STAT 453: Introduction to Deep Learning and Generative Models

Sebastian Raschka
http://stat.wisc.edu/~sraschka/teaching

Lecture 19

RNNs and Transformers for
Sequence-to-Sequence Modeling

http://stat.wisc.edu/~sraschka/teaching

Lecture Topics

1. Sequence Generation with RNNs
2. Character RNN in PyTorch

3. RNNs with Attention

4. Attention is All We Need

5. Transformer Models

6. Transformer in PyTorch

Many-to-Many RNNs for Generating Text

1. Sequence Generation with RNNs
2. Character RNN in PyTorch

3. RNNs with Attention

4. Attention is All We Need

5. Transformer Models

6. Transformer in PyTorch

Sebastian Raschka STAT 458: Intro to Deep Learning

Different Types of Sequence Modeling Tasks

Previously, we built an
(Word-level) RNN classifier

CJC I

many-to-one

Figure: Sebastian Raschka, Vahid Mirjalili. Python
Machine Learning. 3rd Edition. Birmingham, UK: Packt
Publishing, 2019

many-to-many many-to-many

Figure based on:
The Unreasonable Effectiveness of Recurrent Neural Networks by Andrej Karpathy (http://karpathy.github.io/2015/05/21/rnn-effectiveness/)

many-to-many -to-many
"One |
"training” "generating new text"

Character RNN

Output layer

Hidden layer

Embedding layer

Inputs

Sebastian Raschka STAT 453: Intro to Deep Learning

At each time step
Softmax output (probability)
for each possible"next letter”

[l][I][l] For the next input,

ignore the prediction but use the
"correct" next letter from the dataset

many-to-many

"training”

To generate new text, now,
sample from the softmax
outputs and provide the letter
as input to the next time step

-'ma-n-y--to-many

‘one”
"generating new text"

To generate new text, now,
sample from the softmax
outputs and provide the letter
as input to the next time step

-ma-n-y-—to-many .
"one" Note that this approach

"generating new text"

works with both Word-
and Character-RNNs

Sebastian Raschka STAT 458: Intro to Deep Learning

Advantages and Disadvantages of
Character RNNs over Word RNNs

4+ Character embeddings (only 24 letters plus punctuation in English
language) require less memory compared to word embeddings

4+ Smaller output layers for the same reason as above
- Can create weird & nonsense words

- Worse at capturing long-distance dependencies

Implementing Character RNNs in PyTorch

1. Sequence Generation with RNNs
2. Character RNN in PyTorch

3. RNNs with Attention

4. Attention is All We Need

5. Transformer Models

6. Transformer in PyTorch

Sebastian Raschka STAT 458: Intro to Deep Learning

11

Examples:

>>>
>>>
>>>
>>>
>>>

LSTM Class

https://pytorch.org/docs/stable/generated/torch.nn.LSTM.html

Parameters

¢ input_size - The number of expected features in the input x

¢ hidden_size - The number of features in the hidden state h

¢ num_layers - Number of recurrent layers. E.g., setting num_layers=2 would mean stacking two
LSTMs together to form a stacked LSTM, with the second LSTM taking in outputs of the first LSTM
and computing the final results. Default: 1

e bias - If False, then the layer does not use bias weights b_ih and b_hh. Default: True

e batch_first - If True, then the input and output tensors are provided as (batch, seq, feature).
Default: False

e dropout - If non-zero, introduces a Dropout layer on the outputs of each LSTM layer except the last
layer, with dropout probability equal to dropout . Default: 0

e bidirectional - If True, becomes a bidirectional LSTM. Default: False

e proj_size - If > 0, will use LSTM with projections of corresponding size. Default: 0

rnn = nn.LSTM(10, 20, 2)

input = toxch.randn(5, 3, 10)

hO = torxch.randn(2, 3, 20)

cO = torxch.randn(2, 3, 20)

output, (hn, cn) = rnn(input, (hO, c0))

Sebastian Raschka STAT 458: Intro to Deep Learning

12

https://pytorch.org/docs/stable/generated/torch.nn.LSTM.html

LSTM Class

Examples:

>>> rnn = nn.LSTM(10, 20, 2)

>>> input = torxch.randn(5, 3, 10)

>>> hO = torch.randn(2, 3, 20)

>>> ¢c0 = torch.randn(2, 3, 20)

>>> output, (hn, cn) = rnn(input, (hO, cO))

output ‘
A A A A

depth | h(lw) h(zw)

B O R
(number of layers) 4 | |) e P
] h('”),c(“') h(w),C(W) |_’ “.‘{ h::; ,cf:) hslw),cfxw)

ho, co e e e e

1 () 1 (1 o M ‘ 1) (D
hg ,C:l » h[1 ,C(l)> Poron > hn-~l 'cn-I} ‘ hl(’l ,clt'x >
_(0) _‘iO) —‘iol _‘ﬁ())
L by L _|ha
) .(0)) (0) @ O ‘) .(0)
hl(\o ,c‘(‘o > h(l0 ’c(lo > > —P hn—l ’cn—l: ‘ ht(? ’CI(P >
I A A A A
X X2 Xn-1 Xp
input
> t

Image source: https://stackoverflow.com/questions/48302810/whats-the-difference-between-hidden-and-output-in-pytorch-Istm

Sebastian Raschka STAT 458: Intro to Deep Learning

https://stackoverflow.com/questions/48302810/whats-the-difference-between-hidden-and-output-in-pytorch-lstm

LSTMCell Class

https://pytorch.org/docs/stable/generated/torch.nn.LSTMCell.html

Inputs: input, (h_0, c_0)

¢ input of shape (batch, input_size): tensor containing input features

* h_0 of shape (batch, hidden_size): tensor containing the initial hidden state for each element in the
batch.

® c_0 of shape (batch, hidden_size): tensor containing the initial cell state for each element in the
batch.
If (h_o, c_o) is not provided, both h_0 and ¢_0 default to zero.

Outputs: (h_1,c_1)

e h_1 of shape (batch, hidden_size): tensor containing the next hidden state for each element in the
batch

e c_1 of shape (batch, hidden_size): tensor containing the next cell state for each element in the batch

Examples:

>>> rnn = nn.LSTMCell (10, 20) # (input_size, hidden_size)
>>> input = torxch.randn(2, 3, 10) # (time_steps, batch, input_size)
>>> hx = toxch.randn(3, 20) # (batch, hidden_size)
>>> ¢x = torch.randn(3, 20)
>>> output = []
>>> for i in range(input.size()[0]):
hx, c¢x = rnn(input[i], (hx, cx))
output.append(hx)
>>> output = torch.stack(output, dim=0)

Sebastian Raschka STAT 458: Intro to Deep Learning

14

https://pytorch.org/docs/stable/generated/torch.nn.LSTMCell.html

Examples:

>>> rnn

>>> output = []

>>> faq

LSTMCell Class

= nn.LSTMCell(10, 20) # (input_size, hidden_size)

>>> input = torch.randn(2, 3, 10) # (time_steps, batch, input_size)
>>> hx = torch.randn(3, 20) # (batch, hidden_size)
>>> c¢x = torch.randn(3, 20)

output.append

(hx,

cx))

>>> output = torch.stack(output, dim=0)

depth
(number of layers)

r o

(1)

(1)
hﬂ 9cﬂ »

‘ A

Image source: https://stackoverflow.com/questions/48302810/whats-the-difference-between-hidden-and-output-in-pytorch-Istm

Sebastian Raschka

STAT 458: Intro to Deep Learning

output ‘
A A
h®) w?) m:) b
e 172 P P B
| e P% W, [|
(1) (1 (1 1
e e ke he b
(¢)] (¢)]
h® N h, 'c“": hf,”,cf,” .
o ho b
by’ L L
) l
P —P hn—l ’cn—l; hf?),cf?) »
- A A T
X2 Xn-1 Xp
input
> t

15

https://stackoverflow.com/questions/48302810/whats-the-difference-between-hidden-and-output-in-pytorch-lstm

C JC JC

I N

many-to-many

Translation with a Sequence to Sequence Network and Attention
(English to French)

https://pytorch.org/tutorials/intermediate/seg2seq translation tutorial.html

Sebastian Raschka STAT 458: Intro to Deep Learning

16

https://pytorch.org/tutorials/intermediate/seq2seq_translation_tutorial.html

Dealing Better with Long Sequences by Outfitting
RNNs with an Attention Mechanism

3. RNNs with Attention

Many-to-Many Architecture for Language
Translation

Translated sentence

C JC JC

. JC JC

Input sentence

Translation with a Sequence to Sequence Network and Attention
(English to French)

https://pytorch.org/tutorials/intermediate/seg2seq translation tutorial.html

https://pytorch.org/tutorials/intermediate/seq2seq_translation_tutorial.html

Input: Today Is a great day

\4

Translation: ~ Heute ist ein groBartiger Tag

Input:

If you’ve ever studied a foreign language, you've
probably encountered a “false friend” at some point.

Translation: v

Wenn Sie jemals eine Fremdsprache gelernt
haben, sind Sie wahrscheinlich irgendwann auf
einen ,falschen Freund” gestofB3en.

Challenge in language
translation: memorize
whole input sentence In
one hidden state

\ JC I

G) N

many-to-many

Attention Mechanism

e Oiriginally developed for language translation:
Bahdanau, D., Cho, K., & Bengio, Y. (2014). Neural machine translation by jointly learning to align
and translate. https://arxiv.org/abs/1409.0473

"... allowing a model to automatically (soft-)search for
parts of a source sentence that are relevant to predicting
a target word ..."

Figure 2: The BLEU scores
of the generated translations
on the test set with respect

)
S
T

BLEU score

' | N Nl to the lengths of the sen-

10H — RNNsearch-50 ... I IR NI tences. The results are on

"traditional" """ RNNsearch-30 | ﬁ\\;"*";". the full test set which in-

SFT ™ 7 RANenc-50 - fovororees A AR cludes sentences having un-

encoder+decoder | RNINGHC'?’O l l l T known words to the models.
RNN % 10 20 30 40 50 60

Sentence length

https://arxiv.org/abs/1409.0473

Attention Mechanism

Assign attention weight to each word, to know how
much "attention” the model should pay to each word
(i.e., for each word, the network learns a "context")

Attention Mechanism

Originally developed for language translation:

Bahdanau, D., Cho, K., & Bengio, Y. (2014). Neural machine translation by jointly learning to align
and translate. https://arxiv.org/abs/1409.0473

Hidden state in a regular RNN

/ 1st translated word
(RNN #2) \yt-l Vi

Attentionweight — Qs

T T Bidirectional RNN
e lm e <k (RNN #1)
X X X3 Xt
/igure 1: The graphical illus-
_ tration of the proposed model
1st Input wo rd trying to generate the ¢-th tar-

get word y; given a source
sentence (1, Ta,...,TT).

https://arxiv.org/abs/1409.0473

RNN Attention Mechanism

where the context

V1 vector ¢, is defined
as

T T
1= Z a,; by
. me =1

Added attention T
(looks like a standard Cq
RNN but with context a
vectors as in-/output) 1,1 o 1,7-1
1,2
hy h, hr_

/N /N /N
Bidirectional RNN 20— hF,l hB,l hF,Z hB,2 o NET Mgp o —— AT

N/ N/ N

X1 X9 AT-1

Attention Mechanism

V1 Computing attention weights
1 Si-1
h / / - et’t/
SO — > Sl S !
T exp(e,)
C| Ar =
a ztle exp(e;)
a 1,71
1,2
hy hy h_s
/N /N /
Xo—> hp hp hpy hgo o Per- hgr «— X7
N/ N/ N/

X1 Xy AT-1

Attention Mechanism

Computing attention weights

4

S c 9

©
- Q)E o T A
9]

0 8-8m 0 S5 N T

v o QJLOGJU’C o o S S
C ODc 30 8O _ 5o @ —1
 © O W wC =n .t <A v —~~— —>€/
L' ht// t,t

zone

économique
européenne
a

été

signé

en

ao(t

1992

<end>

Figure: Bahdanau, D., Cho, K., & Bengio, Y. (2014). Neural machine
translation by jointly learning to align and translate.
https://arxiv.org/abs/1409.0473

https://arxiv.org/abs/1409.0473

Using Attention Without the RNN
-- Self-Attention Mechanism & Transformers

4. Attention is All We Need

4.1. Basic Form of Self-Attention

"Original" (RNN) Attention Mechanism

Where the context vector ¢, is defined as

T
5\71 €1 = 2 a, hy
=1
T And the attention weights are
S() — 5 — - exp(e,)
R A
T thzl exp(e,)
¢
a1 a1,7-1 Si_1
| W) 5 - — Cr
hy hy h_s t
aleN /N /!
Xo—> hg) hg; hpy hgo .. her-y hgry «— Xp
N/ N/ N/

X1 Xy AT-1

Getting rid of the sequential parts ...

* No recurrence, no convolution

j} Transformers rely on the self-attention
mechanism, processing the whole sequence
all at once (no sequential processing like in
RNNSs)

« Transformers also have encoder & decoder
parts. But instead of using LSTMs, they use

C1 stacked attention layers
a1 a1,7-1
a1,2
hl h2 hT—l
2N /7N 2N
Xo—> I T hpotiga .. T hpry «— X7
Y4 N/ N/

X1 Xy AT-1

Attention Is All You Need

Ashish Vaswani* Noam Shazeer” Niki Parmar™ Jakob Uszkoreit*
Google Brain Google Brain Google Research Google Research
avaswani@google.com noam@google.com nikip@google.com usz@google.com

Llion Jones* Aidan N. Gomez* T Lukasz Kaiser*
Google Research University of Toronto Google Brain
1llion@google.com aidan@cs.toronto.edu lukaszkaiser@google.com

Ilia Polosukhin* *
illia.polosukhin@gmail.com

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin, I. (2017).
Attention is all you need. In Advances in neural information processing systems (pp. 5998-6008).

https://arxiv.org/abs/1706.03762

https://arxiv.org/abs/1706.03762

Since ~2018, Transformers have been
growing in popularity ... and size

10000
MegatronLM
8300
o
7500
NVIDIA.
5000
@ W
OpenAlI UNIVERSITY.of WASHINGTON
2500 GPT-2 Grover-
. Mega
.o 1500 1500
. @ i3 Google Al klz _ ﬁ ﬂ
Transformer @ ® .
kiz OpenAl s
BERT-Large MF-DNN XLM 665 RoBERTa
ELMo GPT 340 330 340 355 DistilBERT
94 110 XLNEI Y 66
Ps ® Carnegie ¢ o
08 e %e!lon . S
TS
@ @ @ 9 niversity 9
(LQ q/Q 09 ‘“9 q/Q
RS \ S N
N 3\\)\\ & S 30\\\
s 0(}0 e

Image Source: https://medium.com/huggingface/distilbert-8cf3380435b5

Sebastian Raschka

STAT 453: Intro to Deep Learning 32

https://medium.com/huggingface/distilbert-8cf3380435b5

Self-Attention Mechanism
-- Very Basic Form

Main procedure:

1) Derive attention weights: similarity between current input and all
other inputs (next slide)

2) Normalize weights via softmax (next slide)

3) Compute attention value from normalized weights and
corresponding inputs (below)

Self-attention as weighted sum:

/Al- = Z;ai]-3<

output corresponding to the i-th input weight based on similarity between
current input x; and all other inputs

Self-Attention Mechanism
-- Very Basic Form

Self-attention as weighted sum:

/

output corresponding to the i-th input

How to compute the
attention weights?

Sebastian Raschka

.. = xi X-

A = Z a;X;

T
J=0 \
weight based on similarity between
current input x; and all other inputs

here as simple dot product:

T

I J

repeat this for all inputs j € {1...T}, then normalize

€;;
j=1...T

a; = = softmax <
T
Z].: | €Xp (e,-j)

STAT 453: Intro to Deep Learning

34

Self-Attention Mechanism

-- Very Basic Form

current input Step 1: Compute Step 2: Normalize Step 3: Compute
dot products using softmax output
R Ai,5 = T
s [- A= X
I | softmax [CCZ-T xJ]jE[l,T] l . j?j
Input sequence: b j=1
n N
:\\\ \\\~ T N N
Xy o X Xy 40
"\“ \\\hL T |
X “‘ N X, X» d; 1 Ai
x |“ ‘\\\' xTx | a.)
3 \ B A TS ‘ iz g »
° \ ° °
: \ : : context-aware embedding vector
\\\ re— _I_
X X, X7 4r

original embedding

Image source: Raschka & Mirjalili 2019. Python Machine Learning, 3rd edition

Sebastian Raschka STAT 458: Intro to Deep Learning

35

Using Attention Without the RNN
-- Self-Attention Mechanism & Transformers

4. Attention is All We Need

4.2. Self-Attention & Scaled Dot-Product Attention

Self-Attention Mechanism

-- Very Basic Form

self-attention: relating different positions within a single sequence
(vs. between in- and output sequences)

current input Step 1: Compute Step.z. Normalize Step 3: Compute
dot products using softmax output
- Ai,5 = I
* [o A= X
! — softmax [CEZT mJ]jE[l,T] l . g7
Input sequence: b J=1
n N
M e T 2Ty T 4.
X1 “.‘\ 7 xi X1 ai’o
‘I‘\‘A _L T .
%) l“ kY g xi X5 az,l Ai
X RN x. x ‘a.z
: v ES -y LT
° \ ° °
: \ : : context-aware embedding
\\\ vector of input X;
. | T]
original embeddings

Image source: Raschka & Mirjalili 2019. Python Machine Learning, 3rd edition

Sebastian Raschka STAT 458: Intro to Deep Learning

37

Attention Is All You Need

Ashish Vaswani* Noam Shazeer* Niki Parmar* Jakob Uszkoreit*
Google Brain Google Brain Google Research Google Research
avaswani@google.com noam@google.com nikip@google.com usz@google.com

Llion Jones* Aidan N. Gomez* Lukasz Kaiser*
Google Research University of Toronto Google Brain
1llion@google.com aidan@cs.toronto.edu lukaszkaiser@google.com

Ilia Polosukhin* *
illia.polosukhin®@gmail.com

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin, I. (2017).
Attention is all you need. In Advances in neural information processing systems (pp. 5998-6008).

https://arxiv.org/abs/1706.03762

https://arxiv.org/abs/1706.03762

Self-Attention Mechanism

* Previous basic version did not involve any learnable parameters,
so not very useful for learning a language model

* We are now adding 3 trainable weight matrices that are multiplied
with the input sequence embeddings (x;'s)

query = Wix.
key — kal
value = W'x,

trainable weight matrices

w4 q,
k
< WE kl
wY l 4] !

Self-Attention Mechanism

As in the simplified version, this is a

“ / form of similarity or compatibility
>l measure

4 ("multiplicative attention")

For each query, model learns

ﬂ:urrent input ("query")

q9,
< E k,
WV

which key-value input it should
attend to

Wi dr

k T
%VE k; [9. .]
w? | Vr !

exp
Z exp g
dr

softmax

w-) \ \

weighted sum: values weighted by
attention weight (softmax score)

Self-Attention Mechanism

d, = embedding size (original transformer = 512)
where d, = dj,

d,xd I xd,

d, X d, I xd, d, = d, as well

o @iif |

(\Q
X
/ A
ﬁ/l\ﬁ
= | = N

eXP(Qz ' k'T)

w4 4,) A(g,, K, V) = 2 [-
Wk T i=1 Z eXp(Q2 k)
Xy k2 [q9 . k2 j I I
wY 12) » A,
Q) softmax
I x1
q arr

In original transformer,

e WWk qar = |
X
Tééiézj o I xd,

Self-Attention Mechanism

’ W @ _ W 4 T
current input ("query” \ . ’ :
W9 _y [+ 5 W, k, o . K = - —e
k
X % K, q k, » =
wY

" current input ("query")

w4 9

| | we L/) =
T Wk
W & - x) <Wk k, & .k - - -
WV

> A “
» " current input ("query") A
== q qT
. q q e w4 v qr T ka q k T
W v T T X7 W, k D . kr = kr —
WV v |
wY Vr r ‘)

Al
Attention score matrix: A — A,
Aj

Self-Attention Mechanism (Scaled Dot Product Attention)

d, = embedding size . {(}j
Q [RTqu
1T = input sequence size % . |
N (. &) . p RTXdk
) %j‘ / V RTde
()

=
=/\F
/1N
BEE
o)

"attention matrix"
x € R o < \
W @ | . A, T X T
| I

- < / max (257
xr kr % . kp =

) — A(QO,K,V) = softmax \/Ek V

w4 q, I I

Wy qr . k1 '

<Fm (ma \ Txd.

W, "attention-based
& %kD - embedding"

=
FIFS

Scaled Dot-Product Attention

Scaled Dot-Product Attention

OK'
A(Q,K,V) = softmax Vv A
\/d MatMul
SoftMax
)
[Mask (opt.)
)
Scale
To ensure that the dot-products Manul
between query and and key don't } }
grow too large (and softmax Q K V
gradient become too small) for
large d; Jones, L. Gomez, AN Kaiser, L. and Polosuktin. 1.

2017. Attention Is All You Need.

Using Attention Without the RNN
-- Self-Attention Mechanism & Transformers

4. Attention is All We Need

4.3. Multi-Head Attention

Self-Attention Mechanism (Scaled Dot Product Attention)

d, = embedding size . {(}j
Q [RTqu
1T = input sequence size % . |
N (. &) . p RTXdk
) %j‘ / V RTde
()

=
=/\F
/1N
BEE
o)

"attention matrix"
x € R o < \
W @ | . A, T X T
| I

- < / max (257
xr kr % . kp =

) — A(QO,K,V) = softmax \/Ek V

w4 q, I I

Wy qr . k1 '

<Fm (ma \ Txd.

W, "attention-based
& %kD - embedding"

=
FIFS

Multi-Head Attention

Apply self-attention multiple times in parallel (similar to multiple kernels for
channels in CNNSs)

For each head (self-attention layer), use different W9, WX, W" , then
concatenate the results, A ;,

8 attention heads in the original transformer, i.e.,

q k % q k %
W(l)’ W(l)’ W(l) te W(8)’ W(S)’ W(8)

Allows attending to different parts in the sequence differently

Scaled Dot-Product Attention Multi-Head Attention

{
T Linear
MatMul 1
1 1 Concat
SoftMax AT
+ f
Mask (opt) Scaled Dot-Product o
A Attention
Scale AN 1 N
4 (¢ ¢
MatMul Linear J Linear J Linear J
LA [[[
V K Q

Figure 2: (left) Scaled Dot-Product Attention. (right) Multi-Head Attention consists of several
attention layers running in parallel.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L. and Polosukhin, I., 2017. Attention Is All You Need.

< >

Multi-Head Attention

{ A
Linear f \
Concat One attention head:
i
Scaled Dot-Product
Attention

tl il [l

4 £ 4
Linear J Linear J Linear J

LT

V K Q

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit,
J., Jones, L., Gomez, A.N., Kaiser, L. and

.
A(Q,K,V) = softmax (QK)V

b N,

Concatenated:

d, -h

v

Polosukhin, I., 2017. Attention Is All You Need.

Input sequence dim.
in original transformer: T

T'xXd,=Tx512 v

and
d,=512/h =64

d In transformer paper:
< 0 > dv X h = do

/ A N
Multi-Head Attention T d O
) v U J
Linear n >

A
T e R
Concat
i
Scaled Dot-Product
Attention

il [l ti

£ L £
Linear ,] Linear J Linear _]

]

V K Q

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit,
J., Jones, L., Gomez, A.N., Kaiser, L. and
Polosukhin, 1., 2017. Attention Is All You Need.

Using Attention Without the RNN
-- Self-Attention Mechanism & Transformers

5. Transformer Models

5.1. The Transformer Architecture

Attention Is All You Need

Ashish Vaswani* Noam Shazeer” Niki Parmar™ Jakob Uszkoreit*
Google Brain Google Brain Google Research Google Research
avaswani@google.com noam@google.com nikip@google.com usz@google.com

Llion Jones* Aidan N. Gomez* T Lukasz Kaiser*
Google Research University of Toronto Google Brain
1llion@google.com aidan@cs.toronto.edu lukaszkaiser@google.com

Ilia Polosukhin* *
illia.polosukhin@gmail.com

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin, I. (2017).
Attention is all you need. In Advances in neural information processing systems (pp. 5998-6008).

https://arxiv.org/abs/1706.03762

https://arxiv.org/abs/1706.03762

Scaled Dot-Product Attention

Step 5
Step 4

Step 3

Step 2
Step 1

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L.,
Gomez, A.N., Kaiser, L. and Polosukhin, I., 2017. Attention Is All

You Need.

Step 2:

Scaled Dot-Product Attention Recap

|

MatMul
/) A

SoftMax

)

Mask (opt.)

)

Scale

t

MatMul

t 1

Q KV

~

embedding of

1st word, x;

KT

+ L’

(] 1

Step 3:

Ld

key of 1st word, k,

relationship between

'1 st & 2nd word

X
_-'.Q__ i I OV
< de >
Wk
X
I X
|
< dk >
WY
X
|
X
|

Step 4: softmax (QKT/\/@> =

1st value of 1st & 2nd word

Step 5:

[}
1
.

|

-

-

V

query of 1st
Word, ql

- -

-
-
-
-
-
"
-

attentions of 1st word
with first value of words

~
A

M o= = =1

-
-

)

Linear

A

Concat

AN

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L.,
Gomez, A.N., Kaiser, L. and Polosukhin, I., 2017. Attention Is All
You Need.

Multi-Head Attention

Scaled Dot-Product

.

Kl r"t!“

Kz Linear

Attention
(18 pl
c c
Linear J Linear L]

=

Ny

Sebastian Raschka

STAT 453: Intro to Deep Learning

54

Multilayer Perceptrons
Multi-Head Attention .
¢ o
Linear ," | Outout
A 'l ‘I u pu
L /% Probabittes Generates output words one
, FE S | at atime
p , | Softmax |
Scaled Dot-Product J& h "' \
Attention N K [Linear]
At[u[u[', " yy
C C G ' ‘| N\
Linear P Linear P Linear L] . | /Add & Norm J<—~
Y r Y N . Feed
'.' ' Forward
Vv K Q /e |
e ':' B | Add & Norm Je~
— ".Qdd &_Norm) Multi-Head
Feed Attention
Forward | 7 7 7 N x
L A
[Add & Norm Je=~
Nx I
~—>{ Add & Norm] Msked
Multi-Head Multi-Head
Attention Attention
- At At 4
___________ O J L —)
T _) Positional A Positional
SKip connection Encoding @‘? ?‘@ Encoding
- I Input Output
(“ke In ReSNet) Embedding Embedding
x + layer(x) [[
Inputs Outputs
(shifted right)

Figure 1: The Transformer - model architecture. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J.,

Jones, L., Gomez, A.N., Kaiser, L. and Polosukhin, I.,
2017. Attention Is All You Need.

Output
Probabilities

(.)
Add & Norm

Feed
Forward

, w d
——21| Decoder (6x)
Feed Attention
Encoder (6x) rovard | | | 7 N
— |
Nix Add & Norm
f—>| Add & Norm | Masked
Multi-Head Multi-Head
Attention Attention
LN 1
] J \ —
Positional Positional
Encod & & |
ncoding Encoding
Input Output
Embedding Embedding
Inputs Outputs
(shifted right)

Figure 1: The Transformer - model architecture.

Same structure and
dimension in/out
for each encoder &
decoder

Sebastian Raschka

Positional
Encoding

STAT 458: Intro to Deep Learning

Encoder

Encoder

Encoder

Encoder

Encoder

Encoder

-

Input
Embedding

I

Inputs

Output
Probabilities
| Softmax
| Linear

Decoder
Decoder
Decoder
Decoder
Decoder

Decoder

ad

g

Output
Embedding

I

Outputs
(shifted right)

Positional
Encoding

56

Masked Multi-head attention

Output
Probabilities =TT Tt m e L

t

| Softmax |}

| Linear |}

A

()
| Add & Norm Je=~

Feed
Forward
s ~\ | Add & Norm J<~
—EEELE) Multi-Head
Feed Attention
Forward | 7 7 7 N x
A -
_ .-
(Add&Nom Je~| ~ .--°7"
N x I "
~—>| Add & Norm] vasked) || .-
Multi-Head Multi-Head | |.}--~
Attention Attention |~
At L
O J &,
Positional Positional
: & T .
Encoding %@ Encoding
Input Output
Embedding Embedding
Inputs Outputs

(shifted right)

Figure 1: The Transformer - model architecture.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J.,
Jones, L., Gomez, A.N., Kaiser, L. and Polosukhin, I.,
2017. Attention Is All You Need.

Word probabilities

Mask subsequent sequence
elements. l.e., only allow to
attend to positions up to and
iIncluding the current position.
This is achieved by setting

softmax values for those to — o0

------ Predicts next word

(Ich mag j (V|a.h|ghest softmgx probgblllty)
~ in autoregressive fashion
)
| Softmax |
. Li
latent embedding ([e output size
of whole input (Add & Norm J~ " = word dictionary size
RREN Feed
T Z For6v$ard
r
s 1 ~ | Add & Norm <~
RN Mult-Head
Feed Attention
For\j\{ard D D) N x
. I— (ATT & Norm) mask to prevent "cheating”
* | —~{Add & Norm] oo
Multi-Head -
e)| (L 7 (Lien ——
L L
———— J ——)
Positional Positional
Encoding ®_@ & Encoding
Input Output
Embedding Embedding

|

(I like plants) (Ich mag

iInput

|

Pflanzen)

whole output (known during training)

Add Positional Encoding Matrix to Word Embedding Matrix

Output
Probabilities
e Scaled dot-product and fully-connected layer)
: : : | Softmax |}
are permutation invariant
| Linear |}

e Sinusoidal positional encoding is a vector of — N
small values (constants) added to the (LAdd 8 Norm =~

d =512
embeddings ’ . Forward
. . r—— r
* As a result, same word will have slightly e N | | CAdd& Norm J~
different embeddings depending on where LAddENom) Muit-Head

Feed Attention
Forward

they occur in the sentence

A

 S—

d 2 2 N
F}

[Add & Norm Je=

pos

PE,, ;= sin
10000

2ildmodel

POS

|

PEpos,2i+1 = COS (

10000(2i+1)/dm0de| >

N> | —["Add & Norm)

\.

Multi-Head
Attention

t

\.

J

Positional
Encoding

de=512/

o

Input
Embedding

T

Inputs

Masked
Multi-Head
Attention

\

At 2

J

J

fas

Output
Embedding

T

Outputs

(shifted right)

Positional
Encoding

Figure 1: The Transformer - model architecture.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J.,
Jones, L., Gomez, A.N., Kaiser, L. and Polosukhin, I.,
2017. Attention Is All You Need.

Output

Probafbilities
| Softmax |}
| Linear |}

T Layer Normalization
&)
| Add &lNorm J—

Feed
Forward
e A | Add & Norm‘]<
> Add & Norm Multi-Head
Feed Attention

A
.

Forward | 7 7 7 N x
——

[Add & Norm Je=~

N x
~—>| Add & Norm J Macked
Multi-Head Multi-Head
Attention Attention
A 1) u‘_} Image source: Wu, Y., & He, K. (2018). Group normalization. ECCV
O J ¥,
Positional o g Positional
Encoding Encoding
Input Output
Embedding Embedding
Inputs Outputs

(shifted right)

Figure 1: The Transformer - model architecture.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J.,
Jones, L., Gomez, A.N., Kaiser, L. and Polosukhin, I.,
2017. Attention Is All You Need.

Sebastian Raschka STAT 458: Intro to Deep Learning

[
je;
-—
(o))
C k3] S o c o B A
) 3] = 3 = [= O T
2E2=2,5% S g2 o © o 2 o0 2 >3 WS
= * 0 o .2
F 1 2 c o & .o ocwno3, £ 9 =220 & £ E 0 vV V
’ T, - - r J
» ‘ y Y - .
0o = = OB "85 N SO O e O O O - C c " A A
c g = %o a*= 90635 9 35 = EBE.E g O n T
= 3 = s 3 = 0= S @ E O ©
c [y < k%) = a
o O » Q w v
= = o Y]
o
©
[
je)
-
)
o IS S o c S (’,\)/\
o o) = 5 - D = o
2?0:50)% 5 S8 ¢ @ @ S o002 >"cE>_ o S
— * 0 o 2
F 1T c oo .o ocnwno3d, S92 220 & . E OO0 .V oV
A \ I‘
\
© = S 0B "~ O C T OH ' OO OO ~C >C A A
_c%'_m_oo 22 o055 o 48 e - 8 3 £ ¢ = £ O Nn T
I—_|;>) o = 3 3. < < © = 2 24
c 8 L » = Q w v
= = o) v
o
©

Figure 5: Many of the attention heads exhibit behaviour that seems related to the structure of the
sentence. We give two such examples above, from two different heads from the encoder self-attention
at layer 5 of 6. The heads clearly learned to perform different tasks.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, L. and Polosukhin, I., 2017. Attention Is All You Need.

Sebastian Raschka STAT 453: Intro to Deep Learning 61

Using Attention Without the RNN
-- Self-Attention Mechanism & Transformers

5. Transformer Models

5.2. Some Popular Transformer Models: BERT, GPT, and BART

Recap

Output
Probabilities
| Softmax |
| Linear |}
A
&)
| Add & Norm Je~
Feed
Forward
r \ | Add & Norm Je~
—(Add &.Norm) Multi-Head
Feed Attention
Forward | 7 7 7 N x
A []ﬂ
Add & Norm
Nx I
~—>| Add & Norm] Macked
Multi-Head Multi-Head
Attention Attention
_ J g _J)
Positional A i Positional
Encoding ?_® Encoding
Input Output
Embedding Embedding
Inputs Outputs

(shifted right)

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J.,
Jones, L., Gomez, A.N., Kaiser, L. and Polosukhin, .,

Figure 1: The Transformer - model architecture. 55,772 = 10 Vou Need.

The Two Keys to Success Behind Transformers

1. Self-attention for encoding long-range dependencies

2. Self-supervision for leveraging large unlabeled datasets

Transformer Training Approach

1. Pre-training on large unlabeled datasets
(self-supervised learning)

2. Training for downstream-tasks on labeled data
(supervised learning)

a) fine-tuning approach
b) feature-based approach

5.2 Some Popular Transformer Models: BERT, GPT, and BART

e 5.2.2 GPT-v1: Generative Pre-Trained Transformer

e 5.2.3 BERT: Bidirectional Encoder Representations from Transformers

e 5.2.4 GPT-v2: Language Models are Unsupervised Multitask Learners

e 5.2.5 GPT-v3: Language Models are Few-Shot Learners

e 5.2.6 BART: Combining Bidirectional and Auto-Regressive Transformers

e 5.2.7: Closing Words -- The Recent Growth of Language Transformers

5.2 Some Popular Transformer Models: BERT, GPT, and BART

5.2.2 GPT-v1:

Generative Pre-Trained Transformer

GPT (Generative Pre-trained Transformer)

 Developed by OpenAl
e Unidirectional: trained to predict next word in a sentence

GPT (110 million parameters)

Radford, A., Narasimhan, K., Salimans, T., & Sutskever, |. (2018). Improving language understanding by
generative pre-training. https://cdn.openai.com/research-covers/language-unsupervised/

language understanding paper.pdf

GPT-2 1.5 billion parameters)

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., & Sutskever, I. (2019). Language models are unsupervised
multitask learners. OpenAl blog, 1(8), 9.

https://cdn.openai.com/better-language-models/language models are unsupervised multitask learners.pdf

GPT-3 (175 billion parameters)
Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P,, ... & Amodei, D. (2020). Language
models are few-shot learners. arXiv preprint arXiv:2005.14165. https://arxiv.org/abs/2005.14165

https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://arxiv.org/abs/2005.14165

GPT-v1 Key Concepts

Bottleneck: Lack of labeled data
2-step training process ("semi-supervised")
1. Generative pre-training (on unlabeled data); unsupervised/"self-supervised" learning
2. Discriminative fine-tuning (on labeled data), supervised learning
Pre-training on large BookCorpus dataset (7000 books)

Based on decoder architecture from original Transformer ("Attention Is All You Need")

GPT-v1 Architecture and Downstream Tasks

Text Task e - .
Prediction | Classifier Classification Start Text Extract }» Transformer > Linear
¢ L
Entailment Start Premise Delim | Hypothesis | Extract | Transformer > Linear
Layer Norm |
=) (e Start Text 1 Delim Text 2 Extract | > Transformer
7y Similarity - Linear
12x — .
Start Text 2 Delim Text 1 Extract | »{ Transformer
Layer Norm N
$: Start Context Delim Answer 1 | Extract | Transformer — Linear —
Masked Multi |
Self Attention -
)\ Multiple Choice | Start Context Delim Answer 2 | Extract | [»| Transformer > Linear %E
Text & Position Embed Start Context Delim Answer N | Extract | > Transformer | Linear —

Figure 1: (left) Transformer architecture and training objectives used in this work. (right) Input
transformations for fine-tuning on different tasks. We convert all structured inputs into token
sequences to be processed by our pre-trained model, followed by a linear+softmax layer.

Radford, A., Narasimhan, K., Salimans, T., & Sutskever, I. (2018). Improving language understanding by generative pre-training.
https://cdn.openai.com/research-covers/language-unsupervised/language understanding paper.pdf

https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf

GPT-v1 Ablation Study

Table 5: Analysis of various model ablations on different tasks. Avg. score is a unweighted average
of all the results. (mc= Mathews correlation, acc=Accuracy, pc=Pearson correlation)

Method Avg. Score CoLA SST2 MRPC STSB QQP MNLI QNLI RTE

(mc) (acc) (FI) (pc) (F1) (acc) (acc) (acc)
Transformer w/ aux LM (full) 74.7 45.4 91.3 82.3 82.0 70.3 81.8 88.1 56.0
Transformer w/o pre-training 59.9 18.9 84.0 79.4 30.9 65.5 75.7 71.2 53.8
Transformer w/o aux LM 75.0 47.9 92.0 84.9 83.2 69.8 81.1 86.9 54.4

LSTM w/ aux LM 69.1 30.3 90.5 83.2 71.8 68.1 73.7 81.1 54.6

5.2 Some Popular Transformer Models: BERT, GPT, and BART

5.2.3 BERT: Bidirectional Encoder
Representations from Transformers

g

BERT <

(Bidirectional Encoder Representations from Transformers)

Paper: Devlin J, Chang MW, Lee K, Toutanova K. BERT: Pre-training of deep
bidirectional transformers for language understanding.
https://arxiv.org/abs/1810.04805

(Google Research, 2018)

* multi-layer bidirectional transformer encoder

e architecture almost identical to original transformer & GPT, except
* bidirectional masking (known as "Cloze" task, Taylor 1953%)
* next sentence prediction as additional pre-training task

* Wilson L Taylor. 1953. Cloze procedure: A new tool for measuring readability. Journalism Bulletin, 30(4):415-433.

https://arxiv.org/abs/1810.04805

BERT Inputs

Special "classification" symbol Sentence separator token

Input [CLS] my dog is ‘ cute ’ [SEP] he ‘ likes H play ’ ##ing ’ [SEP]

Token

Embeddings E[CLS] Emy Edog Eis Ecute E[SEP] Ehe EIikes Eplay E##ing E[SEP]
L L L L L L L L L L L

Segment

Embeddings EA EA EA EA EA EA EB EB EB EB EB
b e L e e b e L e b L

Position

Embeddings E0 E1 EZ E3 E4 E5 E6 E7 E8 E9 E10

Figure 2: BERT input representation. The input embeddings are the sum of the token embeddings, the segmenta-
tion embeddings and the position embeddings.

Token embeddings are WordPiece embeddings™* with vocabulary size of 30,000

* Wu Y, Schuster M, Chen Z, Le QV, Norouzi M, Macherey W, Krikun M, Cao Y, Gao Q, Macherey K, Klingner J. Google's neural
machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:1609.08144. 2016
https://arxiv.org/abs/1609.08144

https://arxiv.org/abs/1609.08144

BERT Pre-Training Tasks

Pre-training datasets
e BookCorpus (800 million words)
e Wikipedia (2500 million words)

Pre-training tasks
e Masked language model ("Cloze")
e Next sentence prediction

BERT Pre-Training Task #1
Masked Language Model

Input sentence: A quick brown jumps over the lazy dog

80%: replace with

()

"Mark" 15% of the words > 10%: replace with random word

10%: leave as is (fox)
to mimick fine-tuning scenario

BERT Pre-Training Task #1

Masked Language Model

Input sentence: A quick brown jumps over the lazy dog
v
Randomly masked: A quick brown jumps over the lazy dog
v
50 BERT

N Possible classes

(all words)

11%

ant

fox

' Z00

BERT Pre-Training Task #2

Next Sentence Prediction

Balanced binary classification task (50% IsNext, 50% NotNext)

Input = [CLS] the man went to [MASK] store [SEP] he bought a gallon [MASK] milk [SEP]
Label = IsNext

Input = [CLS] the man [MASK] to the store [SEP] penguin [MASK] are flight ##less birds [SEP]
Label = NotNext

BERT Pre-Training & Downstream Tasks

m: Mask LM Mas‘kA LM \ MNLI MAD Start/End Spem\
= . &*

a0
o e)] -) e 1)
BERT A T CRCRCREY OO BERT
B E, Ey E[SEPI B] Ew Erews) E, Ex E[SEP] S Ev

LI LI L] LI _1/_1\ L] L] L] L] L]

—{ " LI
! (Tok N 1([SEP] 1(Tok1 1 m (Toll(N 1([SEP]](Tok 1 1 TokM

Masked Sentence A Masked Sentence B Question Paragraph
* *
Unlabeled Sentence A and B Pair Question Answer Pair

Pre-training Fine-Tuning

Figure 1: Overall pre-training and fine-tuning procedures for BERT. Apart from output layers, the same architec-
tures are used in both pre-training and fine-tuning. The same pre-trained model parameters are used to initialize
models for different down-stream tasks. During fine-tuning, all parameters are fine-tuned. [CLS] is a special

symbol added in front of every input example, and [SEP] is a special separator token (e.g. separating ques-
tions/answers).

Transformer Training Approach

1. Pre-training on large unlabeled datasets
(self-supervised learning)

2. Training for downstream-tasks on labeled data
(supervised learning)

a) fine-tuning approach
b) feature-based approach
(howadays also called "fine-tuning")

BERT Pre-Training & Fine-Tuning Approach

* Add classification layer

* Train end-to-end on labeled dataset for downstream task
(update ALL parameters)

»Softmax probas to words/labels

s

<
Add & Norm | . e .
= Fully-connected layer (classification)
rorvard + GELU + Norm
Transformer
Encoder Nx Add & Norm J
Multi-Head
Attention
1t
_ _J

Positional
Encoding ®_?
Input
/Embedding
with 15% masking [

Inputs

BERT vs GPT-v1 Performance

System MNLI-(m/mm) QQP QNLI SST-2 CoLA STS-B MRPC RTE Average
392k 363k 108k 67k 8.5k 5.7k 35k 2.5k ;
Pre-OpenAl SOTA 80.6/80.1 66.1 823 93.2 35.0 81.0 860 61.7 74.0
BiLSTM+ELMo+Attn 76.4/76.1 64.8 79.8 90.4 36.0 73.3 849 56.8 71.0
OpenAl GPT 82.1/81.4 703 87.4 91.3 45.4 80.0 823 56.0 75.1
BERTgase 84.6/83.4 712 90.5 93.5 52.1 85.8 889 66.4 79.6
BERT} ARGE 86.7/85.9 721 927 94.9 60.5 86.5 89.3 70.1 82.1

Table 1: GLUE Test results, scored by the evaluation server (https://gluebenchmark.com/leaderboard).
The number below each task denotes the number of training examples. The “Average” column is slightly different
than the official GLUE score, since we exclude the problematic WNLI set.® BERT and OpenAl GPT are single-
model, single task. F1 scores are reported for QQP and MRPC, Spearman correlations are reported for STS-B, and
accuracy scores are reported for the other tasks. We exclude entries that use BERT as one of their components.

BERT Pre-Training & Feature-based Training

o Keep BERT frozen after pre-training

e Create BERT embeddings for labeled dataset for downstream task
and train new model on these embeddings
(in original paper,
2-layer biLSTM on embeddings from concatenated last 4 layers performed best)

1) Download BERT 2) Feature-based training ("fine-tuning")
pre-trained on large corpus on target task
(in self-supervised fashion) (supervised learning)

Embedding One or more layers

System Dev F1 Test F1

ELMo (Peters et al., 2018a) 95.7 92.2
CVT (Clark et al., 2018) - 92.6
CSE (Akbik et al., 2018) - 93.1
Fine-tuning approach
BERTARGE 96.6 92.8
BERTBAsE 96.4 92.4
Feature-based approach (BERTgAsE)
Embeddings 91.0 -
Second-to-Last Hidden 95.6 -
Last Hidden 94.9 -
Weighted Sum Last Four Hidden 95.9 -
Concat Last Four Hidden 96.1 -
Weighted Sum All 12 Layers 95.5 -

Table 7: CoNLL-2003 Named Entity Recognition re-
sults. Hyperparameters were selected using the Dev
set. The reported Dev and Test scores are averaged over
5 random restarts using those hyperparameters.

5.2 Some Popular Transformer Models: BERT, GPT, and BART

5.2.4 GPT-v2:
Language Models are Unsupervised
Multitask Learners

GPT (Generative Pre-trained Transformer)

 Developed by OpenAl
e Unidirectional: trained to predict next word in a sentence

GPT (110 million parameters)

Radford, A., Narasimhan, K., Salimans, T., & Sutskever, |. (2018). Improving language understanding by
generative pre-training. https://cdn.openai.com/research-covers/language-unsupervised/

language understanding paper.pdf

GPT-2 (1.5 billion parameters)

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., & Sutskever, I. (2019). Language models are unsupervised
multitask learners. OpenAl blog, 1(8), 9.

https://cdn.openai.com/better-language-models/language models are unsupervised multitask learners.pdf

GPT-3 (175 billion parameters)
Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P,, ... & Amodei, D. (2020). Language
models are few-shot learners. arXiv preprint arXiv:2005.14165. https://arxiv.org/abs/2005.14165

https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://arxiv.org/abs/2005.14165

GPT-v1 Architecture and Downstream Tasks

Text Task e - .
Prediction | Classifier Classification Start Text Extract }» Transformer > Linear
¢ L
Entailment Start Premise Delim | Hypothesis | Extract | Transformer > Linear
Layer Norm |
=) (e Start Text 1 Delim Text 2 Extract | > Transformer
7y Similarity - Linear
12x — .
Start Text 2 Delim Text 1 Extract | »{ Transformer
Layer Norm N
$: Start Context Delim Answer 1 | Extract | Transformer — Linear —
Masked Multi |
Self Attention -
)\ Multiple Choice | Start Context Delim Answer 2 | Extract | [»| Transformer > Linear %E
Text & Position Embed Start Context Delim Answer N | Extract | > Transformer | Linear —

Figure 1: (left) Transformer architecture and training objectives used in this work. (right) Input
transformations for fine-tuning on different tasks. We convert all structured inputs into token
sequences to be processed by our pre-trained model, followed by a linear+softmax layer.

Radford, A., Narasimhan, K., Salimans, T., & Sutskever, I. (2018). Improving language understanding by generative pre-training.
https://cdn.openai.com/research-covers/language-unsupervised/language understanding paper.pdf

https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf

GPT-v2 Key Concepts

e Unidirectional like GPT-v1
e Compared to GPT-v1
e Larger model (the larger the better)
* Larger unlabeled dataset (the larger the better)

* No fine-tuning (use zero-shot transfer instead)

GPT-v2 Architecture

Overall, similar to GPT-v1 (which is based on original Transformer decoder)
Some small rearranging of layer norm and residual layers

Increase vocabulary size from 30,000 -> 50,257

Increase context size from 512 -> 1024 tokens

Overall, 1.5 billion instead of 110 million parameters

GPT-v2 Training Dataset

 WebText (millions of webpages)
* Emphasized dataset quality
* Based on Reddit posts with more than 3 karma
* Get 45 million links to websites
* After preprocessing and cleaning: 8 million documents

e 40 Gb of text

Zero-Shot Task Transfer

In contrast to GPT-v1, no specific instruction / rearranging for specific tasks

https://huggingface.co/models?filter=zero-shot-classification

Zero Shot Topic Classification

Choose an example

. . Custom v

A4

Text

What is the color of grass?

Update: Zero-shot classification is now

supported in our API and you can Possible topics (separated by *,")
experiment with a number of
compatible models on our Model Hub.

green,red,blue,nothing,pink,purple

Allow multiple correct topics

Recently, the NLP science community

has begun to pay increasing attention to Top Predictions

zero-shot and few-shot applications,

such as in the paper from OpenAl green_n,g%
introducing GPT-3. This demo shows
how (& Transformers can be used for
zero-shot topic classification, the task
of predicting a topic that the model has

not been trained on. purple 0.3%

r(:dI 1.6%

nothing| 0.6%

Label

blue 0.5%

Sebastian Raschka STAT 458: Intro to Deep Learning

https://huggingface.co/models?filter=zero-shot-classification

Language Models are Unsupervised Multitask Learners

Reading Comprehension Translation Summarization 10 Question Answering
90 {Human 55 |Unsupervised Statistical MT 32 Lead-3
80 1 =307 81 T Open Domain QA Systems T 1
20 - — 28_PGNet
70 -D A+PGNet qu
rQAT © 5 15 {Denoising + Backtranslate 8 261 g 6
7 601 - & oy S
DrQA = = 24 {Seq2seq + Attn o |
50 A 10 {Embed Nearest Neighbor Y221 < 4
PGNet Denoising © Random-3
40 - 20 5]
51 <
30 - 181 most freq Q-type answer
- o >eaZseq 0 , 16 - 0 ~
117M 345M 762M 1542M 117M 345M 762M 1542M 117M 345M 762M 1542M117M 345M 762M 1542M
of parameters in LM # of parameters in LM # of parameters in LM # of parameters in LM
Language Models are Unsupervised Multitask Learners
LAMBADA LAMBADA CBT-CN CBT-NE WikiText2 PTB enwik8 text§ WikiText103 1BW”
(PPL) (ACC) (ACC) (ACC) (PPL) (PPL) (BPB) (BPC) (PPL) (PPL)
SOTA 99.8 59.23 85.7 82.3 39.14 46.54 0.99 1.08 18.3 21.8
117M 35.13 45.99 87.65 83.4 29.41 65.85 1.16 1.17 37.50 75.20
345M 15.60 55.48 92.35 87.1 22.76 47.33 1.01 1.06 26.37 55.72
762M 10.87 60.12 93.45 88.0 19.93 40.31 0.97 1.02 22.05 44.575
1542M 8.63 63.24 93.30 89.05 18.34 35.76 0.93 0.98 17.48 42.16

* bad 1BW performance probably due to sentence-level reshuffling in that dataset, so
larger, long-range contexts are lost

5.2 Some Popular Transformer Models: BERT, GPT, and BART

5.2.5 GPT-v3:
Language Models are Few-Shot Learners

GPT (Generative Pre-trained Transformer)

 Developed by OpenAl
e Unidirectional: trained to predict next word in a sentence

GPT (110 million parameters)

Radford, A., Narasimhan, K., Salimans, T., & Sutskever, |. (2018). Improving language understanding by
generative pre-training. https://cdn.openai.com/research-covers/language-unsupervised/

language understanding paper.pdf

GPT-2 1.5 billion parameters)

Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., & Sutskever, I. (2019). Language models are unsupervised
multitask learners. OpenAl blog, 1(8), 9.

https://cdn.openai.com/better-language-models/language models are unsupervised multitask learners.pdf

GPT-3 (175 billion parameters)
Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P,, ... & Amodei, D. (2020). Language
models are few-shot learners. arXiv preprint arXiv:2005.14165. https://arxiv.org/abs/2005.14165

https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://cdn.openai.com/research-covers/language-unsupervised/language_understanding_paper.pdf
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://arxiv.org/abs/2005.14165

GPT-v3 Architecture

e Qverall, similar to GPT-v2

e 175 billion instead 1.5 billion parameters (more layers etc.)
* Double the context size (2048 instead of 1024)

e Larger word embeddings (12.8k instead of 1.6k)

e Attention pattern from Sparse Transformer*

*Rewon Child, Scott Gray, Alec Radford, and llya Sutskever. Generating Long Sequences With Sparse Transformers, 2019.

GPT-v3 Training Datasets

Quantity Weight in Epochs elapsed when

Dataset (tokens) training mix training for 300B tokens
Common Crawl (filtered) 410 billion 60% 0.44
WebText2 19 billion 22% 2.9
Booksl1 12 billion 8% 1.9
Books2 55 billion 8% 0.43
Wikipedia 3 billion 3% 34

Table 2.2: Datasets used to train GPT-3. “Weight in training mix” refers to the fraction of examples during training
that are drawn from a given dataset, which we intentionally do not make proportional to the size of the dataset. As a
result, when we train for 300 billion tokens, some datasets are seen up to 3.4 times during training while other datasets
are seen less than once.

Implicit Task Learning
(... While Learning to Predict the Next Word)

outer loop

=
—

5 5 7
1
5+ 8 = 13 8 gaot => goat 8 thanks => merci 8
= = =}
= = -
7 +2 =29 g sakne => snake ;E hello => bonjour g
=5 - ~—
® o , o
) 1+0 =1 2 brid => bird 7] mint => menthe E-"
inner loop S 3 3,
- = -
3+4=7 Q fsih => fish Q wall => mur «Q
5+ 9 = 14 dcuk => duck otter => loutre
9 +8 =17 cmihp => chimp bread => pain
N7 A4 N7
sequence #1 sequence #2 sequence #3

Figure 1.1: Language model meta-learning. During unsupervised pre-training, a language model develops a broad
set of skills and pattern recognition abilities. It then uses these abilities at inference time to rapidly adapt to or recognize
the desired task. We use the term “in-context learning” to describe the inner loop of this process, which occurs within
the forward-pass upon each sequence. The sequences in this diagram are not intended to be representative of the data a
model would see during pre-training, but are intended to show that there are sometimes repeated sub-tasks embedded
within a single sequence.

Showing Examples vs Fine-Tuning

The three settings we explore for in-context learning Traditional fine-tuning (not used for GPT-3)
Zero-shot Fine-tuning
The model predicts the answer given only a natural language The model is trained via repeated gradient updates using a
description of the task. No gradient updates are performed. large corpus of example tasks.
Translate English to French: task description sea otter => loutre de mer example #1
cheese => prompt
One-shot peppermint => menthe poivrée example #2

In addition to the task description, the model sees a single
example of the task. No gradient updates are performed.

Translate English to French: task description
sea otter => loutre de mer example
plush giraffe => girafe peluche example #N
cheese => prompt
Few-shot
cheese => prompt

In addition to the task description, the model sees a few
examples of the task. No gradient updates are performed.

Translate English to French: task description
sea otter => loutre de mer examples
peppermint => menthe poivrée

plush girafe => girafe peluche

cheese => prompt

Figure 2.1: Zero-shot, one-shot and few-shot, contrasted with traditional fine-tuning. The panels above show
four methods for performing a task with a language model — fine-tuning is the traditional method, whereas zero-, one-,
and few-shot, which we study in this work, require the model to perform the task with only forward passes at test
time. We typically present the model with a few dozen examples in the few shot setting. Exact phrasings for all task
descriptions, examples and prompts can be found in Appendix G.

Some of the Many Results ...

TriviaQA

70 Fine-tuned SOTA

60

50

LN
o

Accuracy

30

20

—eo— Zero-Shot
—e— One-Shot
—eo— Few-Shot (K=64)

10

0.1B 0.4B 0.8B 1.3B 2.6B 6.7B 13B 175B
Parameters in LM (Billions)

Figure 3.3: On TriviaQA GPT3’s performance grows smoothly with model size, suggesting that language models
continue to absorb knowledge as their capacity increases. One-shot and few-shot performance make significant gains

over zero-shot behavior, matching and exceeding the performance of the SOTA fine-tuned open-domain model, RAG
[LPP'20]

5.2 Some Popular Transformer Models: BERT, GPT, and BART

5.2.6 BART:
Combining Bidirectional and Auto-
Regressive Transformers

BART: Combining Bidirectional and Auto-Regressive Transformers

Lewis, M., Liu, Y., Goyal, N., Ghazvininejad, M., Mohamed, A., Levy, O., Stoyanov, V., & Zettlemoyer, L. (2019). BART: Denoising Sequence-to-
Sequence Pre-training for Natural Language Generation, Translation, and Comprehension. http://arxiv.org/abs/1910.13461

Facebook Al's BART combines Google's BERT and OpenAl's GPT

BERT's bidirectional, autoencoder nature is ...

+ good for downstream tasks (e.g., classification) that require info about the whole
sequence

- not so good for generation tasks where generated word should only depend on
previously generated words

GPT's unidirectional, autoregressive approach is ...

+ good for text generation
- not so good for tasks that require info of whole sequence, e.g., classification

BART is the best of both worlds

http://arxiv.org/abs/1910.13461

BART: BERT Encoder + GPT Decoder + Noise Transformations

B D ABCDE

b4 EREE!
Bidirectional Autoregressive
< Encoder Decoder
RN Frret
A_C_E <s>A B

(a) BERT: Random tokens are replaced with masks, and (b) GPT: Tokens are predicted auto-regressively, meaning
the document i1s encoded bidirectionally. Missing tokens GPT can be used for generation. However words can only
are predicted independently, so BERT cannot easily be condition on leftward context, so it cannot learn bidirec-

used for generation. tional interactions.
ABCDE
£ 44147
Bidirectional |:> Autoregressive
Encoder Decoder

TEEFE FEEft
A _B <s>ABCD

(¢) BART: Inputs to the encoder need not be aligned with decoder outputs, allowing arbitary noise transformations. Here, a
document has been corrupted by replacing spans of text with mask symbols. The corrupted document (left) is encoded with
a bidirectional model, and then the likelihood of the original document (right) is calculated with an autoregressive decoder.
For fine-tuning, an uncorrupted document is input to both the encoder and decoder, and we use representations from the final

hidden state of the decoder.

Output

Probabilities
| Softmax |
| Linear |}
A
&)
| Add & Norm Je~
Feed
Forward
r \ | Add & Norm Je~
> Add &.Norm) Multi-Head
Feed Attention
Forward | 7 7 7 N x
“ (J~
Add & Norm
Nx I
~—>| Add & Norm] Macked
Multi-Head Multi-Head
Attention Attention
_ J g _J)
Positional A i Positional
Encoding ?_® Encoding
Input Output
Embedding Embedding
Inputs Outputs

(shifted right)

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J.,
Jones, L., Gomez, A.N., Kaiser, L. and Polosukhin, .,

Figure 1: The Transformer - model architecture. 55,772 = 10 Vou Need.

Noise Transformations in BART for Pre-Training on Unlabeled Data

(AC._E.) (DE.ABC.) (C.DE.AB)

Token Masking Sentence Permutation Document Rotation

>
(Aa.c.e.)y (ABc.DE.) <O (A_.D_E.)

Token Deletion Text Infilling

Figure 2: Transformations for noising the input that we experiment with. These transformations can be composed.

Like a denoising autoencoder, it optimizes reconstruction loss

BART Performance Under Different Noise Transformations

Model SQuAD 1.1 MNLI ELIS XSum ConvAI2 CNN/DM
F1 Acc PPL PPL PPL PPL
BERT Base (Devlin et al., 2019) 88.5 84.3 - - - -
Masked Language Model 90.0 83.5 24.77 7.87 12.59 7.06
Masked Seq2seq 87.0 82.1 23.40 6.80 11.43 6.19
Language Model 76.7 80.1 21.40 7.00 11.51 6.56
Permuted Language Model 89.1 83.7 24.03 7.69 12.23 6.96
Multitask Masked Language Model 89.2 82.4 23.73 7.50 12.39 6.74
BART Base
w/ Token Masking 90.4 84.1 25.05 7.08 11.73 6.10
w/ Token Deletion 90.4 84.1 24.61 6.90 11.46 5.87
w/ Text Infilling 90.8 84.0 24.26 6.61 11.05 5.83
w/ Document Rotation 77.2 753 53.69 17.14 19.87 10.59
w/ Sentence Shuffling 85.4 81.5 41.87 10.93 16.67 7.89

w/ Text Infilling + Sentence Shuffling 90.8 83.8 24.17 6.62 11.12 5.41

Fine-Tuning on Labeled Data

C
ape 15505

Pre-trained |:> Pre-trained

. C Encoder) C Decoder =)
Pre-trained |:> Pre-trained f REE] FF s
Encoder Decoder Randomly <s>A B C D

+ f f * <S$>$A g f * * Imtglzec}(Ezczder

(a) To use BART for classification problems, the same (b) For machine translation, we learn a small additional
input is fed into the encoder and decoder, and the repre- encoder that replaces the word embeddings in BART. The
sentation from the final output is used. new encoder can use a disjoint vocabulary.

Figure 3: Fine tuning BART for classification and translation.

BART Performance for Discriminative Tasks

SQuAD 1.1 SQuAD2.0 MNLI SST QQP QNLI STS-B RTE MRPC CoLA

EM/F1 EM/F1 m/mm Acc Acc Acc Acc Acc Acc Mcc
BERT 84.1/90.9 79.0/81.8 86.6/- 932 91.3 92.3 90.0 70.4 88.0 60.6
UniLM -/- 80.5/83.4 87.0/85.9 94.5 - 92.7 - 70.9 - 61.1
XLNet 89.0/94.5 86.1/88.8 89.8/- 95.6 O91.8 93.9 91.8 83.8 89.2 63.6
RoBERTa 88.9/94.6 86.5/89.4 90.2/90.2 964 92.2 94.7 924 86.6 90.9 68.0
BART 88.8/94.6 86.1/89.2 89.9/90.1 96.6 92.5 94.9 91.2 87.0 904 62.8

Table 2: Results for large models on SQuAD and GLUE tasks. BART performs comparably to RoBERTa and
XLNet, suggesting that BART’s uni-directional decoder layers do not reduce performance on discriminative tasks.

BART Performance for Generative Tasks

CNN/DailyMail XSum
R1 R2 RL R1 R2 RL

Lead-3 4042 17.62 36.67 1630 1.60 11.95
PTGEN (See et al., 2017) 36.44 15.66 3342 29.70 9.21 23.24
PTGEN+COV (See et al., 2017) 39.53 17.28 36.38 28.10 8.02 21.72
UniLM 43.33 20.21 40.51 - - -

BERTSUMABS (Liu & Lapata, 2019) 41.72 1939 3876 38.76 16.33 31.15
BERTSUMEXTABS (Liu & Lapata, 2019) 42.13 19.60 39.18 3881 16.50 31.27
BART 44.16 21.28 4090 45.14 22.27 37.25

Table 3: Results on two standard summarization datasets. BART outperforms previous work on summarization on

two tasks and all metrics, with gains of roughly 6 points on the more abstractive dataset.

ConvAI2
Valid F1 ~ Valid PPL
Seq2Seq + Attention 16.02 35.07
Best System 19.09 17.51
BART 20.72 11.85

Table 4: BART outperforms previous work on conver-
sational response generation. Perplexities are renor-
malized based on official tokenizer for ConvAI2.

Table 5: BART achieves state-of-the-art results on
the challenging ELIS abstractive question answering
dataset. Comparison models are from Fan et al. (2019).

ELIS
R1 R2 RL
Best Extractive 235 3.1 175
Language Model 27.8 47 231
Seq2Seq 283 5.1 228
Seq2Seq Multitask 289 54 23.1
BART 306 6.2 243

5.2 Some Popular Transformer Models: BERT, GPT, and BART

5.2.7: Closing Words
-- The Recent Growth of Language
Transformers

Transformers for Longer Sequences

Transformer-XL.:

* encoder-free, decoder-only model

* trained to predict next word in sentence

* uses hidden states to remember previous (512-token) text segment

"Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context",
Dai et al. 2019. https://arxiv.org/abs/1901.02860

Longformer:
* instead of attention mechanism that scales quadratically, uses attention mechanism that
scales linearly with sequence length
e uses extremely long text segments (thousands of tokens); similar to RoBERTa
 "Longformer: The Long-Document Transformer”,
Beltagy et al. 2020. https://arxiv.org/abs/2004.05150

https://arxiv.org/abs/1901.02860
https://arxiv.org/abs/2004.05150

GPT-3
(175 billion)

10000
MegatronLM
8300
o
<
7500
NVIDIA.
5000
W
OpenAl UNIVERSITY.of WASHINGTON
2500 Grover-
D Mega
ot 1500 1500
C @ i Google Al klz u
klz OpenAI Transformer @ ® 29
BERT-Large MT-DNN XLM 665 RoBERTa
ELMo GPT 340 340 355 DistilBERT
94 110 XLNET ¢ 66
® Carnegie ¢ PY
02 ol Ue!lon i Py
T
@ & @ O niversity O
® O > > P
Q 3 & Q«\ 3
W N c,}o w N

Q

Image Source: https://medium.com/huggingface/distilbert-8cf3380435b5

Sebastian Raschka

STAT 458: Intro to Deep Learning

111

https://medium.com/huggingface/distilbert-8cf3380435b5

TECH \ ARTIFICIAL INTELLIGENCE \

OpenAl's text-generating system GPT-3 is now
spewing out 4.5 billion words a day

Robot-generated writing looks set to be the next big thing

By James Vincent | Mar 29, 2021, 8:24am EDT

https://www.theverge.com/2021/3/29/22356180/openai-gpt-3-text-generation-words-day

THE COST OF TRAINING NLP MODELS

A CONCISE OVERVIEW

Or Sharir Barak Peleg Yoav Shoham
Al21 Labs Al21 Labs Al21 Labs
ors@ai2l.com barakp@ai2l.com yoavs@ai2l.com
April 2020

http://arxiv.org/abs/2004.08900

Costs: Not for the faint
hearted

« $2.5k - $50k (110 million parameter model)
« $10k - $200k (340 million parameter model)
« $80k - $1.6m (1.5 billion parameter model)

http://arxiv.org/abs/2004.08900

Transformers for Better Efficiency

Reformer:
e dot-product attention is replaced with locality-sensitive hashing (LSH) attention
e this achieves attention with O(nlog(n)) instead of O(n?) memory cost

Kitaev, N., Kaiser, k. and Levskaya, A., 2020. Reformer: The efficient transformer.
arXiv preprint arXiv:2001.04451. https://arxiv.org/abs/2001.04451

ALBERT:

e 5x smaller size as BERT at same performance, due to compression via pruning

e Lan, Z., Chen, M., Goodman, S., Gimpel, K., Sharma, P. and Soricut, R., 2019.
Albert: A lite BERT for self-supervised learning of language representations. arXiv
preprint arXiv:1909.11942. https://arxiv.org/abs/1909.11942

https://arxiv.org/abs/2001.04451
https://arxiv.org/abs/1909.11942

> Wb

6.

Sequence Generation with RNNs
Character RNN in PyTorch

RNNs with Attention

Attention is All We Need

4.1. Basic Form of Self-Attention

4.2. Self-Attention & Scaled Dot-Product Attention

4.3. Multi-Head Attention
Transformer Models

5.1. The Transformer Architecture

5.2. Some Popular Transformer Models: BERT, GPT, and BART

Transformer in PyTorch

Sebastian Raschka

STAT 453: Intro to Deep Learning

115

