STAT 453: Introduction to Deep Learning and Generative Models

Sebastian Raschka
http://stat.wisc.edu/~sraschka/teaching

Lecture 16

Introduction to Autoencoders

http://stat.wisc.edu/~sraschka/teaching

m P ’mw u?" i i
| @

“
(w’c)‘l‘
| @ ..f. o0 |

(W.b)

r

R ey
Figure 1: Training neural autoencoder with noisy-clean speech
pairs.

Lu, X., Tsao, Y., Matsuda, S., & Hori, C. (2013, August). Speech enhancement based on deep denoising autoencoder. In
Interspeech (pp. 436-440).

Sebastian Raschka STAT 458: Intro to Deep Learning

Gondara, L. (2016, December). Medical image denoising using convolutional denoising autoencoders. In 2016 IEEE
16th International Conference on Data Mining Workshops (ICDMW) (pp. 241-246). IEEE.

Sebastian Raschka STAT 458: Intro to Deep Learning

Gender Prototypes
(Same/Neutral/Opposite)

/Same-Gender
Prototype

P P
Subnetwork | Y

Subnetwork Il
Male
VS.
Female

Subnetwork Il

Genuine
VS.
Impostor

Auxiliary
Gender
Predictor

Convolutional
Autoencoder

—> X'

Perturbed
Image Auxiliary
Face

\\\
~
-~ —— -
e e = = Matcher

Figure 1. Schematic representation of the semi-adversarial neu-
ral network architecture designed to derive perturbations that are
able to confound gender classifiers while still allowing biomet-
ric matchers to perform well. The overall network consists of
three sub-components: a convolutional autoencoder (subnetwork
I), an auxiliary gender classifier (subnetwork II), and an auxiliary
matcher (subnetwork III).

Vahid Mirjalili, Sebastian Raschka, Anoop Namboodiri,
and Arun Ross (2018) Semi-adversarial networks:
Convolutional autoencoders for imparting privacy to face
images. Proc. of 11th IAPR International Conference on
Biometrics (ICB 2018), Gold Coast, Australia.

Sebastian Raschka

Orig

Privacy- Baseline-
Net GAN

Privacy- Baselme- Privacy- Baselme-

Net GAN ‘ | Net GAN ‘

Privacy- Baseline-

Net GAN [58
. »". \",

Privacy- Baselme—
Net GAN [58

A

’\.

.ﬂ

"About half (52%) of U.S. adults said they decided recently not to use
a product or service because they were worried about how much
personal information would be collected about them."

https://www.pewresearch.org/fact-tank/2020/04 /14 /half-of-americans-have-
decided-not-to-use-a-product-or-service-because-of-privacy-concerns/

STAT 458: Intro to Deep Learning 4

https://www.pewresearch.org/fact-tank/2020/04/14/half-of-americans-have-decided-not-to-use-a-product-or-service-because-of-privacy-concerns/
https://www.pewresearch.org/fact-tank/2020/04/14/half-of-americans-have-decided-not-to-use-a-product-or-service-because-of-privacy-concerns/

Lecture Overview

1. Dimensionality Reduction

2. Fully-connected Autoencoders

3. Convolutional Autoencoders

4. A Convolutional Autoencoder in PyTorch
5. Other Types of Autoencoders

Feature Extraction
& Dimensionality Reduction

1. Dimensionality Reduction

2. Fully-connected Autoencoders

3. Convolutional Autoencoders

4. A Convolutional Autoencoder in PyTorch

5. Other Types of Autoencoders

Sebastian Raschka STAT 458: Intro to Deep Learning

Unsupervised Learning

Working with datasets without considering a/the target variable

Some Applications and Goals:

» Finding hidden structures in data
- Data compression

» Clustering

» Retrieving similar objects

- Exploratory data analysis

» Generating new examples

Principal Component Analysis (PCA)

1) Find directions of maximum variance

Principal Component Analysis (PCA)

2) Transform features onto directions of maximum variance

=>
%
>

PC2 O o o

Principal Component Analysis (PCA)

3) Usually consider a subset of vectors of most variance
(dimensionality reduction)

A + 0

I Q;

I R

n %o Lo o

[e

" o b o};,oc} * O MODR O D ___,
PC2 | . 9 o o ©O PC1

N

I

I

I +

|| <

|I==================>

An Hourglass-Shaped
Multilayer Perceptron

1. Dimensionality Reduction

2. Fully-connected Autoencoders

3. Convolutional Autoencoders

4. A Convolutional Autoencoder in PyTorch

5. Other Types of Autoencoders

Sebastian Raschka STAT 458: Intro to Deep Learning

11

A Basic Fully-Connected (Multilayer-Perceptron)
Autoencoder

Encoder Decoder

hidden units /
embedded space /
latent space /

bottleneck
Inputs Outputs

= reconstructed inputs

Sebastian Raschka STAT 458: Intro to Deep Learning

12

A Basic Fully-Connected (Multilayer-Perceptron)
Autoencoder

Llx,x') =[x =x[[f=) (z;—a})

If we don't use
non-linear activation
functions and
minimize the MSE,
this is very similar
to PCA

1

Inputs

Sebastian Raschka

Encoder

hidden units /
embedded space /

Decoder

latent space /
bottleneck

STAT 453: Intro to Deep Learning

However, the latent
dimensions will not
necessarily be
orthogonal

and will have

~ same variance

Outputs

13

A Basic Fully-Connected (Multilayer-Perceptron)
Autoencoder

Question:

If we can achieve the same with

PCA, which is essentially a kind of matrix
factorization that is more efficient than

Backprop + SGD, why bother with autoencoders?

Potential Autoencoder Applications

After training, disregard this part

Use embedding as input to classic machine
learning methods (SVM, KNN, Random Forest, ...)

Or, similar to transfer learning, train autoencoder
on large image dataset, then fine tune encoder
part on your own, smaller dataset and/or provide
your own output (classification) layer

Latent space can also be used for visualization
(EDA, clustering), but there are better methods

for that

Reshape

A Simple Autoencoder

28728 => 784

T

+ sigmoid
32 => 784

fully connected layer fully connected layer
+ leaky relu
/84 => 32

‘ |||||| 32 dim ||||||

Reshape
/84 => 2828

1

https://github.com /rasbt/deeplearning-models/blob/master/pytorch ipynb/autoencoder/ae-basic.ipynb

original

X

2

3"/.

3

4

3

:S:

s

0
10 -]
20 ']
0

10 A
reconstructed .

S
o
o s L
N_\Q
o

R
14

0 2'0

0 2'0

0 2'0

0 2

0 2'0

0 20 0 2|0 6

A4
z

F f
20 0 20

Sebastian Raschka

STAT 458: Intro to Deep Learning

16

https://github.com/rasbt/deeplearning-models/blob/master/pytorch_ipynb/autoencoder/ae-basic.ipynb

Convolutional Autoencoders
& Transposed Convolutions / Deconvolutions

3. Convolutional Autoencoders

A Convolutional Autoencoder

convolutional layers

1 or more

1 or more

"de"convolutional layers

T

original

09]
ql

reconstructed’!

N [—
° o o © o
N J
N u 4 c'
L

e e

Sebastian Raschka

0 0 0 0 0 0 0 0 0 0 0 0 20

STAT 458: Intro to Deep Learning

& i ..
o J J
SR i

. N N
o)

S w 4 w
=) — i

18

Transposed Convolution

e Allows us to increase the size of the output feature map
compared to the input feature map

e Synonyms:

» often also (incorrectly) called "deconvolution”
(mathematically, deconvolution is defined as the inverse of
convolution, which is different from transposed convolutions)

» the term "unconv' is sometimes also used

> fractionally strided convolution is another (better?)
term for that

Regular Convolution:

oo % 3 3 &

Dumoulin, Vincent, and Francesco Visin. "A guide to convolution arithmetic for deep learning." arXiv preprint arXiv:1603.07285 (2016).

Transposed Convolution (stride = 2)

output

input <&

A Conv2DTranspose with 3x3 kernel and stride of 2x2 applied to a 2x2 input to give a 5x5 output.
(https.//medium.com/apache-mxnet/transposed-convolutions-explained-with-ms-excel-52d13030c7e8)

Sebastian Raschka STAT 453: Intro to Deep Learning 20

https://arxiv.org/abs/1603.07285
https://medium.com/apache-mxnet/transposed-convolutions-explained-with-ms-excel-52d13030c7e8

Transposed Convolution (3x3 kernel, stride=2)

output

input <S>

A Conv2DTranspose with 3x3 kernel and stride of 2x2 applied to a 2x2 input to give a 5x5 output.
(https.://medium.com/apache-mxnet/transposed-convolutions-explained-with-ms-excel-52d13030c7e8)

Transposed Convolution (emulated with direct convolution):

output

input

Dumoulin, Vincent, and Francesco Visin. "A guide to convolution arithmetic for deep learning." arXiv preprint arXiv:1603.07285 (2016).

Sebastian Raschka STAT 453: Intro to Deep Learning 21

https://arxiv.org/abs/1603.07285
https://medium.com/apache-mxnet/transposed-convolutions-explained-with-ms-excel-52d13030c7e8

Regular Convolution: (stride = 1)

" ® & &

Figure 2.1: (No padding, unit strides) Convolving a 3 x 3 kernel over a 4 x 4
input using unit strides (i.e., i =4, k=3, s =1 and p = 0).

Transposed Convolution (emulated with direct convolution):

output (stride = 1)

input

Dumoulin, Vincent, and Francesco Visin. "A guide to convolution arithmetic for deep learning." arXiv preprint arXiv:1603.07285 (2016).

Sebastian Raschka STAT 453: Intro to Deep Learning 29

https://arxiv.org/abs/1603.07285

Transposed Convolution

import torch

torch.manual_seed(123)
a = torch.rand(4).view(1, 1, 2, 2)

conv_t = torch.nn.ConvTranspose2d(in_channels=1,
out_channels=1,
kernel_size=(3, 3),
padding=0,
stride=1)

output = s(n-1)+k-2p = 1%(2-1)+3-2%0 = 4
conv_t(a)

tensor([[[[-0.2863, -0.2766, -0.1478, -0.3274],
[-0.3522, -0.5356, -0.1591, -0.2911],
[-0.3054, -0.4644, -0.3286, -0.2444],
[-0.2332, -0.2557, -0.1876, -0.3970]]111,
grad_fn=<ThnnConvTranspose2DBackward=>)

torch.manual_seed(123)
a = torch.rand(16).view(1, 1, 4, 4)

conv_t = torch.nn.ConvTranspose2d(in_channels=1,
out_channels=1,
kernel_size=(3, 3),
padding=0,
stride=1)

output = s(n-1)+k-2p = 1%(4-1)+3-2%0 = 6
conv_t(a).sizel()

torch.Size([1, 1, 6, 6])

Sebastian Raschka

output =s(n—1)+k —2p

torch.manual_seed(123)
a = torch.rand(64).view(1, 1, 8, 8)

conv_t = torch.nn.ConvTranspose2d(in_channels=1,
out_channels=1,
kernel_size=(3, 3),
padding=0,
stride=1)

output = s(n-1)+k-2p = 1%(8-1)+3-2%0 = 10
conv_t(a).size()

torch.Size([1, 1, 10, 10])

STAT 453: Intro to Deep Learning 23

Deconvolution and Checkerboard

Artifacts

AUGUSTUS ODENA VINCENT DUMOULIN CHRIS OLAH Oct. 17 Citation:
Google Brain Universite de Montreal Google Brain 2016 Odena, et al., 2016

https://distill.pub/2016 /deconv-checkerboard/

A good interactive article highlighting the dangers of transposed conv.

N
\\\\\\\\\\\\\\

In short, recommends replacing transposed conv.
by upsampling (interpolation) followed by regular convolution

Sebastian Raschka STAT 453: Intro to Deep Learning 24

https://distill.pub/2016/deconv-checkerboard/

Regular Convolution:

oo % 3 3 &

Dumoulin, Vincent, and Francesco Visin. "A guide to convolution arithmetic for deep learning." arXiv preprint arXiv:1603.07285 (2016).

Transposed Convolution (stride = 2)

output

input <&

A Conv2DTranspose with 3x3 kernel and stride of 2x2 applied to a 2x2 input to give a 5x5 output.
(https.//medium.com/apache-mxnet/transposed-convolutions-explained-with-ms-excel-52d13030c7e8)

Sebastian Raschka STAT 453: Intro to Deep Learning 25

https://arxiv.org/abs/1603.07285
https://medium.com/apache-mxnet/transposed-convolutions-explained-with-ms-excel-52d13030c7e8

Implementing a Convolutional
Autoencoder for Handwritten Digits

4. A Convolutional Autoencoder in PyTorch

Beyond "Regular" Fully-Connected or
Convolutional Autoencoders

5. Other Types of Autoencoders

Autoencoders and Dropout

Add dropout layers to force networks to
learn redundant features

“7

Sebastian Raschka STAT 453: Intro to Deep Learning 28

Denoising Autoencoder

Add dropout after the input, or add noise to the input to learn
to denoise images

909

Vincent, P., Larochelle, H., Bengio, Y., & Manzagol, P. A. (2008, July). Extracting and composing robust features with denoising autoencoders. In Proceedings of the 25th
International Conference on Machine Learning (pp. 1096-1103). ACM.

Sebastian Raschka STAT 458: Intro to Deep Learning

http://www.cs.toronto.edu/~larocheh/publications/icml-2008-denoising-autoencoders.pdf

Sparse Autoencoder

Add L1 penalty to the loss to learn sparse feature

representations
> |Enc(x)

L ﬂ;

I‘ 1

L = ||x — Dec(Enc(x))||2 + Z Enc;(x)]

Sebastian Raschka STAT 458: Intro to Deep Learning

Variational Autoencoder

L = —E__, (-10) [logp,, (x"2)| +KL (g,, (z1x) lIp(2))

Expected neg. log likelihood Kullback-Leibler divergence term
term; wrt to encoder distribution where p(z) = N (,u =0,06° = 1)

q,(z| x) pu(x|2)

I Gaussian

- 1

Probability
probability distribution
density of the data

Kingma, D. P., & Welling, M. (2013). Auto-encoding Variational Bayes. arXiv preprint arXiv:1312.6114.

Sebastian Raschka STAT 458: Intro to Deep Learning

31

