attention is All We Need

5. Transformer Models

6. Transformer in PyTorch

Dealing Better with Long Sequences by Outfitting
RNNs with an Attention Mechanism

Sebastian Raschka STAT 453: Intro to Deep Learning 18

Translation with a Sequence to Sequence Network and Attention 
(English to French)

https://pytorch.org/tutorials/intermediate/seq2seq_translation_tutorial.html

many-to-one one-to-many

many-to-many many-to-manyInput sentence

Translated sentence

Many-to-Many Architecture for Language
Translation

https://pytorch.org/tutorials/intermediate/seq2seq_translation_tutorial.html

Sebastian Raschka STAT 453: Intro to Deep Learning 19

Today is a great day

Heute ist ein großartiger Tag

Input:

Translation:

Sebastian Raschka STAT 453: Intro to Deep Learning 20

If you’ve ever studied a foreign language, you’ve
probably encountered a “false friend” at some point.

Wenn Sie jemals eine Fremdsprache gelernt
haben, sind Sie wahrscheinlich irgendwann auf

einen „falschen Freund“ gestoßen.

Input:

Translation:

Sebastian Raschka STAT 453: Intro to Deep Learning 21

many-to-one one-to-many

many-to-many many-to-many

Challenge in language
translation: memorize

whole input sentence in
one hidden state

Sebastian Raschka STAT 453: Intro to Deep Learning 22

Attention Mechanism

• Originally developed for language translation:  
Bahdanau, D., Cho, K., & Bengio, Y. (2014). Neural machine translation by jointly learning to align
and translate. https://arxiv.org/abs/1409.0473

"... allowing a model to automatically (soft-)search for
parts of a source sentence that are relevant to predicting

a target word ..."Published as a conference paper at ICLR 2015

0 10 20 30 40 50 60

Sentence length

0

5

10

15

20

25

30

B
L
E

U
sc

or
e

RNNsearch-50

RNNsearch-30

RNNenc-50

RNNenc-30

Figure 2: The BLEU scores
of the generated translations
on the test set with respect
to the lengths of the sen-
tences. The results are on
the full test set which in-
cludes sentences having un-
known words to the models.

2012 and news-test-2013 to make a development (validation) set, and evaluate the models on the test
set (news-test-2014) from WMT ’14, which consists of 3003 sentences not present in the training
data.

After a usual tokenization6, we use a shortlist of 30,000 most frequent words in each language to
train our models. Any word not included in the shortlist is mapped to a special token ([UNK]). We
do not apply any other special preprocessing, such as lowercasing or stemming, to the data.

4.2 MODELS

We train two types of models. The first one is an RNN Encoder–Decoder (RNNencdec, Cho et al.,
2014a), and the other is the proposed model, to which we refer as RNNsearch. We train each model
twice: first with the sentences of length up to 30 words (RNNencdec-30, RNNsearch-30) and then
with the sentences of length up to 50 word (RNNencdec-50, RNNsearch-50).

The encoder and decoder of the RNNencdec have 1000 hidden units each.7 The encoder of the
RNNsearch consists of forward and backward recurrent neural networks (RNN) each having 1000
hidden units. Its decoder has 1000 hidden units. In both cases, we use a multilayer network with a
single maxout (Goodfellow et al., 2013) hidden layer to compute the conditional probability of each
target word (Pascanu et al., 2014).

We use a minibatch stochastic gradient descent (SGD) algorithm together with Adadelta (Zeiler,
2012) to train each model. Each SGD update direction is computed using a minibatch of 80 sen-
tences. We trained each model for approximately 5 days.

Once a model is trained, we use a beam search to find a translation that approximately maximizes the
conditional probability (see, e.g., Graves, 2012; Boulanger-Lewandowski et al., 2013). Sutskever
et al. (2014) used this approach to generate translations from their neural machine translation model.

For more details on the architectures of the models and training procedure used in the experiments,
see Appendices A and B.

5 RESULTS

5.1 QUANTITATIVE RESULTS

In Table 1, we list the translation performances measured in BLEU score. It is clear from the table
that in all the cases, the proposed RNNsearch outperforms the conventional RNNencdec. More
importantly, the performance of the RNNsearch is as high as that of the conventional phrase-based
translation system (Moses), when only the sentences consisting of known words are considered.
This is a significant achievement, considering that Moses uses a separate monolingual corpus (418M
words) in addition to the parallel corpora we used to train the RNNsearch and RNNencdec.

6 We used the tokenization script from the open-source machine translation package, Moses.
7 In this paper, by a ’hidden unit’, we always mean the gated hidden unit (see Appendix A.1.1).

5

"traditional"  
encoder+decoder  
RNN

https://arxiv.org/abs/1409.0473

Sebastian Raschka STAT 453: Intro to Deep Learning 23

Assign attention weight to each word, to know how
much "attention" the model should pay to each word
(i.e., for each word, the network learns a "context")

Attention Mechanism

Sebastian Raschka STAT 453: Intro to Deep Learning 24

Published as a conference paper at ICLR 2015

The decoder is often trained to predict the next word yt0 given the context vector c and all the
previously predicted words {y1, · · · , yt0�1}. In other words, the decoder defines a probability over
the translation y by decomposing the joint probability into the ordered conditionals:

p(y) =
TY

t=1

p(yt | {y1, · · · , yt�1} , c), (2)

where y =
�
y1, · · · , yTy

�
. With an RNN, each conditional probability is modeled as

p(yt | {y1, · · · , yt�1} , c) = g(yt�1, st, c), (3)

where g is a nonlinear, potentially multi-layered, function that outputs the probability of yt, and st is
the hidden state of the RNN. It should be noted that other architectures such as a hybrid of an RNN
and a de-convolutional neural network can be used (Kalchbrenner and Blunsom, 2013).

3 LEARNING TO ALIGN AND TRANSLATE

In this section, we propose a novel architecture for neural machine translation. The new architecture
consists of a bidirectional RNN as an encoder (Sec. 3.2) and a decoder that emulates searching
through a source sentence during decoding a translation (Sec. 3.1).

3.1 DECODER: GENERAL DESCRIPTION

�� �� �� ��

�
����
���� ����

����

	�
� 	�

�� �� �� ��

�� �� �� ��

��
� � �

Figure 1: The graphical illus-
tration of the proposed model
trying to generate the t-th tar-
get word yt given a source
sentence (x1, x2, . . . , xT).

In a new model architecture, we define each conditional probability
in Eq. (2) as:

p(yi|y1, . . . , yi�1,x) = g(yi�1, si, ci), (4)

where si is an RNN hidden state for time i, computed by

si = f(si�1, yi�1, ci).

It should be noted that unlike the existing encoder–decoder ap-
proach (see Eq. (2)), here the probability is conditioned on a distinct
context vector ci for each target word yi.

The context vector ci depends on a sequence of annotations
(h1, · · · , hTx) to which an encoder maps the input sentence. Each
annotation hi contains information about the whole input sequence
with a strong focus on the parts surrounding the i-th word of the
input sequence. We explain in detail how the annotations are com-
puted in the next section.

The context vector ci is, then, computed as a weighted sum of these
annotations hi:

ci =
TxX

j=1

↵ijhj . (5)

The weight ↵ij of each annotation hj is computed by

↵ij =
exp (eij)PTx

k=1 exp (eik)
, (6)

where
eij = a(si�1, hj)

is an alignment model which scores how well the inputs around position j and the output at position
i match. The score is based on the RNN hidden state si�1 (just before emitting yi, Eq. (4)) and the
j-th annotation hj of the input sentence.

We parametrize the alignment model a as a feedforward neural network which is jointly trained with
all the other components of the proposed system. Note that unlike in traditional machine translation,

3

Hidden state in a regular RNN 
(RNN #2)

Attention weight

Attention Mechanism

• Originally developed for language translation:  
Bahdanau, D., Cho, K., & Bengio, Y. (2014). Neural machine translation by jointly learning to align
and translate. https://arxiv.org/abs/1409.0473

Bidirectional RNN  
(RNN #1)

1st input word

1st translated word

https://arxiv.org/abs/1409.0473

Sebastian Raschka STAT 453: Intro to Deep Learning 25

x1 x2 xT−1

xTx0 hF,1 hF,2 hF,T−1 hB,T−1hB,2hB,1{Bidirectional RNN

{Added attention
c1

S0 S1

α1,1 α1,2

α1,T−1

...

c1 =
T

∑
t=1

α1,t ht

where the context
vector is defined
as

c1

... ...

̂y1

(looks like a standard
RNN but with context
vectors as in-/output)

RNN Attention Mechanism

h1 h2 hT−1

Sebastian Raschka STAT 453: Intro to Deep Learning 26

Computing attention weights

c1

S0 S1

̂y1

ht′￼

St−1 Neural 
Net

et,t′￼

αt,t′￼ =
exp(et,t′￼)

∑T
t′￼=1 exp(et,t′￼)

Attention Mechanism

x1 x2 xT−1

xTx0 hF,1 hF,2 hF,T−1 hB,T−1hB,2hB,1

α1,1 α1,2

α1,T−1

...

h1 h2 hT−1

Sebastian Raschka STAT 453: Intro to Deep Learning 27

αt,t′￼ =
exp(et,t′￼)

∑T
t′￼=1 exp(et,t′￼)

Published as a conference paper at ICLR 2015

(a) (b)

(c) (d)

Figure 3: Four sample alignments found by RNNsearch-50. The x-axis and y-axis of each plot
correspond to the words in the source sentence (English) and the generated translation (French),
respectively. Each pixel shows the weight ↵ij of the annotation of the j-th source word for the i-th
target word (see Eq. (6)), in grayscale (0: black, 1: white). (a) an arbitrary sentence. (b–d) three
randomly selected samples among the sentences without any unknown words and of length between
10 and 20 words from the test set.

One of the motivations behind the proposed approach was the use of a fixed-length context vector
in the basic encoder–decoder approach. We conjectured that this limitation may make the basic
encoder–decoder approach to underperform with long sentences. In Fig. 2, we see that the perfor-
mance of RNNencdec dramatically drops as the length of the sentences increases. On the other hand,
both RNNsearch-30 and RNNsearch-50 are more robust to the length of the sentences. RNNsearch-
50, especially, shows no performance deterioration even with sentences of length 50 or more. This
superiority of the proposed model over the basic encoder–decoder is further confirmed by the fact
that the RNNsearch-30 even outperforms RNNencdec-50 (see Table 1).

6

Computing attention weights

Attention Mechanism

ht′￼

St−1 Neural 
Net

et,t′￼

Figure: Bahdanau, D., Cho, K., & Bengio, Y. (2014). Neural machine
translation by jointly learning to align and translate.  
https://arxiv.org/abs/1409.0473

https://arxiv.org/abs/1409.0473

Sebastian Raschka STAT 453: Intro to Deep Learning 28

1. Sequence Generation with RNNs

2. Character RNN in PyTorch

3. RNNs with Attention

4. Attention is All We Need

 4.1. Basic Form of Self-Attention

 4.2. Self-Attention & Scaled Dot-Product Attention

 4.3. Multi-Head Attention

5. Transformer Models

 5.1. The Transformer Architecture

 5.2. Some Popular Transformer Models: BERT, GPT, and BART

6. Transformer in PyTorch

Using Attention Without the RNN
-- Self-Attention Mechanism & Transformers

Sebastian Raschka STAT 453: Intro to Deep Learning 29

And the attention weights are

c1

S0 S1

̂y1

ht′￼

St−1 Neural 
Net

et,t′￼

αt,t′￼ =
exp(et,t′￼)

∑T
t′￼=1 exp(et,t′￼)

"Original" (RNN) Attention Mechanism

x1 x2 xT−1

xTx0 hF,1 hF,2 hF,T−1 hB,T−1hB,2hB,1

α1,1 α1,2

α1,T−1

...

h1 h2 hT−1

c1 =
T

∑
t=1

α1,t ht

Where the context vector is defined asc1

Sebastian Raschka STAT 453: Intro to Deep Learning 30

c1

S0 S1

̂y1

Getting rid of the sequential parts ...

x1 x2 xT−1

xTx0 hF,1 hF,2 hF,T−1 hB,T−1hB,2hB,1

α1,1 α1,2

α1,T−1

...

h1 h2 hT−1

• No recurrence, no convolution

• Transformers rely on the self-attention
mechanism, processing the whole sequence
all at once (no sequential processing like in
RNNs)

• Transformers also have encoder & decoder
parts. But instead of using LSTMs, they use
stacked attention layers

Sebastian Raschka STAT 453: Intro to Deep Learning 31

Attention Is All You Need

Ashish Vaswani⇤
Google Brain

avaswani@google.com

Noam Shazeer⇤
Google Brain

noam@google.com

Niki Parmar⇤
Google Research

nikip@google.com

Jakob Uszkoreit⇤
Google Research
usz@google.com

Llion Jones⇤
Google Research

llion@google.com

Aidan N. Gomez⇤ †

University of Toronto
aidan@cs.toronto.edu

Łukasz Kaiser⇤
Google Brain

lukaszkaiser@google.com

Illia Polosukhin⇤ ‡

illia.polosukhin@gmail.com

Abstract

The dominant sequence transduction models are based on complex recurrent or
convolutional neural networks that include an encoder and a decoder. The best
performing models also connect the encoder and decoder through an attention
mechanism. We propose a new simple network architecture, the Transformer,
based solely on attention mechanisms, dispensing with recurrence and convolutions
entirely. Experiments on two machine translation tasks show these models to
be superior in quality while being more parallelizable and requiring significantly
less time to train. Our model achieves 28.4 BLEU on the WMT 2014 English-
to-German translation task, improving over the existing best results, including
ensembles, by over 2 BLEU. On the WMT 2014 English-to-French translation task,
our model establishes a new single-model state-of-the-art BLEU score of 41.8 after
training for 3.5 days on eight GPUs, a small fraction of the training costs of the
best models from the literature. We show that the Transformer generalizes well to
other tasks by applying it successfully to English constituency parsing both with
large and limited training data.

1 Introduction

Recurrent neural networks, long short-term memory [13] and gated recurrent [7] neural networks
in particular, have been firmly established as state of the art approaches in sequence modeling and

⇤Equal contribution. Listing order is random. Jakob proposed replacing RNNs with self-attention and started
the effort to evaluate this idea. Ashish, with Illia, designed and implemented the first Transformer models and
has been crucially involved in every aspect of this work. Noam proposed scaled dot-product attention, multi-head
attention and the parameter-free position representation and became the other person involved in nearly every
detail. Niki designed, implemented, tuned and evaluated countless model variants in our original codebase and
tensor2tensor. Llion also experimented with novel model variants, was responsible for our initial codebase, and
efficient inference and visualizations. Lukasz and Aidan spent countless long days designing various parts of and
implementing tensor2tensor, replacing our earlier codebase, greatly improving results and massively accelerating
our research.

†Work performed while at Google Brain.
‡Work performed while at Google Research.

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.

ar
X

iv
:1

70
6.

03
76

2v
5

 [c
s.C

L]
 6

 D
ec

 2
01

7

https://arxiv.org/abs/1706.03762

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin, I. (2017).
Attention is all you need. In Advances in neural information processing systems (pp. 5998-6008).

https://arxiv.org/abs/1706.03762

Sebastian Raschka STAT 453: Intro to Deep Learning 32

Image Source: https://medium.com/huggingface/distilbert-8cf3380435b5

Since ~2018, Transformers have been
growing in popularity ... and size

https://medium.com/huggingface/distilbert-8cf3380435b5

Sebastian Raschka STAT 453: Intro to Deep Learning 33

1) Derive attention weights: similarity between current input and all
other inputs (next slide)

2) Normalize weights via softmax (next slide)

3) Compute attention value from normalized weights and

corresponding inputs (below)

Ai =
T

∑
j=1

aijxj

Self-attention as weighted sum:

output corresponding to the i-th input weight based on similarity between

current input and all other inputsxi

Main procedure:

Self-Attention Mechanism
-- Very Basic Form

Sebastian Raschka STAT 453: Intro to Deep Learning 34

Ai =
T

∑
j=0

aijxj

Self-attention as weighted sum:

output corresponding to the i-th input weight based on similarity between

current input and all other inputsxi

eij = x⊤
i xj

here as simple dot product:

repeat this for all inputs , then normalizej ∈ {1...T}

aij =
exp (eij)

∑T
j=1 exp (eij)

= softmax ([eij]j=1.…T)

Self-Attention Mechanism
-- Very Basic Form

How to compute the
attention weights?

Sebastian Raschka STAT 453: Intro to Deep Learning 35

Self-Attention Mechanism
-- Very Basic Form

Chapter 16

[615]

𝜔𝜔𝑖𝑖𝑖𝑖 = 𝒙𝒙(𝑖𝑖)
⊤
𝒙𝒙(𝑖𝑖)

After computing these similarity-based weights for the ith input and all inputs in the
sequence (𝒙𝒙(𝑖𝑖) to 𝒙𝒙(𝑇𝑇)), the "raw" weights (𝜔𝜔𝑖𝑖0 to 𝜔𝜔𝑖𝑖𝑖𝑖) are then normalized using the
familiar softmax function, as follows:

𝑊𝑊𝑖𝑖𝑖𝑖 =
exp(𝜔𝜔𝑖𝑖𝑖𝑖)

∑ exp(𝜔𝜔𝑖𝑖𝑖𝑖)𝑇𝑇
𝑖𝑖=0

= 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ([𝜔𝜔𝑖𝑖𝑖𝑖]𝑖𝑖=0...𝑇𝑇)

Notice that as a consequence of applying the softmax function, the weights will sum
to 1 after this normalization, that is,

∑𝑊𝑊𝑖𝑖𝑖𝑖

𝑇𝑇

𝑖𝑖=0

= 1

To recap, let's summarize the three main steps behind the self-attention operation:

1. For a given input element, 𝒙𝒙(𝑖𝑖) , and each jth element in the range [0, T],
compute the dot product, 𝒙𝒙(𝑖𝑖)⊤𝒙𝒙(𝑗𝑗)

2. Obtain the weight, 𝑊𝑊𝑖𝑖𝑖𝑖 , by normalizing the dot products using the softmax
function

3. Compute the output, 𝒐𝒐(𝑖𝑖) , as the weighted sum over the entire input

sequence: 𝒐𝒐(𝑖𝑖) = ∑ 𝑊𝑊𝑖𝑖𝑖𝑖 𝒙𝒙(𝑖𝑖)
𝑇𝑇

𝑖𝑖=0

These steps are further illustrated in the following figure:

Image source: Raschka & Mirjalili 2019. Python Machine Learning, 3rd edition

current input

ai, j

ai,0

ai,1

ai,2

ai,T

A(i)

A(i)

original embedding

context-aware embedding vector

x1

x2

x3

xT

x⊤
i x1

x⊤
i x2

x⊤
i xT

x⊤
i x3

xi

<latexit sha1_base64="IdmhcYlVkS//It94ntl5oejLzws=">AAACY3icbVHBbtQwEHUClJICDYUbQrJYIRWpWiUVAi5IFVw4FqnbVorDyvFOdt06dmRPUJfIP9lbb730P/Buc4CWkWw9v3njGT9XrZIOs+wqih88fLTxePNJsvX02fPt9MXOsTOdFTARRhl7WnEHSmqYoEQFp60F3lQKTqrzb6v8yS+wThp9hMsWyobPtayl4BioafqbVTCXuufW8qXvhU/4tJd79Mx/oYwlzLRgORqreQO9MzU2/MIzBTXurvfiIsh/9gxN6z0NhzPPrJwvsAyQMqmLfI8elQP5PmGgZ0OzaTrKxtk66H2QD2BEhjicppdsZkTXgEahuHNFnrVYhttQCgU+YZ2DlotzPociwNXIruzXHnn6LjAzWhsblka6Zv+u6Hnj3LKpgrLhuHB3cyvyf7miw/pz2Uvddgha3DaqO0XR0JXhdCYtCFTLALiwMsxKxYJbLjB8SxJMyO8++T443h/nH8fZjw+jg6+DHZvkNXlLdklOPpED8p0ckgkR5DraiLajNLqJt+Kd+NWtNI6Gmpfkn4jf/AEjPrmj</latexit> ai,j =

softmax
⇣
[xi>xj]j2[1,T]

⌘
Ai =

T

∑
j=1

aijxj

Ai

Sebastian Raschka STAT 453: Intro to Deep Learning 36

1. Sequence Generation with RNNs

2. Character RNN in PyTorch

3. RNNs with Attention

4. Attention is All We Need

 4.1. Basic Form of Self-Attention

 4.2. Self-Attention & Scaled Dot-Product Attention

 4.3. Multi-Head Attention

5. Transformer Models

 5.1. The Transformer Architecture

 5.2. Some Popular Transformer Models: BERT, GPT, and BART

6. Transformer in PyTorch

Using Attention Without the RNN
-- Self-Attention Mechanism & Transformers

Sebastian Raschka STAT 453: Intro to Deep Learning 37

Chapter 16

[615]

𝜔𝜔𝑖𝑖𝑖𝑖 = 𝒙𝒙(𝑖𝑖)
⊤
𝒙𝒙(𝑖𝑖)

After computing these similarity-based weights for the ith input and all inputs in the
sequence (𝒙𝒙(𝑖𝑖) to 𝒙𝒙(𝑇𝑇)), the "raw" weights (𝜔𝜔𝑖𝑖0 to 𝜔𝜔𝑖𝑖𝑖𝑖) are then normalized using the
familiar softmax function, as follows:

𝑊𝑊𝑖𝑖𝑖𝑖 =
exp(𝜔𝜔𝑖𝑖𝑖𝑖)

∑ exp(𝜔𝜔𝑖𝑖𝑖𝑖)𝑇𝑇
𝑖𝑖=0

= 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ([𝜔𝜔𝑖𝑖𝑖𝑖]𝑖𝑖=0...𝑇𝑇)

Notice that as a consequence of applying the softmax function, the weights will sum
to 1 after this normalization, that is,

∑𝑊𝑊𝑖𝑖𝑖𝑖

𝑇𝑇

𝑖𝑖=0

= 1

To recap, let's summarize the three main steps behind the self-attention operation:

1. For a given input element, 𝒙𝒙(𝑖𝑖) , and each jth element in the range [0, T],
compute the dot product, 𝒙𝒙(𝑖𝑖)⊤𝒙𝒙(𝑗𝑗)

2. Obtain the weight, 𝑊𝑊𝑖𝑖𝑖𝑖 , by normalizing the dot products using the softmax
function

3. Compute the output, 𝒐𝒐(𝑖𝑖) , as the weighted sum over the entire input

sequence: 𝒐𝒐(𝑖𝑖) = ∑ 𝑊𝑊𝑖𝑖𝑖𝑖 𝒙𝒙(𝑖𝑖)
𝑇𝑇

𝑖𝑖=0

These steps are further illustrated in the following figure:

Image source: Raschka & Mirjalili 2019. Python Machine Learning, 3rd edition

current input

ai, j

ai,0

ai,1

ai,2

ai,T

A(i)

A(i)

original embeddings

context-aware embedding
vector of input xi

x1

x2

x3

xT

x⊤
i x1

x⊤
i x2

x⊤
i xT

x⊤
i x3

x1

<latexit sha1_base64="IdmhcYlVkS//It94ntl5oejLzws=">AAACY3icbVHBbtQwEHUClJICDYUbQrJYIRWpWiUVAi5IFVw4FqnbVorDyvFOdt06dmRPUJfIP9lbb730P/Buc4CWkWw9v3njGT9XrZIOs+wqih88fLTxePNJsvX02fPt9MXOsTOdFTARRhl7WnEHSmqYoEQFp60F3lQKTqrzb6v8yS+wThp9hMsWyobPtayl4BioafqbVTCXuufW8qXvhU/4tJd79Mx/oYwlzLRgORqreQO9MzU2/MIzBTXurvfiIsh/9gxN6z0NhzPPrJwvsAyQMqmLfI8elQP5PmGgZ0OzaTrKxtk66H2QD2BEhjicppdsZkTXgEahuHNFnrVYhttQCgU+YZ2DlotzPociwNXIruzXHnn6LjAzWhsblka6Zv+u6Hnj3LKpgrLhuHB3cyvyf7miw/pz2Uvddgha3DaqO0XR0JXhdCYtCFTLALiwMsxKxYJbLjB8SxJMyO8++T443h/nH8fZjw+jg6+DHZvkNXlLdklOPpED8p0ckgkR5DraiLajNLqJt+Kd+NWtNI6Gmpfkn4jf/AEjPrmj</latexit> ai,j =

softmax
⇣
[xi>xj]j2[1,T]

⌘
Ai =

T

∑
j=1

aijxj

Ai

Self-Attention Mechanism
-- Very Basic Form

self-attention: relating different positions within a single sequence 
 (vs. between in- and output sequences)

Sebastian Raschka STAT 453: Intro to Deep Learning 38

Attention Is All You Need

Ashish Vaswani⇤
Google Brain

avaswani@google.com

Noam Shazeer⇤
Google Brain

noam@google.com

Niki Parmar⇤
Google Research

nikip@google.com

Jakob Uszkoreit⇤
Google Research
usz@google.com

Llion Jones⇤
Google Research

llion@google.com

Aidan N. Gomez⇤ †

University of Toronto
aidan@cs.toronto.edu

Łukasz Kaiser⇤
Google Brain

lukaszkaiser@google.com

Illia Polosukhin⇤ ‡

illia.polosukhin@gmail.com

Abstract

The dominant sequence transduction models are based on complex recurrent or
convolutional neural networks that include an encoder and a decoder. The best
performing models also connect the encoder and decoder through an attention
mechanism. We propose a new simple network architecture, the Transformer,
based solely on attention mechanisms, dispensing with recurrence and convolutions
entirely. Experiments on two machine translation tasks show these models to
be superior in quality while being more parallelizable and requiring significantly
less time to train. Our model achieves 28.4 BLEU on the WMT 2014 English-
to-German translation task, improving over the existing best results, including
ensembles, by over 2 BLEU. On the WMT 2014 English-to-French translation task,
our model establishes a new single-model state-of-the-art BLEU score of 41.8 after
training for 3.5 days on eight GPUs, a small fraction of the training costs of the
best models from the literature. We show that the Transformer generalizes well to
other tasks by applying it successfully to English constituency parsing both with
large and limited training data.

1 Introduction

Recurrent neural networks, long short-term memory [13] and gated recurrent [7] neural networks
in particular, have been firmly established as state of the art approaches in sequence modeling and

⇤Equal contribution. Listing order is random. Jakob proposed replacing RNNs with self-attention and started
the effort to evaluate this idea. Ashish, with Illia, designed and implemented the first Transformer models and
has been crucially involved in every aspect of this work. Noam proposed scaled dot-product attention, multi-head
attention and the parameter-free position representation and became the other person involved in nearly every
detail. Niki designed, implemented, tuned and evaluated countless model variants in our original codebase and
tensor2tensor. Llion also experimented with novel model variants, was responsible for our initial codebase, and
efficient inference and visualizations. Lukasz and Aidan spent countless long days designing various parts of and
implementing tensor2tensor, replacing our earlier codebase, greatly improving results and massively accelerating
our research.

†Work performed while at Google Brain.
‡Work performed while at Google Research.

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.

ar
X

iv
:1

70
6.

03
76

2v
5

 [c
s.C

L]
 6

 D
ec

 2
01

7

https://arxiv.org/abs/1706.03762

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin, I. (2017).
Attention is all you need. In Advances in neural information processing systems (pp. 5998-6008).

https://arxiv.org/abs/1706.03762

Sebastian Raschka STAT 453: Intro to Deep Learning 39

Self-Attention Mechanism

• Previous basic version did not involve any learnable parameters,
so not very useful for learning a language model

• We are now adding 3 trainable weight matrices that are multiplied
with the input sequence embeddings ('s)xi

query =  
key =

value =

Wqxi
Wkxi
Wvxi

Sebastian Raschka STAT 453: Intro to Deep Learning 40

x1

. . .

q1

k1

v1

Wq

Wk

Wv

q2

k2

v2

Wq

Wk

Wv

x2

trainable weight matrices

xT

current input ("query")

qT

kT

vT

Wq

Wk

Wv

q2 k2.

q2 . k1

q2 kT.

A2

A(q2, K, V) =
T

∑
i=1

[
exp(q2 ⋅ k⊤

i)
∑j exp(q2 ⋅ k⊤

j)
× vi]

softmax

Self-Attention Mechanism

For each query, model learns
which key-value input it should

attend to

As in the simplified version, this is a
form of similarity or compatibility

measure

("multiplicative attention")

weighted sum: values weighted by
attention weight (softmax score)

a2,1

a2,2

a2,T

⊤

⊤

⊤

Sebastian Raschka STAT 453: Intro to Deep Learning 41

Self-Attention Mechanism

1 × de

embedding size (original transformer = 512)de =

de × dq

de × dkde × dv

1 × dv

1 × dk

1 × dq

1 × 1
softmax

1 × dv

where dq = dk

In original transformer, 
 as welldq = dv

⊤

⊤

⊤

A(q2, K, V) =
T

∑
i=1

[
exp(q2 ⋅ k⊤

i)
∑j exp(q2 ⋅ k⊤

j)
× vi]

Sebastian Raschka STAT 453: Intro to Deep Learning 42

Self-Attention Mechanism

A1
A2
A3

A =Attention score matrix:

Sebastian Raschka STAT 453: Intro to Deep Learning 43

Self-Attention Mechanism (Scaled Dot Product Attention)

embedding sizede =

input sequence sizeT =

T × T

A(Q, K, V) = softmax (QK⊤

dk) V

T × dv

"attention matrix"

"attention-based  
embedding"

x ∈ ℝT×de

Q ∈ ℝT×dq

K ∈ ℝT×dk

V ∈ ℝT×dv

Sebastian Raschka STAT 453: Intro to Deep Learning 44

Scaled Dot-Product Attention

To ensure that the dot-products
between query and and key don't

grow too large (and softmax
gradient become too small) for

large dk

A(Q, K, V) = softmax (QK⊤

dk) V
Scaled Dot-Product Attention Multi-Head Attention

Figure 2: (left) Scaled Dot-Product Attention. (right) Multi-Head Attention consists of several
attention layers running in parallel.

3.2.1 Scaled Dot-Product Attention

We call our particular attention "Scaled Dot-Product Attention" (Figure 2). The input consists of
queries and keys of dimension dk, and values of dimension dv . We compute the dot products of the
query with all keys, divide each by

p
dk, and apply a softmax function to obtain the weights on the

values.

In practice, we compute the attention function on a set of queries simultaneously, packed together
into a matrix Q. The keys and values are also packed together into matrices K and V . We compute
the matrix of outputs as:

Attention(Q,K, V) = softmax(
QK

T

p
dk

)V (1)

The two most commonly used attention functions are additive attention [2], and dot-product (multi-
plicative) attention. Dot-product attention is identical to our algorithm, except for the scaling factor
of 1p

dk
. Additive attention computes the compatibility function using a feed-forward network with

a single hidden layer. While the two are similar in theoretical complexity, dot-product attention is
much faster and more space-efficient in practice, since it can be implemented using highly optimized
matrix multiplication code.

While for small values of dk the two mechanisms perform similarly, additive attention outperforms
dot product attention without scaling for larger values of dk [3]. We suspect that for large values of
dk, the dot products grow large in magnitude, pushing the softmax function into regions where it has
extremely small gradients 4. To counteract this effect, we scale the dot products by 1p

dk
.

3.2.2 Multi-Head Attention

Instead of performing a single attention function with dmodel-dimensional keys, values and queries,
we found it beneficial to linearly project the queries, keys and values h times with different, learned
linear projections to dk, dk and dv dimensions, respectively. On each of these projected versions of
queries, keys and values we then perform the attention function in parallel, yielding dv-dimensional
output values. These are concatenated and once again projected, resulting in the final values, as
depicted in Figure 2.

4To illustrate why the dot products get large, assume that the components of q and k are independent random
variables with mean 0 and variance 1. Then their dot product, q · k =

Pdk
i=1 qiki, has mean 0 and variance dk.

4

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J.,
Jones, L., Gomez, A.N., Kaiser, L. and Polosukhin, I.,
2017. Attention Is All You Need.

Sebastian Raschka STAT 453: Intro to Deep Learning 45

1. Sequence Generation with RNNs

2. Character RNN in PyTorch

3. RNNs with Attention

4. Attention is All We Need

 4.1. Basic Form of Self-Attention

 4.2. Self-Attention & Scaled Dot-Product Attention

 4.3. Multi-Head Attention

5. Transformer Models

 5.1. The Transformer Architecture

 5.2. Some Popular Transformer Models: BERT, GPT, and BART

6. Transformer in PyTorch

Using Attention Without the RNN
-- Self-Attention Mechanism & Transformers

Sebastian Raschka STAT 453: Intro to Deep Learning 46

Self-Attention Mechanism (Scaled Dot Product Attention)

embedding sizede =

input sequence sizeT =

T × T

A(Q, K, V) = softmax (QK⊤

dk) V

T × dv

"attention matrix"

"attention-based  
embedding"

x ∈ ℝT×de

Q ∈ ℝT×dq

K ∈ ℝT×dk

V ∈ ℝT×dv

Sebastian Raschka STAT 453: Intro to Deep Learning 47

Multi-Head Attention

• Apply self-attention multiple times in parallel (similar to multiple kernels for
channels in CNNs)

• For each head (self-attention layer), use different , then
concatenate the results,

• 8 attention heads in the original transformer, i.e., 
 

• Allows attending to different parts in the sequence differently 

Wq, Wk, Wv

A(i)

Wq
(1), Wk

(1), Wv
(1) . . . Wq

(8), Wk
(8), Wv

(8)

Sebastian Raschka STAT 453: Intro to Deep Learning 48

Scaled Dot-Product Attention Multi-Head Attention

Figure 2: (left) Scaled Dot-Product Attention. (right) Multi-Head Attention consists of several
attention layers running in parallel.

3.2.1 Scaled Dot-Product Attention

We call our particular attention "Scaled Dot-Product Attention" (Figure 2). The input consists of
queries and keys of dimension dk, and values of dimension dv . We compute the dot products of the
query with all keys, divide each by

p
dk, and apply a softmax function to obtain the weights on the

values.

In practice, we compute the attention function on a set of queries simultaneously, packed together
into a matrix Q. The keys and values are also packed together into matrices K and V . We compute
the matrix of outputs as:

Attention(Q,K, V) = softmax(
QK

T

p
dk

)V (1)

The two most commonly used attention functions are additive attention [2], and dot-product (multi-
plicative) attention. Dot-product attention is identical to our algorithm, except for the scaling factor
of 1p

dk
. Additive attention computes the compatibility function using a feed-forward network with

a single hidden layer. While the two are similar in theoretical complexity, dot-product attention is
much faster and more space-efficient in practice, since it can be implemented using highly optimized
matrix multiplication code.

While for small values of dk the two mechanisms perform similarly, additive attention outperforms
dot product attention without scaling for larger values of dk [3]. We suspect that for large values of
dk, the dot products grow large in magnitude, pushing the softmax function into regions where it has
extremely small gradients 4. To counteract this effect, we scale the dot products by 1p

dk
.

3.2.2 Multi-Head Attention

Instead of performing a single attention function with dmodel-dimensional keys, values and queries,
we found it beneficial to linearly project the queries, keys and values h times with different, learned
linear projections to dk, dk and dv dimensions, respectively. On each of these projected versions of
queries, keys and values we then perform the attention function in parallel, yielding dv-dimensional
output values. These are concatenated and once again projected, resulting in the final values, as
depicted in Figure 2.

4To illustrate why the dot products get large, assume that the components of q and k are independent random
variables with mean 0 and variance 1. Then their dot product, q · k =

Pdk
i=1 qiki, has mean 0 and variance dk.

4

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L. and Polosukhin, I., 2017. Attention Is All You Need.

Sebastian Raschka STAT 453: Intro to Deep Learning 49

Scaled Dot-Product Attention Multi-Head Attention

Figure 2: (left) Scaled Dot-Product Attention. (right) Multi-Head Attention consists of several
attention layers running in parallel.

3.2.1 Scaled Dot-Product Attention

We call our particular attention "Scaled Dot-Product Attention" (Figure 2). The input consists of
queries and keys of dimension dk, and values of dimension dv . We compute the dot products of the
query with all keys, divide each by

p
dk, and apply a softmax function to obtain the weights on the

values.

In practice, we compute the attention function on a set of queries simultaneously, packed together
into a matrix Q. The keys and values are also packed together into matrices K and V . We compute
the matrix of outputs as:

Attention(Q,K, V) = softmax(
QK

T

p
dk

)V (1)

The two most commonly used attention functions are additive attention [2], and dot-product (multi-
plicative) attention. Dot-product attention is identical to our algorithm, except for the scaling factor
of 1p

dk
. Additive attention computes the compatibility function using a feed-forward network with

a single hidden layer. While the two are similar in theoretical complexity, dot-product attention is
much faster and more space-efficient in practice, since it can be implemented using highly optimized
matrix multiplication code.

While for small values of dk the two mechanisms perform similarly, additive attention outperforms
dot product attention without scaling for larger values of dk [3]. We suspect that for large values of
dk, the dot products grow large in magnitude, pushing the softmax function into regions where it has
extremely small gradients 4. To counteract this effect, we scale the dot products by 1p

dk
.

3.2.2 Multi-Head Attention

Instead of performing a single attention function with dmodel-dimensional keys, values and queries,
we found it beneficial to linearly project the queries, keys and values h times with different, learned
linear projections to dk, dk and dv dimensions, respectively. On each of these projected versions of
queries, keys and values we then perform the attention function in parallel, yielding dv-dimensional
output values. These are concatenated and once again projected, resulting in the final values, as
depicted in Figure 2.

4To illustrate why the dot products get large, assume that the components of q and k are independent random
variables with mean 0 and variance 1. Then their dot product, q · k =

Pdk
i=1 qiki, has mean 0 and variance dk.

4

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit,
J., Jones, L., Gomez, A.N., Kaiser, L. and
Polosukhin, I., 2017. Attention Is All You Need.

A(Q, K, V) = softmax (QK⊤

dk) V

One attention head:
T

dv

Concatenated:

T ...

dv ⋅ h

T × de = T × 512

Input sequence dim.  
in original transformer:

dv = 512/h = 64
and

Sebastian Raschka STAT 453: Intro to Deep Learning 50

Scaled Dot-Product Attention Multi-Head Attention

Figure 2: (left) Scaled Dot-Product Attention. (right) Multi-Head Attention consists of several
attention layers running in parallel.

3.2.1 Scaled Dot-Product Attention

We call our particular attention "Scaled Dot-Product Attention" (Figure 2). The input consists of
queries and keys of dimension dk, and values of dimension dv . We compute the dot products of the
query with all keys, divide each by

p
dk, and apply a softmax function to obtain the weights on the

values.

In practice, we compute the attention function on a set of queries simultaneously, packed together
into a matrix Q. The keys and values are also packed together into matrices K and V . We compute
the matrix of outputs as:

Attention(Q,K, V) = softmax(
QK

T

p
dk

)V (1)

The two most commonly used attention functions are additive attention [2], and dot-product (multi-
plicative) attention. Dot-product attention is identical to our algorithm, except for the scaling factor
of 1p

dk
. Additive attention computes the compatibility function using a feed-forward network with

a single hidden layer. While the two are similar in theoretical complexity, dot-product attention is
much faster and more space-efficient in practice, since it can be implemented using highly optimized
matrix multiplication code.

While for small values of dk the two mechanisms perform similarly, additive attention outperforms
dot product attention without scaling for larger values of dk [3]. We suspect that for large values of
dk, the dot products grow large in magnitude, pushing the softmax function into regions where it has
extremely small gradients 4. To counteract this effect, we scale the dot products by 1p

dk
.

3.2.2 Multi-Head Attention

Instead of performing a single attention function with dmodel-dimensional keys, values and queries,
we found it beneficial to linearly project the queries, keys and values h times with different, learned
linear projections to dk, dk and dv dimensions, respectively. On each of these projected versions of
queries, keys and values we then perform the attention function in parallel, yielding dv-dimensional
output values. These are concatenated and once again projected, resulting in the final values, as
depicted in Figure 2.

4To illustrate why the dot products get large, assume that the components of q and k are independent random
variables with mean 0 and variance 1. Then their dot product, q · k =

Pdk
i=1 qiki, has mean 0 and variance dk.

4

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit,
J., Jones, L., Gomez, A.N., Kaiser, L. and
Polosukhin, I., 2017. Attention Is All You Need.

Concatenated:

T ...

dv ⋅ h

Wodv ⋅ h

doT

do
In transformer paper:

dv × h = do

Sebastian Raschka STAT 453: Intro to Deep Learning 51

1. Sequence Generation with RNNs

2. Character RNN in PyTorch

3. RNNs with Attention

4. Attention is All We Need

 4.1. Basic Form of Self-Attention

 4.2. Self-Attention & Scaled Dot-Product Attention

 4.3. Multi-Head Attention

5. Transformer Models

 5.1. The Transformer Architecture

 5.2. Some Popular Transformer Models: BERT, GPT, and BART

6. Transformer in PyTorch

Using Attention Without the RNN
-- Self-Attention Mechanism & Transformers

Sebastian Raschka STAT 453: Intro to Deep Learning 52

Attention Is All You Need

Ashish Vaswani⇤
Google Brain

avaswani@google.com

Noam Shazeer⇤
Google Brain

noam@google.com

Niki Parmar⇤
Google Research

nikip@google.com

Jakob Uszkoreit⇤
Google Research
usz@google.com

Llion Jones⇤
Google Research

llion@google.com

Aidan N. Gomez⇤ †

University of Toronto
aidan@cs.toronto.edu

Łukasz Kaiser⇤
Google Brain

lukaszkaiser@google.com

Illia Polosukhin⇤ ‡

illia.polosukhin@gmail.com

Abstract

The dominant sequence transduction models are based on complex recurrent or
convolutional neural networks that include an encoder and a decoder. The best
performing models also connect the encoder and decoder through an attention
mechanism. We propose a new simple network architecture, the Transformer,
based solely on attention mechanisms, dispensing with recurrence and convolutions
entirely. Experiments on two machine translation tasks show these models to
be superior in quality while being more parallelizable and requiring significantly
less time to train. Our model achieves 28.4 BLEU on the WMT 2014 English-
to-German translation task, improving over the existing best results, including
ensembles, by over 2 BLEU. On the WMT 2014 English-to-French translation task,
our model establishes a new single-model state-of-the-art BLEU score of 41.8 after
training for 3.5 days on eight GPUs, a small fraction of the training costs of the
best models from the literature. We show that the Transformer generalizes well to
other tasks by applying it successfully to English constituency parsing both with
large and limited training data.

1 Introduction

Recurrent neural networks, long short-term memory [13] and gated recurrent [7] neural networks
in particular, have been firmly established as state of the art approaches in sequence modeling and

⇤Equal contribution. Listing order is random. Jakob proposed replacing RNNs with self-attention and started
the effort to evaluate this idea. Ashish, with Illia, designed and implemented the first Transformer models and
has been crucially involved in every aspect of this work. Noam proposed scaled dot-product attention, multi-head
attention and the parameter-free position representation and became the other person involved in nearly every
detail. Niki designed, implemented, tuned and evaluated countless model variants in our original codebase and
tensor2tensor. Llion also experimented with novel model variants, was responsible for our initial codebase, and
efficient inference and visualizations. Lukasz and Aidan spent countless long days designing various parts of and
implementing tensor2tensor, replacing our earlier codebase, greatly improving results and massively accelerating
our research.

†Work performed while at Google Brain.
‡Work performed while at Google Research.

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.

ar
X

iv
:1

70
6.

03
76

2v
5

 [c
s.C

L]
 6

 D
ec

 2
01

7

https://arxiv.org/abs/1706.03762

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin, I. (2017).
Attention is all you need. In Advances in neural information processing systems (pp. 5998-6008).

https://arxiv.org/abs/1706.03762

Sebastian Raschka STAT 453: Intro to Deep Learning 53

Scaled Dot-Product Attention Multi-Head Attention

Figure 2: (left) Scaled Dot-Product Attention. (right) Multi-Head Attention consists of several
attention layers running in parallel.

3.2.1 Scaled Dot-Product Attention

We call our particular attention "Scaled Dot-Product Attention" (Figure 2). The input consists of
queries and keys of dimension dk, and values of dimension dv . We compute the dot products of the
query with all keys, divide each by

p
dk, and apply a softmax function to obtain the weights on the

values.

In practice, we compute the attention function on a set of queries simultaneously, packed together
into a matrix Q. The keys and values are also packed together into matrices K and V . We compute
the matrix of outputs as:

Attention(Q,K, V) = softmax(
QK

T

p
dk

)V (1)

The two most commonly used attention functions are additive attention [2], and dot-product (multi-
plicative) attention. Dot-product attention is identical to our algorithm, except for the scaling factor
of 1p

dk
. Additive attention computes the compatibility function using a feed-forward network with

a single hidden layer. While the two are similar in theoretical complexity, dot-product attention is
much faster and more space-efficient in practice, since it can be implemented using highly optimized
matrix multiplication code.

While for small values of dk the two mechanisms perform similarly, additive attention outperforms
dot product attention without scaling for larger values of dk [3]. We suspect that for large values of
dk, the dot products grow large in magnitude, pushing the softmax function into regions where it has
extremely small gradients 4. To counteract this effect, we scale the dot products by 1p

dk
.

3.2.2 Multi-Head Attention

Instead of performing a single attention function with dmodel-dimensional keys, values and queries,
we found it beneficial to linearly project the queries, keys and values h times with different, learned
linear projections to dk, dk and dv dimensions, respectively. On each of these projected versions of
queries, keys and values we then perform the attention function in parallel, yielding dv-dimensional
output values. These are concatenated and once again projected, resulting in the final values, as
depicted in Figure 2.

4To illustrate why the dot products get large, assume that the components of q and k are independent random
variables with mean 0 and variance 1. Then their dot product, q · k =

Pdk
i=1 qiki, has mean 0 and variance dk.

4

×

×

×

x

x

x

Wq

Wk

WvStep 1

Step 2

Step 3

Step 5

Step 1:

Step 2:

=

=

=

Q

K

V

Q

×

K⊤

=
QK⊤

Step 3: QK⊤

/ dk

QK⊤

=
dk/

dk

Step 4:
<latexit sha1_base64="jLOXPjf6BJPC9xTjQhFJbZq7foY=">AAACPHicbVA9TyMxEPXyTfgKR0ljESFBE3YROigjrjmJBgQBpGyIvN7ZxIp3vWfPIiJrfxjN/Qg6KhoK0OlaapyQgq8nWX5+80aeeVEuhUHfv/cmJqemZ2bn5isLi0vLK9XVH+dGFZpDkyup9GXEDEiRQRMFSrjMNbA0knAR9X8N6xfXoI1Q2RkOcminrJuJRHCGTupUT0OEG7TUqARTdkNLGkpIcIuGkZKxGaTusiflh+dReWVDVHlJd2ho/mi0ccf2S2fSotvD7U615tf9EehXEoxJjYxx3KnehbHiRQoZcsmMaQV+jm3LNAouoayEhYGc8T7rQsvRjKVg2na0fEk3nRLTRGl3MqQj9X2HZakZDu6cKcOe+Vwbit/VWgUmB20rsrxAyPjbR0khKSo6TJLGQgNHOXCEcS3crJT3mGYcXd4VF0LweeWv5Hy3Hvys+yd7tcbhOI45sk42yBYJyD5pkN/kmDQJJ7fkgTyRZ++v9+j98/6/WSe8cc8a+QDv5RVkqrAF</latexit>

softmax
⇣
QK>/

p
dk

⌘
=

Step 5:

V
<latexit sha1_base64="jLOXPjf6BJPC9xTjQhFJbZq7foY=">AAACPHicbVA9TyMxEPXyTfgKR0ljESFBE3YROigjrjmJBgQBpGyIvN7ZxIp3vWfPIiJrfxjN/Qg6KhoK0OlaapyQgq8nWX5+80aeeVEuhUHfv/cmJqemZ2bn5isLi0vLK9XVH+dGFZpDkyup9GXEDEiRQRMFSrjMNbA0knAR9X8N6xfXoI1Q2RkOcminrJuJRHCGTupUT0OEG7TUqARTdkNLGkpIcIuGkZKxGaTusiflh+dReWVDVHlJd2ho/mi0ccf2S2fSotvD7U615tf9EehXEoxJjYxx3KnehbHiRQoZcsmMaQV+jm3LNAouoayEhYGc8T7rQsvRjKVg2na0fEk3nRLTRGl3MqQj9X2HZakZDu6cKcOe+Vwbit/VWgUmB20rsrxAyPjbR0khKSo6TJLGQgNHOXCEcS3crJT3mGYcXd4VF0LweeWv5Hy3Hvys+yd7tcbhOI45sk42yBYJyD5pkN/kmDQJJ7fkgTyRZ++v9+j98/6/WSe8cc8a+QDv5RVkqrAF</latexit>

softmax
⇣
QK>/

p
dk

⌘

× =
A

Step 4

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L.,
Gomez, A.N., Kaiser, L. and Polosukhin, I., 2017. Attention Is All
You Need.

embedding of
1st word, x1

query of 1st
word, q1

key of 1st word, k1

relationship between  
1st & 2nd word

attentions of 1st word
with first value of words1st value of 1st & 2nd word

de

Scaled Dot-Product Attention Recap

Sebastian Raschka STAT 453: Intro to Deep Learning 54

×

×

×

x

x

x

Wq
1

=

=

=

Q1

K2

V1

A1

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L.,
Gomez, A.N., Kaiser, L. and Polosukhin, I., 2017. Attention Is All
You Need.

=

Wq
2

Wq
3

Wk
1Wk

2
Wk

3

Wv
1Wv

2
Wv

3

A2
A3...

A

Q2
Q3

K1

K3

V2
V3

concat

Wo

Scaled Dot-Product Attention Multi-Head Attention

Figure 2: (left) Scaled Dot-Product Attention. (right) Multi-Head Attention consists of several
attention layers running in parallel.

3.2.1 Scaled Dot-Product Attention

We call our particular attention "Scaled Dot-Product Attention" (Figure 2). The input consists of
queries and keys of dimension dk, and values of dimension dv . We compute the dot products of the
query with all keys, divide each by

p
dk, and apply a softmax function to obtain the weights on the

values.

In practice, we compute the attention function on a set of queries simultaneously, packed together
into a matrix Q. The keys and values are also packed together into matrices K and V . We compute
the matrix of outputs as:

Attention(Q,K, V) = softmax(
QK

T

p
dk

)V (1)

The two most commonly used attention functions are additive attention [2], and dot-product (multi-
plicative) attention. Dot-product attention is identical to our algorithm, except for the scaling factor
of 1p

dk
. Additive attention computes the compatibility function using a feed-forward network with

a single hidden layer. While the two are similar in theoretical complexity, dot-product attention is
much faster and more space-efficient in practice, since it can be implemented using highly optimized
matrix multiplication code.

While for small values of dk the two mechanisms perform similarly, additive attention outperforms
dot product attention without scaling for larger values of dk [3]. We suspect that for large values of
dk, the dot products grow large in magnitude, pushing the softmax function into regions where it has
extremely small gradients 4. To counteract this effect, we scale the dot products by 1p

dk
.

3.2.2 Multi-Head Attention

Instead of performing a single attention function with dmodel-dimensional keys, values and queries,
we found it beneficial to linearly project the queries, keys and values h times with different, learned
linear projections to dk, dk and dv dimensions, respectively. On each of these projected versions of
queries, keys and values we then perform the attention function in parallel, yielding dv-dimensional
output values. These are concatenated and once again projected, resulting in the final values, as
depicted in Figure 2.

4To illustrate why the dot products get large, assume that the components of q and k are independent random
variables with mean 0 and variance 1. Then their dot product, q · k =

Pdk
i=1 qiki, has mean 0 and variance dk.

4

×

Sebastian Raschka STAT 453: Intro to Deep Learning 55

Figure 1: The Transformer - model architecture.

3.1 Encoder and Decoder Stacks

Encoder: The encoder is composed of a stack of N = 6 identical layers. Each layer has two
sub-layers. The first is a multi-head self-attention mechanism, and the second is a simple, position-
wise fully connected feed-forward network. We employ a residual connection [11] around each of
the two sub-layers, followed by layer normalization [1]. That is, the output of each sub-layer is
LayerNorm(x + Sublayer(x)), where Sublayer(x) is the function implemented by the sub-layer
itself. To facilitate these residual connections, all sub-layers in the model, as well as the embedding
layers, produce outputs of dimension dmodel = 512.

Decoder: The decoder is also composed of a stack of N = 6 identical layers. In addition to the two
sub-layers in each encoder layer, the decoder inserts a third sub-layer, which performs multi-head
attention over the output of the encoder stack. Similar to the encoder, we employ residual connections
around each of the sub-layers, followed by layer normalization. We also modify the self-attention
sub-layer in the decoder stack to prevent positions from attending to subsequent positions. This
masking, combined with fact that the output embeddings are offset by one position, ensures that the
predictions for position i can depend only on the known outputs at positions less than i.

3.2 Attention

An attention function can be described as mapping a query and a set of key-value pairs to an output,
where the query, keys, values, and output are all vectors. The output is computed as a weighted sum
of the values, where the weight assigned to each value is computed by a compatibility function of the
query with the corresponding key.

3

Generates output words one
at a time

Scaled Dot-Product Attention Multi-Head Attention

Figure 2: (left) Scaled Dot-Product Attention. (right) Multi-Head Attention consists of several
attention layers running in parallel.

3.2.1 Scaled Dot-Product Attention

We call our particular attention "Scaled Dot-Product Attention" (Figure 2). The input consists of
queries and keys of dimension dk, and values of dimension dv . We compute the dot products of the
query with all keys, divide each by

p
dk, and apply a softmax function to obtain the weights on the

values.

In practice, we compute the attention function on a set of queries simultaneously, packed together
into a matrix Q. The keys and values are also packed together into matrices K and V . We compute
the matrix of outputs as:

Attention(Q,K, V) = softmax(
QK

T

p
dk

)V (1)

The two most commonly used attention functions are additive attention [2], and dot-product (multi-
plicative) attention. Dot-product attention is identical to our algorithm, except for the scaling factor
of 1p

dk
. Additive attention computes the compatibility function using a feed-forward network with

a single hidden layer. While the two are similar in theoretical complexity, dot-product attention is
much faster and more space-efficient in practice, since it can be implemented using highly optimized
matrix multiplication code.

While for small values of dk the two mechanisms perform similarly, additive attention outperforms
dot product attention without scaling for larger values of dk [3]. We suspect that for large values of
dk, the dot products grow large in magnitude, pushing the softmax function into regions where it has
extremely small gradients 4. To counteract this effect, we scale the dot products by 1p

dk
.

3.2.2 Multi-Head Attention

Instead of performing a single attention function with dmodel-dimensional keys, values and queries,
we found it beneficial to linearly project the queries, keys and values h times with different, learned
linear projections to dk, dk and dv dimensions, respectively. On each of these projected versions of
queries, keys and values we then perform the attention function in parallel, yielding dv-dimensional
output values. These are concatenated and once again projected, resulting in the final values, as
depicted in Figure 2.

4To illustrate why the dot products get large, assume that the components of q and k are independent random
variables with mean 0 and variance 1. Then their dot product, q · k =

Pdk
i=1 qiki, has mean 0 and variance dk.

4

Skip connection 
(like in ResNet)

x + layer(x)

Multilayer Perceptrons

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J.,
Jones, L., Gomez, A.N., Kaiser, L. and Polosukhin, I.,
2017. Attention Is All You Need.

Sebastian Raschka STAT 453: Intro to Deep Learning 56

Encoder (6x)
Decoder (6x)

Figure 1: The Transformer - model architecture.

3.1 Encoder and Decoder Stacks

Encoder: The encoder is composed of a stack of N = 6 identical layers. Each layer has two
sub-layers. The first is a multi-head self-attention mechanism, and the second is a simple, position-
wise fully connected feed-forward network. We employ a residual connection [11] around each of
the two sub-layers, followed by layer normalization [1]. That is, the output of each sub-layer is
LayerNorm(x + Sublayer(x)), where Sublayer(x) is the function implemented by the sub-layer
itself. To facilitate these residual connections, all sub-layers in the model, as well as the embedding
layers, produce outputs of dimension dmodel = 512.

Decoder: The decoder is also composed of a stack of N = 6 identical layers. In addition to the two
sub-layers in each encoder layer, the decoder inserts a third sub-layer, which performs multi-head
attention over the output of the encoder stack. Similar to the encoder, we employ residual connections
around each of the sub-layers, followed by layer normalization. We also modify the self-attention
sub-layer in the decoder stack to prevent positions from attending to subsequent positions. This
masking, combined with fact that the output embeddings are offset by one position, ensures that the
predictions for position i can depend only on the known outputs at positions less than i.

3.2 Attention

An attention function can be described as mapping a query and a set of key-value pairs to an output,
where the query, keys, values, and output are all vectors. The output is computed as a weighted sum
of the values, where the weight assigned to each value is computed by a compatibility function of the
query with the corresponding key.

3

Encoder

Encoder

Encoder

Encoder

Encoder

Encoder

Figure 1: The Transformer - model architecture.

3.1 Encoder and Decoder Stacks

Encoder: The encoder is composed of a stack of N = 6 identical layers. Each layer has two
sub-layers. The first is a multi-head self-attention mechanism, and the second is a simple, position-
wise fully connected feed-forward network. We employ a residual connection [11] around each of
the two sub-layers, followed by layer normalization [1]. That is, the output of each sub-layer is
LayerNorm(x + Sublayer(x)), where Sublayer(x) is the function implemented by the sub-layer
itself. To facilitate these residual connections, all sub-layers in the model, as well as the embedding
layers, produce outputs of dimension dmodel = 512.

Decoder: The decoder is also composed of a stack of N = 6 identical layers. In addition to the two
sub-layers in each encoder layer, the decoder inserts a third sub-layer, which performs multi-head
attention over the output of the encoder stack. Similar to the encoder, we employ residual connections
around each of the sub-layers, followed by layer normalization. We also modify the self-attention
sub-layer in the decoder stack to prevent positions from attending to subsequent positions. This
masking, combined with fact that the output embeddings are offset by one position, ensures that the
predictions for position i can depend only on the known outputs at positions less than i.

3.2 Attention

An attention function can be described as mapping a query and a set of key-value pairs to an output,
where the query, keys, values, and output are all vectors. The output is computed as a weighted sum
of the values, where the weight assigned to each value is computed by a compatibility function of the
query with the corresponding key.

3

Decoder

Decoder

Decoder

Decoder

Decoder

Decoder

Figure 1: The Transformer - model architecture.

3.1 Encoder and Decoder Stacks

Encoder: The encoder is composed of a stack of N = 6 identical layers. Each layer has two
sub-layers. The first is a multi-head self-attention mechanism, and the second is a simple, position-
wise fully connected feed-forward network. We employ a residual connection [11] around each of
the two sub-layers, followed by layer normalization [1]. That is, the output of each sub-layer is
LayerNorm(x + Sublayer(x)), where Sublayer(x) is the function implemented by the sub-layer
itself. To facilitate these residual connections, all sub-layers in the model, as well as the embedding
layers, produce outputs of dimension dmodel = 512.

Decoder: The decoder is also composed of a stack of N = 6 identical layers. In addition to the two
sub-layers in each encoder layer, the decoder inserts a third sub-layer, which performs multi-head
attention over the output of the encoder stack. Similar to the encoder, we employ residual connections
around each of the sub-layers, followed by layer normalization. We also modify the self-attention
sub-layer in the decoder stack to prevent positions from attending to subsequent positions. This
masking, combined with fact that the output embeddings are offset by one position, ensures that the
predictions for position i can depend only on the known outputs at positions less than i.

3.2 Attention

An attention function can be described as mapping a query and a set of key-value pairs to an output,
where the query, keys, values, and output are all vectors. The output is computed as a weighted sum
of the values, where the weight assigned to each value is computed by a compatibility function of the
query with the corresponding key.

3

Figure 1: The Transformer - model architecture.

3.1 Encoder and Decoder Stacks

Encoder: The encoder is composed of a stack of N = 6 identical layers. Each layer has two
sub-layers. The first is a multi-head self-attention mechanism, and the second is a simple, position-
wise fully connected feed-forward network. We employ a residual connection [11] around each of
the two sub-layers, followed by layer normalization [1]. That is, the output of each sub-layer is
LayerNorm(x + Sublayer(x)), where Sublayer(x) is the function implemented by the sub-layer
itself. To facilitate these residual connections, all sub-layers in the model, as well as the embedding
layers, produce outputs of dimension dmodel = 512.

Decoder: The decoder is also composed of a stack of N = 6 identical layers. In addition to the two
sub-layers in each encoder layer, the decoder inserts a third sub-layer, which performs multi-head
attention over the output of the encoder stack. Similar to the encoder, we employ residual connections
around each of the sub-layers, followed by layer normalization. We also modify the self-attention
sub-layer in the decoder stack to prevent positions from attending to subsequent positions. This
masking, combined with fact that the output embeddings are offset by one position, ensures that the
predictions for position i can depend only on the known outputs at positions less than i.

3.2 Attention

An attention function can be described as mapping a query and a set of key-value pairs to an output,
where the query, keys, values, and output are all vectors. The output is computed as a weighted sum
of the values, where the weight assigned to each value is computed by a compatibility function of the
query with the corresponding key.

3

Same structure and
dimension in/out

for each encoder &
decoder

Sebastian Raschka STAT 453: Intro to Deep Learning 57

Figure 1: The Transformer - model architecture.

3.1 Encoder and Decoder Stacks

Encoder: The encoder is composed of a stack of N = 6 identical layers. Each layer has two
sub-layers. The first is a multi-head self-attention mechanism, and the second is a simple, position-
wise fully connected feed-forward network. We employ a residual connection [11] around each of
the two sub-layers, followed by layer normalization [1]. That is, the output of each sub-layer is
LayerNorm(x + Sublayer(x)), where Sublayer(x) is the function implemented by the sub-layer
itself. To facilitate these residual connections, all sub-layers in the model, as well as the embedding
layers, produce outputs of dimension dmodel = 512.

Decoder: The decoder is also composed of a stack of N = 6 identical layers. In addition to the two
sub-layers in each encoder layer, the decoder inserts a third sub-layer, which performs multi-head
attention over the output of the encoder stack. Similar to the encoder, we employ residual connections
around each of the sub-layers, followed by layer normalization. We also modify the self-attention
sub-layer in the decoder stack to prevent positions from attending to subsequent positions. This
masking, combined with fact that the output embeddings are offset by one position, ensures that the
predictions for position i can depend only on the known outputs at positions less than i.

3.2 Attention

An attention function can be described as mapping a query and a set of key-value pairs to an output,
where the query, keys, values, and output are all vectors. The output is computed as a weighted sum
of the values, where the weight assigned to each value is computed by a compatibility function of the
query with the corresponding key.

3

Masked Multi-head attention

Mask subsequent sequence
elements. I.e., only allow to

attend to positions up to and
including the current position.

This is achieved by setting
softmax values for those to −∞

Word probabilities

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J.,
Jones, L., Gomez, A.N., Kaiser, L. and Polosukhin, I.,
2017. Attention Is All You Need.

Sebastian Raschka STAT 453: Intro to Deep Learning 58

Figure 1: The Transformer - model architecture.

3.1 Encoder and Decoder Stacks

Encoder: The encoder is composed of a stack of N = 6 identical layers. Each layer has two
sub-layers. The first is a multi-head self-attention mechanism, and the second is a simple, position-
wise fully connected feed-forward network. We employ a residual connection [11] around each of
the two sub-layers, followed by layer normalization [1]. That is, the output of each sub-layer is
LayerNorm(x + Sublayer(x)), where Sublayer(x) is the function implemented by the sub-layer
itself. To facilitate these residual connections, all sub-layers in the model, as well as the embedding
layers, produce outputs of dimension dmodel = 512.

Decoder: The decoder is also composed of a stack of N = 6 identical layers. In addition to the two
sub-layers in each encoder layer, the decoder inserts a third sub-layer, which performs multi-head
attention over the output of the encoder stack. Similar to the encoder, we employ residual connections
around each of the sub-layers, followed by layer normalization. We also modify the self-attention
sub-layer in the decoder stack to prevent positions from attending to subsequent positions. This
masking, combined with fact that the output embeddings are offset by one position, ensures that the
predictions for position i can depend only on the known outputs at positions less than i.

3.2 Attention

An attention function can be described as mapping a query and a set of key-value pairs to an output,
where the query, keys, values, and output are all vectors. The output is computed as a weighted sum
of the values, where the weight assigned to each value is computed by a compatibility function of the
query with the corresponding key.

3

 I like plants

z

latent embedding

of whole input

Ich mag

 Ich mag Pflanzen

 Ich mag Pflanzen

whole output (known during training)

mask to prevent "cheating"

output

input

Predicts next word  
(via highest softmax probability)

in autoregressive fashion

output size  
= word dictionary size

Sebastian Raschka STAT 453: Intro to Deep Learning 59

Figure 1: The Transformer - model architecture.

3.1 Encoder and Decoder Stacks

Encoder: The encoder is composed of a stack of N = 6 identical layers. Each layer has two
sub-layers. The first is a multi-head self-attention mechanism, and the second is a simple, position-
wise fully connected feed-forward network. We employ a residual connection [11] around each of
the two sub-layers, followed by layer normalization [1]. That is, the output of each sub-layer is
LayerNorm(x + Sublayer(x)), where Sublayer(x) is the function implemented by the sub-layer
itself. To facilitate these residual connections, all sub-layers in the model, as well as the embedding
layers, produce outputs of dimension dmodel = 512.

Decoder: The decoder is also composed of a stack of N = 6 identical layers. In addition to the two
sub-layers in each encoder layer, the decoder inserts a third sub-layer, which performs multi-head
attention over the output of the encoder stack. Similar to the encoder, we employ residual connections
around each of the sub-layers, followed by layer normalization. We also modify the self-attention
sub-layer in the decoder stack to prevent positions from attending to subsequent positions. This
masking, combined with fact that the output embeddings are offset by one position, ensures that the
predictions for position i can depend only on the known outputs at positions less than i.

3.2 Attention

An attention function can be described as mapping a query and a set of key-value pairs to an output,
where the query, keys, values, and output are all vectors. The output is computed as a weighted sum
of the values, where the weight assigned to each value is computed by a compatibility function of the
query with the corresponding key.

3

Add Positional Encoding Matrix to Word Embedding Matrix

PEpos,2i = sin (pos

100002i/dmodel)
PEpos,2i+1 = cos (pos

10000(2i+1)/dmodel) de = 512

• Scaled dot-product and fully-connected layer
are permutation invariant

• Sinusoidal positional encoding is a vector of
small values (constants) added to the
embeddings

• As a result, same word will have slightly
different embeddings depending on where
they occur in the sentence

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J.,
Jones, L., Gomez, A.N., Kaiser, L. and Polosukhin, I.,
2017. Attention Is All You Need.

do = 512

Sebastian Raschka STAT 453: Intro to Deep Learning 60

Figure 1: The Transformer - model architecture.

3.1 Encoder and Decoder Stacks

Encoder: The encoder is composed of a stack of N = 6 identical layers. Each layer has two
sub-layers. The first is a multi-head self-attention mechanism, and the second is a simple, position-
wise fully connected feed-forward network. We employ a residual connection [11] around each of
the two sub-layers, followed by layer normalization [1]. That is, the output of each sub-layer is
LayerNorm(x + Sublayer(x)), where Sublayer(x) is the function implemented by the sub-layer
itself. To facilitate these residual connections, all sub-layers in the model, as well as the embedding
layers, produce outputs of dimension dmodel = 512.

Decoder: The decoder is also composed of a stack of N = 6 identical layers. In addition to the two
sub-layers in each encoder layer, the decoder inserts a third sub-layer, which performs multi-head
attention over the output of the encoder stack. Similar to the encoder, we employ residual connections
around each of the sub-layers, followed by layer normalization. We also modify the self-attention
sub-layer in the decoder stack to prevent positions from attending to subsequent positions. This
masking, combined with fact that the output embeddings are offset by one position, ensures that the
predictions for position i can depend only on the known outputs at positions less than i.

3.2 Attention

An attention function can be described as mapping a query and a set of key-value pairs to an output,
where the query, keys, values, and output are all vectors. The output is computed as a weighted sum
of the values, where the weight assigned to each value is computed by a compatibility function of the
query with the corresponding key.

3

Layer Normalization

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J.,
Jones, L., Gomez, A.N., Kaiser, L. and Polosukhin, I.,
2017. Attention Is All You Need.

H
, W

C N

Batch Norm

H
, W

C N

Layer Norm

H
, W

C N

Instance Norm

H
, W

C N

Group Norm

Figure 2. Normalization methods. Each subplot shows a feature map tensor, with N as the batch axis, C as the channel axis, and (H,W)
as the spatial axes. The pixels in blue are normalized by the same mean and variance, computed by aggregating the values of these pixels.

number. ShuffleNet [65] proposes a channel shuffle oper-
ation that permutes the axes of grouped features. These
methods all involve dividing the channel dimension into
groups. Despite the relation to these methods, GN does not
require group convolutions. GN is a generic layer, as we
evaluate in standard ResNets [20].

3. Group Normalization

The channels of visual representations are not entirely
independent. Classical features of SIFT [39], HOG [9],
and GIST [41] are group-wise representations by design,
where each group of channels is constructed by some kind
of histogram. These features are often processed by group-
wise normalization over each histogram or each orientation.
Higher-level features such as VLAD [29] and Fisher Vec-
tors (FV) [44] are also group-wise features where a group
can be thought of as the sub-vector computed with respect
to a cluster.

Analogously, it is not necessary to think of deep neu-
ral network features as unstructured vectors. For example,
for conv1 (the first convolutional layer) of a network, it is
reasonable to expect a filter and its horizontal flipping to
exhibit similar distributions of filter responses on natural
images. If conv1 happens to approximately learn this pair
of filters, or if the horizontal flipping (or other transforma-
tions) is made into the architectures by design [11, 8], then
the corresponding channels of these filters can be normal-
ized together.

The higher-level layers are more abstract and their be-
haviors are not as intuitive. However, in addition to orien-
tations (SIFT [39], HOG [9], or [11, 8]), there are many
factors that could lead to grouping, e.g., frequency, shapes,
illumination, textures. Their coefficients can be interde-
pendent. In fact, a well-accepted computational model
in neuroscience is to normalize across the cell responses
[21, 52, 55, 5], “with various receptive-field centers (cov-
ering the visual field) and with various spatiotemporal fre-
quency tunings” (p183, [21]); this can happen not only in
the primary visual cortex, but also “throughout the visual
system” [5]. Motivated by these works, we propose new
generic group-wise normalization for deep neural networks.

3.1. Formulation

We first describe a general formulation of feature nor-
malization, and then present GN in this formulation. A fam-
ily of feature normalization methods, including BN, LN, IN,
and GN, perform the following computation:

x̂i =
1

�i

(xi � µi). (1)

Here x is the feature computed by a layer, and i is an index.
In the case of 2D images, i = (iN , iC , iH , iW) is a 4D vec-
tor indexing the features in (N,C,H,W) order, where N is
the batch axis, C is the channel axis, and H and W are the
spatial height and width axes.

µ and � in (1) are the mean and standard deviation (std)
computed by:

µi =
1

m

X

k2Si

xk, �i =

s
1

m

X

k2Si

(xk � µi)2 + ✏, (2)

with ✏ as a small constant. Si is the set of pixels in which
the mean and std are computed, and m is the size of this set.
Many types of feature normalization methods mainly differ
in how the set Si is defined (Figure 2), discussed as follows.

In Batch Norm [26], the set Si is defined as:

Si = {k | kC = iC}, (3)

where iC (and kC) denotes the sub-index of i (and k) along
the C axis. This means that the pixels sharing the same
channel index are normalized together, i.e., for each chan-
nel, BN computes µ and � along the (N,H,W) axes. In
Layer Norm [3], the set is:

Si = {k | kN = iN}, (4)

meaning that LN computes µ and � along the (C,H,W)
axes for each sample. In Instance Norm [61], the set is:

Si = {k | kN = iN , kC = iC}. (5)

meaning that IN computes µ and � along the (H,W) axes
for each sample and each channel. The relations among BN,
LN, and IN are in Figure 2.

3

Image source: Wu, Y., & He, K. (2018). Group normalization. ECCV

Sebastian Raschka STAT 453: Intro to Deep Learning 61

Th
e

La
w

w
ill
ne
ve
r

be pe
rfe
ct

, bu
t

its ap
pl
ic
at
io
n

sh
ou
ld

be ju
st

- th
is

is w
ha
t

w
e
ar
e

m
is
si
ng

, in m
y

op
in
io
n

. <E
O
S
>

<p
ad
>

Th
e

La
w
w
ill

ne
ve
r

be
pe
rfe
ct ,
bu
t
its

ap
pl
ic
at
io
n

sh
ou
ld be ju
st -

th
is is

w
ha
t

w
e

ar
e

m
is
si
ng
, in m
y

op
in
io
n .

<E
O
S
>

<p
ad
>

Th
e

La
w

w
ill
ne
ve
r

be pe
rfe
ct

, bu
t

its ap
pl
ic
at
io
n

sh
ou
ld

be ju
st

- th
is

is w
ha
t

w
e
ar
e

m
is
si
ng

, in m
y

op
in
io
n

. <E
O
S
>

<p
ad
>

Th
e

La
w
w
ill

ne
ve
r

be
pe
rfe
ct ,
bu
t
its

ap
pl
ic
at
io
n

sh
ou
ld be ju
st -

th
is is

w
ha
t

w
e

ar
e

m
is
si
ng
, in m
y

op
in
io
n .

<E
O
S
>

<p
ad
>

Figure 5: Many of the attention heads exhibit behaviour that seems related to the structure of the
sentence. We give two such examples above, from two different heads from the encoder self-attention
at layer 5 of 6. The heads clearly learned to perform different tasks.

15

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L. and Polosukhin, I., 2017. Attention Is All You Need.

Sebastian Raschka STAT 453: Intro to Deep Learning 62

1. Sequence Generation with RNNs

2. Character RNN in PyTorch

3. RNNs with Attention

4. Attention is All We Need

 4.1. Basic Form of Self-Attention

 4.2. Self-Attention & Scaled Dot-Product Attention

 4.3. Multi-Head Attention

5. Transformer Models

 5.1. The Transformer Architecture

 5.2. Some Popular Transformer Models: BERT, GPT, and BART

6. Transformer in PyTorch

Using Attention Without the RNN
-- Self-Attention Mechanism & Transformers

Sebastian Raschka STAT 453: Intro to Deep Learning 63

Figure 1: The Transformer - model architecture.

3.1 Encoder and Decoder Stacks

Encoder: The encoder is composed of a stack of N = 6 identical layers. Each layer has two
sub-layers. The first is a multi-head self-attention mechanism, and the second is a simple, position-
wise fully connected feed-forward network. We employ a residual connection [11] around each of
the two sub-layers, followed by layer normalization [1]. That is, the output of each sub-layer is
LayerNorm(x + Sublayer(x)), where Sublayer(x) is the function implemented by the sub-layer
itself. To facilitate these residual connections, all sub-layers in the model, as well as the embedding
layers, produce outputs of dimension dmodel = 512.

Decoder: The decoder is also composed of a stack of N = 6 identical layers. In addition to the two
sub-layers in each encoder layer, the decoder inserts a third sub-layer, which performs multi-head
attention over the output of the encoder stack. Similar to the encoder, we employ residual connections
around each of the sub-layers, followed by layer normalization. We also modify the self-attention
sub-layer in the decoder stack to prevent positions from attending to subsequent positions. This
masking, combined with fact that the output embeddings are offset by one position, ensures that the
predictions for position i can depend only on the known outputs at positions less than i.

3.2 Attention

An attention function can be described as mapping a query and a set of key-value pairs to an output,
where the query, keys, values, and output are all vectors. The output is computed as a weighted sum
of the values, where the weight assigned to each value is computed by a compatibility function of the
query with the corresponding key.

3

Recap

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J.,
Jones, L., Gomez, A.N., Kaiser, L. and Polosukhin, I.,
2017. Attention Is All You Need.

Sebastian Raschka STAT 453: Intro to Deep Learning 64

1. Self-attention for encoding long-range dependencies 

2. Self-supervision for leveraging large unlabeled datasets

The Two Keys to Success Behind Transformers

Sebastian Raschka STAT 453: Intro to Deep Learning 65

1. Pre-training on large unlabeled datasets  
 (self-supervised learning) 

2. Training for downstream-tasks on labeled data 
 (supervised learning)

a) fine-tuning approach

b) feature-based approach

Transformer Training Approach

Sebastian Raschka STAT 453: Intro to Deep Learning 66

5.2 Some Popular Transformer Models: BERT, GPT, and BART

• 5.2.2 GPT-v1: Generative Pre-Trained Transformer

• 5.2.3 BERT: Bidirectional Encoder Representations from Transformers

• 5.2.4 GPT-v2: Language Models are Unsupervised Multitask Learners

• 5.2.5 GPT-v3: Language Models are Few-Shot Learners

• 5.2.6 BART: Combining Bidirectional and Auto-Regressive Transformers

• 5.2.7: Closing Words -- The Recent Growth of Language Transformers

Sebastian Raschka STAT 453: Intro to Deep Learning 67

5.2.2 GPT-v1:  

Generative Pre-Trained Transformer 

 5.2 Some Popular Transformer Models: BERT, GPT, and BART

Sebastian Raschka STAT 453: Intro to Deep Learning 68

GPT (Generative Pre-trained Transformer)

• Developed by OpenAI

• Unidirectional: trained to predict next word in a sentence

GPT (110 million parameters)

Radford, A., Narasimhan, K., Salimans, T., & Sutskever, I. (2018). Improving language understanding by
generative pre-training. https://cdn.openai.com/research-covers/language-unsupervised/
language_understanding_paper.pdf

GPT-2 1.5 billion parameters) 
Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., & Sutskever, I. (2019). Language models are unsupervised
multitask learners. OpenAI blog, 1(8), 9. 
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf

GPT-3 (175 billion parameters) 
Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., ... & Amodei, D. (2020). Language
models are few-shot learners. arXiv preprint arXiv:2005.14165. https://arxiv.org/abs/2005.14165

https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://arxiv.org/abs/2005.14165

Sebastian Raschka STAT 453: Intro to Deep Learning 69

GPT-v1 Key Concepts

• Bottleneck: Lack of labeled data

• 2-step training process ("semi-supervised")

1. Generative pre-training (on unlabeled data); unsupervised/"self-supervised" learning

2. Discriminative fine-tuning (on labeled data), supervised learning

• Pre-training on large BookCorpus dataset (7000 books)

• Based on decoder architecture from original Transformer ("Attention Is All You Need")

Sebastian Raschka STAT 453: Intro to Deep Learning 70

Figure 1: (left) Transformer architecture and training objectives used in this work. (right) Input
transformations for fine-tuning on different tasks. We convert all structured inputs into token
sequences to be processed by our pre-trained model, followed by a linear+softmax layer.

3.3 Task-specific input transformations

For some tasks, like text classification, we can directly fine-tune our model as described above.
Certain other tasks, like question answering or textual entailment, have structured inputs such as
ordered sentence pairs, or triplets of document, question, and answers. Since our pre-trained model
was trained on contiguous sequences of text, we require some modifications to apply it to these tasks.
Previous work proposed learning task specific architectures on top of transferred representations [44].
Such an approach re-introduces a significant amount of task-specific customization and does not
use transfer learning for these additional architectural components. Instead, we use a traversal-style
approach [52], where we convert structured inputs into an ordered sequence that our pre-trained
model can process. These input transformations allow us to avoid making extensive changes to the
architecture across tasks. We provide a brief description of these input transformations below and
Figure 1 provides a visual illustration. All transformations include adding randomly initialized start
and end tokens (hsi, hei).

Textual entailment For entailment tasks, we concatenate the premise p and hypothesis h token
sequences, with a delimiter token ($) in between.

Similarity For similarity tasks, there is no inherent ordering of the two sentences being compared.
To reflect this, we modify the input sequence to contain both possible sentence orderings (with a
delimiter in between) and process each independently to produce two sequence representations hm

l
which are added element-wise before being fed into the linear output layer.

Question Answering and Commonsense Reasoning For these tasks, we are given a context
document z, a question q, and a set of possible answers {ak}. We concatenate the document context
and question with each possible answer, adding a delimiter token in between to get [z; q; $; ak]. Each
of these sequences are processed independently with our model and then normalized via a softmax
layer to produce an output distribution over possible answers.

4 Experiments

4.1 Setup

Unsupervised pre-training We use the BooksCorpus dataset [71] for training the language model.
It contains over 7,000 unique unpublished books from a variety of genres including Adventure,
Fantasy, and Romance. Crucially, it contains long stretches of contiguous text, which allows the
generative model to learn to condition on long-range information. An alternative dataset, the 1B
Word Benchmark, which is used by a similar approach, ELMo [44], is approximately the same size

4

Radford, A., Narasimhan, K., Salimans, T., & Sutskever, I. (2018). Improving language understanding by generative pre-training.
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf

GPT-v1 Architecture and Downstream Tasks

https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf

Sebastian Raschka STAT 453: Intro to Deep Learning 71

Table 5: Analysis of various model ablations on different tasks. Avg. score is a unweighted average
of all the results. (mc= Mathews correlation, acc=Accuracy, pc=Pearson correlation)

Method Avg. Score CoLA SST2 MRPC STSB QQP MNLI QNLI RTE
(mc) (acc) (F1) (pc) (F1) (acc) (acc) (acc)

Transformer w/ aux LM (full) 74.7 45.4 91.3 82.3 82.0 70.3 81.8 88.1 56.0

Transformer w/o pre-training 59.9 18.9 84.0 79.4 30.9 65.5 75.7 71.2 53.8
Transformer w/o aux LM 75.0 47.9 92.0 84.9 83.2 69.8 81.1 86.9 54.4
LSTM w/ aux LM 69.1 30.3 90.5 83.2 71.8 68.1 73.7 81.1 54.6

attentional memory of the transformer assists in transfer compared to LSTMs. We designed a series
of heuristic solutions that use the underlying generative model to perform tasks without supervised
finetuning. We visualize the effectiveness of these heuristic solutions over the course of generative
pre-training in Fig 2(right). We observe the performance of these heuristics is stable and steadily
increases over training suggesting that generative pretraining supports the learning of a wide variety
of task relevant functionality. We also observe the LSTM exhibits higher variance in its zero-shot
performance suggesting that the inductive bias of the Transformer architecture assists in transfer.

For CoLA (linguistic acceptability), examples are scored as the average token log-probability the
generative model assigns and predictions are made by thresholding. For SST-2 (sentiment analysis),
we append the token very to each example and restrict the language model’s output distribution to only
the words positive and negative and guess the token it assigns higher probability to as the prediction.
For RACE (question answering), we pick the answer the generative model assigns the highest average
token log-probability when conditioned on the document and question. For DPRD [46] (winograd
schemas), we replace the definite pronoun with the two possible referrents and predict the resolution
that the generative model assigns higher average token log-probability to the rest of the sequence
after the substitution.

Ablation studies We perform three different ablation studies (Table 5). First, we examine the
performance of our method without the auxiliary LM objective during fine-tuning. We observe that
the auxiliary objective helps on the NLI tasks and QQP. Overall, the trend suggests that larger datasets
benefit from the auxiliary objective but smaller datasets do not. Second, we analyze the effect of the
Transformer by comparing it with a single layer 2048 unit LSTM using the same framework. We
observe a 5.6 average score drop when using the LSTM instead of the Transformer. The LSTM only
outperforms the Transformer on one dataset – MRPC. Finally, we also compare with our transformer
architecture directly trained on supervised target tasks, without pre-training. We observe that the lack
of pre-training hurts performance across all the tasks, resulting in a 14.8% decrease compared to our
full model.

6 Conclusion

We introduced a framework for achieving strong natural language understanding with a single
task-agnostic model through generative pre-training and discriminative fine-tuning. By pre-training
on a diverse corpus with long stretches of contiguous text our model acquires significant world
knowledge and ability to process long-range dependencies which are then successfully transferred to
solving discriminative tasks such as question answering, semantic similarity assessment, entailment
determination, and text classification, improving the state of the art on 9 of the 12 datasets we
study. Using unsupervised (pre-)training to boost performance on discriminative tasks has long
been an important goal of Machine Learning research. Our work suggests that achieving significant
performance gains is indeed possible, and offers hints as to what models (Transformers) and data sets
(text with long range dependencies) work best with this approach. We hope that this will help enable
new research into unsupervised learning, for both natural language understanding and other domains,
further improving our understanding of how and when unsupervised learning works.

References
[1] S. Arora, Y. Liang, and T. Ma. A simple but tough-to-beat baseline for sentence embeddings. 2016.

8

GPT-v1 Ablation Study

Sebastian Raschka STAT 453: Intro to Deep Learning 72

5.2.3 BERT: Bidirectional Encoder
Representations from Transformers

 5.2 Some Popular Transformer Models: BERT, GPT, and BART

Sebastian Raschka STAT 453: Intro to Deep Learning 73

BERT  
(Bidirectional Encoder Representations from Transformers)

Paper: Devlin J, Chang MW, Lee K, Toutanova K. BERT: Pre-training of deep
bidirectional transformers for language understanding. 
https://arxiv.org/abs/1810.04805

(Google Research, 2018)

• multi-layer bidirectional transformer encoder

• architecture almost identical to original transformer & GPT, except

• bidirectional masking (known as "Cloze" task, Taylor 1953*)

• next sentence prediction as additional pre-training task

* Wilson L Taylor. 1953. Cloze procedure: A new tool for measuring readability. Journalism Bulletin, 30(4):415–433.

https://arxiv.org/abs/1810.04805

Sebastian Raschka STAT 453: Intro to Deep Learning 74

[CLS] he likes play ##ing [SEP]my dog is cute [SEP]Input

E[CLS] Ehe Elikes Eplay E##ing E[SEP]Emy Edog Eis Ecute E[SEP]
Token
Embeddings

EA EB EB EB EB EBEA EA EA EA EA
Segment
Embeddings

E0 E6 E7 E8 E9 E10E1 E2 E3 E4 E5
Position
Embeddings

Figure 2: BERT input representation. The input embeddings are the sum of the token embeddings, the segmenta-
tion embeddings and the position embeddings.

The NSP task is closely related to representation-
learning objectives used in Jernite et al. (2017) and
Logeswaran and Lee (2018). However, in prior
work, only sentence embeddings are transferred to
down-stream tasks, where BERT transfers all pa-
rameters to initialize end-task model parameters.

Pre-training data The pre-training procedure
largely follows the existing literature on language
model pre-training. For the pre-training corpus we
use the BooksCorpus (800M words) (Zhu et al.,
2015) and English Wikipedia (2,500M words).
For Wikipedia we extract only the text passages
and ignore lists, tables, and headers. It is criti-
cal to use a document-level corpus rather than a
shuffled sentence-level corpus such as the Billion
Word Benchmark (Chelba et al., 2013) in order to
extract long contiguous sequences.

3.2 Fine-tuning BERT

Fine-tuning is straightforward since the self-
attention mechanism in the Transformer al-
lows BERT to model many downstream tasks—
whether they involve single text or text pairs—by
swapping out the appropriate inputs and outputs.
For applications involving text pairs, a common
pattern is to independently encode text pairs be-
fore applying bidirectional cross attention, such
as Parikh et al. (2016); Seo et al. (2017). BERT
instead uses the self-attention mechanism to unify
these two stages, as encoding a concatenated text
pair with self-attention effectively includes bidi-

rectional cross attention between two sentences.
For each task, we simply plug in the task-

specific inputs and outputs into BERT and fine-
tune all the parameters end-to-end. At the in-
put, sentence A and sentence B from pre-training
are analogous to (1) sentence pairs in paraphras-
ing, (2) hypothesis-premise pairs in entailment, (3)
question-passage pairs in question answering, and

(4) a degenerate text-? pair in text classification
or sequence tagging. At the output, the token rep-
resentations are fed into an output layer for token-
level tasks, such as sequence tagging or question
answering, and the [CLS] representation is fed
into an output layer for classification, such as en-
tailment or sentiment analysis.

Compared to pre-training, fine-tuning is rela-
tively inexpensive. All of the results in the pa-
per can be replicated in at most 1 hour on a sin-
gle Cloud TPU, or a few hours on a GPU, starting
from the exact same pre-trained model.7 We de-
scribe the task-specific details in the correspond-
ing subsections of Section 4. More details can be
found in Appendix A.5.

4 Experiments

In this section, we present BERT fine-tuning re-
sults on 11 NLP tasks.

4.1 GLUE

The General Language Understanding Evaluation
(GLUE) benchmark (Wang et al., 2018a) is a col-
lection of diverse natural language understanding
tasks. Detailed descriptions of GLUE datasets are
included in Appendix B.1.

To fine-tune on GLUE, we represent the input
sequence (for single sentence or sentence pairs)
as described in Section 3, and use the final hid-
den vector C 2 RH corresponding to the first
input token ([CLS]) as the aggregate representa-
tion. The only new parameters introduced during
fine-tuning are classification layer weights W 2
RK⇥H , where K is the number of labels. We com-
pute a standard classification loss with C and W ,
i.e., log(softmax(CW

T)).
7For example, the BERT SQuAD model can be trained in

around 30 minutes on a single Cloud TPU to achieve a Dev
F1 score of 91.0%.

8See (10) in https://gluebenchmark.com/faq.

Sentence separator tokenSpecial "classification" symbol

Token embeddings are WordPiece embeddings* with vocabulary size of 30,000

* Wu Y, Schuster M, Chen Z, Le QV, Norouzi M, Macherey W, Krikun M, Cao Y, Gao Q, Macherey K, Klingner J. Google's neural
machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:1609.08144. 2016 
https://arxiv.org/abs/1609.08144

BERT Inputs

https://arxiv.org/abs/1609.08144

Sebastian Raschka STAT 453: Intro to Deep Learning 75

BERT Pre-Training Tasks

Pre-training datasets
•BookCorpus (800 million words)

•Wikipedia (2500 million words)

Pre-training tasks
• Masked language model ("Cloze")

• Next sentence prediction

Sebastian Raschka STAT 453: Intro to Deep Learning 76

BERT Pre-Training Task #1

A quick brown fox jumps over the lazy dogInput sentence:

Masked Language Model

"Mark" 15% of the words

80%: replace with [MASK]

10%: replace with random word

(coffee)

10%: leave as is (fox)  
to mimick fine-tuning scenario

Sebastian Raschka STAT 453: Intro to Deep Learning 77

BERT Pre-Training Task #1

A quick brown fox jumps over the lazy dog

A quick brown [MASK] jumps over the lazy dog

Input sentence:

Randomly masked:

BERT

Possible classes

(all words)

zoo

ant
...

...
fox11%

...
0.01%

0.2%
...

Masked Language Model

Sebastian Raschka STAT 453: Intro to Deep Learning 78

BERT Pre-Training Task #2
Next Sentence Prediction

Input = [CLS] the man went to [MASK] store [SEP] he bought a gallon [MASK] milk [SEP]

Label = IsNext  
 
 

Input = [CLS] the man [MASK] to the store [SEP] penguin [MASK] are flight ##less birds [SEP]

Label = NotNext 

Balanced binary classification task (50% IsNext, 50% NotNext)

Sebastian Raschka STAT 453: Intro to Deep Learning 79

BERT BERT

E[CLS] E1 E[SEP]... EN E1’ ... EM’

C T1 T[SEP]... TN T1’ ... TM’

[CLS] Tok 1 [SEP]... Tok N Tok 1 ... TokM

Question Paragraph

Start/End Span

BERT

E[CLS] E1 E[SEP]... EN E1’ ... EM’

C T1 T[SEP]... TN T1’ ... TM’

[CLS] Tok 1 [SEP]... Tok N Tok 1 ... TokM

Masked Sentence A Masked Sentence B

Pre-training Fine-Tuning

NSP Mask LM Mask LM

Unlabeled Sentence A and B Pair

SQuAD

Question Answer Pair

NERMNLI

Figure 1: Overall pre-training and fine-tuning procedures for BERT. Apart from output layers, the same architec-
tures are used in both pre-training and fine-tuning. The same pre-trained model parameters are used to initialize
models for different down-stream tasks. During fine-tuning, all parameters are fine-tuned. [CLS] is a special
symbol added in front of every input example, and [SEP] is a special separator token (e.g. separating ques-
tions/answers).

ing and auto-encoder objectives have been used
for pre-training such models (Howard and Ruder,
2018; Radford et al., 2018; Dai and Le, 2015).

2.3 Transfer Learning from Supervised Data

There has also been work showing effective trans-
fer from supervised tasks with large datasets, such
as natural language inference (Conneau et al.,
2017) and machine translation (McCann et al.,
2017). Computer vision research has also demon-
strated the importance of transfer learning from
large pre-trained models, where an effective recipe
is to fine-tune models pre-trained with Ima-
geNet (Deng et al., 2009; Yosinski et al., 2014).

3 BERT

We introduce BERT and its detailed implementa-
tion in this section. There are two steps in our
framework: pre-training and fine-tuning. Dur-
ing pre-training, the model is trained on unlabeled
data over different pre-training tasks. For fine-
tuning, the BERT model is first initialized with
the pre-trained parameters, and all of the param-
eters are fine-tuned using labeled data from the
downstream tasks. Each downstream task has sep-
arate fine-tuned models, even though they are ini-
tialized with the same pre-trained parameters. The
question-answering example in Figure 1 will serve
as a running example for this section.

A distinctive feature of BERT is its unified ar-
chitecture across different tasks. There is mini-

mal difference between the pre-trained architec-
ture and the final downstream architecture.

Model Architecture BERT’s model architec-
ture is a multi-layer bidirectional Transformer en-
coder based on the original implementation de-
scribed in Vaswani et al. (2017) and released in
the tensor2tensor library.1 Because the use
of Transformers has become common and our im-
plementation is almost identical to the original,
we will omit an exhaustive background descrip-
tion of the model architecture and refer readers to
Vaswani et al. (2017) as well as excellent guides
such as “The Annotated Transformer.”2

In this work, we denote the number of layers
(i.e., Transformer blocks) as L, the hidden size as
H , and the number of self-attention heads as A.3

We primarily report results on two model sizes:
BERTBASE (L=12, H=768, A=12, Total Param-
eters=110M) and BERTLARGE (L=24, H=1024,
A=16, Total Parameters=340M).

BERTBASE was chosen to have the same model
size as OpenAI GPT for comparison purposes.
Critically, however, the BERT Transformer uses
bidirectional self-attention, while the GPT Trans-
former uses constrained self-attention where every
token can only attend to context to its left.4

1https://github.com/tensorflow/tensor2tensor
2http://nlp.seas.harvard.edu/2018/04/03/attention.html
3In all cases we set the feed-forward/filter size to be 4H ,

i.e., 3072 for the H = 768 and 4096 for the H = 1024.
4We note that in the literature the bidirectional Trans-

BERT Pre-Training & Downstream Tasks

Sebastian Raschka STAT 453: Intro to Deep Learning 80

1. Pre-training on large unlabeled datasets  
 (self-supervised learning) 

2. Training for downstream-tasks on labeled data 
 (supervised learning)

a) fine-tuning approach

b) feature-based approach 

(nowadays also called "fine-tuning")

Transformer Training Approach

Sebastian Raschka STAT 453: Intro to Deep Learning 81

BERT Pre-Training & Fine-Tuning Approach
• Add classification layer

• Train end-to-end on labeled dataset for downstream task 

(update ALL parameters)

Figure 1: The Transformer - model architecture.

3.1 Encoder and Decoder Stacks

Encoder: The encoder is composed of a stack of N = 6 identical layers. Each layer has two
sub-layers. The first is a multi-head self-attention mechanism, and the second is a simple, position-
wise fully connected feed-forward network. We employ a residual connection [11] around each of
the two sub-layers, followed by layer normalization [1]. That is, the output of each sub-layer is
LayerNorm(x + Sublayer(x)), where Sublayer(x) is the function implemented by the sub-layer
itself. To facilitate these residual connections, all sub-layers in the model, as well as the embedding
layers, produce outputs of dimension dmodel = 512.

Decoder: The decoder is also composed of a stack of N = 6 identical layers. In addition to the two
sub-layers in each encoder layer, the decoder inserts a third sub-layer, which performs multi-head
attention over the output of the encoder stack. Similar to the encoder, we employ residual connections
around each of the sub-layers, followed by layer normalization. We also modify the self-attention
sub-layer in the decoder stack to prevent positions from attending to subsequent positions. This
masking, combined with fact that the output embeddings are offset by one position, ensures that the
predictions for position i can depend only on the known outputs at positions less than i.

3.2 Attention

An attention function can be described as mapping a query and a set of key-value pairs to an output,
where the query, keys, values, and output are all vectors. The output is computed as a weighted sum
of the values, where the weight assigned to each value is computed by a compatibility function of the
query with the corresponding key.

3

Transformer  
Encoder

with 15% masking

Fully-connected layer (classification)

+ GELU + Norm

Softmax probas to words/labels

Sebastian Raschka STAT 453: Intro to Deep Learning 82

System MNLI-(m/mm) QQP QNLI SST-2 CoLA STS-B MRPC RTE Average

392k 363k 108k 67k 8.5k 5.7k 3.5k 2.5k -
Pre-OpenAI SOTA 80.6/80.1 66.1 82.3 93.2 35.0 81.0 86.0 61.7 74.0
BiLSTM+ELMo+Attn 76.4/76.1 64.8 79.8 90.4 36.0 73.3 84.9 56.8 71.0
OpenAI GPT 82.1/81.4 70.3 87.4 91.3 45.4 80.0 82.3 56.0 75.1
BERTBASE 84.6/83.4 71.2 90.5 93.5 52.1 85.8 88.9 66.4 79.6
BERTLARGE 86.7/85.9 72.1 92.7 94.9 60.5 86.5 89.3 70.1 82.1

Table 1: GLUE Test results, scored by the evaluation server (https://gluebenchmark.com/leaderboard).
The number below each task denotes the number of training examples. The “Average” column is slightly different
than the official GLUE score, since we exclude the problematic WNLI set.8 BERT and OpenAI GPT are single-
model, single task. F1 scores are reported for QQP and MRPC, Spearman correlations are reported for STS-B, and
accuracy scores are reported for the other tasks. We exclude entries that use BERT as one of their components.

We use a batch size of 32 and fine-tune for 3
epochs over the data for all GLUE tasks. For each
task, we selected the best fine-tuning learning rate
(among 5e-5, 4e-5, 3e-5, and 2e-5) on the Dev set.
Additionally, for BERTLARGE we found that fine-
tuning was sometimes unstable on small datasets,
so we ran several random restarts and selected the
best model on the Dev set. With random restarts,
we use the same pre-trained checkpoint but per-
form different fine-tuning data shuffling and clas-
sifier layer initialization.9

Results are presented in Table 1. Both
BERTBASE and BERTLARGE outperform all sys-
tems on all tasks by a substantial margin, obtaining
4.5% and 7.0% respective average accuracy im-
provement over the prior state of the art. Note that
BERTBASE and OpenAI GPT are nearly identical
in terms of model architecture apart from the at-
tention masking. For the largest and most widely
reported GLUE task, MNLI, BERT obtains a 4.6%
absolute accuracy improvement. On the official
GLUE leaderboard10, BERTLARGE obtains a score
of 80.5, compared to OpenAI GPT, which obtains
72.8 as of the date of writing.

We find that BERTLARGE significantly outper-
forms BERTBASE across all tasks, especially those
with very little training data. The effect of model
size is explored more thoroughly in Section 5.2.

4.2 SQuAD v1.1

The Stanford Question Answering Dataset
(SQuAD v1.1) is a collection of 100k crowd-
sourced question/answer pairs (Rajpurkar et al.,
2016). Given a question and a passage from

9The GLUE data set distribution does not include the Test
labels, and we only made a single GLUE evaluation server
submission for each of BERTBASE and BERTLARGE.

10https://gluebenchmark.com/leaderboard

Wikipedia containing the answer, the task is to
predict the answer text span in the passage.

As shown in Figure 1, in the question answer-
ing task, we represent the input question and pas-
sage as a single packed sequence, with the ques-
tion using the A embedding and the passage using
the B embedding. We only introduce a start vec-
tor S 2 RH and an end vector E 2 RH during
fine-tuning. The probability of word i being the
start of the answer span is computed as a dot prod-
uct between Ti and S followed by a softmax over
all of the words in the paragraph: Pi =

e
S·TiP
j e

S·Tj .

The analogous formula is used for the end of the
answer span. The score of a candidate span from
position i to position j is defined as S·Ti + E·Tj ,
and the maximum scoring span where j � i is
used as a prediction. The training objective is the
sum of the log-likelihoods of the correct start and
end positions. We fine-tune for 3 epochs with a
learning rate of 5e-5 and a batch size of 32.

Table 2 shows top leaderboard entries as well
as results from top published systems (Seo et al.,
2017; Clark and Gardner, 2018; Peters et al.,
2018a; Hu et al., 2018). The top results from the
SQuAD leaderboard do not have up-to-date public
system descriptions available,11 and are allowed to
use any public data when training their systems.
We therefore use modest data augmentation in
our system by first fine-tuning on TriviaQA (Joshi
et al., 2017) befor fine-tuning on SQuAD.

Our best performing system outperforms the top
leaderboard system by +1.5 F1 in ensembling and
+1.3 F1 as a single system. In fact, our single
BERT model outperforms the top ensemble sys-
tem in terms of F1 score. Without TriviaQA fine-

11QANet is described in Yu et al. (2018), but the system
has improved substantially after publication.

BERT vs GPT-v1 Performance

Sebastian Raschka STAT 453: Intro to Deep Learning 83

BERT Pre-Training & Feature-based Training
• Keep BERT frozen after pre-training

• Create BERT embeddings for labeled dataset for downstream task 
and train new model on these embeddings 
(in original paper,  
 2-layer biLSTM on embeddings from concatenated last 4 layers performed best)

BERT

Model

1) Download BERT  
pre-trained on large corpus 
(in self-supervised fashion) 

 

Embedding

2) Feature-based training ("fine-tuning")  
on target task 

(supervised learning)

One or more layers

Sebastian Raschka STAT 453: Intro to Deep Learning 84

mixed results on the downstream task impact of
increasing the pre-trained bi-LM size from two
to four layers and Melamud et al. (2016) men-
tioned in passing that increasing hidden dimen-
sion size from 200 to 600 helped, but increasing
further to 1,000 did not bring further improve-
ments. Both of these prior works used a feature-
based approach — we hypothesize that when the
model is fine-tuned directly on the downstream
tasks and uses only a very small number of ran-
domly initialized additional parameters, the task-
specific models can benefit from the larger, more
expressive pre-trained representations even when
downstream task data is very small.

5.3 Feature-based Approach with BERT

All of the BERT results presented so far have used
the fine-tuning approach, where a simple classifi-
cation layer is added to the pre-trained model, and
all parameters are jointly fine-tuned on a down-
stream task. However, the feature-based approach,
where fixed features are extracted from the pre-
trained model, has certain advantages. First, not
all tasks can be easily represented by a Trans-
former encoder architecture, and therefore require
a task-specific model architecture to be added.
Second, there are major computational benefits
to pre-compute an expensive representation of the
training data once and then run many experiments
with cheaper models on top of this representation.

In this section, we compare the two approaches
by applying BERT to the CoNLL-2003 Named
Entity Recognition (NER) task (Tjong Kim Sang
and De Meulder, 2003). In the input to BERT, we
use a case-preserving WordPiece model, and we
include the maximal document context provided
by the data. Following standard practice, we for-
mulate this as a tagging task but do not use a CRF

Hyperparams Dev Set Accuracy

#L #H #A LM (ppl) MNLI-m MRPC SST-2

3 768 12 5.84 77.9 79.8 88.4
6 768 3 5.24 80.6 82.2 90.7
6 768 12 4.68 81.9 84.8 91.3

12 768 12 3.99 84.4 86.7 92.9
12 1024 16 3.54 85.7 86.9 93.3
24 1024 16 3.23 86.6 87.8 93.7

Table 6: Ablation over BERT model size. #L = the
number of layers; #H = hidden size; #A = number of at-
tention heads. “LM (ppl)” is the masked LM perplexity
of held-out training data.

System Dev F1 Test F1

ELMo (Peters et al., 2018a) 95.7 92.2
CVT (Clark et al., 2018) - 92.6
CSE (Akbik et al., 2018) - 93.1

Fine-tuning approach
BERTLARGE 96.6 92.8
BERTBASE 96.4 92.4

Feature-based approach (BERTBASE)
Embeddings 91.0 -
Second-to-Last Hidden 95.6 -
Last Hidden 94.9 -
Weighted Sum Last Four Hidden 95.9 -
Concat Last Four Hidden 96.1 -
Weighted Sum All 12 Layers 95.5 -

Table 7: CoNLL-2003 Named Entity Recognition re-
sults. Hyperparameters were selected using the Dev
set. The reported Dev and Test scores are averaged over
5 random restarts using those hyperparameters.

layer in the output. We use the representation of
the first sub-token as the input to the token-level
classifier over the NER label set.

To ablate the fine-tuning approach, we apply the
feature-based approach by extracting the activa-
tions from one or more layers without fine-tuning
any parameters of BERT. These contextual em-
beddings are used as input to a randomly initial-
ized two-layer 768-dimensional BiLSTM before
the classification layer.

Results are presented in Table 7. BERTLARGE
performs competitively with state-of-the-art meth-
ods. The best performing method concatenates the
token representations from the top four hidden lay-
ers of the pre-trained Transformer, which is only
0.3 F1 behind fine-tuning the entire model. This
demonstrates that BERT is effective for both fine-
tuning and feature-based approaches.

6 Conclusion

Recent empirical improvements due to transfer
learning with language models have demonstrated
that rich, unsupervised pre-training is an integral
part of many language understanding systems. In
particular, these results enable even low-resource
tasks to benefit from deep unidirectional architec-
tures. Our major contribution is further general-
izing these findings to deep bidirectional architec-
tures, allowing the same pre-trained model to suc-
cessfully tackle a broad set of NLP tasks.

Sebastian Raschka STAT 453: Intro to Deep Learning 85

5.2.4 GPT-v2: 
Language Models are Unsupervised

Multitask Learners

 5.2 Some Popular Transformer Models: BERT, GPT, and BART

Sebastian Raschka STAT 453: Intro to Deep Learning 86

GPT (Generative Pre-trained Transformer)

• Developed by OpenAI

• Unidirectional: trained to predict next word in a sentence

GPT (110 million parameters)

Radford, A., Narasimhan, K., Salimans, T., & Sutskever, I. (2018). Improving language understanding by
generative pre-training. https://cdn.openai.com/research-covers/language-unsupervised/
language_understanding_paper.pdf

GPT-2 (1.5 billion parameters) 
Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., & Sutskever, I. (2019). Language models are unsupervised
multitask learners. OpenAI blog, 1(8), 9. 
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf

GPT-3 (175 billion parameters) 
Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., ... & Amodei, D. (2020). Language
models are few-shot learners. arXiv preprint arXiv:2005.14165. https://arxiv.org/abs/2005.14165

https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://arxiv.org/abs/2005.14165

Sebastian Raschka STAT 453: Intro to Deep Learning 87

Figure 1: (left) Transformer architecture and training objectives used in this work. (right) Input
transformations for fine-tuning on different tasks. We convert all structured inputs into token
sequences to be processed by our pre-trained model, followed by a linear+softmax layer.

3.3 Task-specific input transformations

For some tasks, like text classification, we can directly fine-tune our model as described above.
Certain other tasks, like question answering or textual entailment, have structured inputs such as
ordered sentence pairs, or triplets of document, question, and answers. Since our pre-trained model
was trained on contiguous sequences of text, we require some modifications to apply it to these tasks.
Previous work proposed learning task specific architectures on top of transferred representations [44].
Such an approach re-introduces a significant amount of task-specific customization and does not
use transfer learning for these additional architectural components. Instead, we use a traversal-style
approach [52], where we convert structured inputs into an ordered sequence that our pre-trained
model can process. These input transformations allow us to avoid making extensive changes to the
architecture across tasks. We provide a brief description of these input transformations below and
Figure 1 provides a visual illustration. All transformations include adding randomly initialized start
and end tokens (hsi, hei).

Textual entailment For entailment tasks, we concatenate the premise p and hypothesis h token
sequences, with a delimiter token ($) in between.

Similarity For similarity tasks, there is no inherent ordering of the two sentences being compared.
To reflect this, we modify the input sequence to contain both possible sentence orderings (with a
delimiter in between) and process each independently to produce two sequence representations hm

l
which are added element-wise before being fed into the linear output layer.

Question Answering and Commonsense Reasoning For these tasks, we are given a context
document z, a question q, and a set of possible answers {ak}. We concatenate the document context
and question with each possible answer, adding a delimiter token in between to get [z; q; $; ak]. Each
of these sequences are processed independently with our model and then normalized via a softmax
layer to produce an output distribution over possible answers.

4 Experiments

4.1 Setup

Unsupervised pre-training We use the BooksCorpus dataset [71] for training the language model.
It contains over 7,000 unique unpublished books from a variety of genres including Adventure,
Fantasy, and Romance. Crucially, it contains long stretches of contiguous text, which allows the
generative model to learn to condition on long-range information. An alternative dataset, the 1B
Word Benchmark, which is used by a similar approach, ELMo [44], is approximately the same size

4

Radford, A., Narasimhan, K., Salimans, T., & Sutskever, I. (2018). Improving language understanding by generative pre-training.
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf

GPT-v1 Architecture and Downstream Tasks

https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf

Sebastian Raschka STAT 453: Intro to Deep Learning 88

GPT-v2 Key Concepts

• Unidirectional like GPT-v1

• Compared to GPT-v1

• Larger model (the larger the better)

• Larger unlabeled dataset (the larger the better)

• No fine-tuning (use zero-shot transfer instead)

Sebastian Raschka STAT 453: Intro to Deep Learning 89

GPT-v2 Architecture

• Overall, similar to GPT-v1 (which is based on original Transformer decoder)

• Some small rearranging of layer norm and residual layers

• Increase vocabulary size from 30,000 -> 50,257

• Increase context size from 512 -> 1024 tokens

• Overall, 1.5 billion instead of 110 million parameters

Sebastian Raschka STAT 453: Intro to Deep Learning 90

GPT-v2 Training Dataset

• WebText (millions of webpages)

• Emphasized dataset quality

• Based on Reddit posts with more than 3 karma

• Get 45 million links to websites

• After preprocessing and cleaning: 8 million documents

• 40 Gb of text

Sebastian Raschka STAT 453: Intro to Deep Learning 91

Zero-Shot Task Transfer
In contrast to GPT-v1, no specific instruction / rearranging for specific tasks

https://huggingface.co/models?filter=zero-shot-classification

https://huggingface.co/models?filter=zero-shot-classification

Sebastian Raschka STAT 453: Intro to Deep Learning 92

Language Models are Unsupervised Multitask Learners

Figure 1. Zero-shot task performance of WebText LMs as a function of model size on many NLP tasks. Reading Comprehension results
are on CoQA (Reddy et al., 2018), translation on WMT-14 Fr-En (Artetxe et al., 2017), summarization on CNN and Daily Mail (See et al.,
2017), and Question Answering on Natural Questions (Kwiatkowski et al., 2019). Section 3 contains detailed descriptions of each result.

utilize a combination of pre-training and supervised fine-
tuning. This approach has a long history with a trend to-
wards more flexible forms of transfer. First, word vectors
were learned and used as inputs to task-specific architec-
tures (Mikolov et al., 2013) (Collobert et al., 2011), then
the contextual representations of recurrent networks were
transferred (Dai & Le, 2015) (Peters et al., 2018), and re-
cent work suggests that task-specific architectures are no
longer necessary and transferring many self-attention blocks
is sufficient (Radford et al., 2018) (Devlin et al., 2018).

These methods still require supervised training in order
to perform a task. When only minimal or no supervised
data is available, another line of work has demonstrated
the promise of language models to perform specific tasks,
such as commonsense reasoning (Schwartz et al., 2017) and
sentiment analysis (Radford et al., 2017).

In this paper, we connect these two lines of work and con-
tinue the trend of more general methods of transfer. We
demonstrate language models can perform down-stream
tasks in a zero-shot setting – without any parameter or archi-
tecture modification. We demonstrate this approach shows
potential by highlighting the ability of language models to
perform a wide range of tasks in a zero-shot setting. We
achieve promising, competitive, and state of the art results
depending on the task.

2. Approach

At the core of our approach is language modeling. Lan-
guage modeling is usually framed as unsupervised distri-
bution estimation from a set of examples (x1, x2, ..., xn)
each composed of variable length sequences of symbols
(s1, s2, ..., sn). Since language has a natural sequential or-
dering, it is common to factorize the joint probabilities over

symbols as the product of conditional probabilities (Jelinek
& Mercer, 1980) (Bengio et al., 2003):

p(x) =
nY

i=1

p(sn|s1, ..., sn�1) (1)

This approach allows for tractable sampling from and es-
timation of p(x) as well as any conditionals of the form
p(sn�k, ..., sn|s1, ..., sn�k�1). In recent years, there have
been significant improvements in the expressiveness of mod-
els that can compute these conditional probabilities, such as
self-attention architectures like the Transformer (Vaswani
et al., 2017).

Learning to perform a single task can be expressed in a
probabilistic framework as estimating a conditional distri-
bution p(output|input). Since a general system should be
able to perform many different tasks, even for the same
input, it should condition not only on the input but also
on the task to be performed. That is, it should model
p(output|input, task). This has been variously formalized
in multitask and meta-learning settings. Task conditioning
is often implemented at an architectural level, such as the
task specific encoders and decoders in (Kaiser et al., 2017)
or at an algorithmic level such as the inner and outer loop
optimization framework of MAML (Finn et al., 2017). But
as exemplified in McCann et al. (2018), language provides
a flexible way to specify tasks, inputs, and outputs all as a
sequence of symbols. For example, a translation training
example can be written as the sequence (translate to

french, english text, french text). Like-
wise, a reading comprehension training example can
be written as (answer the question, document,

question, answer). McCann et al. (2018) demon-
strated it was possible to train a single model, the MQAN,

Language Models are Unsupervised Multitask Learners

LAMBADA LAMBADA CBT-CN CBT-NE WikiText2 PTB enwik8 text8 WikiText103 1BW
(PPL) (ACC) (ACC) (ACC) (PPL) (PPL) (BPB) (BPC) (PPL) (PPL)

SOTA 99.8 59.23 85.7 82.3 39.14 46.54 0.99 1.08 18.3 21.8

117M 35.13 45.99 87.65 83.4 29.41 65.85 1.16 1.17 37.50 75.20
345M 15.60 55.48 92.35 87.1 22.76 47.33 1.01 1.06 26.37 55.72
762M 10.87 60.12 93.45 88.0 19.93 40.31 0.97 1.02 22.05 44.575
1542M 8.63 63.24 93.30 89.05 18.34 35.76 0.93 0.98 17.48 42.16

Table 3. Zero-shot results on many datasets. No training or fine-tuning was performed for any of these results. PTB and WikiText-2
results are from (Gong et al., 2018). CBT results are from (Bajgar et al., 2016). LAMBADA accuracy result is from (Hoang et al., 2018)
and LAMBADA perplexity result is from (Grave et al., 2016). Other results are from (Dai et al., 2019).

<UNK> which is extremely rare in WebText - occurring
only 26 times in 40 billion bytes. We report our main re-
sults in Table 3 using invertible de-tokenizers which remove
as many of these tokenization / pre-processing artifacts as
possible. Since these de-tokenizers are invertible, we can
still calculate the log probability of a dataset and they can
be thought of as a simple form of domain adaptation. We
observe gains of 2.5 to 5 perplexity for GPT-2 with these
de-tokenizers.

WebText LMs transfer well across domains and datasets,
improving the state of the art on 7 out of the 8 datasets in a
zero-shot setting. Large improvements are noticed on small
datasets such as Penn Treebank and WikiText-2 which have
only 1 to 2 million training tokens. Large improvements
are also noticed on datasets created to measure long-term
dependencies like LAMBADA (Paperno et al., 2016) and
the Children’s Book Test (Hill et al., 2015). Our model is
still significantly worse than prior work on the One Billion
Word Benchmark (Chelba et al., 2013). This is likely due
to a combination of it being both the largest dataset and
having some of the most destructive pre-processing - 1BW’s
sentence level shuffling removes all long-range structure.

3.2. Children’s Book Test

Figure 2. Performance on the Children’s Book Test as a function of
model capacity. Human performance are from Bajgar et al. (2016),
instead of the much lower estimates from the original paper.

The Children’s Book Test (CBT) (Hill et al., 2015) was
created to examine the performance of LMs on different cat-
egories of words: named entities, nouns, verbs, and preposi-
tions. Rather than reporting perplexity as an evaluation met-
ric, CBT reports accuracy on an automatically constructed
cloze test where the task is to predict which of 10 possible
choices for an omitted word is correct. Following the LM
approach introduced in the original paper, we compute the
probability of each choice and the rest of the sentence con-
ditioned on this choice according to the LM, and predict
the one with the highest probability. As seen in Figure 2
performance steadily improves as model size is increased
and closes the majority of the gap to human performance
on this test. Data overlap analysis showed one of the CBT
test set books, The Jungle Book by Rudyard Kipling, is in
WebText, so we report results on the validation set which
has no significant overlap. GPT-2 achieves new state of the
art results of 93.3% on common nouns and 89.1% on named
entities. A de-tokenizer was applied to remove PTB style
tokenization artifacts from CBT.

3.3. LAMBADA

The LAMBADA dataset (Paperno et al., 2016) tests the
ability of systems to model long-range dependencies in
text. The task is to predict the final word of sentences
which require at least 50 tokens of context for a human to
successfully predict. GPT-2 improves the state of the art
from 99.8 (Grave et al., 2016) to 8.6 perplexity and increases
the accuracy of LMs on this test from 19% (Dehghani et al.,
2018) to 52.66%. Investigating GPT-2’s errors showed most
predictions are valid continuations of the sentence, but are
not valid final words. This suggests that the LM is not
using the additional useful constraint that the word must be
the final of the sentence. Adding a stop-word filter as an
approximation to this further increases accuracy to 63.24%,
improving the overall state of the art on this task by 4%. The
previous state of the art (Hoang et al., 2018) used a different
restricted prediction setting where the outputs of the model
were constrained to only words that appeared in the context.
For GPT-2, this restriction is harmful rather than helpful

* bad 1BW performance probably due to sentence-level reshuffling in that dataset, so
larger, long-range contexts are lost

*

Sebastian Raschka STAT 453: Intro to Deep Learning 93

5.2.5 GPT-v3: 
Language Models are Few-Shot Learners

 5.2 Some Popular Transformer Models: BERT, GPT, and BART

Sebastian Raschka STAT 453: Intro to Deep Learning 94

GPT (Generative Pre-trained Transformer)

• Developed by OpenAI

• Unidirectional: trained to predict next word in a sentence

GPT (110 million parameters)

Radford, A., Narasimhan, K., Salimans, T., & Sutskever, I. (2018). Improving language understanding by
generative pre-training. https://cdn.openai.com/research-covers/language-unsupervised/
language_understanding_paper.pdf

GPT-2 1.5 billion parameters) 
Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., & Sutskever, I. (2019). Language models are unsupervised
multitask learners. OpenAI blog, 1(8), 9. 
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf

GPT-3 (175 billion parameters) 
Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., ... & Amodei, D. (2020). Language
models are few-shot learners. arXiv preprint arXiv:2005.14165. https://arxiv.org/abs/2005.14165

https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://arxiv.org/abs/2005.14165

Sebastian Raschka STAT 453: Intro to Deep Learning 95

GPT-v3 Architecture

• Overall, similar to GPT-v2

• 175 billion instead 1.5 billion parameters (more layers etc.)

• Double the context size (2048 instead of 1024)

• Larger word embeddings (12.8k instead of 1.6k)

• Attention pattern from Sparse Transformer*

*Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. Generating Long Sequences With Sparse Transformers, 2019.

Sebastian Raschka STAT 453: Intro to Deep Learning 96

GPT-v3 Training Datasets

Figure 2.2: Total compute used during training. Based on the analysis in Scaling Laws For Neural Language Models
[KMH+20] we train much larger models on many fewer tokens than is typical. As a consequence, although GPT-3 3B
is almost 10x larger than RoBERTa-Large (355M params), both models took roughly 50 petaflop/s-days of compute
during pre-training. Methodology for these calculations can be found in Appendix D.

Dataset
Quantity
(tokens)

Weight in
training mix

Epochs elapsed when
training for 300B tokens

Common Crawl (filtered) 410 billion 60% 0.44
WebText2 19 billion 22% 2.9
Books1 12 billion 8% 1.9
Books2 55 billion 8% 0.43
Wikipedia 3 billion 3% 3.4

Table 2.2: Datasets used to train GPT-3. “Weight in training mix” refers to the fraction of examples during training
that are drawn from a given dataset, which we intentionally do not make proportional to the size of the dataset. As a
result, when we train for 300 billion tokens, some datasets are seen up to 3.4 times during training while other datasets
are seen less than once.

A major methodological concern with language models pretrained on a broad swath of internet data, particularly large
models with the capacity to memorize vast amounts of content, is potential contamination of downstream tasks by
having their test or development sets inadvertently seen during pre-training. To reduce such contamination, we searched
for and attempted to remove any overlaps with the development and test sets of all benchmarks studied in this paper.
Unfortunately, a bug in the filtering caused us to ignore some overlaps, and due to the cost of training it was not feasible
to retrain the model. In Section 4 we characterize the impact of the remaining overlaps, and in future work we will
more aggressively remove data contamination.

2.3 Training Process

As found in [KMH+20, MKAT18], larger models can typically use a larger batch size, but require a smaller learning
rate. We measure the gradient noise scale during training and use it to guide our choice of batch size [MKAT18]. Table
2.1 shows the parameter settings we used. To train the larger models without running out of memory, we use a mixture
of model parallelism within each matrix multiply and model parallelism across the layers of the network. All models
were trained on V100 GPU’s on part of a high-bandwidth cluster provided by Microsoft. Details of the training process
and hyperparameter settings are described in Appendix B.

9

Sebastian Raschka STAT 453: Intro to Deep Learning 97

1 Introduction

Recent years have featured a trend towards pre-trained language representations in NLP systems, applied in increasingly
flexible and task-agnostic ways for downstream transfer. First, single-layer representations were learned using word
vectors [MCCD13, PSM14] and fed to task-specific architectures, then RNNs with multiple layers of representations
and contextual state were used to form stronger representations [DL15, MBXS17, PNZtY18] (though still applied to
task-specific architectures), and more recently pre-trained recurrent or transformer language models [VSP+17] have
been directly fine-tuned, entirely removing the need for task-specific architectures [RNSS18, DCLT18, HR18].

This last paradigm has led to substantial progress on many challenging NLP tasks such as reading comprehension,
question answering, textual entailment, and many others, and has continued to advance based on new architectures
and algorithms [RSR+19, LOG+19, YDY+19, LCG+19]. However, a major limitation to this approach is that while
the architecture is task-agnostic, there is still a need for task-specific datasets and task-specific fine-tuning: to achieve
strong performance on a desired task typically requires fine-tuning on a dataset of thousands to hundreds of thousands
of examples specific to that task. Removing this limitation would be desirable, for several reasons.

First, from a practical perspective, the need for a large dataset of labeled examples for every new task limits the
applicability of language models. There exists a very wide range of possible useful language tasks, encompassing
anything from correcting grammar, to generating examples of an abstract concept, to critiquing a short story. For many
of these tasks it is difficult to collect a large supervised training dataset, especially when the process must be repeated
for every new task.

Second, the potential to exploit spurious correlations in training data fundamentally grows with the expressiveness
of the model and the narrowness of the training distribution. This can create problems for the pre-training plus
fine-tuning paradigm, where models are designed to be large to absorb information during pre-training, but are then
fine-tuned on very narrow task distributions. For instance [HLW+20] observe that larger models do not necessarily
generalize better out-of-distribution. There is evidence that suggests that the generalization achieved under this paradigm
can be poor because the model is overly specific to the training distribution and does not generalize well outside it
[YdC+19, MPL19]. Thus, the performance of fine-tuned models on specific benchmarks, even when it is nominally at
human-level, may exaggerate actual performance on the underlying task [GSL+18, NK19].

Third, humans do not require large supervised datasets to learn most language tasks – a brief directive in natural
language (e.g. “please tell me if this sentence describes something happy or something sad”) or at most a tiny number
of demonstrations (e.g. “here are two examples of people acting brave; please give a third example of bravery”) is often

Figure 1.1: Language model meta-learning. During unsupervised pre-training, a language model develops a broad
set of skills and pattern recognition abilities. It then uses these abilities at inference time to rapidly adapt to or recognize
the desired task. We use the term “in-context learning” to describe the inner loop of this process, which occurs within
the forward-pass upon each sequence. The sequences in this diagram are not intended to be representative of the data a
model would see during pre-training, but are intended to show that there are sometimes repeated sub-tasks embedded
within a single sequence.

3

Implicit Task Learning  
(... While Learning to Predict the Next Word)

Sebastian Raschka STAT 453: Intro to Deep Learning 98

Figure 2.1: Zero-shot, one-shot and few-shot, contrasted with traditional fine-tuning. The panels above show
four methods for performing a task with a language model – fine-tuning is the traditional method, whereas zero-, one-,
and few-shot, which we study in this work, require the model to perform the task with only forward passes at test
time. We typically present the model with a few dozen examples in the few shot setting. Exact phrasings for all task
descriptions, examples and prompts can be found in Appendix G.

• Zero-Shot (0S) is the same as one-shot except that no demonstrations are allowed, and the model is only given
a natural language instruction describing the task. This method provides maximum convenience, potential for
robustness, and avoidance of spurious correlations (unless they occur very broadly across the large corpus of
pre-training data), but is also the most challenging setting. In some cases it may even be difficult for humans
to understand the format of the task without prior examples, so this setting is in some cases “unfairly hard”.
For example, if someone is asked to “make a table of world records for the 200m dash”, this request can be
ambiguous, as it may not be clear exactly what format the table should have or what should be included (and
even with careful clarification, understanding precisely what is desired can be difficult). Nevertheless, for at
least some settings zero-shot is closest to how humans perform tasks – for example, in the translation example
in Figure 2.1, a human would likely know what to do from just the text instruction.

Figure 2.1 shows the four methods using the example of translating English to French. In this paper we focus on
zero-shot, one-shot and few-shot, with the aim of comparing them not as competing alternatives, but as different
problem settings which offer a varying trade-off between performance on specific benchmarks and sample efficiency.
We especially highlight the few-shot results as many of them are only slightly behind state-of-the-art fine-tuned models.
Ultimately, however, one-shot, or even sometimes zero-shot, seem like the fairest comparisons to human performance,
and are important targets for future work.

Sections 2.1-2.3 below give details on our models, training data, and training process respectively. Section 2.4 discusses
the details of how we do few-shot, one-shot, and zero-shot evaluations.

7

Showing Examples vs Fine-Tuning

Sebastian Raschka STAT 453: Intro to Deep Learning 99

Some of the Many Results ...

Figure 3.3: On TriviaQA GPT3’s performance grows smoothly with model size, suggesting that language models
continue to absorb knowledge as their capacity increases. One-shot and few-shot performance make significant gains
over zero-shot behavior, matching and exceeding the performance of the SOTA fine-tuned open-domain model, RAG
[LPP+20]

and/or the style of their answers are out-of-distribution for GPT-3. Nevertheless, GPT-3 appears able to adapt to this
distribution, recovering strong performance in the few-shot setting.

On Natural Questions (NQs) GPT-3 achieves 14.6% in the zero-shot setting, 23.0% in the one-shot setting, and 29.9% in
the few-shot setting, compared to 36.6% for fine-tuned T5 11B+SSM. Similar to WebQS, the large gain from zero-shot
to few-shot may suggest a distribution shift, and may also explain the less competitive performance compared to
TriviaQA and WebQS. In particular, the questions in NQs tend towards very fine-grained knowledge on Wikipedia
specifically which could be testing the limits of GPT-3’s capacity and broad pretraining distribution.

Overall, on one of the three datasets GPT-3’s one-shot matches the open-domain fine-tuning SOTA. On the other two
datasets it approaches the performance of the closed-book SOTA despite not using fine-tuning. On all 3 datasets, we
find that performance scales very smoothly with model size (Figure 3.3 and Appendix H Figure H.7), possibly reflecting
the idea that model capacity translates directly to more ‘knowledge’ absorbed in the parameters of the model.

3.3 Translation

For GPT-2 a filter was used on a multilingual collection of documents to produce an English only dataset due to capacity
concerns. Even with this filtering GPT-2 showed some evidence of multilingual capability and performed non-trivially
when translating between French and English despite only training on 10 megabytes of remaining French text. Since we
increase the capacity by over two orders of magnitude from GPT-2 to GPT-3, we also expand the scope of the training
dataset to include more representation of other languages, though this remains an area for further improvement. As
discussed in 2.2 the majority of our data is derived from raw Common Crawl with only quality-based filtering. Although
GPT-3’s training data is still primarily English (93% by word count), it also includes 7% of text in other languages.
These languages are documented in the supplemental material. In order to better understand translation capability, we
also expand our analysis to include two additional commonly studied languages, German and Romanian.

Existing unsupervised machine translation approaches often combine pretraining on a pair of monolingual datasets
with back-translation [SHB15] to bridge the two languages in a controlled way. By contrast, GPT-3 learns from a
blend of training data that mixes many languages together in a natural way, combining them on a word, sentence,
and document level. GPT-3 also uses a single training objective which is not customized or designed for any task in
particular. However, our one / few-shot settings aren’t strictly comparable to prior unsupervised work since they make
use of a small amount of paired examples (1 or 64). This corresponds to up to a page or two of in-context training data.

Results are shown in Table 3.4. Zero-shot GPT-3, which only receives on a natural language description of the task,
still underperforms recent unsupervised NMT results. However, providing only a single example demonstration for

14

Sebastian Raschka STAT 453: Intro to Deep Learning 100

5.2.6 BART:  
Combining Bidirectional and Auto-

Regressive Transformers 

 5.2 Some Popular Transformer Models: BERT, GPT, and BART

Sebastian Raschka STAT 453: Intro to Deep Learning 101

BART: Combining Bidirectional and Auto-Regressive Transformers

Lewis, M., Liu, Y., Goyal, N., Ghazvininejad, M., Mohamed, A., Levy, O., Stoyanov, V., & Zettlemoyer, L. (2019). BART: Denoising Sequence-to-
Sequence Pre-training for Natural Language Generation, Translation, and Comprehension. http://arxiv.org/abs/1910.13461

BERT's bidirectional, autoencoder nature is ...

 + good for downstream tasks (e.g., classification) that require info about the whole
sequence

 - not so good for generation tasks where generated word should only depend on
previously generated words

GPT's unidirectional, autoregressive approach is ...

 + good for text generation

 - not so good for tasks that require info of whole sequence, e.g., classification

BART is the best of both worlds

Facebook AI's BART combines Google's BERT and OpenAI's GPT

http://arxiv.org/abs/1910.13461

Sebastian Raschka STAT 453: Intro to Deep Learning 102

Bidirectional
Encoder

A _ C _ E

B D

(a) BERT: Random tokens are replaced with masks, and
the document is encoded bidirectionally. Missing tokens
are predicted independently, so BERT cannot easily be
used for generation.

Autoregressive
Decoder

A B C D E

<s> A B C D
(b) GPT: Tokens are predicted auto-regressively, meaning
GPT can be used for generation. However words can only
condition on leftward context, so it cannot learn bidirec-
tional interactions.

Autoregressive
Decoder

Bidirectional
Encoder

A B C D E

A _ B _ E <s> A B C D
(c) BART: Inputs to the encoder need not be aligned with decoder outputs, allowing arbitary noise transformations. Here, a
document has been corrupted by replacing spans of text with mask symbols. The corrupted document (left) is encoded with
a bidirectional model, and then the likelihood of the original document (right) is calculated with an autoregressive decoder.
For fine-tuning, an uncorrupted document is input to both the encoder and decoder, and we use representations from the final
hidden state of the decoder.

Figure 1: A schematic comparison of BART with BERT (Devlin et al., 2019) and GPT (Radford et al., 2018).

English, by propagation through BART, thereby us-
ing BART as a pre-trained target-side language model.
This approach improves performance over a strong
back-translation MT baseline by 1.1 BLEU on the
WMT Romanian-English benchmark.

To better understand these effects, we also report
an ablation analysis that replicates other recently pro-
posed training objectives. This study allows us to care-
fully control for a number of factors, including data
and optimization parameters, which have been shown
to be as important for overall performance as the se-
lection of training objectives (Liu et al., 2019). We find
that BART exhibits the most consistently strong perfor-
mance across the full range of tasks we consider.

2 Model

BART is a denoising autoencoder that maps a corrupted
document to the original document it was derived from.
It is implemented as a sequence-to-sequence model
with a bidirectional encoder over corrupted text and a
left-to-right autoregressive decoder. For pre-training,
we optimize the negative log likelihood of the original
document.

2.1 Architecture

BART uses the standard sequence-to-sequence Trans-
former architecture from (Vaswani et al., 2017), ex-
cept, following GPT, that we modify ReLU activa-
tion functions to GeLUs (Hendrycks & Gimpel, 2016)
and initialise parameters from N (0, 0.02). For our
base model, we use 6 layers in the encoder and de-

coder, and for our large model we use 12 layers in
each. The architecture is closely related to that used in
BERT, with the following differences: (1) each layer of
the decoder additionally performs cross-attention over
the final hidden layer of the encoder (as in the trans-
former sequence-to-sequence model); and (2) BERT
uses an additional feed-forward network before word-
prediction, which BART does not. In total, BART con-
tains roughly 10% more parameters than the equiva-
lently sized BERT model.

2.2 Pre-training BART

BART is trained by corrupting documents and then op-
timizing a reconstruction loss—the cross-entropy be-
tween the decoder’s output and the original document.
Unlike existing denoising autoencoders, which are tai-
lored to specific noising schemes, BART allows us to
apply any type of document corruption. In the extreme
case, where all information about the source is lost,
BART is equivalent to a language model.

We experiment with several previously proposed and
novel transformations, but we believe there is a sig-
nificant potential for development of other new alter-
natives. The transformations we used are summarized
below, and examples are shown in Figure 2.

Token Masking Following BERT (Devlin et al.,
2019), random tokens are sampled and replaced with
[MASK] elements.

Token Deletion Random tokens are deleted from the
input. In contrast to token masking, the model must
decide which positions are missing inputs.

BART: BERT Encoder + GPT Decoder + Noise Transformations

Sebastian Raschka STAT 453: Intro to Deep Learning 103

Figure 1: The Transformer - model architecture.

3.1 Encoder and Decoder Stacks

Encoder: The encoder is composed of a stack of N = 6 identical layers. Each layer has two
sub-layers. The first is a multi-head self-attention mechanism, and the second is a simple, position-
wise fully connected feed-forward network. We employ a residual connection [11] around each of
the two sub-layers, followed by layer normalization [1]. That is, the output of each sub-layer is
LayerNorm(x + Sublayer(x)), where Sublayer(x) is the function implemented by the sub-layer
itself. To facilitate these residual connections, all sub-layers in the model, as well as the embedding
layers, produce outputs of dimension dmodel = 512.

Decoder: The decoder is also composed of a stack of N = 6 identical layers. In addition to the two
sub-layers in each encoder layer, the decoder inserts a third sub-layer, which performs multi-head
attention over the output of the encoder stack. Similar to the encoder, we employ residual connections
around each of the sub-layers, followed by layer normalization. We also modify the self-attention
sub-layer in the decoder stack to prevent positions from attending to subsequent positions. This
masking, combined with fact that the output embeddings are offset by one position, ensures that the
predictions for position i can depend only on the known outputs at positions less than i.

3.2 Attention

An attention function can be described as mapping a query and a set of key-value pairs to an output,
where the query, keys, values, and output are all vectors. The output is computed as a weighted sum
of the values, where the weight assigned to each value is computed by a compatibility function of the
query with the corresponding key.

3

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J.,
Jones, L., Gomez, A.N., Kaiser, L. and Polosukhin, I.,
2017. Attention Is All You Need.

Sebastian Raschka STAT 453: Intro to Deep Learning 104

A B C . D E .A . C . E . A _ . D _ E .

A _C . _ E . C . D E . A B
Document RotationToken Masking

Token Deletion Text Infilling

D E . A B C .
Sentence Permutation

Figure 2: Transformations for noising the input that we experiment with. These transformations can be composed.

Text Infilling A number of text spans are sampled,
with span lengths drawn from a Poisson distribution
(� = 3). Each span is replaced with a single [MASK]
token. 0-length spans correspond to the insertion of
[MASK] tokens. Text infilling is inspired by Span-
BERT (Joshi et al., 2019), but SpanBERT samples
span lengths from a different (clamped geometric) dis-
tribution, and replaces each span with a sequence of
[MASK] tokens of exactly the same length. Text infill-
ing teaches the model to predict how many tokens are
missing from a span.

Sentence Permutation A document is divided into
sentences based on full stops, and these sentences are
shuffled in a random order.

Document Rotation A token is chosen uniformly at
random, and the document is rotated so that it begins
with that token. This task trains the model to identify
the start of the document.

3 Fine-tuning BART

The representations produced by BART can be used in
several ways for downstream applications.

3.1 Sequence Classification Tasks

For sequence classification tasks, the same input is fed
into the encoder and decoder, and the final hidden state
of the final decoder token is fed into new multi-class
linear classifier. This approach is related to the CLS
token in BERT; however we add the additional token
to the end so that representation for the token in the
decoder can attend to decoder states from the complete
input (Figure 3a).

3.2 Token Classification Tasks

For token classification tasks, such as answer endpoint
classification for SQuAD, we feed the complete doc-
ument into the encoder and decoder, and use the top
hidden state of the decoder as a representation for each
word. This representation is used to classify the token.

3.3 Sequence Generation Tasks

Because BART has an autoregressive decoder, it can be
directly fine tuned for sequence generation tasks such
as abstractive question answering and summarization.
In both of these tasks, information is copied from the

input but manipulated, which is closely related to the
denoising pre-training objective. Here, the encoder in-
put is the input sequence, and the decoder generates
outputs autoregressively.

3.4 Machine Translation

We also explore using BART to improve machine trans-
lation decoders for translating into English. Previous
work Edunov et al. (2019) has shown that models can
be improved by incorporating pre-trained encoders, but
gains from using pre-trained language models in de-
coders have been limited. We show that it is possible
to use the entire BART model (both encoder and de-
coder) as a single pretrained decoder for machine trans-
lation, by adding a new set of encoder parameters that
are learned from bitext (see Figure 3b).

More precisely, we replace BART’s encoder embed-
ding layer with a new randomly initialized encoder.
The model is trained end-to-end, which trains the new
encoder to map foreign words into an input that BART
can de-noise to English. The new encoder can use a
separate vocabulary from the original BART model.

We train the source encoder in two steps, in both
cases backpropagating the cross-entropy loss from the
output of the BART model. In the first step, we freeze
most of BART parameters and only update the ran-
domly initialized source encoder, the BART positional
embeddings, and the self-attention input projection ma-
trix of BART’s encoder first layer. In the second step,
we train all model parameters for a small number of
iterations.

4 Comparing Pre-training Objectives

BART supports a much wider range of noising schemes
during pre-training than previous work. We compare a
range of options using base-size models (6 encoder and
6 decoder layers, with a hidden size of 768), evaluated
on a representative subset of the tasks we will consider
for the full large scale experiments in §5.

4.1 Comparison Objectives

While many pre-training objectives have been pro-
posed, fair comparisons between these have been dif-
ficult to perform, at least in part due to differences in
training data, training resources, architectural differ-
ences between models, and fine-tuning procedures. We

Noise Transformations in BART for Pre-Training on Unlabeled Data

Like a denoising autoencoder, it optimizes reconstruction loss

Sebastian Raschka STAT 453: Intro to Deep Learning 105

BART Performance Under Different Noise Transformations

Model SQuAD 1.1 MNLI ELI5 XSum ConvAI2 CNN/DM

F1 Acc PPL PPL PPL PPL

BERT Base (Devlin et al., 2019) 88.5 84.3 - - - -

Masked Language Model 90.0 83.5 24.77 7.87 12.59 7.06
Masked Seq2seq 87.0 82.1 23.40 6.80 11.43 6.19
Language Model 76.7 80.1 21.40 7.00 11.51 6.56
Permuted Language Model 89.1 83.7 24.03 7.69 12.23 6.96
Multitask Masked Language Model 89.2 82.4 23.73 7.50 12.39 6.74

BART Base
w/ Token Masking 90.4 84.1 25.05 7.08 11.73 6.10
w/ Token Deletion 90.4 84.1 24.61 6.90 11.46 5.87
w/ Text Infilling 90.8 84.0 24.26 6.61 11.05 5.83
w/ Document Rotation 77.2 75.3 53.69 17.14 19.87 10.59
w/ Sentence Shuffling 85.4 81.5 41.87 10.93 16.67 7.89
w/ Text Infilling + Sentence Shuffling 90.8 83.8 24.17 6.62 11.12 5.41

Table 1: Comparison of pre-training objectives. All models are of comparable size and are trained for 1M steps
on a combination of books and Wikipedia data. Entries in the bottom two blocks are trained on identical data
using the same code-base, and fine-tuned with the same procedures. Entries in the second block are inspired by
pre-training objectives proposed in previous work, but have been simplified to focus on evaluation objectives (see
§4.1). Performance varies considerably across tasks, but the BART models with text infilling demonstrate the most
consistently strong performance.

Performance of pre-training methods varies signifi-

cantly across tasks The effectiveness of pre-training
methods is highly dependent on the task. For exam-
ple, a simple language model achieves the best ELI5
performance, but the worst SQUAD results.

Token masking is crucial Pre-training objectives
based on rotating documents or permuting sentences
perform poorly in isolation. The successful methods
either use token deletion or masking, or self-attention
masks. Deletion appears to outperform masking on
generation tasks.

Left-to-right pre-training improves generation

The Masked Language Model and the Permuted
Language Model perform less well than others on
generation, and are the only models we consider that
do not include left-to-right auto-regressive language
modelling during pre-training.

Bidirectional encoders are crucial for SQuAD As
noted in previous work (Devlin et al., 2019), just
left-to-right decoder performs poorly on SQuAD, be-
cause future context is crucial in classification deci-
sions. However, BART achieves similar performance
with only half the number of bidirectional layers.

The pre-training objective is not the only important

factor Our Permuted Language Model performs less
well than XLNet (Yang et al., 2019). Some of this dif-
ference is likely due to not including other architectural
improvements, such as relative-position embeddings or
segment-level recurrence.

Pure language models perform best on ELI5 The
ELI5 dataset is an outlier, with much higher perplex-
ities than other tasks, and is the only generation task
where other models outperform BART. A pure lan-
guage model performs best, suggesting that BART is
less effective when the output is only loosely con-
strained by the input.

BART achieves the most consistently strong perfor-

mance. With the exception of ELI5, BART models
using text-infilling perform well on all tasks.

5 Large-scale Pre-training Experiments

Recent work has shown that downstream performance
can dramatically improve when pre-training is scaled
to large batch sizes (Yang et al., 2019; Liu et al., 2019)
and corpora. To test how well BART performs in this
regime, and to create a useful model for downstream
tasks, we trained BART using the same scale as the
RoBERTa model.

5.1 Experimental Setup

We pre-train a large model with 12 layers in each of the
encoder and decoder, and a hidden size of 1024. Fol-
lowing RoBERTa (Liu et al., 2019), we use a batch size
of 8000, and train the model for 500000 steps. Docu-
ments are tokenized with the same byte-pair encoding
as GPT-2 (Radford et al., 2019). Based on the results in
Section §4, we use a combination of text infilling and
sentence permutation. We mask 30% of tokens in each
document, and permute all sentences. Although sen-
tence permutation only shows significant additive gains

Sebastian Raschka STAT 453: Intro to Deep Learning 106

Pre-trained
Decoder

Pre-trained
Encoder

label

A B C D E <s> A B C D E
(a) To use BART for classification problems, the same
input is fed into the encoder and decoder, and the repre-
sentation from the final output is used.

Randomly
Initialized Encoder

 α β γ δ ε

Pre-trained
Decoder

Pre-trained
Encoder

A B C D E

<s> A B C D

(b) For machine translation, we learn a small additional
encoder that replaces the word embeddings in BART. The
new encoder can use a disjoint vocabulary.

Figure 3: Fine tuning BART for classification and translation.

re-implement strong pre-training approaches recently
proposed for discriminative and generation tasks. We
aim, as much as possible, to control for differences un-
related to the pre-training objective. However, we do
make minor changes to the learning rate and usage of
layer normalisation in order to improve performance
(tuning these separately for each objective). For refer-
ence, we compare our implementations with published
numbers from BERT, which was also trained for 1M
steps on a combination of books and Wikipedia data.
We compare the following approaches:

Language Model Similarly to GPT (Radford et al.,
2018), we train a left-to-right Transformer language
model. This model is equivalent to the BART decoder,
without cross-attention.

Permuted Language Model Based on XLNet (Yang
et al., 2019), we sample 1/6 of the tokens, and gener-
ate them in a random order autoregressively. For con-
sistency with other models, we do not implement the
relative positional embeddings or attention across seg-
ments from XLNet.

Masked Language Model Following BERT (Devlin
et al., 2019), we replace 15% of tokens with [MASK]
symbols, and train the model to independently predict
the original tokens.

Multitask Masked Language Model As in UniLM
(Dong et al., 2019), we train a Masked Language
Model with additional self-attention masks. Self at-
tention masks are chosen randomly in with the follow
proportions: 1/6 left-to-right, 1/6 right-to-left, 1/3 un-
masked, and 1/3 with the first 50% of tokens unmasked
and a left-to-right mask for the remainder.

Masked Seq-to-Seq Inspired by MASS (Song et al.,
2019), we mask a span containing 50% of tokens,
and train a sequence to sequence model to predict the
masked tokens.

For the Permuted LM, Masked LM and Multitask
Masked LM, we use two-stream attention (Yang et al.,
2019) to efficiently compute likelihoods of the output
part of the sequence (using a diagonal self-attention
mask on the output to predict words left-to-right).

We experiment with (1) treating the task as a stan-
dard sequence-to-sequence problem, where the source
input to the encoder and the target is the decoder out-
put, or (2) adding the source as prefix to the target in
the decoder, with a loss only on the target part of the
sequence. We find the former works better for BART
models, and the latter for other models.

To most directly compare our models on their ability
to model their fine-tuning objective (the log likelihood
of the human text), we report perplexity in Table 1.

4.2 Tasks

SQuAD (Rajpurkar et al., 2016)a an extractive ques-
tion answering task on Wikipedia paragraphs. Answers
are text spans extracted from a given document context.
Similar to BERT (Devlin et al., 2019), we use concate-
nated question and context as input to the encoder of
BART, and additionally pass them to the decoder. The
model includes classifiers to predict the start and end
indices of each token.

MNLI (Williams et al., 2017), a bitext classification
task to predict whether one sentence entails another.
The fine-tuned model concatenates the two sentences
with appended an EOS token, and passes them to both
the BART encoder and decoder. In contrast to BERT,
the representation of the EOS token is used to classify
the sentences relations.

ELI5 (Fan et al., 2019), a long-form abstractive ques-
tion answering dataset. Models generate answers con-
ditioned on the concatenation of a question and sup-
porting documents.

XSum (Narayan et al., 2018), a news summarization
dataset with highly abstractive summaries.

ConvAI2 (Dinan et al., 2019), a dialogue response
generation task, conditioned on context and a persona.

CNN/DM (Hermann et al., 2015), a news summa-
rization dataset. Summaries here are typically closely
related to source sentences.

4.3 Results

Results are shown in Table 1. Several trends are clear:

Fine-Tuning on Labeled Data

Sebastian Raschka STAT 453: Intro to Deep Learning 107

SQuAD 1.1 SQuAD 2.0 MNLI SST QQP QNLI STS-B RTE MRPC CoLA

EM/F1 EM/F1 m/mm Acc Acc Acc Acc Acc Acc Mcc

BERT 84.1/90.9 79.0/81.8 86.6/- 93.2 91.3 92.3 90.0 70.4 88.0 60.6
UniLM -/- 80.5/83.4 87.0/85.9 94.5 - 92.7 - 70.9 - 61.1
XLNet 89.0/94.5 86.1/88.8 89.8/- 95.6 91.8 93.9 91.8 83.8 89.2 63.6
RoBERTa 88.9/94.6 86.5/89.4 90.2/90.2 96.4 92.2 94.7 92.4 86.6 90.9 68.0

BART 88.8/94.6 86.1/89.2 89.9/90.1 96.6 92.5 94.9 91.2 87.0 90.4 62.8

Table 2: Results for large models on SQuAD and GLUE tasks. BART performs comparably to RoBERTa and
XLNet, suggesting that BART’s uni-directional decoder layers do not reduce performance on discriminative tasks.

CNN/DailyMail XSum

R1 R2 RL R1 R2 RL

Lead-3 40.42 17.62 36.67 16.30 1.60 11.95
PTGEN (See et al., 2017) 36.44 15.66 33.42 29.70 9.21 23.24
PTGEN+COV (See et al., 2017) 39.53 17.28 36.38 28.10 8.02 21.72
UniLM 43.33 20.21 40.51 - - -
BERTSUMABS (Liu & Lapata, 2019) 41.72 19.39 38.76 38.76 16.33 31.15
BERTSUMEXTABS (Liu & Lapata, 2019) 42.13 19.60 39.18 38.81 16.50 31.27

BART 44.16 21.28 40.90 45.14 22.27 37.25

Table 3: Results on two standard summarization datasets. BART outperforms previous work on summarization on
two tasks and all metrics, with gains of roughly 6 points on the more abstractive dataset.

on the CNN/DM summarization dataset, we hypothe-
sised that larger pre-trained models may be better able
to learn from this task. To help the model better fit the
data, we disabled dropout for the final 10% of training
steps. We use the same pre-training data as Liu et al.
(2019), consisting of 160Gb of news, books, stories,
and web text.

5.2 Discriminative Tasks

Table 2 compares the performance of BART with sev-
eral recent approaches on the well-studied SQuAD and
GLUE tasks (Warstadt et al., 2018; Socher et al., 2013;
Dolan & Brockett, 2005; Agirre et al., 2007; Williams
et al., 2018; Dagan et al., 2006; Levesque et al., 2011).

The most directly comparable baseline is RoBERTa,
which was pre-trained with the same resources, but
a different objective. Overall, BART performs simi-
larly, with only small differences between the models
on most tasks. suggesting that BART’s improvements
on generation tasks do not come at the expense of clas-
sification performance.

5.3 Generation Tasks

We also experiment with several text generation tasks.
BART is fine-tuned as a standard sequence-to-sequence
model from the input to the output text. During fine-
tuning we use a label smoothed cross entropy loss
(Pereyra et al., 2017), with the smoothing parameter
set to 0.1. During generation, we set beam size as 5,
remove duplicated trigrams in beam search, and tuned
the model with min-len, max-len, length penalty on the
validation set (Fan et al., 2017).

ConvAI2

Valid F1 Valid PPL

Seq2Seq + Attention 16.02 35.07
Best System 19.09 17.51
BART 20.72 11.85

Table 4: BART outperforms previous work on conver-
sational response generation. Perplexities are renor-
malized based on official tokenizer for ConvAI2.

Summarization To provide a comparison with the
state-of-the-art in summarization, we present results
on two summarization datasets, CNN/DailyMail and
XSum, which have distinct properties.

Summaries in the CNN/DailyMail tend to resemble
source sentences. Extractive models do well here, and
even the baseline of the first-three source sentences is
highly competitive. Nevertheless, BART outperforms
all existing work.

In contrast, XSum is highly abstractive, and extrac-
tive models perform poorly. BART outperforms the
best previous work, which leverages BERT, by roughly
6.0 points on all ROUGE metrics—representing a sig-
nificant advance in performance on this problem. Qual-
itatively, sample quality is high (see §6).

Dialogue We evaluate dialogue response generation
on CONVAI2 (Dinan et al., 2019), in which agents
must generate responses conditioned on both the pre-
vious context and a textually-specified persona. BART
outperforms previous work on two automated metrics.

BART Performance for Discriminative Tasks

Sebastian Raschka STAT 453: Intro to Deep Learning 108

BART Performance for Generative Tasks

SQuAD 1.1 SQuAD 2.0 MNLI SST QQP QNLI STS-B RTE MRPC CoLA

EM/F1 EM/F1 m/mm Acc Acc Acc Acc Acc Acc Mcc

BERT 84.1/90.9 79.0/81.8 86.6/- 93.2 91.3 92.3 90.0 70.4 88.0 60.6
UniLM -/- 80.5/83.4 87.0/85.9 94.5 - 92.7 - 70.9 - 61.1
XLNet 89.0/94.5 86.1/88.8 89.8/- 95.6 91.8 93.9 91.8 83.8 89.2 63.6
RoBERTa 88.9/94.6 86.5/89.4 90.2/90.2 96.4 92.2 94.7 92.4 86.6 90.9 68.0

BART 88.8/94.6 86.1/89.2 89.9/90.1 96.6 92.5 94.9 91.2 87.0 90.4 62.8

Table 2: Results for large models on SQuAD and GLUE tasks. BART performs comparably to RoBERTa and
XLNet, suggesting that BART’s uni-directional decoder layers do not reduce performance on discriminative tasks.

CNN/DailyMail XSum

R1 R2 RL R1 R2 RL

Lead-3 40.42 17.62 36.67 16.30 1.60 11.95
PTGEN (See et al., 2017) 36.44 15.66 33.42 29.70 9.21 23.24
PTGEN+COV (See et al., 2017) 39.53 17.28 36.38 28.10 8.02 21.72
UniLM 43.33 20.21 40.51 - - -
BERTSUMABS (Liu & Lapata, 2019) 41.72 19.39 38.76 38.76 16.33 31.15
BERTSUMEXTABS (Liu & Lapata, 2019) 42.13 19.60 39.18 38.81 16.50 31.27

BART 44.16 21.28 40.90 45.14 22.27 37.25

Table 3: Results on two standard summarization datasets. BART outperforms previous work on summarization on
two tasks and all metrics, with gains of roughly 6 points on the more abstractive dataset.

on the CNN/DM summarization dataset, we hypothe-
sised that larger pre-trained models may be better able
to learn from this task. To help the model better fit the
data, we disabled dropout for the final 10% of training
steps. We use the same pre-training data as Liu et al.
(2019), consisting of 160Gb of news, books, stories,
and web text.

5.2 Discriminative Tasks

Table 2 compares the performance of BART with sev-
eral recent approaches on the well-studied SQuAD and
GLUE tasks (Warstadt et al., 2018; Socher et al., 2013;
Dolan & Brockett, 2005; Agirre et al., 2007; Williams
et al., 2018; Dagan et al., 2006; Levesque et al., 2011).

The most directly comparable baseline is RoBERTa,
which was pre-trained with the same resources, but
a different objective. Overall, BART performs simi-
larly, with only small differences between the models
on most tasks. suggesting that BART’s improvements
on generation tasks do not come at the expense of clas-
sification performance.

5.3 Generation Tasks

We also experiment with several text generation tasks.
BART is fine-tuned as a standard sequence-to-sequence
model from the input to the output text. During fine-
tuning we use a label smoothed cross entropy loss
(Pereyra et al., 2017), with the smoothing parameter
set to 0.1. During generation, we set beam size as 5,
remove duplicated trigrams in beam search, and tuned
the model with min-len, max-len, length penalty on the
validation set (Fan et al., 2017).

ConvAI2

Valid F1 Valid PPL

Seq2Seq + Attention 16.02 35.07
Best System 19.09 17.51
BART 20.72 11.85

Table 4: BART outperforms previous work on conver-
sational response generation. Perplexities are renor-
malized based on official tokenizer for ConvAI2.

Summarization To provide a comparison with the
state-of-the-art in summarization, we present results
on two summarization datasets, CNN/DailyMail and
XSum, which have distinct properties.

Summaries in the CNN/DailyMail tend to resemble
source sentences. Extractive models do well here, and
even the baseline of the first-three source sentences is
highly competitive. Nevertheless, BART outperforms
all existing work.

In contrast, XSum is highly abstractive, and extrac-
tive models perform poorly. BART outperforms the
best previous work, which leverages BERT, by roughly
6.0 points on all ROUGE metrics—representing a sig-
nificant advance in performance on this problem. Qual-
itatively, sample quality is high (see §6).

Dialogue We evaluate dialogue response generation
on CONVAI2 (Dinan et al., 2019), in which agents
must generate responses conditioned on both the pre-
vious context and a textually-specified persona. BART
outperforms previous work on two automated metrics.

SQuAD 1.1 SQuAD 2.0 MNLI SST QQP QNLI STS-B RTE MRPC CoLA

EM/F1 EM/F1 m/mm Acc Acc Acc Acc Acc Acc Mcc

BERT 84.1/90.9 79.0/81.8 86.6/- 93.2 91.3 92.3 90.0 70.4 88.0 60.6
UniLM -/- 80.5/83.4 87.0/85.9 94.5 - 92.7 - 70.9 - 61.1
XLNet 89.0/94.5 86.1/88.8 89.8/- 95.6 91.8 93.9 91.8 83.8 89.2 63.6
RoBERTa 88.9/94.6 86.5/89.4 90.2/90.2 96.4 92.2 94.7 92.4 86.6 90.9 68.0

BART 88.8/94.6 86.1/89.2 89.9/90.1 96.6 92.5 94.9 91.2 87.0 90.4 62.8

Table 2: Results for large models on SQuAD and GLUE tasks. BART performs comparably to RoBERTa and
XLNet, suggesting that BART’s uni-directional decoder layers do not reduce performance on discriminative tasks.

CNN/DailyMail XSum

R1 R2 RL R1 R2 RL

Lead-3 40.42 17.62 36.67 16.30 1.60 11.95
PTGEN (See et al., 2017) 36.44 15.66 33.42 29.70 9.21 23.24
PTGEN+COV (See et al., 2017) 39.53 17.28 36.38 28.10 8.02 21.72
UniLM 43.33 20.21 40.51 - - -
BERTSUMABS (Liu & Lapata, 2019) 41.72 19.39 38.76 38.76 16.33 31.15
BERTSUMEXTABS (Liu & Lapata, 2019) 42.13 19.60 39.18 38.81 16.50 31.27

BART 44.16 21.28 40.90 45.14 22.27 37.25

Table 3: Results on two standard summarization datasets. BART outperforms previous work on summarization on
two tasks and all metrics, with gains of roughly 6 points on the more abstractive dataset.

on the CNN/DM summarization dataset, we hypothe-
sised that larger pre-trained models may be better able
to learn from this task. To help the model better fit the
data, we disabled dropout for the final 10% of training
steps. We use the same pre-training data as Liu et al.
(2019), consisting of 160Gb of news, books, stories,
and web text.

5.2 Discriminative Tasks

Table 2 compares the performance of BART with sev-
eral recent approaches on the well-studied SQuAD and
GLUE tasks (Warstadt et al., 2018; Socher et al., 2013;
Dolan & Brockett, 2005; Agirre et al., 2007; Williams
et al., 2018; Dagan et al., 2006; Levesque et al., 2011).

The most directly comparable baseline is RoBERTa,
which was pre-trained with the same resources, but
a different objective. Overall, BART performs simi-
larly, with only small differences between the models
on most tasks. suggesting that BART’s improvements
on generation tasks do not come at the expense of clas-
sification performance.

5.3 Generation Tasks

We also experiment with several text generation tasks.
BART is fine-tuned as a standard sequence-to-sequence
model from the input to the output text. During fine-
tuning we use a label smoothed cross entropy loss
(Pereyra et al., 2017), with the smoothing parameter
set to 0.1. During generation, we set beam size as 5,
remove duplicated trigrams in beam search, and tuned
the model with min-len, max-len, length penalty on the
validation set (Fan et al., 2017).

ConvAI2

Valid F1 Valid PPL

Seq2Seq + Attention 16.02 35.07
Best System 19.09 17.51
BART 20.72 11.85

Table 4: BART outperforms previous work on conver-
sational response generation. Perplexities are renor-
malized based on official tokenizer for ConvAI2.

Summarization To provide a comparison with the
state-of-the-art in summarization, we present results
on two summarization datasets, CNN/DailyMail and
XSum, which have distinct properties.

Summaries in the CNN/DailyMail tend to resemble
source sentences. Extractive models do well here, and
even the baseline of the first-three source sentences is
highly competitive. Nevertheless, BART outperforms
all existing work.

In contrast, XSum is highly abstractive, and extrac-
tive models perform poorly. BART outperforms the
best previous work, which leverages BERT, by roughly
6.0 points on all ROUGE metrics—representing a sig-
nificant advance in performance on this problem. Qual-
itatively, sample quality is high (see §6).

Dialogue We evaluate dialogue response generation
on CONVAI2 (Dinan et al., 2019), in which agents
must generate responses conditioned on both the pre-
vious context and a textually-specified persona. BART
outperforms previous work on two automated metrics.

ELI5

R1 R2 RL

Best Extractive 23.5 3.1 17.5
Language Model 27.8 4.7 23.1
Seq2Seq 28.3 5.1 22.8
Seq2Seq Multitask 28.9 5.4 23.1
BART 30.6 6.2 24.3

Table 5: BART achieves state-of-the-art results on
the challenging ELI5 abstractive question answering
dataset. Comparison models are from Fan et al. (2019).

RO-EN

Baseline 36.80
Fixed BART 36.29
Tuned BART 37.96

Table 6: The performance (BLEU) of baseline and
BART on WMT’16 RO-EN augmented with back-
translation data. BART improves over a strong back-
translation (BT) baseline by using monolingual English
pre-training.

Abstractive QA We use the recently proposed ELI5
dataset to test the model’s ability to generate long free-
form answers. We find BART outperforms the best pre-
vious work by 1.2 ROUGE-L, but the dataset remains
a challenging, because answers are only weakly speci-
fied by the question.

5.4 Translation

We also evaluated performance on WMT16 Romanian-
English, augmented with back-translation data
from Sennrich et al. (2016). We use a 6-layer
transformer source encoder to map Romanian into
a representation that BART is able to de-noise into
English, following the approach introduced in §3.4.
Experiment results are presented in Table 6. We
compare our results against a baseline Transformer
architecture (Vaswani et al., 2017) with Transformer-
large settings (the baseline row). We show the
performance of both steps of our model in the fixed
BART and tuned BART rows. For each row we
experiment on the original WMT16 Romanian-English
augmented with back-translation data. We use a
beam width of 5 and a length penalty of ↵ = 1.
Preliminary results suggested that our approach was
less effective without back-translation data, and prone
to overfitting—future work should explore additional
regularization techniques.

6 Qualitative Analysis

BART shows large improvements on summarization
metrics, of up to 6 points over the prior state-of-the-art.
To understand BART’s performance beyond automated
metrics, we analyse its generations qualitatively.

Table 7 shows example summaries generated by
BART. Examples are taken from WikiNews articles
published after the creation of the pre-training corpus,
to eliminate the possibility of the events described be-
ing present in the model’s training data. Following
Narayan et al. (2018), we remove the first sentence of
the article prior to summarizing it, so there is no easy
extractive summary of the document.

Unsurprisingly, model output is fluent and grammat-
ical English. However, model output is also highly ab-
stractive, with few phrases copied from the input. The
output is also generally factually accurate, and inte-
grates supporting evidence from across the input doc-
ument with background knowledge (for example, cor-
rectly completing names, or inferring that PG&E oper-
ates in California). In the first example, inferring that
fish are protecting reefs from global warming requires
non-trivial inference from the text. However, the claim
that the work was published in Science is not supported
by the source.

These samples demonstrate that the BART pretrain-
ing has learned a strong combination of natural lan-
guage understanding and generation.

7 Related Work

Early methods for pretraining were based on language
models. GPT (Radford et al., 2018) only models left-
ward context, which is problematic for some tasks.
ELMo (Peters et al., 2018) concatenates left-only and
right-only representations, but does not pre-train inter-
actions between these features. Radford et al. (2019)
demonstrated that very large language models can act
as unsupervised multitask models.

BERT (Devlin et al., 2019) introduced masked lan-
guage modelling, which allows pre-training to learn in-
teractions between left and right context words. Re-
cent work has shown that very strong performance can
be achieved by training for longer (Liu et al., 2019),
by tying parameters across layers (Lan et al., 2019),
and by masking spans instead of words (Joshi et al.,
2019). Predictions are not made auto-regressively, re-
ducing the effectiveness of BERT for generation tasks.

UniLM (Dong et al., 2019) fine-tunes BERT with an
ensemble of masks, some of which allow only leftward
context. Like BART, this allows UniLM to be used for
both generative and discriminative tasks. A difference
is that UniLM predictions are conditionally indepen-
dent, whereas BART’s are autoregressive. BART re-
duces the mismatch between pre-training and genera-
tion tasks, because the decoder is always trained on un-
corrupted context.

MASS (Song et al., 2019) is perhaps the most similar
model to BART. An input sequence where a contiguous
span of tokens is masked is mapped to a sequence con-
sisting of the missing tokens. MASS is less effective
for discriminative tasks, because disjoint sets of tokens
are fed into the encoder and decoder.

XL-Net (Yang et al., 2019) extends BERT by pre-

Sebastian Raschka STAT 453: Intro to Deep Learning 109

5.2.7: Closing Words  
-- The Recent Growth of Language

Transformers

 5.2 Some Popular Transformer Models: BERT, GPT, and BART

Sebastian Raschka STAT 453: Intro to Deep Learning 110

Transformer-XL:
• encoder-free, decoder-only model

• trained to predict next word in sentence

• uses hidden states to remember previous (512-token) text segment

• "Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context",  

Dai et al. 2019. https://arxiv.org/abs/1901.02860 

Longformer:
• instead of attention mechanism that scales quadratically, uses attention mechanism that

scales linearly with sequence length

• uses extremely long text segments (thousands of tokens); similar to RoBERTa

• "Longformer: The Long-Document Transformer", 

Beltagy et al. 2020. https://arxiv.org/abs/2004.05150

Transformers for Longer Sequences

https://arxiv.org/abs/1901.02860
https://arxiv.org/abs/2004.05150

Sebastian Raschka STAT 453: Intro to Deep Learning 111

Image Source: https://medium.com/huggingface/distilbert-8cf3380435b5

GPT-3  
(175 billion)

https://medium.com/huggingface/distilbert-8cf3380435b5

Sebastian Raschka STAT 453: Intro to Deep Learning 112

https://www.theverge.com/2021/3/29/22356180/openai-gpt-3-text-generation-words-day

https://www.theverge.com/2021/3/29/22356180/openai-gpt-3-text-generation-words-day

Sebastian Raschka STAT 453: Intro to Deep Learning 113

• $2.5k - $50k (110 million parameter model)

• $10k - $200k (340 million parameter model)

• $80k - $1.6m (1.5 billion parameter model)

Costs: Not for the faint
hearted

http://arxiv.org/abs/2004.08900

http://arxiv.org/abs/2004.08900

Sebastian Raschka STAT 453: Intro to Deep Learning 114

Reformer:
• dot-product attention is replaced with locality-sensitive hashing (LSH) attention

• this achieves attention with instead of memory cost 

Kitaev, N., Kaiser, Ł. and Levskaya, A., 2020. Reformer: The efficient transformer.
arXiv preprint arXiv:2001.04451. https://arxiv.org/abs/2001.04451  

ALBERT:
• 5x smaller size as BERT at same performance, due to compression via pruning

• Lan, Z., Chen, M., Goodman, S., Gimpel, K., Sharma, P. and Soricut, R., 2019.

Albert: A lite BERT for self-supervised learning of language representations. arXiv
preprint arXiv:1909.11942. https://arxiv.org/abs/1909.11942

O(nlog(n)) O(n2)

Transformers for Better Efficiency

https://arxiv.org/abs/2001.04451
https://arxiv.org/abs/1909.11942

Sebastian Raschka STAT 453: Intro to Deep Learning 115

1. Sequence Generation with RNNs

2. Character RNN in PyTorch

3. RNNs with Attention

4. Attention is All We Need

 4.1. Basic Form of Self-Attention

 4.2. Self-Attention & Scaled Dot-Product Attention

 4.3. Multi-Head Attention

5. Transformer Models

 5.1. The Transformer Architecture

 5.2. Some Popular Transformer Models: BERT, GPT, and BART

6. Transformer in PyTorch

