STAT 453: Introduction to Deep Learning and Generative Models

Sebastian Raschka
http://stat.wisc.edu/~sraschka/teaching

Lecture 18
Introduction to Generative
Adversarial Networks


http://stat.wisc.edu/~sraschka/teaching

arXiv.org > stat > arXiv:1406.2661

Help | Advanced S

Statistics > Machine Learning

[Submitted on 10 Jun 2014]

Generative Adversarial Networks

lan J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, Yoshua
Bengio

We propose a new framework for estimating generative models via an adversarial process, in which we simultaneously train two
models: a generative model G that captures the data distribution, and a discriminative model D that estimates the probability
that a sample came from the training data rather than G. The training procedure for G is to maximize the probability of D making
a mistake. This framework corresponds to a minimax two-player game. In the space of arbitrary functions G and D, a unique
solution exists, with G recovering the training data distribution and D equal to 1/2 everywhere. In the case where G and D are
defined by multilayer perceptrons, the entire system can be trained with backpropagation. There is no need for any Markov
chains or unrolled approximate inference networks during either training or generation of samples. Experiments demonstrate
the potential of the framework through qualitative and quantitative evaluation of the generated samples.

https://arxiv.org/abs/1406.2661

Sebastian Raschka STAT 453: Intro to Deep Learning 2


https://arxiv.org/abs/1406.2661

https://thisstartupdoesnotexist.com

https://thiscatdoesnotexist.com

] =
’’’’’ »: | @
"

https://thisponydoesnotexist.net

http:"7thispersondoesnotexist.com

Sebastian Raschka STAT 458: Intro to Deep Learning



Lecture Overview

1. The Main Idea Behind GANs

2. The GAN Obijective

3. Modifying the GAN Loss Function for Practical Use

4. A Simple GAN Generating Handwritten Digits in PyTorch
5. Tips and Tricks to Make GANs Work

6. A DCGAN for Generating Face Images in PyTorch



Letting two neural networks
compete with each other

1. The Main Idea Behind GANs

2. The GAN Objective

3. Modifying the GAN Loss Function for Practical Use

4. A Simple GAN Generating Handwritten Digits in PyTorch
5. Tips and Tricks to Make GANs Work

6. A DCGAN for Generating Face Images in PyTorch

Sebastian Raschka STAT 458: Intro to Deep Learning



Generative Adversarial Networks (GAN)

The original purpose is to generate new data

Classically for generating new images, but applicable to
wide range of domains

Learns the training set distribution and can generate new
images that have never been seen before

Similar to VAE, and in contrast to e.g., autoregressive

models or RNNs (generating one word at a time), GANs
generate the whole output all at once



Deep Convolutional GAN (DCGAN or just GAN)

Real image
.
Training set b 0

Discriminator

/ / Real /

y _>

' Generated
Noise / '
BT
1‘-,?’;
X
")"“-‘.
PN S
L5 G
AY »
& —
i
r
it
10N
i
AT
2 B

(Generator

Generated image

N\

Sebastian Raschka STAT 458: Intro to Deep Learning



Step 1.1: Train Discriminator

/ Real image

Training set L
Discriminator

) =P p(y = "real image”|x)

Train to predict that real image is real

Sebastian Raschka STAT 458: Intro to Deep Learning 8



Step 1.2: Train Discriminator

Discriminator

' ) =
' p(y = "real image” |x

FREEZE

Noise /
LAs

AhY

.
A

P -
0% S
" <
S
e N
.;J’ -
*;'.
Gener

-

‘:.'.,f?._\
G Y 1?:‘
E . -*— Il = = = =

ated image

.Generator

Train to predict that fake image is fake

Sebastian Raschka STAT 458: Intro to Deep Learning o]



Step 2: Train Generator

/

/
Genera

ted image

(Generator

Discriminator

) -

p(y = "real image” |x)

Train to predict that fake image is real

Sebastian Raschka

STAT 458: Intro to Deep Learning

10



Adversarial Game

Discriminator: learns to become
better at distinguishing real from generated
Images

Generator: learns to generate better
images to fool the discriminator




How do the loss functions
look like?

1. The Main Idea Behind GANs

2. The GAN Objective

3. Modifying the GAN Loss Function for Practical Use

4. A Simple GAN Generating Handwritten Digits in PyTorch
5. Tips and Tricks to Make GANs Work

6. A DCGAN for Generating Face Images in PyTorch

Sebastian Raschka STAT 458: Intro to Deep Learning

12



When Does a GAN Converge?

/ Real image

Discriminator

/ / Real /

i

o
4 Generated
Generated image

Training set b 0

(Generator

Sebastian Raschka STAT 458: Intro to Deep Learning 13



GAN Objective

m&n max V(D,G) = Egprpyorn (z)log D(x)] + E,op_ (2)log(l — D(G(2)))]




mén max V(D,G) = Egzmpyora (@) log D()] + E. o)y (2)[log(l — D(G(2)))]

Discriminator gradient for update (gradient ascent):

predict well on real images predict well on fake images
=> want probability close to 1 => want probability close to 0
A A
[ \ | |
1 n
Vwr, - Z [logD (w(z)> + log (1 — D (G (z(z))))}
1=1

; -
-

Sebastian Raschka STAT 458: Intro to Deep Learning 15



mén max V(D,G) = Egzmpyora (@) log D()] + E. o)y (2)[log(l — D(G(2)))]

Discriminator gradient for update (gradient ascent):

predict well on real images predict well on fake images
=> want probability close to 1 => want probability close to 0
A A
[ \ | |
1 n
Vwr, - Z [logD (w(z)> + log (1 — D (G (z(z))))}
1=1

; -
-

Sebastian Raschka STAT 458: Intro to Deep Learning 16



minmax V(D,G) = Egp,... (x)log D(x)] + E, ), (2)log(1l — D(G(z)))]

G D

Generator gradient for update (gradient descent):

predict badly on fake images
=> want probability close to 1

1

Tt 3o (10 (6 ()

Random Noise
Discriminator o€,

Generator == 4 New Image

Sebastian Raschka STAT 458: Intro to Deep Learning

17



Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of
steps to apply to the discriminator, k, is a hyperparameter. We used £ = 1, the least expensive option, in our
experiments.

for number of training iterations do
for £ steps do

e Sample minibatch of m noise samples {z(1), ..., z("™} from noise prior p,(2).
e Sample minibatch of m examples {z(") ..., 2™} from data generating distribution
pdata(m)-

e Update the discriminator by ascending its stochastic gradient:

Vo~ 3" [log D (a) +1g (1- D (G (29)))].

1=1

end for
e Sample minibatch of m noise samples {z(1), ..., 2™} from noise prior p,(2).
e Update the generator by descending its stochastic gradient:

Do, Yotes (1= 0 (6 (=)

end for
The gradient-based updates can use any standard gradient-based learning rule. We used momen-
tum in our experiments.

 Goodfellow, lan, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville,
and Yoshua Bengio. "Generative Adversarial Nets." In Advances in Neural Information Processing Systems, pp.
2672-2680. 2014.



http://papers.nips.cc/paper/5423-generative-adversarial-nets

GAN Convergence

« Converges when Nash-equilibrium (Game Theory concept) is
reached in the minmax (zero-sum) game

m&n max V(D,G) =Egpioia (@) llog D(x)] + E,op, (2)llog(l — D(G(2)))]

» Nash-equilibrium in Game Theory is reached when the actions of
one player won't change depending on the opponent's actions

» Here, this means that the GAN produces realistic images and the
discriminator outputs random predictions (probabilities close to

0.5)



...............

) .
Y
[
()

A}
A JREY I
v ‘o
A)
X4 X

/Y| Y/ N/

(a) (b) (c) (d)

-

S =@ =

Figure 1: Generative adversarial nets are trained by simultaneously updating the discriminative distribution
(D, blue, dashed line) so that it discriminates between samples from the data generating distribution (black,
dotted line) p, from those of the generative distribution p, (G) (green, solid line). The lower horizontal line is
the domain from which z is sampled, in this case uniformly. The horizontal line above is part of the domain
of . The upward arrows show how the mapping * = G(z) imposes the non-uniform distribution p, on
transformed samples. G contracts in regions of high density and expands in regions of low density of p,. (a)
Consider an adversarial pair near convergence: p, 1s similar to pgaa and D is a partially accurate classifier.

(b) In the inner loop of the algorithm D is trained to discriminate samples from data, converging to D™ (x) =
Pdata ()
pdata(m)+pg (m
to be classified as data. (d) After several steps of training, if G and D have enough capacity, they will reach a

point at which both cannot improve because p; = pgaa. The discriminator is unable to differentiate between

the two distributions, i.e. D(x) = 2.

3 (c) After an update to (G, gradient of D has guided GG(z) to flow to regions that are more likely

 Goodfellow, lan, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville,
and Yoshua Bengio. "Generative Adversarial Nets." In Advances in Neural Information Processing Systems, pp.
2672-2680. 2014.



http://papers.nips.cc/paper/5423-generative-adversarial-nets

Improving stochastic
gradient descent for the
generator

3. Modifying the GAN Loss Function for Practical Use



GAN Training Problems

Oscillation between generator and discriminator loss

Mode collapse (generator produces examples of a particular
kind only)

Discriminator is too strong, such that the gradient for the
generator vanishes and the generator can't keep up

Discriminator is too weak, and the generator produces non-
realistic images that fool it too easily (rare problem, though)



GAN Training Problems

» Discriminator is too strong, such that the gradient for the
generator vanishes and the generator can't keep up

« Can be fixed as follows:

Instead of gradient descent with
AN (i
VWGE;log (1—D<G (z )))

Do gradient ascent with

. L3 (0 (=)



GAN Loss Function in Practice
(will be more clear in the code examples)

Discriminator

Maximize prediction probability of classifying real as real and fake as fake
Remember maximizing log likelihood is the same as minimizing negative
log likelihood (i.e., minimizing cross-entropy)

Generator

- Minimize likelihood of the discriminator to make correct predictions (predict
fake as fake; real as real), which can be achieved by maximizing the cross-

entropy
» This doesn't work well in practice though because of small gradient issues

- Better: flip labels and minimize cross entropy (force the discriminator to
output high probability for real if an image is fake)



gradient ascent predict well on real images predict well on fake images
=> want probability close to 1 => want probability close to 0

] |
| \ [ |

n

o5 o () 1D (e =)

1=1

Discriminator objective in the neg. log-likelihood (binary cross entropy) perspective:

Real images, y = 1

L(w) =~y log (§9)|— (1 —yD)log (1 - §?)

Want, y = 1

Fake images, y = 0

L(w) = —yDlog (5@)|— (1 -y log (1 — )
Want, y = 0




gradient descent with

vwggifglog (1-D(c(:9)))

Generator objective in the neg. log-likelihood (binary cross entropy) perspective:

Fake images, y = 0

L(w) = —yDlog (5) ~ (1 - y™)log (1 — )
Want, y = 0

Flip sign to "+" so that it turns into "want y = 1"

Sebastian Raschka STAT 458: Intro to Deep Learning

26



N
N
\

Generator objective in the neg. log-

“Ywo— Y log (1 D (G (z@))
N i=1

Ilhood ‘e mary cross entropy) perspective:

N /7

N
N
A N

” Fake images, W& O

— (1 - (%)) log AW)

pd Flip sign to

Sebastian Raschka

Want, = 0

so that it turns into "want y = 1"

STAT 458: Intro to Deep Learning

27



Do gradient ascent with

VWG% Zn: log (D (G (z(”))) And flip labels
1=1

Generator objective in the neg. log-likelihood (binary cross entropy) perspective:

fake image label flipped -> real image label, y = 1

L(w) = ~yDlog (57)|— (1 — y)log (1 — )

Want, y = 1




Implementing our first GAN

1. The Main Idea Behind GANs

2. The GAN Objective

3. Modifying the GAN Loss Function for Practical Use

4. A Simple GAN Generating Handwritten Digits in PyTorch
5. Tips and Tricks to Make GANs Work

6. A DCGAN for Generating Face Images in PyTorch

Sebastian Raschka STAT 458: Intro to Deep Learning

29



How do the loss functions
look like?

1. The Main Idea Behind GANs

2. The GAN Objective

3. Modifying the GAN Loss Function for Practical Use

4. A Simple GAN Generating Handwritten Digits in PyTorch
5. Tips and Tricks to Make GANs Work

6. A DCGAN for Generating Face Images in PyTorch

Sebastian Raschka STAT 458: Intro to Deep Learning

30



https://qgithub.com/soumith/ganhacks



https://github.com/soumith/ganhacks

How do the loss functions
look like?

1. The Main Idea Behind GANs

2. The GAN Objective

3. Modifying the GAN Loss Function for Practical Use

4. A Simple GAN Generating Handwritten Digits in PyTorch
5. Tips and Tricks to Make GANs Work

6. A DCGAN for Generating Face Images in PyTorch

Sebastian Raschka STAT 458: Intro to Deep Learning

32



Deep Convolutional GAN

Project and reshape

G(2)

Figure 1: DCGAN generator used for LSUN scene modeling. A 100 dimensional uniform distribu-
tion Z is projected to a small spatial extent convolutional representation with many feature maps.
A series of four fractionally-strided convolutions (in some recent papers, these are wrongly called

deconvolutions) then convert this high level representation into a 64 x 64 pixel image. Notably, no
fully connected or pooling layers are used.

Radford, A., Metz, L., & Chintala, S. (2015). Unsupervised representation learning

with deep convolutional generative adversarial networks. arXiv preprint
arXiv:1511.06434.

Sebastian Raschka STAT 458: Intro to Deep Learning

33


https://arxiv.org/abs/1511.06434
https://arxiv.org/abs/1511.06434

