STAT 453: Introduction to Deep Learning and Generative Models Sebastian Raschka <u>http://stat.wisc.edu/~sraschka/teaching</u>



# Lecture 14 Introduction to CNNs Part 2 -- CNN Architectures

# Lecture Overview

- 1. Padding (control output size in addition to stride)
- 2. Spatial Dropout and BatchNorm
- 3. Common architectures
  - 3.1 VGG16 (simple, deep CNN)
  - 3.2 ResNet and skip connections
- 4. Replacing Max-Pooling with convolutional layers
- 5. Convolutional instead of fully connected layers
- 6. Transfer learning

#### **Controlling output size in addition to stride**

#### 1. Padding

- 2. Spatial Dropout and BatchNorm
- 3. Common architectures
  - 3.1 VGG16 (simple, deep CNN)
  - 3.2 ResNet and skip connections
- 4. Replacing Max-Pooling with convolutional layers
- 5. Convolutional instead of fully connected layers
- 6. Transfer learning

# Padding





padding=2, stride=1



No padding, stride=2

#### Highly recommended:

Dumoulin, Vincent, and Francesco Visin. "<u>A guide to</u> <u>convolution arithmetic for deep learning</u>." *arXiv preprint arXiv:1603.07285* (2016).

# **Padding Jargon**

<u>"valid" convolution</u>: no padding (feature map may shrink)

<u>"same" convolution:</u> padding such that the output size is equal to the input size

Common kernel size conventions:

3x3, 5x5, 7x7 (sometimes 1x1 in later layers to reduce channels)

# Padding

$$o = \left\lfloor \frac{i + 2p - k}{s} \right\rfloor + 1$$

Assume you want to use a convolutional operation with stride 1 and maintain the input dimensions in the output feature map:

How much padding do you need for "same" convolution?

$$o = i + 2p - k + 1$$
  
$$\Leftrightarrow p = (o - i + k - 1)/2$$
  
$$\Leftrightarrow p = (k - 1)/2$$

# Padding

$$o = i + 2p - k + 1$$
  
$$\Leftrightarrow p = (o - i + k - 1)/2$$
  
$$\Leftrightarrow p = (k - 1)/2$$

Probably explains why common kernel size conventions are 3x3, 5x5, 7x7 (sometimes 1x1 in later layers to reduce channels)

#### Familiar Concepts Now in 2D

1. Padding

#### 2. Spatial Dropout and BatchNorm

- 3. Common architectures
  - 3.1 VGG16 (simple, deep CNN)
  - 3.2 ResNet and skip connections
- 4. Replacing Max-Pooling with convolutional layers
- 5. Convolutional instead of fully connected layers
- 6. Transfer learning

# Spatial Dropout -- Dropout2D

- Problem with regular dropout and CNNs: Adjacent pixels are likely highly correlated (thus, may not help with reducing the "dependency" much as originally intended by dropout)
- Hence, it may be better to drop entire feature maps

#### Idea comes from

Tompson, Jonathan, Ross Goroshin, Arjun Jain, Yann LeCun, and Christoph Bregler. "Efficient object localization using convolutional networks." In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition*, pp. 648-656. 2015.

# **Spatial Dropout -- Dropout2D**

• Dropout2d will drop full feature maps (channels)

#### import torch

```
m = torch.nn.Dropout2d(p=0.5)
input = torch.randn(1, 3, 5, 5)
output = m(input)
```

#### output

| tensor([[[[-0.0000, | 0.0000,  | 0.0000,  | 0.0000,  | -0.0000],   |
|---------------------|----------|----------|----------|-------------|
| [ 0.0000,           | -0.0000, | 0.0000,  | 0.0000,  | 0.0000],    |
| [ 0.0000,           | -0.0000, | 0.0000,  | -0.0000, | 0.0000],    |
| [ 0.0000,           | 0.0000,  | -0.0000, | 0.0000,  | -0.0000],   |
| [-0.0000,           | 0.0000,  | 0.0000,  | -0.0000, | -0.0000],   |
| [[-3.5274,          | 0.8163,  | 0.2440,  | 1.2410,  | 1.5022],    |
| [-1.2455,           | 6.3875,  | -2.6224, | 0.0261,  | 1.7487],    |
| [ 1.6471,           | 0.7444,  | -2.1941, | -2.0119, | -1.5232],   |
| [ 0.3720,           | -1.5606, | 0.7630,  | 0.9177,  | -0.1387],   |
| [-1.2817,           | -3.5804, | 0.4367,  | -0.1384, | -0.8148]],  |
| [[-0.0000,          | -0.0000, | -0.0000, | -0.0000, | 0.0000],    |
| [ 0.0000,           | -0.0000, | -0.0000, | -0.0000, | 0.0000],    |
| [ 0.0000,           | -0.0000, | 0.0000,  | -0.0000, | -0.0000],   |
| [-0.0000,           | -0.0000, | 0.0000,  | 0.0000,  | -0.0000],   |
| [-0.0000,           | 0.0000,  | 0.0000,  | 0.0000,  | 0.0000]]]]] |

### BatchNorm 2D

#### BatchNorm1d

CLASS torch.nn.BatchNorm1d(*num\_features*, *eps=1e-05*, *momentum=0.1*, *affine=True*, *track\_running\_stats=True*)
[SOURCE]

Applies Batch Normalization over a 2D or 3D input (a mini-batch of 1D inputs with optional additional channel dimension) as described in the paper Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift .

$$y = rac{x - \mathrm{E}[x]}{\sqrt{\mathrm{Var}[x] + \epsilon}} * \gamma + eta$$

#### BatchNorm2d

CLASS torch.nn.BatchNorm2d(*num\_features*, *eps=1e-05*, *momentum=0.1*, *affine=True*, [SOURCE] track\_running\_stats=True)

Applies Batch Normalization over a 4D input (a mini-batch of 2D inputs with additional channel dimension) as described in the paper Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift .

$$y = rac{x - \mathrm{E}[x]}{\sqrt{\mathrm{Var}[x] + \epsilon}} * \gamma + eta$$

Source: https://pytorch.org/docs/stable/nn.html

#### BatchNorm 2D

#### BatchNorm1d Inputs are rank-2 tensors: [N, num\_features)

CLASS torch.nn.BatchNorm1d(*num\_features*, *eps=1e-05*, *momentum=0.1*, *affine=True*, *track\_running\_stats=True*) [SOURCE]

Applies Batch Normalization over a 2D or 3D input (a mini-batch of 1D inputs with optional additional channel dimension) as described in the paper Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift.

$$y = rac{x - \mathrm{E}[x]}{\sqrt{\mathrm{Var}[x] + \epsilon}} st \gamma + eta$$

#### BatchNorm2d Inputs are rank-4 tensors: [N, C, H, W]

CLASS torch.nn.BatchNorm2d(*num\_features*, *eps=1e-05*, *momentum=0.1*, *affine=True*, *track\_running\_stats=True*) [SOURCE]

Applies Batch Normalization over a 4D input (a mini-batch of 2D inputs with additional channel dimension) as described in the paper Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift .

$$y = rac{x - \mathrm{E}[x]}{\sqrt{\mathrm{Var}[x] + \epsilon}} st \gamma + eta$$

# In BatchNorm2d, the mean and standard deviation are computed for N\*H\*W, i.e., over the channel dimension

Source: https://pytorch.org/docs/stable/nn.html

### BatchNorm 2D

In BatchNorm2d, the mean and standard deviation are computed for N\*H\*W, i.e., over the channel dimension

- [3]: model.bn1.weight.size()
- [3]: torch.Size([192])

- 1. Padding
- 2. Spatial Dropout and BatchNorm

#### 3. Common architectures

- 3.1 VGG16 (simple, deep CNN)
- 3.2 ResNet and skip connections
- 4. Replacing Max-Pooling with convolutional layers
- 5. Convolutional instead of fully connected layers
- 6. Transfer learning

We will discuss some additional common CNN architectures since the field evolved quite a bit since 2012 ...



Canziani, A., Paszke, A., & Culurciello, E. (2016). An analysis of deep neural network models for practical applications. *arXiv preprint arXiv:1605.07678*.



Canziani, A., Paszke, A., & Culurciello, E. (2016). An analysis of deep neural network models for practical applications. *arXiv preprint arXiv:1605.07678*.

#### **Adding More Layers**

- 1. Padding
- 2. Spatial Dropout and BatchNorm
- 3. Common architectures

#### 3.1 VGG16 (simple, deep CNN)

- 3.2 ResNet and skip connections
- 4. Replacing Max-Pooling with convolutional layers
- 5. Convolutional instead of fully connected layers
- 6. Transfer learning



Canziani, A., Paszke, A., & Culurciello, E. (2016). An analysis of deep neural network models for practical applications. *arXiv preprint arXiv:1605.07678*.

### **VGG-16**

| ConvNet Configuration |                                 |           |           |           |           |
|-----------------------|---------------------------------|-----------|-----------|-----------|-----------|
| А                     | A-LRN                           | В         | C         | D         | Е         |
| 11 weight             | 11 weight                       | 13 weight | 16 weight | 16 weight | 19 weight |
| layers                | layers                          | layers    | layers    | layers    | layers    |
|                       | input ( $224 \times 224$ RGB im |           |           | ge)       |           |
| conv3-64              | conv3-64                        | conv3-64  | conv3-64  | conv3-64  | conv3-64  |
|                       | LRN                             | conv3-64  | conv3-64  | conv3-64  | conv3-64  |
|                       |                                 | max       | pool      |           |           |
| conv3-128             | conv3-128                       | conv3-128 | conv3-128 | conv3-128 | conv3-128 |
|                       |                                 | conv3-128 | conv3-128 | conv3-128 | conv3-128 |
| maxpool               |                                 |           | pool      |           |           |
| conv3-256             | conv3-256                       | conv3-256 | conv3-256 | conv3-256 | conv3-256 |
| conv3-256             | conv3-256                       | conv3-256 | conv3-256 | conv3-256 | conv3-256 |
|                       |                                 |           | conv1-25  | conv3-256 | conv3-256 |
|                       |                                 |           |           |           | conv3-256 |
| maxpool               |                                 |           | pool      |           |           |
| conv3-512             | conv3-512                       | conv3-512 | conv3-512 | conv3-512 | conv3-512 |
| conv3-512             | conv3-512                       | conv3-512 | conv3-512 | conv3-512 | conv3-512 |
|                       |                                 |           | conv1-512 | conv3-512 | conv3-512 |
|                       |                                 |           |           |           | conv3-512 |
|                       |                                 | max       | pool      |           |           |
| conv3-512             | conv3-512                       | conv3-512 | conv3-512 | conv3-512 | conv3-512 |
| conv3-512             | conv3-512                       | conv3-512 | conv3-512 | conv3-512 | conv3-512 |
|                       |                                 |           | conv1-512 | conv3-512 | conv3-512 |
|                       |                                 |           |           |           | conv3-512 |
|                       | maxpool                         |           | pool      |           |           |
|                       | FC-4096                         |           | 4096      |           |           |
| FC-4096               |                                 | 4096      |           |           |           |
| FC-1000               |                                 | 1000      |           |           |           |
| soft-max              |                                 |           |           |           |           |

#### Advantages: very simple architecture, 3x3 convs, stride=1, "same" padding, 2x2 max pooling

#### Disadvantage:

very large number of parameters and slow

(see previous slide)

Simonyan, Karen, and Andrew Zisserman. "Very deep convolutional networks for large-scale image recognition." *arXiv preprint arXiv:1409.1556* (2014).

### **VGG-16**



Simonyan, Karen, and Andrew Zisserman. "<u>Very deep convolutional networks for</u> <u>large-scale image recognition</u>." *arXiv preprint arXiv:1409.1556* (2014).

#### Can We Add More Layers? CNNs with a Simple Trick

- 1. Padding
- 2. Spatial Dropout and BatchNorm
- 3. Common architectures
  - 3.1 VGG16 (simple, deep CNN)

#### 3.2 ResNet and skip connections

- 4. Replacing Max-Pooling with convolutional layers
- 5. Convolutional instead of fully connected layers
- 6. Transfer learning



Canziani, A., Paszke, A., & Culurciello, E. (2016). An analysis of deep neural network models for practical applications. *arXiv preprint arXiv:1605.07678*.

He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. "Deep residual learning for image recognition." In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 770-778. 2016.



Figure 2. Residual learning: a building block.

He, Kaiming, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. "Deep residual learning for image recognition." In *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 770-778. 2016.





In general: 
$$a^{(l+2)} = \sigma(z^{(l+2)} + a^{(l)})$$



$$a^{(l+2)} = \sigma \left( z^{(l+2)} + a^{(l)} \right)$$
  
=  $\sigma \left( a^{(l+1)} W^{(l+2)} + b^{(l+2)} + a^{(l)} \right)$ 

If all weights and the bias are zero, then

$$= \sigma(a^{(l)}) = a^{(l)}$$
 (identity function  
due to ReLU



$$a^{(l+2)} = \sigma(z^{(l+2)} + a^{(l)})$$

We assume these have the same dimension (e.g., via "same" convolution)



alternative residual blocks with skip connections such that the input passed via the shortcut is resized to dimensions of the main path's output

#### **Simplifying CNNs**

- 1. Padding
- 2. Spatial Dropout and BatchNorm
- 3. Common architectures
  - 3.1 VGG16 (simple, deep CNN)
  - 3.2 ResNet and skip connections

#### 4. Replacing max-pooling with convolutional layers

- 5. Convolutional instead of fully connected layers
- 6. Transfer learning

#### "All-Convolutional Network"

Springenberg, Jost Tobias, Alexey Dosovitskiy, Thomas Brox, and Martin Riedmiller. "<u>Striving for simplicity: The all</u> convolutional net." *arXiv preprint arXiv:1412.6806* (2014).

# <u>Key Idea</u>: Replace Maxpooling by strided convolutions (i.e., conv layers with stride=2)

We can think of "strided convolutions" as learnable pooling

#### **Global Average Pooling in Last Layer**



Figure 16: Global average pooling layer replacing the fully connected layers. The output layer implements a Softmax operation with  $p_1, p_2, \dots, p_n$  the predicted probabilities for each class.

Figure Source: Singh, Anshuman Vikram. "Content-based image retrieval using deep learning." (2015).

### Code Example

Sebastian Raschka STAT 453: Intro to Deep Learning

#### **Simplifying CNNs Part 2**

- 1. Padding
- 2. Spatial Dropout and BatchNorm
- 3. Common architectures
  - 3.1 VGG16 (simple, deep CNN)
  - 3.2 ResNet and skip connections
- 4. Replacing Max-Pooling with convolutional layers
- 5. Convolutional instead of fully connected layers
- 6. Transfer learning

#### It is Possible to Replace Fully Connected Layers by Convolutional Layers



remember, these also involve dot products between the receptive fields and kernels  $\mathbf{W}_2 * \mathbf{x} + b_2$  $\mathbf{W}_1 * \mathbf{x} + b_1$ 

Fully connected layer

where 
$$\mathbf{W}_1 = \begin{bmatrix} w_{1,1} & w_{1,2} \\ w_{1,3} & w_{1,4} \end{bmatrix}$$
  
 $\mathbf{W}_2 = \begin{bmatrix} w_{2,1} & w_{2,2} \\ w_{2,3} & w_{2,4} \end{bmatrix}$ 

#### import torch

Assume we have a 2x2 input image:

inputs.shape

```
torch.Size([1, 1, 2, 2])
NCHW
```



torch.relu(fc(inputs.view(-1, 4)))

tensor([[14.9000, 19.0000]], grad\_fn=<ReluBackward0>)

| $\mathbf{w}_1^T \mathbf{x} + \mathbf{w}_2^T x$ | $-b_1$ $-b_2$ $\mathbf{W}_2 * \mathbf{x} + b_2$ $\mathbf{W}_1 * \mathbf{x} + b_1$                        |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|
| import torch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <pre>kernel_size = inputs.squeeze(dim=(0)).squeeze(dim=(0)).size() kernel_size</pre>                     |
| Assume we have a 2x2 input image:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <pre>torch.Size([2, 2])</pre>                                                                            |
| <pre>inputs = torch.tensor([[[1., 2.],</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <pre>conv = torch.nn.Conv2d(in_channels=1,</pre>                                                         |
| torch.Size([1, 1, 2, 2])                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | print(conv.blas.size())                                                                                  |
| <pre>fc = torch.nn.Linear(4, 2)</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | torch.Size([2, 1, 2, 2])<br>torch.Size([2])                                                              |
| <pre>weights = torch.tensor([[1.1, 1.2, 1.3, 1.4],</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <pre># use same values as before conv.weight.data = weights.view(2, 1, 2, 2) conv.bias.data = bias</pre> |
| <pre>torch.relu(fc(inputs.view(-1, 4)))</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                          |
| tensor([[14.9000, 19.0000]], grad_fn= <relubackward0>)</relubackward0>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <pre>torch.relu(conv(inputs))</pre>                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | tensor([[[[14.9000]],                                                                                    |

```
[[19.0000]]]], grad_fn=<ReluBackward0>)
```

#### It is Possible to Replace Fully Connected Layers by Convolutional Layers



Fully connected layer



Or, we can concatenate the inputs into 1x1 images with 4 channels and then use 2 kernels (remember, each kernel then also has 4 channels)

| $\mathbf{w}_1^T \mathbf{x} - \mathbf{w}_2^T x$ | $+b_1$<br>$+b_2$                                                           |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|
| <pre>import torch</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $conv = torch_nn_Conv2d(in channels=4)$                                    |
| Assume we have a 2x2 input image:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | out_channels=2,                                                            |
| <pre>inputs = torch.tensor([[[[1., 2.],</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <pre>kernel_size=(1, 1))</pre>                                             |
| inputs.shape                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <pre>conv.weight.data = weights.view(2, 4, 1, 1)</pre>                     |
| torch.Size([1, 1, 2, 2])                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <pre>conv.bias.data = bias torch.relu(conv(inputs.view(1, 4, 1, 1)))</pre> |
| <pre>fc = torch.nn.Linear(4, 2)</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                            |
| <pre>weights = torch.tensor([[1.1, 1.2, 1.3, 1.4],</pre>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | tensor([[[[14.9000]],                                                      |
| fc.weight.data = weights<br>fc.bias.data = bias                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | [[19.0000]]]], grad_fn= <relubackward0>)</relubackward0>                   |

torch.relu(fc(inputs.view(-1, 4)))

tensor([[14.9000, 19.0000]], grad\_fn=<ReluBackward0>)

# $\mathbf{W}_{2} * \mathbf{x} + b_{2}$ $\mathbf{W}_{1} * \mathbf{x} + b_{1}$

```
torch.nn.BatchNorm2d(64),
torch.nn.ReLU(inplace=True),
torch.nn.Conv2d(in_channels=64,
                out_channels=num_classes,
                kernel_size=(3, 3),
                stride=(1, 1),
                padding=1,
                bias=False),
torch.nn.BatchNorm2d(10),
torch.nn.ReLU(inplace=True),
# 0ld:
# torch.nn.AdaptiveAvgPool2d(1),
# New:
torch.nn.Conv2d(in_channels=num_classes,
                out_channels=num_classes,
                kernel_size=(8, 8),
                stride=(1, 1)),
torch.nn.Flatten()
```





#### Can You Teach an Old Dog New Tricks?

- 1. Padding
- 2. Spatial Dropout and BatchNorm
- 3. Common architectures
  - 3.1 VGG16 (simple, deep CNN)
  - 3.2 ResNet and skip connections
- 4. Replacing Max-Pooling with convolutional layers
- 5. Convolutional instead of fully connected layers

#### 6. Transfer learning

- A technique that may be useful for your class projects
- Key idea:
  - Feature extraction layers may be generally useful
  - Use a pre-trained model (e.g., pre-trained on ImageNet)
  - ✦ Freeze the weights: Only train last layer (or last few layers)
- Related approach: Fine-tuning, train a pre-trained network on your smaller dataset

### Which Layers to Replace & Train?

Karpathy, A., Toderici, G., Shetty, S., Leung, T., Sukthankar, R., & Fei-Fei, L. (2014). Large-scale video <u>classification with convolutional neural networks</u>. In *Proceedings of the IEEE conference on Computer Vision and Pattern Recognition* (pp. 1725-1732).

| Model                           | 3-fold Accuracy |
|---------------------------------|-----------------|
| Soomro et al [22]               | 43.9%           |
| Feature Histograms + Neural Net | 59.0%           |
| Train from scratch              | 41.3%           |
| Fine-tune top layer             | 64.1%           |
| Fine-tune top 3 layers          | <b>65.4</b> %   |
| Fine-tune all layers            | 62.2%           |

Table 3: Results on UCF-101 for various Transfer Learning approaches using the Slow Fusion network.



Simonyan, Karen, and Andrew Zisserman. "Very deep convolutional networks for large-scale image recognition." *arXiv preprint arXiv:1409.1556* (2014).



Simonyan, Karen, and Andrew Zisserman. "<u>Very deep convolutional networks for</u> <u>large-scale image recognition</u>." *arXiv preprint arXiv:1409.1556* (2014).

#### https://pytorch.org/vision/stable/models.html

#### TORCHVISION.MODELS

The models subpackage contains definitions of models for addressing different tasks, including: image classification, pixelwise semantic segmentation, object detection, instance segmentation, person keypoint detection and video classification.

#### Classification

The models subpackage contains definitions for the following model architectures for image classification:

- AlexNet
- VGG
- ResNet
- SqueezeNet
- DenseNet
- Inception v3
- GoogLeNet
- ShuffleNet v2
- MobileNet v2
- ResNeXt
- Wide ResNet
- MNASNet

#### https://pytorch.org/docs/stable/torchvision/models.html

Instancing a pre-trained model will download its weights to a cache directory. This directory can be set using the *TORCH\_MODEL\_ZOO* environment variable. See torch.utils.model\_zoo.load\_url() for details.

Some models use modules which have different training and evaluation behavior, such as batch normalization. To switch between these modes, use model.train() or model.eval() as appropriate. See train() or eval() for details.

All pre-trained models expect input images normalized in the same way, i.e. mini-batches of 3-channel RGB images of shape (3 x H x W), where H and W are expected to be at least 224. The images have to be loaded in to a range of [0, 1] and then normalized using mean = [0.485, 0.456, 0.406] and std = [0.229, 0.224, 0.225]. You can use the following transform to normalize:

### **Transfer Learning Code Example**

Sebastian Raschka STAT 453: Intro to Deep Learning