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Overview: Additional Tricks for
Neural Network Training (Part 2/2)

Part 1 (Last Lecture, L10)

e Input Normalization & BatchNorm

* Weight Initialization (Xavier Glorot, Kaiming He)

Part 2 (this lecture)

e | earning Rate Decay

e Momentum Learning

* Adaptive Learning



Overview: Additional Tricks for
Neural Network Training (Part 2/2)

Part 1 (Last Lecture, L10)

e Input Normalization & BatchNorm

* Weight Initialization (Xavier Glorot, Kaiming He)

Part 2 (this lecture)

e | earning Rate Decay

. (Modifications of the 1st order SGD optimization
* Momentum Learning  gigorithm; 2nd order methods are rarely used in DL)

* Adaptive Learning
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Decreasing the learning rate
over the course of training
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Minibatch Learning Recap

Minibatch learning is a form of
stochastic gradient descent

. - Each minibatch can be considered a
Cosh Misimer sample drawn from the training set
W, (where the training set is in turn a
sample drawn from the population)

Hence, the gradient is noisier

A noisy gradient can be

4+ good: chance to escape local
minima

4+ bad: can lead to extensive
oscillation

- Main advantage: Convergence speed,
because it offers to opportunities for
parallelism (do you recall what these are?)




Nice Library & Visualization Tool

https://vis.ensmallen.org
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Practical Tip for Minibatch Use

Reasonable minibatch sizes are usually: 32, 64, 128, 256, 512, 1024 (in the last
lecture, we discussed why powers of 2 are a common convention)

Usually, you can choose a batch size that is as large as your GPU memory allows
(matrix-multiplication and the size of fully-connected layers are usually the
bottleneck)

Practical tip: usually, it is a good idea to also make the batch size proportional to
the number of classes in the dataset

Dataset before splitting (n = 150)
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Figure 1: Distribution of Iris flower classes upon random subsampling into training and test sets.
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Epoch: 100/100 | Train: 98.45% | Validation: 97.67%
Time elapsed: 4.38 min

Total Training Time: 4.38 min

Test accuracy 97.08%
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batchsize-64.ipynb

Epoch: 100/100 | Train: 98.50% | Validation: 97.65%
Time elapsed: 5.59 min

Total Training Time: 5.59 min

Test accuracy 97.18%

- Minibatch Loss

14 1 ~ Running Average

12 1
10 -
0.8 4

Loss

0.6 1
041
0.2 1

0 0 ¥ L) L] 1 1
0 20000 40000 60000 80000

Iterations

0 10 20 30 40 S0 6 70 8 9% 100
Epochs

100.0

97.5 1

95.0 1

92.5 4

90.0 1

Accuracy

87.5 4
85.0 1

82.5 1 = Taining
~ Validation

mo Ll L] L) Ll Ll L
0 20 40 60 80 100

STAT 458: Intro to Deep Learning



Learning Rate Decay

- Batch effects -- minibatches are samples of the training set,
hence minibatch loss and gradients are approximations

* Hence, we usually get oscillations

- To dampen oscillations towards the end of the training, we can decay
the learning rate
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Learning Rate Decay

Batch effects -- minibatches are samples of the training set,
hence minibatch loss and gradients are approximations

Hence, we usually get oscillations

To dampen oscillations towards the end of the training, we can decay
the learning rate

ooty wesqlt led aurrage Danger of learning rate is

/ ox Whole - hmm& seb Aogs to decrease the learning rate too early

/1

|
Practical tip: try to train the model

without learning rate decay first,
then add it later

You can also use the validation
performance (e.g., accuracy) to
judge whether Ir decay is useful
(as opposed to using the training loss)

Sebastian Raschka STAT 453: Intro to Deep Learning 11



Learning Rate Decay

Most common variants for learning rate decay:

1) Exponential Decay:
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Learning Rate Decay

Most common variants for learning rate decay:

2) Halving the learning rate:

Mt = Ne—1/2
3) Inverse decay:  decoy rate 001
—— decay rate 0.1
’]70 0.4
e == :
1 —I— k' * t 50.3
0.1

0 20 40 60 80 100
Iteration (usually: epoch)



Learning Rate Decay

There are many, many more

E.g., Cyclical Learning Rate

Smith, Leslie N. “Cyclical learning rates for training neural networks.” Applications of Computer
Vision (WACV), 2017 IEEE Winter Conference on. IEEE, 2017.

Maximum bound
(max_Ir)

Minimum bound

< > (base_Ir)
stepsize

Figure 2. Triangular learning rate policy. The blue lines represent
learning rate values changing between bounds. The input parame-
ter stepsize is the number of iterations in half a cycle.


https://ieeexplore.ieee.org/abstract/document/7926641/

Relationship between Learning Rate and Batch
Size
DON’T DECAY THE LEARNING RATE,
INCREASE THE BATCH SIZE

Samuel L. Smith*, Pieter-Jan Kindermans®, Chris Ying & Quoc V. Le
Google Brain
{slsmith, pikinder, chrisying, gvl}@google.com

ABSTRACT

It is common practice to decay the learning rate. Here we show one can usually
obtain the same learning curve on both training and test sets by instead increasing
the batch size during training. This procedure is successful for stochastic gradi-
ent descent (SGD), SGD with momentum, Nesterov momentum, and Adam. It
reaches equivalent test accuracies after the same number of training epochs, but
with fewer parameter updates, leading to greater parallelism and shorter training
times. We can further reduce the number of parameter updates by increasing the
learning rate € and scaling the batch size B €. Finally, one can increase the mo-
mentum coefficient m and scale B o 1/(1 — m), although this tends to slightly
reduce the test accuracy. Crucially, our techniques allow us to repurpose existing
training schedules for large batch training with no hyper-parameter tuning. We
train ResNet-50 on ImageNet to 76.1% validation accuracy in under 30 minutes.

Smith, S. L., Kindermans, P. J., Ying, C., & Le, Q. V. (2017). Don't decay the learning rate, increase the batch size. arXiv preprint arXiv:1711.00489.



Relationship between Learning Rate and Batch
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Figure 6: Inception-ResNet-V2 on ImageNet. Increasing the batch size during training achieves
similar results to decaying the learning rate, but it reduces the number of parameter updates from
just over 14000 to below 6000. We run each experiment twice to illustrate the variance.

Smith, S. L., Kindermans, P. J., Ying, C., & Le, Q. V. (2017). Don't decay the learning rate, increase the batch size. arXiv preprint arXiv:1711.00489.
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Decreasing the learning rate
over the course of training

S e

Learning rate decay

Learning rate schedulers in PyTorch
Training with "momentum”

ADAM: Adaptive learning rates & momentum
Using optimization algorithms in PyTorch

Optimization in deep learning: Additional topics
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Learning Rate Decay in PyTorch

Option 1. Just call your own function at the end of each epoch:

def adjust learning rate(optimizer, epoch, initial 1r,
"""Exponential decay every 10 epochs
if not epoch % 10:

lr = initial 1r * torch.exp(-decay rate*epoch)
for param group in optimizer.param groups:
param group[ 'lr'] = 1r

Sebastian Raschka STAT 458: Intro to Deep Learning

decay rate):
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Learning Rate Decay in PyTorch

Option 2. Use one of the built-in tools in PyTorch:
(many more available)

(Here, the most generic version.)

CLASS torxch.optim.lr_scheduler.LambdalLR(optimizer, 1xr_lambda, last_epoch=-1)

Sets the learning rate of each parameter group to the initial Ir times a given function. When last_epoch=-1, sets initial Ir as Ir.

Parameters: e optimizer (Optimizer) - Wrapped optimizer.
¢ Ir_lambda (function or list) - A function which computes a multiplicative factor given an integer
parameter epoch, or a list of such functions, one for each group in optimizer.param_groups.

¢ last_epoch (int) - The index of last epoch. Default: -1.

Example

>>> # Assuming optimizer has two groups.

>>> lambdal = lambda epoch: epoch // 30

>>> lambda2 = lambda epoch: 0.95 x% epoch

>>> scheduler = LambdalLR(optimizer, lr_lambda=[lambdal, lambda2])
>>> for epoch in range(100):

>>> scheduler.step()
>>> train(...)
>>> validate(...)

Source: https://pytorch.org/docs/stable/optim.html

Sebastian Raschka STAT 458: Intro to Deep Learning
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Learning Rate Decay in PyTorch

o o o Example, part 1/2
### Model Initialization
A

torch.manual seed(RANDOM SEED)
model = MLP(num features=28+*28,
num hidden=100,
num classes=10)

model = model.to(DEVICE)

optimizer = torch.optim.SGD(model.parameters(), 1lr=0.1)

HHAFHHHAAFH TR AR R AR HHAARFHHHA
### LEARNING RATE SCHEDULER

o

scheduler = torch.optim.lr scheduler.ExponentiallR(optimizer,
gamma=0.1)

Sebastian Raschka STAT 453: Intro to Deep Learning 20



Learning Rate Decay in PyTorch

for epoch in range(5):
model.train()
for batch idx, (features, targets) in enumerate(train loader):

features = features.view(-1, 28%*28).to(DEVICE)
targets = targets.to(DEVICE)

### FORWARD AND BACK PROP
logits, probas = model (features)

#cost = F.nll loss(torch.log(probas), targets)
cost = F.cross_entropy(logits, targets)
optimizer.zero grad()

cost.backward()
minibatch cost.append(cost)
### UPDATE MODEL PARAMETERS

optimizer.step()

### LOGGING
if not batch idx % 50:
print ('Epoch: %03d/%03d | Batch %03d/%03d | Cost: %.4f'
% (epoch+1, NUM EPOCHS, batch idx,
len(train loader), cost))

HAHHHHHAHHHHHAAHHHAAHHH A
### Update Learning Rate
scheduler.step() # don't have to do it every epoch!

HHHHHHHHHHHHTHTHAHATAHAHAHH

model.eval()

Sebastian Raschka STAT 458: Intro to Deep Learning

Example, part 2/2
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standard color augmentation in [21] 1s used. We adopt batch
normalization (BN) [16] right after each convolution and
before activation, following [16]. We 1nitialize the weights
as 1n [12] and train all plain/residual nets from scratch. We
use SGD with a mini-batch size of 256. The learning rate
starts from 0.1 and 1s divided by 10 when the error plateaus,
and the models are trained for up to 60 x 10* iterations. We
use a weight decay of 0.0001 and a momentum of 0.9. We
do not use dropout [13], following the practice in [16].

http://openaccess.thecvf.com/content cvpr 2016/htmil/He Deep Residual Learning CVPR 2016 paper.html

He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. InProceedings of the IEEE conference on
computer vision and pattern recognition 2016 (pp. 770-778).

Sebastian Raschka STAT 458: Intro to Deep Learning
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scheduler.ipynb:

model = MultilayerPerceptron(num_features=28%28,
num_hidden_1=NUM_HIDDEN_1,
num_hidden_2=NUM_HIDDEN_2,
drop_proba=0.5,
num_classes=10)

model = model.to(DEVICE)

optimizer
scheduler

torch.optim.SGD(model.parameters(), lr=0.1)

torch.optim. lr_scheduler.ReduceLROnPlateau(optimizer,
factor=0.1,
mode="'max"',
verbose=True)

minibatch_loss_list, train_acc_list, valid_acc_list = train_model(
mode l=model,
num_epochs=NUM_EPOCHS,
train_loader=train_loader,
valid_loader=valid_loader,
test_loader=test_loader,
optimizer=optimizer,
device=DEVICE,
logging_interval=800,
scheduler=scheduler,
scheduler_on='valid_acc')

Sebastian Raschka STAT 458: Intro to Deep Learning
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scheduler.ipynb:

def train_model(model, num_epochs, train_loader,
valid_loader, test_loader, optimizer,
device, logging_interval=50,
scheduler=None,
scheduler_on='valid_acc'):

start_time = time.time()
minibatch_loss_list, train_acc_list, valid_acc_list = []1, [], []

for epoch in range(num_epochs):

model.train()
for batch_idx, (features, targets) in enumerate(train_loader):

if scheduler is not None:

if scheduler_on == 'valid_acc':
scheduler.step(valid_acc_list[-1])

elif scheduler_on == 'minibatch_loss':
scheduler.step(minibatch_loss_list[-1])

else:

raise ValueError(f'Invalid "scheduler_on® choice."')

Sebastian Raschka STAT 458: Intro to Deep Learning



Saving Models in PyTorch

Save Model

model.to(torch.device( 'cpu’))

torch.save(model.state dict(), './my model 2epochs.pt')
torch.save(optimizer.state dict(), './my optimizer 2epochs.pt’)
torch.save(scheduler.state dict(), './my scheduler 2epochs.pt’)

Load Model

model = MLP(num features=28+*28,
num hidden=100,
num classes=10)

model.load state dict(torch.load('./my model 2epochs.pt'))
model = model.to(DEVICE)

# for this particular optimizer not necessary, as it doesn't have a state
# but good practice, so you don't forget it when using other optimizers

# later

optimizer = torch.optim.SGD(model.parameters(), lr=0.1)

optimizer.load state dict(torch.load('./my optimizer 2epochs.pt'))

scheduler = torch.optim.lr scheduler.ExponentialLR(optimizer,
gamma=0.1,
last epoch=-1)
scheduler.load state dict(torch.load('./my scheduler 2epochs.pt'))

model.train()

Sebastian Raschka STAT 458: Intro to Deep Learning

Learning rate schedulers
have the advantage that
we can also simply save
their state for reuse

(e.g., saving and
continuing training later)
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Nudging SGD into the right
direction

S L o

Learning rate decay

Learning rate schedulers in PyTorch
Training with "momentum"

ADAM: Adaptive learning rates & momentum

Using optimization algorithms in PyTorch

Optimization in deep learning: Additional topics
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Training with "Momentum”

Momentum

From Wikipedia, the free encyclopedia

This article is about linear momentum. It is not to be confused with angular momentum.
This article is about momentum in physics. For other uses, see Momentum (disambigué

In Newtonian mechanics, linear momentum, translational momentum, or simply
momentum (pl. momenta) is the product of the mass and velocity of an object. Itis a
vector quantity, possessing a magnitude and a direction in three-dimensional space. If m
IS an object's mass and v is the velocity (also a vector), then the momentum is

Source: https://en.wikipedia.org/wiki/Momentum

«  Concept: In momentum learning, we try to accelerate convergence by
dampening oscillations using "velocity" (the speed of the "movement” from
previous updates)

Qian, N. (1999). On the momentum term in gradient descent learning algorithms. Neural Networks : The Official Journal of
the International Neural Network Society, 12(1), 145-151. http://doi.org/10.1016/S0893-6080(98)00116-6

Sebastian Raschka STAT 458: Intro to Deep Learning
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Training with "Momentum”

Concept: In momentum learning, we try to accelerate convergence by
dampening oscillations using "velocity" (the speed of the "movement” from
previous updates)

<

Without momentum With momentum



Training with "Momentum”

<

Without momentum With momentum

Key take-away:
Not only move in the (opposite) direction of the gradient, but also
move in the "averaged" direction of the last few updates

Sebastian Raschka STAT 458: Intro to Deep Learning
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Training with "Momentum”

elps with dampening oscillations, but also helps with escaping
ocal minima traps
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Training with "Momentum"

Often referred to as "velocity" U

"velocity" from the

oL
szj(t) — Awi,j(t—l)Jrn o (t)
2¥,
Usually, we choose a \
momentum rate between
0.9 and 0.999; you can Regular partial derivative/
think of it as a "friction” or gradient multiplied by
"dampening” parameter learning rate at current
time step ¢

Weight update using the velocity vector:

wi ;i (t+1) == w; (1) — Aw; (1)

Qian, N. (1999). On the momentum term in gradient descent learning algorithms. Neural Networks : The Official Journal of
the International Neural Network Society, 12(1), 145-151. http://doi.org/10.1016/S0893-6080(98)00116-6


http://doi.org/10.1016/S0893-6080(98)00116-6

Step-size a = 0.02 Momentum = 0.0 We often think of Momentum as a means of dampening oscillations

and speeding up the iterations, leading to faster convergence. But it
has other interesting behavior. It allows a larger range of step-sizes
to be used, and creates its own oscillations. What is going on?

>~

] ] 1 I I
0 0.003 0.006 0.00 0.500 0.990

Step-size a = 0.02 Momentum B = 0.99 We often think of Momentum as a means of dampening oscillations

Py Py and speeding up the iterations, leading to faster convergence. But it
I 1 1 1 1 I has other interesting behavior. It allows a larger range of step-sizes
0 0.003 0.006 0.00 0.500 0.990

to be used, and creates its own oscillations. What is going on?

Source: https://distill.pub/2017/momentum/

Sebastian Raschka STAT 458: Intro to Deep Learning
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Combining adaptive learning
rates with momentum

4. ADAM: Adaptive learning rates & momentum



Adaptive Learning Rates

There are many different flavors of adapting the learning rate
(bit out of scope for this course to review them all)

Key take-aways:

 decrease learning if the gradient changes its direction
* increase learning if the gradient stays consistent



Adaptive Learning Rates

Key take-aways:

 decrease learning if the gradient changes its direction
* increase learning if the gradient stays consistent

Step 1: Define a local gain (g) for each weight (initialized with g=7)

0L
821]2"]'

Awij 2= 1 Gi,j



Adaptive Learning Rates

Step 1: Define a local gain (g) for each weight (initialized with g=17)

oL
AWij =1"Gij " 5
Wi
Step 2:
, _ _ Note that
If gradient is consistent multiplying by a factor has a larger
o impact if gains are large, compared
9i,j (t) = Gij (t - 1) + 5 to adding a term
(dampening effect if updates oscillate
else in the wrong direction)

9i.j(t) == gi;(t —1)- (1 —p)



Adaptive Learning Rate via RMSProp

e Unpublished algorithm by Geoff Hinton (but very popular) based on Rprop [1]
e \ery similar to another concept called AdaDelta

e Concept: divide learning rate by an exponentially decreasing moving average of
the squared gradients

e This takes into account that gradients can vary widely in magnitude
e Here, RMS stands for "Root Mean Squared"
e Also, damps oscillations like momentum (but in practice, works a bit better)

[1] Igel, Christian, and Michael Husken. "Improving the Rprop learning algorithm." Proceedings of the Second
International ICSC Symposium on Neural Computation (NC 2000). Vol. 2000. ICSC Academic Press, 2000.



Adaptive Learning Rate via RMSProp

2
MeanSquare(wz‘,jat) — 5 . MeanSquare(wi,j,t — 1) _|_ (1 — 5)( aﬁt)>

/ Wi, (

moving average of the squared gradient for each weight

oL
w; ;i (t) == w; () —n - 5
i,

ol <\/ MeanSquare (w; ;,t) + e>

where beta is typically between 0.9 and 0.999 small epsilon term to

avoid division by zero



Adaptive Learning Rate via ADAM

* ADAM (Adaptive Moment Estimation) is probably the most widely used
optimization algorithm in DL as of today

* |t is a combination of the momentum method and RMSProp

Momentum-like term: / mi—1
Aw: (Y = aoaADhw—t—1)+n - 0L (t) original momentum term
w@aJ( ) = O XMWy ) T -
< W3
e oL

my ZZOé'mt—lJr(l—Oé)'@w. ,
t,]

Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.



Adaptive Learning Rate via ADAM

Momentum-like term:

0L
my :=a-my_1+ (1 —a) - (t)

8wz~7j
RMSProp term: 0

5 MeanSquare(wijot = 1)+ (1= 5)( o )
r.=p-MeandSquare(w; ;,t — —
! Ow;,;(¢)
ADAM update:
I
W, 5 1= W, ;i —
) 2 77\/?"‘6

Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.



Adaptive Learning Rate via ADAM

Algorithm 1: Adam, our proposed algorithm for stochastic optimization. See section 2 for details,
and for a slightly more efficient (but less clear) order of computation. g2 indicates the elementwise
square g: ® g;. Good default settings for the tested machine learning problems are a = 0.001,
B1 = 0.9, B = 0.999 and € = 10~3. All operations on vectors are element-wise. With 3¢ and 3}
we denote 37 and (35 to the power ¢.

Require: «: Stepsize
Require: (31,32 € [0,1): Exponential decay rates for the moment estimates
Require: f(#): Stochastic objective function with parameters ¢
Require: 6: Initial parameter vector
mo < 0 (Initialize 1% moment vector)
vo < 0 (Initialize 2"¢ moment vector)
t < 0 (Imtialize timestep)
while 6; not converged do
t<—1t+1
g: < Vo fi(6:—1) (Get gradients w.r.t. stochastic objective at timestep t)
my < B1-my_1 + (1 — B1) - g: (Update biased first moment estimate)
vy < P2 - vi_1 + (1 — B2) - g7 (Update biased second raw moment estimate)
m: < m¢/(1 — 07) (Compute bias-corrected first moment estimate)
vy < vy /(1 — B%) (Compute bias-corrected second raw moment estimate)
engtv;ﬂeg‘l -y (/9 + ) (Update parameters) o, 24d a bias correction term
return 6, (Resulting parameters) for better conditioning in earlier iterations

Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.



Experimenting with different
optimization algorithms

5. Using optimization algorithms in PyTorch



Using Different Optimizers in PyTorch

Usage is the as for vanilla SGD, which we used before,
you can find an overview at: https://pytorch.org/docs/stable/optim.htmi

optimizer = torch.optim.SGD(model.parameters(), 1lr=0.01, momentum=0.9)
optimizer = torch.optim.Adam(model.parameters(), 1r=0.0001)


https://pytorch.org/docs/stable/optim.html

Using Different Optimizers in PyTorch

Usage is the as for vanilla SGD, which we used before,
you can find an overview at: https://pytorch.org/docs/stable/optim.htmi

optimizer = torch.optim.SGD(model.parameters(), 1lr=0.1, momentum=0.9)
optimizer = torch.optim.Adam(model.parameters(), 1lr=0.005)

Remember to save the optimizer state if you are using, e.g., Momentum or

ADAM, and want to continue training later
(see earlier slides on saving states of the learning rate schedulers).
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Adaptive Learning Rate via ADAM
oL (t)

6’wi,j

my :=a-my_1+ (1 —a)-

, MeanSquare(wq;,j,t -1+ (1-p) ow;_; (t)
i,

CLASS torxch.optim.Adam(params, 1r=0.001, betas=(0.9, 0.999), eps=1e-08,

) [SOURCE] (§’
weight_decay=0, amsgrad=False)

Implements Adam algorithm.

The default settings for the
It has been proposed in Adam: A Method for Stochastic Optimization. I betaS ] WOrk Usual Iy jUSt f| ne

Parameters: o params (iterable) - iterable of parameters to optimize or dicts defining
parameter groups
e Ir (float, optional) - learning rate (default: 1e-3)

e betas (Tuple[float, float], optional) - coefficients used for computing running

averages of gradient and its square (default: (0.9, 0.999))
e eps (float, optional) - term added to the denominator to improve numerical

stability (default: 1e-8)

..... ot Bammca /Ol mcmtalmcmnal\ cssmtmlat damni s 1™ nmvnmlac N LAl . NN\

Source: https: //thorch org/docs/stable/optim.html
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sgd-scheduler-momentum.ipynb
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Decreasing the learning rate
over the course of training

6. Optimization in deep learning: Additional topics



training cost

10

1 MNIST Multilayer Neural Network + dropout

— AdaGrad

—  RMSProp

— SGDNesterov
—— AdaDelta

— Adam

02l S S\ IO R . -

I I I
0 50 100 150 200
iterations over entire dataset

Kingma, D. P., & Ba, J. (2014). Adam: A method
for stochastic optimization. https://arxiv.org/abs/
1412.6980
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— SGD — HB — AdaGrad —  RMSProp — Adam ——  Adam (Default)]
20 20
18}
15
S . 16
0 C 14
o 10 0
£ -
= g 4
© =
= 5 10
8| A ‘
0 1 . SGD: 7.65+0.14
0 50 100 150 200 250 0 50 100 150 200 250

Epoch

(a) CIFAR-10 (Train)

Epoch

(b) CIFAR-10 (Test)

Figure 1: Training (left) and top-1 test error (right) on CIFAR-10. The annotations indicate where the
best performance is attained for each method. The shading represents =+ one standard deviation computed
across five runs from random initial starting points. In all cases, adaptive methods are performing worse on

both train and test than non-adaptive methods.

Wilson AC, Roelofs R, Stern M, Srebro N, Recht B. The marginal value of adaptive gradient
methods in machine learning, https://arxiv.org/abs/1705.08292
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Training Loss vs Generalization Error

Improving Generalization Performance by Switching from
Adam to SGD

Nitish Shirish Keskar, Richard Socher
(Submitted on 20 Dec 2017)

Despite superior training outcomes, adaptive optimization methods such as Adam, Adagrad
or RMSprop have been found to generalize poorly compared to Stochastic gradient descent
(SGD). These methods tend to perform well in the initial portion of training but are
outperformed by SGD at later stages of training. We investigate a hybrid strategy that
begins training with an adaptive method and switches to SGD when appropriate. Concretely,
we propose SWATS, a simple strategy which switches from Adam to SGD when a triggering
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Training Loss vs Generalization Error
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Keskar, N. S., & Socher, R. (2017). Improving
generalization performance by switching from adam to
sgd. arXiv preprint arXiv:1712.07628.
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Which Optimizer should | use for my ML Project?

https://www.lightly.ai/post/which-optimizer-should-i-use-for-my-machine-learning-project

Optimizer State Memory [bytes] # of Tunable Parameters Strengths Weaknesses
Often best generalization Pronfe -to sad.dl-e.pt?mts. or local minima
SGD 0 1 (after extensive training) Sensitive to initialization and choice of
& the learning rate a
SGD 4 2 Accelerates in directions of steady descent Sensitive to initialization of the learning rate a
with Momentum " Overcomes weaknesses of simple SGD and momentum f
Works well on data with sparse features Generalizes worse, converges to sharp minima
AdaGrad ~ 4n 1 . . . . . .
Automatically decays learning rate Gradients may vanish due to aggressive scaling
. Works well on data with sparse features . .
RMSprop ~ 4n 3 Built in Momentum Generalizes worse, converges to sharp minima
Works well on data with sparse features . -
. Generalizes worse, converges to sharp minima
Adam ~ 8n 3 Good default settings .
. . Requires a lot of memory for the state
Automatically decays learning rate a
Improves on Adam in terms of generalization )
AdamW ~ 8n 3 . . Requires a lot of memory for the state
Broader basin of optimal hyperparameters
Works well on large batches (up to 32k) Computing norm of gradient for each layer can
LARS ~4n 3 Counteracts vanishing and exploding gradients puting gr y

Built in Momentum

be inefficient
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NEURAL NETWORKS (MAYBE) EVOLVED TO https:/parameterfree.com/2020/12/06/

neural-network-maybe-evolved-to-make-

MAKE ADAM THE BEST OPTIMIZER adam-the-best-optimizer/

by bremen79

DEC 06 Disclaimer: This post will be a little different than my usual ones. In fact, I won’t prove
anything and I will just briefly explain some of my conjectures around optimization in

202
020 deep neural networks. Differently from my usual posts, it is totally possible that what I

wrote is completely wrong (&

"It is known that Adam will not always give you the best performance, yet most of
the time people know that they can use it with its default parameters and get, if not
the best performance, at least the second best performance on their particular deep

learning problem. "

"Usually people try new architectures keeping the optimization algorithm fixed, and most
of the time the algorithm of choice is Adam. This happens because, as explained above,

Adam is the default optimizer."


https://parameterfree.com/2020/12/06/neural-network-maybe-evolved-to-make-adam-the-best-optimizer/
https://parameterfree.com/2020/12/06/neural-network-maybe-evolved-to-make-adam-the-best-optimizer/
https://parameterfree.com/2020/12/06/neural-network-maybe-evolved-to-make-adam-the-best-optimizer/

arXiv.org > c¢s > arXiv:1906.03291

Computer Science > Machine Learning

[Submitted on 7 Jun 2019 (v1), last revised 15 Nov 2020 (this version, v6)]
Understanding Generalization through Visualizations

W. Ronny Huang, Zeyad Emam, Micah Goldblum, Liam Fowl, Justin K. Terry, Furong Huang, Tom Goldstein

https://arxiv.org/abs/1906.03291 1.00 1 "
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Figure 2: (left) CIFAR10 trained with ResNet-18 and a
linear model having comparable number of parameters.
Both can fit the training data well, but neural nets are
able to generalize to unseen data, while linear models
cannot. (right) CIFARI1O trained with various optimiz-
ers using VGG13, generalizing well irrespective of the
optimizer used.
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arXiv.org > cs > arXiv:2010.07468

Help | Advanced S

Computer Science > Machine Learning

[Submitted on 15 Oct 2020 (v1), last revised 20 Dec 2020 (this version, v5)]

AdaBelief Optimizer: Adapting Stepsizes by the Belief in Observed Gradients

Juntang Zhuang, Tommy Tang, Yifan Ding, Sekhar Tatikonda, Nicha Dvornek, Xenophon Papademetris, James S. Duncan

https://arxiv.org/abs/2010.07468 https://github.com/juntang-zhuang/Adabelief-Optimizer
Algorithm 1: Adam Optimizer Algorithm 2: AdaBelief Optimizer
" . . Initialize 0y, mg < 0,vg < 0,1+ 0 Initialize 0y, mg < 0,59 < 0,t < 0
uses the eXpOnentIaI MOVI ng While 0; not converged While 6; not converged
- : tet+1 tet+1
average of variance of gradient o eveftwt_l)( | ne Vodby)
: . . my < Bimi_1+ (1 — B1)g my <= Bimi—1 + (1 — B1)g
instead of the exponential moving v e Baves + (1 Bo)g? st Basi 1+ (1—B2) (g1 —my)P-e
. Bias Correction Bias Correction
average of square of gradients to R Mt 12, 5 12
calculate the adaptive learning rate" Udate _ Update _
p g 0, H]—',\/E (et—l — \;’%ﬁe) 0, + H}—,\/g <9t—1 — j%n_ﬁe)
. Test accuracy ~ Training epoch . Test accuracy ~ Training epoch
"trains fast as Adam, oI T Sdaetef P sl I ey
generalizes well as SGD, and is s 177 faasound F&w sl 77 AdaBound
stable to train GANs" "] T s S | 7] e
1 RAdam - B 21 RAdam
87 AdamW 914 AdamW
Fromage Fromage
86 ’@31 !
(a) VGGI11 on Cifarl0 (b) ResNet34 on Cifarl0
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