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Lu, X., Tsao, Y., Matsuda, S., & Hori, C. (2013, August). Speech enhancement based on deep denoising autoencoder. In 
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Gondara, L. (2016, December). Medical image denoising using convolutional denoising autoencoders. In 2016 IEEE 
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works (Fig. 1): (a) a trainable generative component in form
of a convolutional autoencoder (subnetwork I) for adversar-
ial learning; (b) an auxiliary CNN-based gender classifier
(subnetwork II); (c) an auxiliary CNN-based face matcher
(subnetwork III).

The auxiliary gender classifier as well as the auxiliary
matcher1 are detachable parts in this network architecture
used only during the training phase. In contrast to GANs,
the generative component of this proposed network archi-
tecture is a convolutional autoencoder (section 2.2.1), which
is initially pre-trained to produce an image that closely re-
sembles an image from the training set after incorporat-
ing gender prototype information (section 2.2.2). Then,
during further training, feedback from both an auxiliary
CNN-based gender classifier and an auxiliary CNN-based
face matcher are incorporated into the loss function (see
Eqn. (1)) to perturb the regenerated images such that the
error rate of the auxiliary gender classifier increases while
that of the auxiliary face matcher is not unduly affected.

An overview of this semi-adversarial architecture is
shown in Fig. 1, and the details are further described in the
following subsections.

Figure 1. Schematic representation of the semi-adversarial neu-
ral network architecture designed to derive perturbations that are
able to confound gender classifiers while still allowing biomet-
ric matchers to perform well. The overall network consists of
three sub-components: a convolutional autoencoder (subnetwork
I), an auxiliary gender classifier (subnetwork II), and an auxiliary
matcher (subnetwork III).

2.2.1 Convolutional autoencoder

The architecture of the convolutional autoencoder sub-
network that modifies and reconstructs the input image in
three different ways is shown in Fig. 2. The input to this
sub-network is a gray-scale face image of size 224 × 224
concatenated with a same-gender prototype, PSM (Fig. 3).
The input is then processed through the encoder part con-
sisting of two convolutional layers; each layer is followed

1The term “auxiliary” is used to indicate that these subnetworks do not
correspond to pre-trained gender classifiers or face matchers, but rather
classifiers that are generated from the training data. Note that such a for-
mulation makes the semi-adversarial network generalizable.

by a leaky ReLU activation function and an average pooling
layer, resulting in feature maps of size 56× 56× 12. Next,
the outputs of the encoder are passed through a decoder with
two convolutional layers each, followed by a leaky ReLU
activation and an upsampling layer using two-dimensional
nearest neighbor interpolation. The output of the decoder is
a 224× 224× 128 dimensional feature map.

The feature maps from the decoder output are then con-
catenated with either same-gender (PSM ), neutral-gender
(PNT ), or opposite-gender (POP ) prototypes in the proto-
combiner module (see Fig. 2 and Fig. 3). The proto-
combiner module is followed by a final convolutional layer
and a sigmoid activation function yielding a reconstructed
image X ′

SM , X ′
NT , or X ′

OP , depending on the gender-
prototype used. The autoencoder described in this section
contains five trainable layers. Those layers are pre-trained
using an information bottleneck approach [8] to retain the
relevant information from both the original image and the
same-gender prototype. This is sufficient to reconstruct re-
alistic looking images by minimizing JD(X,X ′), which
measures the dissimilarity between the gray-scale input im-
ages and the perturbed images by computing the sum of the
element-wise cross entropy between input and output (per-
turbed) images. After pre-training, this subnetwork is fur-
ther trained by passing its reconstructed images to two other
sub-networks: the auxiliary gender predictor and the auxil-
iary face matcher (Fig. 1). The gender prototypes, as well
as the two subnetworks, are described in the following sub-
sections.

Figure 2. Architecture of the autoencoder augmented with gender-
prototype images. The encoder receives a one-channel gray-scale
image as input, which is concatenated with the RGB channels of
the same-gender prototype image. After the compressed represen-
tation is passed through the decoder part of the autoencoder for
reconstruction (128 channels), the proto-combiner concatenates it
with the RGB channels of a same-, neutral-, or opposite-gender
prototype resulting in 131 channels that are then passed to a final
convolutional layer.
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Vahid Mirjalili, Sebastian Raschka, Anoop Namboodiri, 
and Arun Ross (2018) Semi-adversarial networks: 
Convolutional autoencoders for imparting privacy to face 
images. Proc. of 11th IAPR International Conference on 
Biometrics (ICB 2018), Gold Coast, Australia.

"About half (52%) of U.S. adults said they decided recently not to use 
a product or service because they were worried about how much 
personal information would be collected about them."

https://www.pewresearch.org/fact-tank/2020/04/14/half-of-americans-have-
decided-not-to-use-a-product-or-service-because-of-privacy-concerns/

https://www.pewresearch.org/fact-tank/2020/04/14/half-of-americans-have-decided-not-to-use-a-product-or-service-because-of-privacy-concerns/
https://www.pewresearch.org/fact-tank/2020/04/14/half-of-americans-have-decided-not-to-use-a-product-or-service-because-of-privacy-concerns/
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Lecture Overview

1. Dimensionality Reduction

2. Fully-connected Autoencoders

3. Convolutional Autoencoders

4. A Convolutional Autoencoder in PyTorch

5. Other Types of Autoencoders
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Feature Extraction 
& Dimensionality Reduction

1. Dimensionality Reduction 
2. Fully-connected Autoencoders

3. Convolutional Autoencoders

4. A Convolutional Autoencoder in PyTorch

5. Other Types of Autoencoders
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Unsupervised Learning

Working with datasets without considering a/the target variable

• Finding hidden structures in data

• Data compression

• Clustering

• Retrieving similar objects

• Exploratory data analysis

• Generating new examples

Some Applications and Goals:
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Principal Component Analysis (PCA)
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3) Usually consider a subset of vectors of most variance 
(dimensionality reduction)
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An Hourglass-Shaped  
Multilayer Perceptron

1. Dimensionality Reduction

2. Fully-connected Autoencoders 
3. Convolutional Autoencoders

4. A Convolutional Autoencoder in PyTorch

5. Other Types of Autoencoders
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Inputs

hidden units /

embedded space /

latent space /

bottleneck

Outputs  
= reconstructed inputs

Encoder Decoder

A Basic Fully-Connected (Multilayer-Perceptron) 
Autoencoder
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Inputs

hidden units /

embedded space /

latent space /

bottleneck Outputs 

Encoder Decoder

A Basic Fully-Connected (Multilayer-Perceptron) 
Autoencoder

If we don't use 
non-linear activation 
functions and

minimize the MSE,

this is very similar 
to PCA

However, the latent

dimensions will not

necessarily be 
orthogonal

and will have  
~ same variance

L(x,x0) = ||x� x0||22 =
X

i

(xi � x0
i)

2

<latexit sha1_base64="/k1rvfwfPBkumSpPtU2v5/ePBjs="></latexit>
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A Basic Fully-Connected (Multilayer-Perceptron) 
Autoencoder

Question:

If we can achieve the same with 
PCA, which is essentially a kind of matrix

factorization that is more efficient than 
Backprop + SGD, why bother with autoencoders?
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Potential Autoencoder Applications

After training, disregard this part

Use embedding as input to classic machine 
learning methods (SVM, KNN, Random Forest, ...)

Or, similar to transfer learning, train autoencoder 
on large image dataset, then fine tune encoder 
part on your own, smaller dataset and/or provide 
your own output (classification) layer

Latent space can also be used for visualization

(EDA, clustering), but there are better methods 
for that
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A Simple Autoencoder

Encoder Decoder

Reshape

28*28 => 784

Reshape

784 => 28*28

32 dim

fully connected layer

+ leaky relu

784 => 32

fully connected layer

+ sigmoid

32 => 784

original

reconstructed

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/autoencoder/ae-basic.ipynb

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/autoencoder/ae-basic.ipynb
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Convolutional Autoencoders  
& Transposed Convolutions / Deconvolutions

1. Dimensionality Reduction

2. Fully-connected Autoencoders

3. Convolutional Autoencoders 
4. A Convolutional Autoencoder in PyTorch

5. Other Types of Autoencoders
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A Convolutional Autoencoder

Encoder Decoder

original

reconstructed

1 or more  
convolutional layers

1 or more 
 "de"convolutional layers
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Transposed Convolution

• Allows us to increase the size of the output feature map 
compared to the input feature map 

•  Synonyms:


‣ often also (incorrectly) called "deconvolution" 
(mathematically, deconvolution is defined as the inverse of 
convolution, which is different from transposed convolutions)


‣ the term "unconv" is sometimes also used


‣ fractionally strided convolution is another (better?)  
term for that
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input

output

Regular Convolution:

Dumoulin, Vincent, and Francesco Visin. "A guide to convolution arithmetic for deep learning." arXiv preprint arXiv:1603.07285 (2016).

A Conv2DTranspose with 3x3 kernel and stride of 2x2 applied to a 2x2 input to give a 5x5 output.

 (https://medium.com/apache-mxnet/transposed-convolutions-explained-with-ms-excel-52d13030c7e8)

input

output

Transposed Convolution (stride = 2)

https://arxiv.org/abs/1603.07285
https://medium.com/apache-mxnet/transposed-convolutions-explained-with-ms-excel-52d13030c7e8


Sebastian Raschka           STAT 453: Intro to Deep Learning          21

input

output

Transposed Convolution (emulated with direct convolution):

input

output

Transposed Convolution (3x3 kernel, stride=2)

Dumoulin, Vincent, and Francesco Visin. "A guide to convolution arithmetic for deep learning." arXiv preprint arXiv:1603.07285 (2016).

A Conv2DTranspose with 3x3 kernel and stride of 2x2 applied to a 2x2 input to give a 5x5 output.

 (https://medium.com/apache-mxnet/transposed-convolutions-explained-with-ms-excel-52d13030c7e8)

https://arxiv.org/abs/1603.07285
https://medium.com/apache-mxnet/transposed-convolutions-explained-with-ms-excel-52d13030c7e8
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Figure 2.1: (No padding, unit strides) Convolving a 3 ⇥ 3 kernel over a 4 ⇥ 4
input using unit strides (i.e., i = 4, k = 3, s = 1 and p = 0).

Figure 2.2: (Arbitrary padding, unit strides) Convolving a 4⇥ 4 kernel over a
5 ⇥ 5 input padded with a 2 ⇥ 2 border of zeros using unit strides (i.e., i = 5,
k = 4, s = 1 and p = 2).

Figure 2.3: (Half padding, unit strides) Convolving a 3⇥ 3 kernel over a 5⇥ 5
input using half padding and unit strides (i.e., i = 5, k = 3, s = 1 and p = 1).

Figure 2.4: (Full padding, unit strides) Convolving a 3⇥ 3 kernel over a 5⇥ 5
input using full padding and unit strides (i.e., i = 5, k = 3, s = 1 and p = 2).

14

input

output

Regular Convolution:

Figure 4.1: The transpose of convolving a 3⇥ 3 kernel over a 4⇥ 4 input using
unit strides (i.e., i = 4, k = 3, s = 1 and p = 0). It is equivalent to convolving
a 3⇥ 3 kernel over a 2⇥ 2 input padded with a 2⇥ 2 border of zeros using unit
strides (i.e., i0 = 2, k0 = k, s0 = 1 and p0 = 2).

Figure 4.2: The transpose of convolving a 4⇥4 kernel over a 5⇥5 input padded
with a 2 ⇥ 2 border of zeros using unit strides (i.e., i = 5, k = 4, s = 1 and
p = 2). It is equivalent to convolving a 4 ⇥ 4 kernel over a 6 ⇥ 6 input padded
with a 1 ⇥ 1 border of zeros using unit strides (i.e., i0 = 6, k0 = k, s0 = 1 and
p0 = 1).

Figure 4.3: The transpose of convolving a 3⇥ 3 kernel over a 5⇥ 5 input using
half padding and unit strides (i.e., i = 5, k = 3, s = 1 and p = 1). It is
equivalent to convolving a 3 ⇥ 3 kernel over a 5 ⇥ 5 input using half padding
and unit strides (i.e., i0 = 5, k0 = k, s0 = 1 and p0 = 1).

23

input

output

Transposed Convolution (emulated with direct convolution):

Dumoulin, Vincent, and Francesco Visin. "A guide to convolution arithmetic for deep learning." arXiv preprint arXiv:1603.07285 (2016).

(stride = 1)

(stride = 1)

https://arxiv.org/abs/1603.07285
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output = s(n� 1) + k � 2p
<latexit sha1_base64="wDcSc+9jm0LLEge6NGheeZ1pTKs=">AAACBnicbVDLSgMxFM3UV62vUZciBItQkZaZKuhGKLpxWcE+oB1KJk3b0ExmSO6IZejKjb/ixoUibv0Gd/6NaTsLrR4IHM65l5tz/EhwDY7zZWUWFpeWV7KrubX1jc0te3unrsNYUVajoQhV0yeaCS5ZDTgI1owUI4EvWMMfXk38xh1TmofyFkYR8wLSl7zHKQEjdez9NrB7wAkOY4hiwOMLXZBF9+h4WCzjqGPnnZIzBf5L3JTkUYpqx/5sd0MaB0wCFUTrlutE4CVEAaeCjXPtWLOI0CHps5ahkgRMe8k0xhgfGqWLe6EyTwKeqj83EhJoPQp8MxkQGOh5byL+57Vi6J17CZcmIJN0dqgXCwwhnnSCu1wxCmJkCKGKm79iOiCKUDDN5UwJ7nzkv6ReLrknpfLNab5ymdaRRXvoABWQi85QBV2jKqohih7QE3pBr9aj9Wy9We+z0YyV7uyiX7A+vgGq3ZdN</latexit>

Transposed Convolution

?
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https://distill.pub/2016/deconv-checkerboard/

A good interactive article highlighting the dangers of transposed conv.

In short, recommends replacing transposed conv.

by upsampling (interpolation) followed by regular convolution

https://distill.pub/2016/deconv-checkerboard/
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input

output

Regular Convolution:

Dumoulin, Vincent, and Francesco Visin. "A guide to convolution arithmetic for deep learning." arXiv preprint arXiv:1603.07285 (2016).

A Conv2DTranspose with 3x3 kernel and stride of 2x2 applied to a 2x2 input to give a 5x5 output.

 (https://medium.com/apache-mxnet/transposed-convolutions-explained-with-ms-excel-52d13030c7e8)

input

output

Transposed Convolution (stride = 2)

https://arxiv.org/abs/1603.07285
https://medium.com/apache-mxnet/transposed-convolutions-explained-with-ms-excel-52d13030c7e8
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Implementing a Convolutional 
Autoencoder for Handwritten Digits

1. Dimensionality Reduction

2. Fully-connected Autoencoders

3. Convolutional Autoencoders

4. A Convolutional Autoencoder in PyTorch 
5. Other Types of Autoencoders
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Beyond "Regular" Fully-Connected or 
Convolutional Autoencoders

1. Dimensionality Reduction

2. Fully-connected Autoencoders

3. Convolutional Autoencoders

4. A Convolutional Autoencoder in PyTorch

5. Other Types of Autoencoders
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Encoder Decoder

Autoencoders and Dropout

Add dropout layers to force networks to 
learn redundant features
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Denoising Autoencoder

Add dropout after the input, or add noise to the input to learn 
to denoise images

Vincent, P., Larochelle, H., Bengio, Y., & Manzagol, P. A. (2008, July). Extracting and composing robust features with denoising autoencoders. In Proceedings of the 25th 
International Conference on Machine Learning (pp. 1096-1103). ACM.

Encoder Decoder

http://www.cs.toronto.edu/~larocheh/publications/icml-2008-denoising-autoencoders.pdf


Sebastian Raschka           STAT 453: Intro to Deep Learning          30

Sparse Autoencoder
Add L1 penalty to the loss to learn sparse feature 
representations

Encoder Decoder

X

i

|Enci(x)|
<latexit sha1_base64="dBLHnt9Cv+htRbmzdT80rHfDM1A=">AAACBHicbVDLSsNAFJ3UV62vqMtuBotQNyWpgi6LIrisYB/QhDCZTtqhk0mYmYgl7cKNv+LGhSJu/Qh3/o2TNgttPXDhcM693HuPHzMqlWV9G4WV1bX1jeJmaWt7Z3fP3D9oyygRmLRwxCLR9ZEkjHLSUlQx0o0FQaHPSMcfXWV+554ISSN+p8YxcUM04DSgGCkteWbZkUnoUTi55tijVSdEaugH6cP0BE48s2LVrBngMrFzUgE5mp755fQjnISEK8yQlD3bipWbIqEoZmRachJJYoRHaEB6mnIUEummsyem8FgrfRhEQhdXcKb+nkhRKOU49HVndqRc9DLxP6+XqODCTSmPE0U4ni8KEgZVBLNEYJ8KghUba4KwoPpWiIdIIKx0biUdgr348jJp12v2aa1+e1ZpXOZxFEEZHIEqsME5aIAb0AQtgMEjeAav4M14Ml6Md+Nj3low8plD8AfG5w9IBZfb</latexit>

L = ||x�Dec(Enc(x))||22 +
X

i

|Enci(x)|
<latexit sha1_base64="49PkuKLUhvj06IWg8JkPwQ/bE20="></latexit>
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Variational Autoencoder

Encoder Decoder

qw(z |x)
z

Gaussian  
probability  

density

Probability 
distribution 
of the data

pw(x |z)

L[i] =

Expected neg. log likelihood

term; wrt to encoder distribution

−𝔼z∼qw(z |x[i]) [log pw (x[i] |z)]+KL (qw (z |x[i]) ∥p(z))
Kullback-Leibler divergence term

where p(z) = 𝒩 (μ = 0,σ2 = 1)

Kingma, D. P., & Welling, M. (2013). Auto-encoding Variational Bayes. arXiv preprint arXiv:1312.6114.


