
Sebastian Raschka STAT 453: Intro to Deep Learning 1

Improving Gradient Descent-based
Optimization

Lecture 12

with Applications in Python

Sebastian Raschka

http://stat.wisc.edu/~sraschka/teaching

STAT 453: Introduction to Deep Learning and Generative Models

http://stat.wisc.edu/~sraschka/teaching

Sebastian Raschka STAT 453: Intro to Deep Learning 2

Part 1 (Last Lecture, L10)

• Input Normalization & BatchNorm

• Weight Initialization (Xavier Glorot, Kaiming He)

Part 2 (this lecture)

• Learning Rate Decay

• Momentum Learning

• Adaptive Learning 

Overview: Additional Tricks for 
Neural Network Training (Part 2/2)

Sebastian Raschka STAT 453: Intro to Deep Learning 3

Part 1 (Last Lecture, L10)

• Input Normalization & BatchNorm

• Weight Initialization (Xavier Glorot, Kaiming He)

Part 2 (this lecture)

• Learning Rate Decay

• Momentum Learning

• Adaptive Learning 

Overview: Additional Tricks for 
Neural Network Training (Part 2/2)

(Modifications of the 1st order SGD optimization 
algorithm; 2nd order methods are rarely used in DL)

Sebastian Raschka STAT 453: Intro to Deep Learning 4

1. Learning rate decay

2. Learning rate schedulers in PyTorch

3. Training with "momentum"

4. ADAM: Adaptive learning rates & momentum

5. Using optimization algorithms in PyTorch

6. Optimization in deep learning: Additional topics

Lecture Overview

Sebastian Raschka STAT 453: Intro to Deep Learning 5

1. Learning rate decay
2. Learning rate schedulers in PyTorch

3. Training with "momentum"

4. ADAM: Adaptive learning rates & momentum

5. Using optimization algorithms in PyTorch

6. Optimization in deep learning: Additional topics

Decreasing the learning rate
over the course of training

Sebastian Raschka STAT 453: Intro to Deep Learning 6

Minibatch Learning Recap

• Minibatch learning is a form of
stochastic gradient descent

• Each minibatch can be considered a
sample drawn from the training set 
(where the training set is in turn a
sample drawn from the population)

• Hence, the gradient is noisier

• A noisy gradient can be

✦ good: chance to escape local

minima

✦ bad: can lead to extensive

oscillation
• Main advantage: Convergence speed, 

because it offers to opportunities for
parallelism (do you recall what these are?)

Sebastian Raschka STAT 453: Intro to Deep Learning 7

https://vis.ensmallen.org

Nice Library & Visualization Tool

Large Learning Rate

Small Learning Rate

https://vis.ensmallen.org

Sebastian Raschka STAT 453: Intro to Deep Learning 8

Practical Tip for Minibatch Use
• Reasonable minibatch sizes are usually: 32, 64, 128, 256, 512, 1024 (in the last

lecture, we discussed why powers of 2 are a common convention)

• Usually, you can choose a batch size that is as large as your GPU memory allows 

(matrix-multiplication and the size of fully-connected layers are usually the
bottleneck)

• Practical tip: usually, it is a good idea to also make the batch size proportional to
the number of classes in the dataset

Raschka, S. (2018). Model evaluation, model selection, and
algorithm selection in machine learning.
https://arxiv.org/abs/1811.12808

Dataset before splitting (n = 150)

Test dataset (n = 50)

This work by Sebastian Raschka is licensed under a
Creative Commons Attribution 4.0 International License.

Sepal Length [cm]

Training dataset (n = 100)

Sepal Length [cm]

Figure 1: Distribution of Iris flower classes upon random subsampling into training and test sets.

In the worst-case scenario, the test set may not contain any instance of a minority class at all. Thus,
a recommended practice is to divide the dataset in a stratified fashion. Here, stratification simply
means that we randomly split a dataset such that each class is correctly represented in the resulting
subsets (the training and the test set) – in other words, stratification is an approach to maintain the
original class proportion in resulting subsets.

It shall be noted that random subsampling in non-stratified fashion is usually not a big concern when
working with relatively large and balanced datasets. However, in my opinion, stratified resampling is
usually beneficial in machine learning applications. Moreover, stratified sampling is incredibly easy
to implement, and Ron Kohavi provides empirical evidence [Kohavi, 1995] that stratification has a
positive effect on the variance and bias of the estimate in k-fold cross-validation, a technique that
will be discussed later in this article.

1.5 Holdout Validation

Before diving deeper into the pros and cons of the holdout validation method, Figure 2 provides a
visual summary of this method that will be discussed in the following text.

Step 1. First, we randomly divide our available data into two subsets: a training and a test set.
Setting test data aside is a work-around for dealing with the imperfections of a non-ideal world, such
as limited data and resources, and the inability to collect more data from the generating distribution.
Here, the test set shall represent new, unseen data to the model; it is important that the test set is only
used once to avoid introducing bias when we estimating the generalization performance. Typically,
we assign 2/3 to the training set and 1/3 of the data to the test set. Other common training/test splits
are 60/40, 70/30, or 80/20 – or even 90/10 if the dataset is relatively large.

Step 2. After setting test examples aside, we pick a learning algorithm that we think could be
appropriate for the given problem. As a quick reminder regarding the Hyperparameter Values depicted
in Figure 2, hyperparameters are the parameters of our learning algorithm, or meta-parameters. And
we have to specify these hyperparameter values manually – the learning algorithm does not learn
these from the training data in contrast to the actual model parameters. Since hyperparameters are not

8

https://arxiv.org/abs/1811.12808

Sebastian Raschka STAT 453: Intro to Deep Learning 9

batchsize-1024.ipynb batchsize-64.ipynb

Sebastian Raschka STAT 453: Intro to Deep Learning 10

Learning Rate Decay

• Batch effects -- minibatches are samples of the training set, 
hence minibatch loss and gradients are approximations

• Hence, we usually get oscillations

• To dampen oscillations towards the end of the training, we can decay

the learning rate

Sebastian Raschka STAT 453: Intro to Deep Learning 11

Learning Rate Decay

• Batch effects -- minibatches are samples of the training set, 
hence minibatch loss and gradients are approximations

• Hence, we usually get oscillations

• To dampen oscillations towards the end of the training, we can decay

the learning rate

Danger of learning rate is 
to decrease the learning rate too early 
 
Practical tip: try to train the model 
without learning rate decay first, 
then add it later

You can also use the validation 
performance (e.g., accuracy) to 
judge whether lr decay is useful 
(as opposed to using the training loss)

Sebastian Raschka STAT 453: Intro to Deep Learning 12

Learning Rate Decay

Most common variants for learning rate decay:

⌘t := ⌘0 · e�k·t
<latexit sha1_base64="y1QN6zUteveq7skV4o5wfP7j9R0=">AAACDnicbZC7SgNBFIZn4y3G26qlzWAI2Bh2o6AIQtDGMoK5QBLD7OQkGTJ7YeasEJY8gY2vYmOhiK21nW/jJNlCE38Y+PjPOZw5vxdJodFxvq3M0vLK6lp2PbexubW9Y+/u1XQYKw5VHspQNTymQYoAqihQQiNSwHxPQt0bXk/q9QdQWoTBHY4iaPusH4ie4AyN1bELLUDWQXpxSafk0BbvhkjhPjkepozjjp13is5UdBHcFPIkVaVjf7W6IY99CJBLpnXTdSJsJ0yh4BLGuVasIWJ8yPrQNBgwH3Q7mZ4zpgXjdGkvVOYFSKfu74mE+VqPfM90+gwHer42Mf+rNWPsnbcTEUQxQsBni3qxpBjSSTa0KxRwlCMDjCth/kr5gCnG0SSYMyG48ycvQq1UdE+KpdvTfPkqjSNLDsghOSIuOSNlckMqpEo4eSTP5JW8WU/Wi/VufcxaM1Y6s0/+yPr8AdcImrk=</latexit>

1) Exponential Decay:

where k is the decay rate

Sebastian Raschka STAT 453: Intro to Deep Learning 13

Learning Rate Decay

Most common variants for learning rate decay:

2) Halving the learning rate:

3) Inverse decay:

⌘t :=
⌘0

1 + k · t
<latexit sha1_base64="CMVLJdUk7lm/xR6VZzLL2r/6azA=">AAACD3icbVDLSsNAFJ34rPUVdelmsCiCUJIqKIJQdOOygn1AU8JkMmmHTiZh5kYooX/gxl9x40IRt27d+TdOHwttPXDhzDn3MveeIBVcg+N8WwuLS8srq4W14vrG5ta2vbPb0EmmKKvTRCSqFRDNBJesDhwEa6WKkTgQrBn0b0Z+84EpzRN5D4OUdWLSlTzilICRfPvIY0B8wJdX2IsUofn47QxzF5/gPvZomACGoW+XnLIzBp4n7pSU0BQ13/7ywoRmMZNABdG67TopdHKigFPBhkUv0ywltE+6rG2oJDHTnXx8zxAfGiXEUaJMScBj9fdETmKtB3FgOmMCPT3rjcT/vHYG0UUn5zLNgEk6+SjKBIYEj8LBIVeMghgYQqjiZldMe8TEAibCognBnT15njQqZfe0XLk7K1Wvp3EU0D46QMfIReeoim5RDdURRY/oGb2iN+vJerHerY9J64I1ndlDf2B9/gCRB5sZ</latexit>

⌘t := ⌘t�1/2

<latexit sha1_base64="lp3Ic1qmvANSys6SLW1I2WFqlU8=">AAACAXicbZDLSsNAFIYn9VbrLepGcDNYBDfWpFQUQSi6cVnBXqANYTKdtEMnF2ZOhBLqxldx40IRt76FO9/GaZqFVn8Y+PjPOZw5vxcLrsCyvozCwuLS8kpxtbS2vrG5ZW7vtFSUSMqaNBKR7HhEMcFD1gQOgnViyUjgCdb2RtfTevueScWj8A7GMXMCMgi5zykBbbnmXo8BcQFfXOKMUji2J/gEV12zbFWsTPgv2DmUUa6Ga372+hFNAhYCFUSprm3F4KREAqeCTUq9RLGY0BEZsK7GkARMOWl2wQQfaqeP/UjqFwLO3J8TKQmUGgee7gwIDNV8bWr+V+sm4J87KQ/jBFhIZ4v8RGCI8DQO3OeSURBjDYRKrv+K6ZBIQkGHVtIh2PMn/4VWtWLXKqe3tXL9Ko+jiPbRATpCNjpDdXSDGqiJKHpAT+gFvRqPxrPxZrzPWgtGPrOLfsn4+Aa6xJUj</latexit>

Sebastian Raschka STAT 453: Intro to Deep Learning 14

Learning Rate Decay

There are many, many more

E.g., Cyclical Learning Rate
Smith, Leslie N. “Cyclical learning rates for training neural networks.” Applications of Computer

Vision (WACV), 2017 IEEE Winter Conference on. IEEE, 2017.

the learning rate to rise and fall is beneficial overall
even though it might temporarily harm the network’s
performance.

3. Cyclical learning rates are demonstrated with ResNets,
Stochastic Depth networks, and DenseNets on the
CIFAR-10 and CIFAR-100 datasets, and on ImageNet
with two well-known architectures: AlexNet [17] and
GoogleNet [25].

2. Related work
The book “Neural Networks: Tricks of the Trade” is a

terrific source of practical advice. In particular, Yoshua
Bengio [2] discusses reasonable ranges for learning rates
and stresses the importance of tuning the learning rate. A
technical report by Breuel [3] provides guidance on a vari-
ety of hyper-parameters. There are also a numerous web-
sites giving practical suggestions for setting the learning
rates.

Adaptive learning rates: Adaptive learning rates can be
considered a competitor to cyclical learning rates because
one can rely on local adaptive learning rates in place of
global learning rate experimentation but there is a signifi-
cant computational cost in doing so. CLR does not possess
this computational costs so it can be used freely.

A review of the early work on adaptive learning rates can
be found in George and Powell [6]. Duchi, et al. [5] pro-
posed AdaGrad, which is one of the early adaptive methods
that estimates the learning rates from the gradients.

RMSProp is discussed in the slides by Geoffrey Hinton2

[27]. RMSProp is described there as “Divide the learning
rate for a weight by a running average of the magnitudes
of recent gradients for that weight.” RMSProp is a funda-
mental adaptive learning rate method that others have built
on.

Schaul et al. [22] discuss an adaptive learning rate based
on a diagonal estimation of the Hessian of the gradients.
One of the features of their method is that they allow their
automatic method to decrease or increase the learning rate.
However, their paper seems to limit the idea of increasing
learning rate to non-stationary problems. On the other hand,
this paper demonstrates that a schedule of increasing the
learning rate is more universally valuable.

Zeiler [29] describes his AdaDelta method, which im-
proves on AdaGrad based on two ideas: limiting the sum
of squared gradients over all time to a limited window, and
making the parameter update rule consistent with a units
evaluation on the relationship between the update and the
Hessian.

More recently, several papers have appeared on adaptive
learning rates. Gulcehre and Bengio [9] propose an adaptive
learning rate algorithm, called AdaSecant, that utilizes the

2www.cs.toronto.edu/ tijmen/csc321/slides/lecture slides lec6.pdf

root mean square statistics and variance of the gradients.
Dauphin et al. [4] show that RMSProp provides a biased
estimate and go on to describe another estimator, named
ESGD, that is unbiased. Kingma and Lei-Ba [16] introduce
Adam that is designed to combine the advantages from Ada-
Grad and RMSProp. Bache, et al. [1] propose exploiting
solutions to a multi-armed bandit problem for learning rate
selection. A summary and tutorial of adaptive learning rates
can be found in a recent paper by Ruder [20].

Adaptive learning rates are fundamentally different from
CLR policies, and CLR can be combined with adaptive
learning rates, as shown in Section 4.1. In addition, CLR
policies are computationally simpler than adaptive learning
rates. CLR is likely most similar to the SGDR method [18]
that appeared recently.

3. Optimal Learning Rates
3.1. Cyclical Learning Rates

The essence of this learning rate policy comes from the
observation that increasing the learning rate might have a
short term negative effect and yet achieve a longer term ben-
eficial effect. This observation leads to the idea of letting the
learning rate vary within a range of values rather than adopt-
ing a stepwise fixed or exponentially decreasing value. That
is, one sets minimum and maximum boundaries and the
learning rate cyclically varies between these bounds. Ex-
periments with numerous functional forms, such as a trian-
gular window (linear), a Welch window (parabolic) and a
Hann window (sinusoidal) all produced equivalent results
This led to adopting a triangular window (linearly increas-
ing then linearly decreasing), which is illustrated in Figure
2, because it is the simplest function that incorporates this
idea. The rest of this paper refers to this as the triangular
learning rate policy.

Figure 2. Triangular learning rate policy. The blue lines represent
learning rate values changing between bounds. The input parame-
ter stepsize is the number of iterations in half a cycle.

An intuitive understanding of why CLR methods
work comes from considering the loss function topology.
Dauphin et al. [4] argue that the difficulty in minimizing the
loss arises from saddle points rather than poor local minima.

465

https://ieeexplore.ieee.org/abstract/document/7926641/

Sebastian Raschka STAT 453: Intro to Deep Learning 15

Relationship between Learning Rate and Batch
Size

Smith, S. L., Kindermans, P. J., Ying, C., & Le, Q. V. (2017). Don't decay the learning rate, increase the batch size. arXiv preprint arXiv:1711.00489.

Published as a conference paper at ICLR 2018

DON’T DECAY THE LEARNING RATE,
INCREASE THE BATCH SIZE

Samuel L. Smith⇤, Pieter-Jan Kindermans⇤, Chris Ying & Quoc V. Le
Google Brain
{slsmith, pikinder, chrisying, qvl}@google.com

ABSTRACT

It is common practice to decay the learning rate. Here we show one can usually
obtain the same learning curve on both training and test sets by instead increasing
the batch size during training. This procedure is successful for stochastic gradi-
ent descent (SGD), SGD with momentum, Nesterov momentum, and Adam. It
reaches equivalent test accuracies after the same number of training epochs, but
with fewer parameter updates, leading to greater parallelism and shorter training
times. We can further reduce the number of parameter updates by increasing the
learning rate ✏ and scaling the batch size B / ✏. Finally, one can increase the mo-
mentum coefficient m and scale B / 1/(1 � m), although this tends to slightly
reduce the test accuracy. Crucially, our techniques allow us to repurpose existing
training schedules for large batch training with no hyper-parameter tuning. We
train ResNet-50 on ImageNet to 76.1% validation accuracy in under 30 minutes.

1 INTRODUCTION

Stochastic gradient descent (SGD) remains the dominant optimization algorithm of deep learning.
However while SGD finds minima that generalize well (Zhang et al., 2016; Wilson et al., 2017),
each parameter update only takes a small step towards the objective. Increasing interest has focused
on large batch training (Goyal et al., 2017; Hoffer et al., 2017; You et al., 2017a), in an attempt to
increase the step size and reduce the number of parameter updates required to train a model. Large
batches can be parallelized across many machines, reducing training time. Unfortunately, when we
increase the batch size the test set accuracy often falls (Keskar et al., 2016; Goyal et al., 2017).

To understand this surprising observation, Smith & Le (2017) argued one should interpret SGD as
integrating a stochastic differential equation. They showed that the scale of random fluctuations in
the SGD dynamics, g = ✏(NB � 1), where ✏ is the learning rate, N training set size and B batch
size. Furthermore, they found that there is an optimum fluctuation scale g which maximizes the test
set accuracy (at constant learning rate), and this introduces an optimal batch size proportional to the
learning rate when B ⌧ N . Goyal et al. (2017) already observed this scaling rule empirically and
exploited it to train ResNet-50 to 76.3% ImageNet validation accuracy in one hour. Here we show,

• When one decays the learning rate, one simultaneously decays the scale of random fluctu-
ations g in the SGD dynamics. Decaying the learning rate is simulated annealing. We
propose an alternative procedure; instead of decaying the learning rate, we increase the
batch size during training. This strategy achieves near-identical model performance on the
test set with the same number of training epochs but significantly fewer parameter updates.
Our proposal does not require any fine-tuning as we follow pre-existing training schedules;
when the learning rate drops by a factor of ↵, we instead increase the batch size by ↵.

• As shown previously, we can further reduce the number of parameter updates by increasing
the learning rate and scaling B / ✏. One can also increase the momentum coefficient and
scale B / 1/(1�m), although this slightly reduces the test accuracy. We train Inception-
ResNet-V2 on ImageNet in under 2500 parameter updates, using batches of 65536 images,
and reach a validation set accuracy of 77%. We also replicate the setup of Goyal et al.
(2017) on TPU and train ResNet-50 on ImageNet to 76.1% accuracy in under 30 minutes.

⇤Both authors contributed equally. Work performed as members of the Google Brain Residency Program.

1

ar
X

iv
:1

71
1.

00
48

9v
2

 [c
s.L

G
]

24
 F

eb
 2

01
8

Sebastian Raschka STAT 453: Intro to Deep Learning 16

Relationship between Learning Rate and Batch
Size

Smith, S. L., Kindermans, P. J., Ying, C., & Le, Q. V. (2017). Don't decay the learning rate, increase the batch size. arXiv preprint arXiv:1711.00489.

Published as a conference paper at ICLR 2018

(a) (b)

Figure 6: Inception-ResNet-V2 on ImageNet. Increasing the batch size during training achieves
similar results to decaying the learning rate, but it reduces the number of parameter updates from
just over 14000 to below 6000. We run each experiment twice to illustrate the variance.

5.3 TRAINING IMAGENET IN 2500 PARAMETER UPDATES

We now apply our insights to reduce the number of parameter updates required to train ImageNet.
Goyal et al. (2017) trained a ResNet-50 on ImageNet in one hour, reaching 76.3% validation accu-
racy. To achieve this, they used batches of 8192, with an initial learning rate of 3.2 and a momentum
coefficient of 0.9. They completed 90 training epochs, decaying the learning rate by a factor of ten at
the 30th, 60th and 80th epoch. ImageNet contains around 1.28 million images, so this corresponds
to ⇠14000 parameter updates. They also introduced a warm-up phase at the start of training, in
which the learning rate and batch size was gradually increased.

We also train for 90 epochs and follow the same schedule, decaying the noise scale by a factor of ten
at the 30th, 60th and 80th epoch. However we did not include a warm-up phase. To set a stronger
baseline, we replaced ResNet-50 by Inception-ResNet-V2 (Szegedy et al., 2017). Initially we used
a ghost batch size of 32. In figure 6, we train with a learning rate of 3.0 and a momentum coefficient
of 0.9. The initial batch size was 8192. For “Decaying learning rate”, we hold the batch size fixed
and decay the learning rate, while in “Increasing batch size” we increase the batch size to 81920
at the first step, but decay the learning rate at the following two steps. We repeat each schedule
twice, and find that all four runs exhibit a very similar evolution of the test set accuracy during
training. The final accuracies of the two “Decaying learning rate” runs are 78.7% and 77.8%, while
the final accuracy of the two “Increasing batch size” runs are 78.1% and 76.8%. Although there is
a slight drop, the difference in final test accuracies is similar to the variance between training runs.
Increasing the batch size reduces the number of parameter updates during training from just over
14000 to below 6000. Note that the training curves appear unusually noisy because we reduced the
number of test set evaluations to reduce the model training time.

Goyal et al. (2017) already increased the learning rate close to its maximum stable value. To further
reduce the number of parameter updates we must increase the momentum coefficient. We introduce
a maximum batch size, Bmax = 216 = 65536. This ensures B ⌧ N , and it also improved the
stability of our distributed training. We also increased the ghost batch size to 64, matching the batch
size of our GPUs and reducing the training time. We compare three different schedules, all of which
have the same base schedule, decaying the noise scale by a factor of ten at the 30th, 60th and 80th
epoch. We use an initial learning rate of 3 throughout. “Momentum 0.9” uses an initial batch size
of 8192, “Momentum 0.975” uses an initial batch size of 16384, and “Momentum 0.9875” uses an
initial batch size of 32768. For all schedules, we decay the noise scale by increasing the batch size
until reaching Bmax, and then decay the learning rate. We plot the test set accuracy in figure 7.
“Momentum 0.9” achieves a final accuracy of 78.8% in just under 6000 updates. We performed two
runs of “Momentum 0.95”, achieving final accuracies of 78.1% and 77.8% in under 3500 updates.
Finally “Momentum 0.975” achieves final accuracies of 77.5% and 76.8% in under 2500 updates.

7

Sebastian Raschka STAT 453: Intro to Deep Learning 17

1. Learning rate decay

2. Learning rate schedulers in PyTorch
3. Training with "momentum"

4. ADAM: Adaptive learning rates & momentum

5. Using optimization algorithms in PyTorch

6. Optimization in deep learning: Additional topics

Decreasing the learning rate
over the course of training

Sebastian Raschka STAT 453: Intro to Deep Learning 18

Learning Rate Decay in PyTorch

def adjust_learning_rate(optimizer, epoch, initial_lr, decay_rate):
 """Exponential decay every 10 epochs"""
 if not epoch % 10:
 lr = initial_lr * torch.exp(-decay_rate*epoch)
 for param_group in optimizer.param_groups:
 param_group['lr'] = lr

Option 1. Just call your own function at the end of each epoch:

Sebastian Raschka STAT 453: Intro to Deep Learning 19

Learning Rate Decay in PyTorch
Option 2. Use one of the built-in tools in PyTorch:

Source: https://pytorch.org/docs/stable/optim.html

(many more available)

(Here, the most generic version.)

https://pytorch.org/docs/stable/optim.html

Sebastian Raschka STAT 453: Intro to Deep Learning 20

Learning Rate Decay in PyTorch
#################################
Model Initialization
#################################

torch.manual_seed(RANDOM_SEED)
model = MLP(num_features=28*28,
 num_hidden=100,
 num_classes=10)

model = model.to(DEVICE)

optimizer = torch.optim.SGD(model.parameters(), lr=0.1)

#################################
LEARNING RATE SCHEDULER
#################################

scheduler = torch.optim.lr_scheduler.ExponentialLR(optimizer,
 gamma=0.1)

...

Example, part 1/2

Sebastian Raschka STAT 453: Intro to Deep Learning 21

Learning Rate Decay in PyTorch
for epoch in range(5):
 model.train()
 for batch_idx, (features, targets) in enumerate(train_loader):

 features = features.view(-1, 28*28).to(DEVICE)
 targets = targets.to(DEVICE)

 ### FORWARD AND BACK PROP
 logits, probas = model(features)

 #cost = F.nll_loss(torch.log(probas), targets)
 cost = F.cross_entropy(logits, targets)
 optimizer.zero_grad()

 cost.backward()
 minibatch_cost.append(cost)
 ### UPDATE MODEL PARAMETERS

 optimizer.step()

 ### LOGGING
 if not batch_idx % 50:
 print ('Epoch: %03d/%03d | Batch %03d/%03d | Cost: %.4f'
 %(epoch+1, NUM_EPOCHS, batch_idx,
 len(train_loader), cost))

 ##########################
 ### Update Learning Rate
 scheduler.step() # don't have to do it every epoch!
 ##########################

 model.eval()

Example, part 2/2

Sebastian Raschka STAT 453: Intro to Deep Learning 22

He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition. InProceedings of the IEEE conference on
computer vision and pattern recognition 2016 (pp. 770-778).

http://openaccess.thecvf.com/content_cvpr_2016/html/He_Deep_Residual_Learning_CVPR_2016_paper.html

7x7 conv, 64, /2

pool, /2

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 128, /2

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 256, /2

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 512, /2

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

avg pool

fc 1000

image

3x3 conv, 512

3x3 conv, 64

3x3 conv, 64

pool, /2

3x3 conv, 128

3x3 conv, 128

pool, /2

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

pool, /2

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

pool, /2

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

pool, /2

fc 4096

fc 4096

fc 1000

image

output

size: 112

output

size: 224

output

size: 56

output

size: 28

output

size: 14

output

size: 7

output

size: 1

VGG-19 34-layer plain

7x7 conv, 64, /2

pool, /2

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 64

3x3 conv, 128, /2

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 128

3x3 conv, 256, /2

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 256

3x3 conv, 512, /2

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

avg pool

fc 1000

image

34-layer residual

Figure 3. Example network architectures for ImageNet. Left: the

VGG-19 model [40] (19.6 billion FLOPs) as a reference. Mid-

dle: a plain network with 34 parameter layers (3.6 billion FLOPs).

Right: a residual network with 34 parameter layers (3.6 billion

FLOPs). The dotted shortcuts increase dimensions. Table 1 shows

more details and other variants.

Residual Network. Based on the above plain network, we
insert shortcut connections (Fig. 3, right) which turn the
network into its counterpart residual version. The identity
shortcuts (Eqn.(1)) can be directly used when the input and
output are of the same dimensions (solid line shortcuts in
Fig. 3). When the dimensions increase (dotted line shortcuts
in Fig. 3), we consider two options: (A) The shortcut still
performs identity mapping, with extra zero entries padded
for increasing dimensions. This option introduces no extra
parameter; (B) The projection shortcut in Eqn.(2) is used to
match dimensions (done by 1×1 convolutions). For both
options, when the shortcuts go across feature maps of two
sizes, they are performed with a stride of 2.

3.4. Implementation

Our implementation for ImageNet follows the practice
in [21, 40]. The image is resized with its shorter side ran-
domly sampled in [256, 480] for scale augmentation [40].
A 224×224 crop is randomly sampled from an image or its
horizontal flip, with the per-pixel mean subtracted [21]. The
standard color augmentation in [21] is used. We adopt batch
normalization (BN) [16] right after each convolution and
before activation, following [16]. We initialize the weights
as in [12] and train all plain/residual nets from scratch. We
use SGD with a mini-batch size of 256. The learning rate
starts from 0.1 and is divided by 10 when the error plateaus,
and the models are trained for up to 60× 104 iterations. We
use a weight decay of 0.0001 and a momentum of 0.9. We
do not use dropout [13], following the practice in [16].

In testing, for comparison studies we adopt the standard
10-crop testing [21]. For best results, we adopt the fully-
convolutional form as in [40, 12], and average the scores
at multiple scales (images are resized such that the shorter
side is in {224, 256, 384, 480, 640}).

4. Experiments

4.1. ImageNet Classification

We evaluate our method on the ImageNet 2012 classifi-
cation dataset [35] that consists of 1000 classes. The models
are trained on the 1.28 million training images, and evalu-
ated on the 50k validation images. We also obtain a final
result on the 100k test images, reported by the test server.
We evaluate both top-1 and top-5 error rates.

Plain Networks. We first evaluate 18-layer and 34-layer
plain nets. The 34-layer plain net is in Fig. 3 (middle). The
18-layer plain net is of a similar form. See Table 1 for de-
tailed architectures.

The results in Table 2 show that the deeper 34-layer plain
net has higher validation error than the shallower 18-layer
plain net. To reveal the reasons, in Fig. 4 (left) we com-
pare their training/validation errors during the training pro-
cedure. We have observed the degradation problem - the

4773

http://openaccess.thecvf.com/content_cvpr_2016/html/He_Deep_Residual_Learning_CVPR_2016_paper.html

Sebastian Raschka STAT 453: Intro to Deep Learning 23

scheduler.ipynb:

Sebastian Raschka STAT 453: Intro to Deep Learning 24

scheduler.ipynb:

...

Sebastian Raschka STAT 453: Intro to Deep Learning 25

Saving Models in PyTorch

Learning rate schedulers
have the advantage that
we can also simply save
their state for reuse

(e.g., saving and
continuing training later)

Sebastian Raschka STAT 453: Intro to Deep Learning 26

1. Learning rate decay

2. Learning rate schedulers in PyTorch

3. Training with "momentum"
4. ADAM: Adaptive learning rates & momentum

5. Using optimization algorithms in PyTorch

6. Optimization in deep learning: Additional topics

Nudging SGD into the right
direction

Sebastian Raschka STAT 453: Intro to Deep Learning 27

Training with "Momentum"

Source: https://en.wikipedia.org/wiki/Momentum

• Concept: In momentum learning, we try to accelerate convergence by
dampening oscillations using "velocity" (the speed of the "movement" from
previous updates)

Qian, N. (1999). On the momentum term in gradient descent learning algorithms. Neural Networks : The Official Journal of
the International Neural Network Society, 12(1), 145–151. http://doi.org/10.1016/S0893-6080(98)00116-6

https://en.wikipedia.org/wiki/Momentum
http://doi.org/10.1016/S0893-6080(98)00116-6

Sebastian Raschka STAT 453: Intro to Deep Learning 28

Training with "Momentum"

• Concept: In momentum learning, we try to accelerate convergence by
dampening oscillations using "velocity" (the speed of the "movement" from
previous updates)

Without momentum With momentum

Sebastian Raschka STAT 453: Intro to Deep Learning 29

Training with "Momentum"

Without momentum With momentum

Key take-away:  
Not only move in the (opposite) direction of the gradient, but also  
move in the "averaged" direction of the last few updates

Sebastian Raschka STAT 453: Intro to Deep Learning 30

Training with "Momentum"

Helps with dampening oscillations, but also helps with escaping  
local minima traps

Sebastian Raschka STAT 453: Intro to Deep Learning 31

�wi,j(t) := ↵ ·�wi,j(t� 1) + ⌘ · @L
@wi,j

(t)
<latexit sha1_base64="z07XiIX0nYQ7L9u4xfm0qJW6RzA=">AAACZXicbVFLaxRBEO4ZX+tqdBPFiwcLFyHBuMwkAUUQgnrw4CGCmwR2lqWmtybbpudBd41haedPevPqxb9hz2bwkaSg4eOrr15fp5VWlqPoRxBeu37j5q3e7f6du2v37g/WNw5tWRtJY1nq0hynaEmrgsasWNNxZQjzVNNRevquzR99JWNVWXzmZUXTHE8KlSmJ7KnZ4FvynjQjuLNm5tQ2fGk2eQtev4EEdbVASOS8ZLhC9CLegueQEP/RZAalSyo0rFBDkiMvJGr3sWn+su6sa9C0c2aDYTSKVgGXQdyBoejiYDb4nsxLWedUsNRo7SSOKp66trnU1PST2lKF8hRPaOJhgTnZqVu51MAzz8whK41/BcOK/bfCYW7tMk+9st3dXsy15FW5Sc3Zq6lTRVUzFfJ8UFZr4BJay2GuDEnWSw9QGuV3BblA7xb7j+l7E+KLJ18GhzujeHe082lvuP+2s6MnHounYlPE4qXYFx/EgRgLKX4GvWA92Ah+hWvhw/DRuTQMupoH4r8In/wGv6C2kA==</latexit>

wi,j(t+ 1) := wi,j(t)��wi,j(t)
<latexit sha1_base64="YXpNve4YJpwcqXgxHZOK0YTWgHI=">AAACIHicbZDJSgNBEIZ74hbjFvXopTEICWqYiUJEEIJ68BjBLJAMQ0+nY9r0LHTXKGHIo3jxVbx4UERv+jR2lkMWf2j4+aqK6vrdUHAFpvljJBYWl5ZXkquptfWNza309k5VBZGkrEIDEci6SxQT3GcV4CBYPZSMeK5gNbd7NajXHplUPPDvoBcy2yP3Pm9zSkAjJ12Mn/pOzI/wQz8Lh1YOn1/gSZTDx7h5zQSQaeykM2beHArPG2tsMmisspP+brYCGnnMByqIUg3LDMGOiQROBeunmpFiIaFdcs8a2vrEY8qOhwf28YEmLdwOpH4+4CGdnIiJp1TPc3WnR6CjZmsD+F+tEUH7zI65H0bAfDpa1I4EhgAP0sItLhkF0dOGUMn1XzHtEEko6ExTOgRr9uR5Uy3krZN84fY0U7ocx5FEe2gfZZGFiqiEblAZVRBFz+gVvaMP48V4Mz6Nr1FrwhjP7KIpGb9/h5GguQ==</latexit>

Qian, N. (1999). On the momentum term in gradient descent learning algorithms. Neural Networks : The Official Journal of
the International Neural Network Society, 12(1), 145–151. http://doi.org/10.1016/S0893-6080(98)00116-6

Usually, we choose a
momentum rate between
0.9 and 0.999; you can
think of it as a "friction" or
"dampening" parameter

Often referred to as "velocity" v

Regular partial derivative/
gradient multiplied by
learning rate at current
time step t

Training with "Momentum"

"velocity" from the
previous iteration

Weight update using the velocity vector:

http://doi.org/10.1016/S0893-6080(98)00116-6

Sebastian Raschka STAT 453: Intro to Deep Learning 32

Source: https://distill.pub/2017/momentum/

https://distill.pub/2017/momentum/

Sebastian Raschka STAT 453: Intro to Deep Learning 33

1. Learning rate decay

2. Learning rate schedulers in PyTorch

3. Training with "momentum"

4. ADAM: Adaptive learning rates & momentum
5. Using optimization algorithms in PyTorch

6. Optimization in deep learning: Additional topics

Combining adaptive learning
rates with momentum

Sebastian Raschka STAT 453: Intro to Deep Learning 34

Adaptive Learning Rates

• decrease learning if the gradient changes its direction

• increase learning if the gradient stays consistent

Key take-aways:

There are many different flavors of adapting the learning rate  
(bit out of scope for this course to review them all)

Sebastian Raschka STAT 453: Intro to Deep Learning 35

Adaptive Learning Rates

• decrease learning if the gradient changes its direction

• increase learning if the gradient stays consistent

Key take-aways:

Step 1: Define a local gain (g) for each weight (initialized with g=1)

�wi,j := ⌘ · gi,j ·
@L
@wi,j

<latexit sha1_base64="NoawAABpSt+8PKqkCagS8PvKu/A=">AAACRHicbZDLahsxFIY1Sdq67s1JltmImkIXxcy4hZZCwKRddJGFA/UFPMackc/YijUXpDMNZpiH66YP0F2fIJsuEkq2IRpfSGv3gODXdy46+oNUSUOu+8vZ2d178PBR5XH1ydNnz1/U9g+6Jsm0wI5IVKL7ARhUMsYOSVLYTzVCFCjsBbNPZb73DbWRSfyV5ikOI5jEMpQCyKJRbeB/RkXAL0a5fMPPC/7xmPtogS/GCfHJGi+vfqhB5H4KmiQo7kdAUwEqPy2Ke7oeVYxqdbfhLoJvC28l6mwV7VHtpz9ORBZhTEKBMQPPTWmYl3OFwqLqZwZTEDOY4MDKGCI0w3xhQsFfWTLmYaLtiYkv6N8dOUTGzKPAVpZrm81cCf+XG2QUfhjmMk4zwlgsHwozxSnhpaN8LDUKUnMrQGhpd+ViCtYosr5XrQne5pe3RbfZ8N42mmfv6q2TlR0VdsRestfMY+9Zi31hbdZhgn1nl+yKXTs/nN/OH+dmWbrjrHoO2T/h3N4BrbGxZw==</latexit>

Sebastian Raschka STAT 453: Intro to Deep Learning 36

Step 1: Define a local gain (g) for each weight (initialized with g=1)

�wi,j := ⌘ · gi,j ·
@L
@wi,j

<latexit sha1_base64="NoawAABpSt+8PKqkCagS8PvKu/A=">AAACRHicbZDLahsxFIY1Sdq67s1JltmImkIXxcy4hZZCwKRddJGFA/UFPMackc/YijUXpDMNZpiH66YP0F2fIJsuEkq2IRpfSGv3gODXdy46+oNUSUOu+8vZ2d178PBR5XH1ydNnz1/U9g+6Jsm0wI5IVKL7ARhUMsYOSVLYTzVCFCjsBbNPZb73DbWRSfyV5ikOI5jEMpQCyKJRbeB/RkXAL0a5fMPPC/7xmPtogS/GCfHJGi+vfqhB5H4KmiQo7kdAUwEqPy2Ke7oeVYxqdbfhLoJvC28l6mwV7VHtpz9ORBZhTEKBMQPPTWmYl3OFwqLqZwZTEDOY4MDKGCI0w3xhQsFfWTLmYaLtiYkv6N8dOUTGzKPAVpZrm81cCf+XG2QUfhjmMk4zwlgsHwozxSnhpaN8LDUKUnMrQGhpd+ViCtYosr5XrQne5pe3RbfZ8N42mmfv6q2TlR0VdsRestfMY+9Zi31hbdZhgn1nl+yKXTs/nN/OH+dmWbrjrHoO2T/h3N4BrbGxZw==</latexit>

Step 2:

gi,j(t) := gi,j(t� 1) + �
<latexit sha1_base64="zSTJaRlBybcJChwhNIJbeK2n2UQ=">AAACDHicbVDLSgMxFM3UV62vqks3wSK0qGWmCoogFN24rGAf0A4lk6ZtbOZBckcoQz/Ajb/ixoUibv0Ad/6NmekstPVA4Nxz7uXmHicQXIFpfhuZhcWl5ZXsam5tfWNzK7+901B+KCmrU1/4suUQxQT3WB04CNYKJCOuI1jTGV3HfvOBScV97w7GAbNdMvB4n1MCWurmC4NuxI/w/aQIJXxxiZMyro6tEj7EHYcB0V1m2UyA54mVkgJKUevmvzo9n4Yu84AKolTbMgOwIyKBU8EmuU6oWEDoiAxYW1OPuEzZUXLMBB9opYf7vtTPA5yovyci4io1dh3d6RIYqlkvFv/z2iH0z+2Ie0EIzKPTRf1QYPBxnAzucckoiLEmhEqu/4rpkEhCQeeX0yFYsyfPk0albJ2UK7enhepVGkcW7aF9VEQWOkNVdINqqI4oekTP6BW9GU/Gi/FufExbM0Y6s4v+wPj8AWQUmKk=</latexit>

gi,j(t) := gi,j(t� 1) · (1� �)
<latexit sha1_base64="VgTJ5W8ysLtb2+R/2t3af7rlx90=">AAACFHicbVDLSgMxFM3UV62vUZdugkVo0ZaZKiiCUHTjsoJ9QDsMmTRtYzMPkjtCGfoRbvwVNy4UcevCnX9jOu1CqwcC555zLzf3eJHgCizry8gsLC4tr2RXc2vrG5tb5vZOQ4WxpKxOQxHKlkcUEzxgdeAgWCuSjPieYE1veDXxm/dMKh4GtzCKmOOTfsB7nBLQkmse9t2EH+G7cQGK+PwCp+WkKtlF3KHdEHDBLnU8BqTomnmrbKXAf4k9I3k0Q801PzvdkMY+C4AKolTbtiJwEiKBU8HGuU6sWETokPRZW9OA+Ew5SXrUGB9opYt7odQvAJyqPycS4is18j3d6RMYqHlvIv7ntWPonTkJD6IYWECni3qxwBDiSUK4yyWjIEaaECq5/iumAyIJBZ1jTodgz5/8lzQqZfu4XLk5yVcvZ3Fk0R7aRwVko1NURdeohuqIogf0hF7Qq/FoPBtvxvu0NWPMZnbRLxgf38fmm4M=</latexit>

If gradient is consistent

else

Note that  
multiplying by a factor has a larger 
impact if gains are large, compared 
to adding a term

(dampening effect if updates oscillate 
in the wrong direction)

Adaptive Learning Rates

Sebastian Raschka STAT 453: Intro to Deep Learning 37

Adaptive Learning Rate via RMSProp

• Unpublished algorithm by Geoff Hinton (but very popular) based on Rprop [1]

• Very similar to another concept called AdaDelta

• Concept: divide learning rate by an exponentially decreasing moving average of
the squared gradients

• This takes into account that gradients can vary widely in magnitude

• Here, RMS stands for "Root Mean Squared"

• Also, damps oscillations like momentum (but in practice, works a bit better)

[1] Igel, Christian, and Michael Hüsken. "Improving the Rprop learning algorithm." Proceedings of the Second
International ICSC Symposium on Neural Computation (NC 2000). Vol. 2000. ICSC Academic Press, 2000.

Sebastian Raschka STAT 453: Intro to Deep Learning 38

Adaptive Learning Rate via RMSProp

MeanSquare(wi,j , t) := � ·MeanSquare(wi,j , t� 1) + (1� �)

✓
@L

wi,j(t)

◆2

<latexit sha1_base64="Z+HVulkxbXVLEb22LThAtsPJsEs=">AAACbXicbVHbitRAEO3E2zreouKDF6RwEBPcHZJRUARh0RcfFFZ0dhcm41Dp6cy22+nE7ooyhLz5hb75C774C3ayI+juFjQcTp1DVZ3OKiUtxfFPzz9z9tz5CxsXB5cuX7l6Lbh+Y9eWteFiwktVmv0MrVBSiwlJUmK/MgKLTIm97PB119/7KoyVpf5Iq0rMClxqmUuO5Kh58P2dQP3hS41GhN/mjdyEz+0mUAQvXkKaCUJI+aIkOF22lUTwGMJkq5dGziGXyzDNDfImrdCQRAVpgXTAUTVv27b5a4aQoraXR5/G82AYj+K+4CRI1mDI1rUzD36ki5LXhdDEFVo7TeKKZk03kCvRDtLaigr5IS7F1EGNhbCzpk+rhYeOWUBeGvc0Qc/+62iwsHZVZE7ZbW6P9zrytN60pvz5rJG6qklofjQorxVQCV30sJBGcFIrB5Ab6XYFfoAuK3IfNHAhJMdPPgl2x6PkyWj8/ulw+9U6jg12lz1gIUvYM7bN3rAdNmGc/fIC77Z3x/vt3/Lv+fePpL639txk/5X/6A8nOrer</latexit>

moving average of the squared gradient for each weight

where beta is typically between 0.9 and 0.999 small epsilon term to  
avoid division by zero

wi,j(t) := wi,j(t)� ⌘ · @L
@wi,j(t)

/

✓q
MeanSquare (wi,j , t) + ✏

◆

<latexit sha1_base64="A5NHqNA9il5pfKg4MG0lXiIwqog=">AAACiXicbVFdb9MwFHUCjNHxUeCRlysqpCJKl4yvaRLSxF54AGkIuk2qq8pxb1ozx8nsG1AV5b/wm3jj3+C0QZSNK1k6Puce+frcpNDKURT9CsJr129s3dy+1dm5fefuve79BycuL63Ekcx1bs8S4VArgyNSpPGssCiyRONpcn7U6Kff0DqVmy+0LHCSiblRqZKCPDXt/vg+rdQAvtZ9egoHbzduzzmSAC5nOQFPrZAVL4QlJTTwTNBCCl19qOu/7Ia3hl2uMaU+dxeWqo+AIMDAZ7iA0iMLuJb/WAZA3Kr5wjufcSyc0rlpiWm3Fw2jVcFVELegx9o6nnZ/8lkuywwNSS2cG8dRQZOqGVJqrDu8dFgIeS7mOPbQiAzdpFolWcMTz8wgza0/hmDFbjoqkTm3zBLf2WTgLmsN+T9tXFK6P6mUKUpCI9cPpaUGyqFZC8yURUl66YGQVvlZQS6ET5388jo+hPjyl6+Ck71h/GK49+ll7/BdG8c2e8Qesz6L2Rt2yN6zYzZiMtgKBsGr4HW4E8bhfniwbg2D1vOQ/VPh0W9mB8Iz</latexit>

Sebastian Raschka STAT 453: Intro to Deep Learning 39

Adaptive Learning Rate via ADAM

• ADAM (Adaptive Moment Estimation) is probably the most widely used
optimization algorithm in DL as of today

• It is a combination of the momentum method and RMSProp

Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.

�wi,j(t) := ↵ ·�wi,j(t� 1) + ⌘ · @L
@wi,j

(t)
<latexit sha1_base64="z07XiIX0nYQ7L9u4xfm0qJW6RzA=">AAACZXicbVFLaxRBEO4ZX+tqdBPFiwcLFyHBuMwkAUUQgnrw4CGCmwR2lqWmtybbpudBd41haedPevPqxb9hz2bwkaSg4eOrr15fp5VWlqPoRxBeu37j5q3e7f6du2v37g/WNw5tWRtJY1nq0hynaEmrgsasWNNxZQjzVNNRevquzR99JWNVWXzmZUXTHE8KlSmJ7KnZ4FvynjQjuLNm5tQ2fGk2eQtev4EEdbVASOS8ZLhC9CLegueQEP/RZAalSyo0rFBDkiMvJGr3sWn+su6sa9C0c2aDYTSKVgGXQdyBoejiYDb4nsxLWedUsNRo7SSOKp66trnU1PST2lKF8hRPaOJhgTnZqVu51MAzz8whK41/BcOK/bfCYW7tMk+9st3dXsy15FW5Sc3Zq6lTRVUzFfJ8UFZr4BJay2GuDEnWSw9QGuV3BblA7xb7j+l7E+KLJ18GhzujeHe082lvuP+2s6MnHounYlPE4qXYFx/EgRgLKX4GvWA92Ah+hWvhw/DRuTQMupoH4r8In/wGv6C2kA==</latexit>

Momentum-like term:

original momentum term

mt := ↵ ·mt�1 + (1� ↵) · @L
@wi,j

(t)
<latexit sha1_base64="Nqz8y0Sl/lUTBdPy6m+vgbbZJ80=">AAACTHicbZBPaxRBEMV7NhqT9d9qjl6KLMIGzTITBYMQCHrx4CEBNwnsLENNb0+2TffM0F1jWJr5gLnkkJufwouHiAj27A6oiQUNj/equqt/aamkpTD8GnRW7txdvbe23r3/4OGjx70nT49sURkuRrxQhTlJ0QolczEiSUqclEagTpU4Ts/eN/nxF2GsLPJPNC/FRONpLjPJkbyV9LhOCN7uQYyqnCHEfFoQ6MTRdlTDC4BBtL2MttoszgxyF5doSKKCWCPNOCr3sa7/uO48cfIlfK7rekBbSa8fDsNFwW0RtaLP2jpIelfxtOCVFjlxhdaOo7CkiWsu50rU3biyokR+hqdi7GWOWtiJW8Co4bl3ppAVxp+cYOH+PeFQWzvXqe9sdrc3s8b8XzauKNudOJmXFYmcLx/KKgVUQEMWptIITmruBXIj/a7AZ+hpkeff9RCim1++LY52htGr4c7h6/7+uxbHGnvGNtmARewN22cf2AEbMc4u2Dd2zX4El8H34Gfwa9naCdqZDfZPdVZ/A10DsoM=</latexit>

mt�1
<latexit sha1_base64="BaUV/ky/esFoJzWPohpB2BYsCMs=">AAAB7nicdVDLSsNAFJ3UV62vqks3g0VwY0jS0NZd0Y3LCvYBbSiT6aQdOjMJMxOhhH6EGxeKuPV73Pk3TtoKKnrgwuGce7n3njBhVGnH+bAKa+sbm1vF7dLO7t7+QfnwqKPiVGLSxjGLZS9EijAqSFtTzUgvkQTxkJFuOL3O/e49kYrG4k7PEhJwNBY0ohhpI3X5MNMX7nxYrjj2ZaPm+TXo2I5Tdz03J17dr/rQNUqOClihNSy/D0YxTjkRGjOkVN91Eh1kSGqKGZmXBqkiCcJTNCZ9QwXiRAXZ4tw5PDPKCEaxNCU0XKjfJzLElZrx0HRypCfqt5eLf3n9VEeNIKMiSTUReLkoShnUMcx/hyMqCdZsZgjCkppbIZ4gibA2CZVMCF+fwv9Jx7Pdqu3d+pXm1SqOIjgBp+AcuKAOmuAGtEAbYDAFD+AJPFuJ9Wi9WK/L1oK1mjkGP2C9fQJjC4+c</latexit>

mt
<latexit sha1_base64="vwwizZRkV2c/UM2DKTGBtXofbIw=">AAAB7HicdVBNS8NAEN34WetX1aOXxSJ4Ckka2norevFYwbSFNpTNdtMu3d2E3Y1QQn+DFw+KePUHefPfuGkrqOiDgcd7M8zMi1JGlXacD2ttfWNza7u0U97d2z84rBwdd1SSSUwCnLBE9iKkCKOCBJpqRnqpJIhHjHSj6XXhd++JVDQRd3qWkpCjsaAxxUgbKeDDXM+HlapjXzbrnl+Hju04DddzC+I1/JoPXaMUqIIV2sPK+2CU4IwToTFDSvVdJ9VhjqSmmJF5eZApkiI8RWPSN1QgTlSYL46dw3OjjGCcSFNCw4X6fSJHXKkZj0wnR3qifnuF+JfXz3TcDHMq0kwTgZeL4oxBncDicziikmDNZoYgLKm5FeIJkghrk0/ZhPD1KfyfdDzbrdnerV9tXa3iKIFTcAYugAsaoAVuQBsEAAMKHsATeLaE9Wi9WK/L1jVrNXMCfsB6+wSGqY8q</latexit>

Sebastian Raschka STAT 453: Intro to Deep Learning 40

Adaptive Learning Rate via ADAM

Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.

RMSProp term:

ADAM update:

r := � ·MeanSquare(wi,j , t� 1) + (1� �)

✓
@L

@wi,j(t)

◆2

<latexit sha1_base64="35mB82DfqUC86OS0JSfG/tTONkc=">AAACYHicbVFNb9NAEF27fITQ0hRucBkRITmijeyAVFQJqSoXDiAVQdpKcYjGm3W6dL12d8etIst/sjcOXPglrN0goGWklZ7em7ez8zYplLQUht89f+3O3Xv3Ow+6D9c3Hm32th4f2bw0XIx5rnJzkqAVSmoxJklKnBRGYJYocZycvWv04wthrMz1F1oWYprhQstUciRHzXqXBvbeQpwIQoj5PCf4KFB/Pi/RiOByVslt+FZvA+1EA3gJQbTTtg6cQy4WQZwa5FVcoCGJCuIM6ZSjqj7U9R/29y0Q0KBufYOvo1mvHw7DtuA2iFagz1Z1OOtdxfOcl5nQxBVaO4nCgqZVM4MrUXfj0ooC+RkuxMRBjZmw06oNqIYXjplDmht3NEHL/u2oMLN2mSWus1nB3tQa8n/apKT0zbSSuihJaH49KC0VUA5N2jCXRnBSSweQG+neCvwUXWjk/qTrQohurnwbHI2G0avh6NPr/v7BKo4Oe8aes4BFbJfts/fskI0ZZz+8NW/d2/B++h1/09+6bvW9lecJ+6f8p78A4ayzFA==</latexit>

Momentum-like term:

mt := ↵ ·mt�1 + (1� ↵) · @L
@wi,j

(t)
<latexit sha1_base64="Nqz8y0Sl/lUTBdPy6m+vgbbZJ80=">AAACTHicbZBPaxRBEMV7NhqT9d9qjl6KLMIGzTITBYMQCHrx4CEBNwnsLENNb0+2TffM0F1jWJr5gLnkkJufwouHiAj27A6oiQUNj/equqt/aamkpTD8GnRW7txdvbe23r3/4OGjx70nT49sURkuRrxQhTlJ0QolczEiSUqclEagTpU4Ts/eN/nxF2GsLPJPNC/FRONpLjPJkbyV9LhOCN7uQYyqnCHEfFoQ6MTRdlTDC4BBtL2MttoszgxyF5doSKKCWCPNOCr3sa7/uO48cfIlfK7rekBbSa8fDsNFwW0RtaLP2jpIelfxtOCVFjlxhdaOo7CkiWsu50rU3biyokR+hqdi7GWOWtiJW8Co4bl3ppAVxp+cYOH+PeFQWzvXqe9sdrc3s8b8XzauKNudOJmXFYmcLx/KKgVUQEMWptIITmruBXIj/a7AZ+hpkeff9RCim1++LY52htGr4c7h6/7+uxbHGnvGNtmARewN22cf2AEbMc4u2Dd2zX4El8H34Gfwa9naCdqZDfZPdVZ/A10DsoM=</latexit>

wi,j := wi,j � ⌘
mtp
r + ✏

<latexit sha1_base64="ybbslpsrNYZDlLvaddWDralrgAc=">AAACH3icbZBNS8NAEIY3flu/qh69LBZBUEuioiIIohePFawKTQmb7URXN5u4O1FKyD/x4l/x4kER8dZ/47ZW8OuFhYd3ZpidN0ylMOi6HWdgcGh4ZHRsvDQxOTU9U56dOzVJpjnUeSITfR4yA1IoqKNACeepBhaHEs7C68Nu/ewWtBGJOsF2Cs2YXSgRCc7QWkF56y7IxSq9Kuju3heu+YCM+pFmPI8DLHLf3GjMdbHiQ2qETFQRlCtu1e2J/gWvDxXSVy0ov/uthGcxKOSSGdPw3BSbOdMouISi5GcGUsav2QU0LCoWg2nmvfsKumSdFo0SbZ9C2nO/T+QsNqYdh7YzZnhpfte65n+1RobRTjMXKs0QFP9cFGWSYkK7YdGW0MBRti0wroX9K+WXzOaCNtKSDcH7ffJfOF2vehvV9ePNyv5BP44xskAWyTLxyDbZJ0ekRuqEk3vySJ7Ji/PgPDmvzttn64DTn5knP+R0PgCGDqNY</latexit>

Sebastian Raschka STAT 453: Intro to Deep Learning 41

Adaptive Learning Rate via ADAM

Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.

Published as a conference paper at ICLR 2015

Algorithm 1: Adam, our proposed algorithm for stochastic optimization. See section 2 for details,
and for a slightly more efficient (but less clear) order of computation. g2t indicates the elementwise
square gt � gt. Good default settings for the tested machine learning problems are ↵ = 0.001,
�1 = 0.9, �2 = 0.999 and ✏ = 10�8. All operations on vectors are element-wise. With �

t
1 and �

t
2

we denote �1 and �2 to the power t.
Require: ↵: Stepsize
Require: �1,�2 2 [0, 1): Exponential decay rates for the moment estimates
Require: f(✓): Stochastic objective function with parameters ✓
Require: ✓0: Initial parameter vector

m0 0 (Initialize 1st moment vector)
v0 0 (Initialize 2nd moment vector)
t 0 (Initialize timestep)
while ✓t not converged do
t t+ 1
gt r✓ft(✓t�1) (Get gradients w.r.t. stochastic objective at timestep t)
mt �1 ·mt�1 + (1� �1) · gt (Update biased first moment estimate)
vt �2 · vt�1 + (1� �2) · g2t (Update biased second raw moment estimate)
bmt mt/(1� �

t
1) (Compute bias-corrected first moment estimate)

bvt vt/(1� �
t
2) (Compute bias-corrected second raw moment estimate)

✓t ✓t�1 � ↵ · bmt/(
p
bvt + ✏) (Update parameters)

end while
return ✓t (Resulting parameters)

In section 2 we describe the algorithm and the properties of its update rule. Section 3 explains
our initialization bias correction technique, and section 4 provides a theoretical analysis of Adam’s
convergence in online convex programming. Empirically, our method consistently outperforms other
methods for a variety of models and datasets, as shown in section 6. Overall, we show that Adam is
a versatile algorithm that scales to large-scale high-dimensional machine learning problems.

2 ALGORITHM

See algorithm 1 for pseudo-code of our proposed algorithm Adam. Let f(✓) be a noisy objec-
tive function: a stochastic scalar function that is differentiable w.r.t. parameters ✓. We are in-
terested in minimizing the expected value of this function, E[f(✓)] w.r.t. its parameters ✓. With
f1(✓), ..., , fT (✓) we denote the realisations of the stochastic function at subsequent timesteps
1, ..., T . The stochasticity might come from the evaluation at random subsamples (minibatches)
of datapoints, or arise from inherent function noise. With gt = r✓ft(✓) we denote the gradient, i.e.
the vector of partial derivatives of ft, w.r.t ✓ evaluated at timestep t.

The algorithm updates exponential moving averages of the gradient (mt) and the squared gradient
(vt) where the hyper-parameters �1,�2 2 [0, 1) control the exponential decay rates of these moving
averages. The moving averages themselves are estimates of the 1st moment (the mean) and the
2nd raw moment (the uncentered variance) of the gradient. However, these moving averages are
initialized as (vectors of) 0’s, leading to moment estimates that are biased towards zero, especially
during the initial timesteps, and especially when the decay rates are small (i.e. the �s are close to 1).
The good news is that this initialization bias can be easily counteracted, resulting in bias-corrected
estimates bmt and bvt. See section 3 for more details.

Note that the efficiency of algorithm 1 can, at the expense of clarity, be improved upon by changing
the order of computation, e.g. by replacing the last three lines in the loop with the following lines:
↵t = ↵ ·

p
1� �t

2/(1� �
t
1) and ✓t ✓t�1 � ↵t ·mt/(

p
vt + ✏̂).

2.1 ADAM’S UPDATE RULE

An important property of Adam’s update rule is its careful choice of stepsizes. Assuming ✏ = 0, the
effective step taken in parameter space at timestep t is �t = ↵ · bmt/

p
bvt. The effective stepsize has

two upper bounds: |�t| ↵ · (1 � �1)/
p
1� �2 in the case (1 � �1) >

p
1� �2, and |�t| ↵

2

Also add a bias correction term 
for better conditioning in earlier iterations

Sebastian Raschka STAT 453: Intro to Deep Learning 42

1. Learning rate decay

2. Learning rate schedulers in PyTorch

3. Training with "momentum"

4. ADAM: Adaptive learning rates & momentum

5. Using optimization algorithms in PyTorch
6. Optimization in deep learning: Additional topics

Experimenting with different
optimization algorithms

Sebastian Raschka STAT 453: Intro to Deep Learning 43

optimizer = torch.optim.SGD(model.parameters(), lr=0.01, momentum=0.9)
optimizer = torch.optim.Adam(model.parameters(), lr=0.0001)

Using Different Optimizers in PyTorch

Usage is the as for vanilla SGD, which we used before,

you can find an overview at: https://pytorch.org/docs/stable/optim.html

https://pytorch.org/docs/stable/optim.html

Sebastian Raschka STAT 453: Intro to Deep Learning 44

optimizer = torch.optim.SGD(model.parameters(), lr=0.1, momentum=0.9)
optimizer = torch.optim.Adam(model.parameters(), lr=0.005)

Using Different Optimizers in PyTorch

Usage is the as for vanilla SGD, which we used before,

you can find an overview at: https://pytorch.org/docs/stable/optim.html

Remember to save the optimizer state if you are using, e.g., Momentum or 
ADAM, and want to continue training later  
(see earlier slides on saving states of the learning rate schedulers).

https://pytorch.org/docs/stable/optim.html

Sebastian Raschka STAT 453: Intro to Deep Learning 45

Adaptive Learning Rate via ADAM

Source: https://pytorch.org/docs/stable/optim.html

The default settings for the
"betas" work usually just fine

mt := ↵ ·mt�1 + (1� ↵) · @L
@wi,j

(t)
<latexit sha1_base64="Nqz8y0Sl/lUTBdPy6m+vgbbZJ80=">AAACTHicbZBPaxRBEMV7NhqT9d9qjl6KLMIGzTITBYMQCHrx4CEBNwnsLENNb0+2TffM0F1jWJr5gLnkkJufwouHiAj27A6oiQUNj/equqt/aamkpTD8GnRW7txdvbe23r3/4OGjx70nT49sURkuRrxQhTlJ0QolczEiSUqclEagTpU4Ts/eN/nxF2GsLPJPNC/FRONpLjPJkbyV9LhOCN7uQYyqnCHEfFoQ6MTRdlTDC4BBtL 2MttoszgxyF5doSKKCWCPNOCr3sa7/uO48cfIlfK7rekBbSa8fDsNFwW0RtaLP2jpIelfxtOCVFjlxhdaOo7CkiWsu50rU3biyokR+hqdi7GWOWtiJW8Co4bl3ppAVxp+cYOH+PeFQWzvXqe9sdrc3s8b8XzauKNudOJmXFYmcLx/KKgVUQEMWptIITmruBXIj/a7AZ+hpkeff9RCim1++LY52htGr4c7h6/7+uxbHGnvGNtmARewN22cf2AEbMc4u2Dd2zX4El8H34Gfwa9naCdqZDfZPdVZ/A10DsoM=</latexit>

r := � ·MeanSquare(wi,j , t� 1) + (1� �)

✓
@L

@wi,j(t)

◆2

<latexit sha1_base64="35mB82DfqUC86OS0JSfG/tTONkc=">AAACYHicbVFNb9NAEF27fITQ0hRucBkRITmijeyAVFQJqSoXDiAVQdpKcYjGm3W6dL12d8etIst/sjcOXPglrN0goGWklZ7em7ez8zYplLQUht89f+3O3Xv3Ow+6D9c3Hm32th4f2bw0XIx5rnJzkqAVSmoxJklKnBRGYJYocZycvWv04wthrMz1F1oWYprhQstUciRHzXqXBvbeQpwIQoj5PCf4KFB/Pi/RiOByVslt+FZvA+1EA3gJQbTTtg6cQy4WQZwa5FVcoCGJCuIM6ZSjqj7U9R/29y0Q0KBufYOvo1mvHw7DtuA2iFagz1Z1OOtdxfOcl5nQxBVaO4nCgqZVM4MrUXfj0ooC+RkuxMRBjZmw06oNqIYXjplDmht3NEHL/u2oMLN2mSWus1nB3tQa8n/apKT0zbSSuihJaH49KC0VUA5N2jCXRnBSSweQG+neCvwUXWjk/qTrQohurnwbHI2G0avh6NPr/v7BKo4Oe8aes4BFbJfts/fskI0ZZz+8NW/d2/B++h1/09+6bvW9lecJ+6f8p78A4ayzFA==</latexit>

https://pytorch.org/docs/stable/optim.html

Sebastian Raschka STAT 453: Intro to Deep Learning 46

sgd-scheduler-momentum.ipynb adam.ipynb

Sebastian Raschka STAT 453: Intro to Deep Learning 47

1. Learning rate decay

2. Learning rate schedulers in PyTorch

3. Training with "momentum"

4. ADAM: Adaptive learning rates & momentum

5. Using optimization algorithms in PyTorch

6. Optimization in deep learning: Additional topics

Decreasing the learning rate
over the course of training

Sebastian Raschka STAT 453: Intro to Deep Learning 48

Published as a conference paper at ICLR 2015

(a) (b)

Figure 2: Training of multilayer neural networks on MNIST images. (a) Neural networks using
dropout stochastic regularization. (b) Neural networks with deterministic cost function. We compare
with the sum-of-functions (SFO) optimizer (Sohl-Dickstein et al., 2014)

Figure 3: Convolutional neural networks training cost. (left) Training cost for the first three epochs.
(right) Training cost over 45 epochs. CIFAR-10 with c64-c64-c128-1000 architecture.

dropout noise is applied to the input layer and fully connected layer. The minibatch size is also set
to 128 similar to previous experiments.

Interestingly, although both Adam and Adagrad make rapid progress lowering the cost in the initial
stage of the training, shown in Figure 3 (left), Adam and SGD eventually converge considerably
faster than Adagrad for CNNs shown in Figure 3 (right). We notice the second moment estimate bvt
vanishes to zeros after a few epochs and is dominated by the ✏ in algorithm 1. The second moment
estimate is therefore a poor approximation to the geometry of the cost function in CNNs comparing
to fully connected network from Section 6.2. Whereas, reducing the minibatch variance through
the first moment is more important in CNNs and contributes to the speed-up. As a result, Adagrad
converges much slower than others in this particular experiment. Though Adam shows marginal
improvement over SGD with momentum, it adapts learning rate scale for different layers instead of
hand picking manually as in SGD.

7

Kingma, D. P., & Ba, J. (2014). Adam: A method
for stochastic optimization. https://arxiv.org/abs/
1412.6980

https://arxiv.org/abs/1412.6980
https://arxiv.org/abs/1412.6980

Sebastian Raschka STAT 453: Intro to Deep Learning 49

Wilson AC, Roelofs R, Stern M, Srebro N, Recht B. The marginal value of adaptive gradient
methods in machine learning, https://arxiv.org/abs/1705.08292

https://arxiv.org/abs/1705.08292

Sebastian Raschka STAT 453: Intro to Deep Learning 50

Training Loss vs Generalization Error

Sebastian Raschka STAT 453: Intro to Deep Learning 51

Improving Generalization Performance by Switching from Adam to SGD

2. SWATS
To investigate the generalization gap between Adam and
SGD, let us consider the training of the CIFAR-10 data
set (Krizhevsky & Hinton, 2009) on the DenseNet archi-
tecture (Iandola et al., 2014). This is an example of an
instance where a significant generalization gap exists be-
tween Adam and SGD. We plot the performance of Adam
and SGD on this task but also consider a variant of Adam
which we call Adam-Clip(p, q). Given (p, q) such that
p < q, the iterates for this variant take on the form

wk = wk�1�

clip

 p
1� �

k

2

1� �
k

1

↵k�1p
vk�1 + ✏

, p · ↵sgd, q · ↵sgd

!
mk�1.

Here, ↵sgd is the tuned value of the learning rate for SGD
that leads to the best performance for the same task. The
function clip(x, a, b) clips the vector x element-wise such
that the output is constrained to be in [a, b]. Note that
Adam-Clip(1, 1) would correspond to SGD. The network
is trained using Adam, SGD and two variants: Adam-
Clip(1,1), Adam-Clip(0, 1) with tuned learning rates for
200 epochs, reducing the learning rate by 10 after 150
epochs. The goal of this experiment is to investigate the
effect of constraining the large and small step sizes that

Adam implicitly learns, i.e.,
p

1��
k
2

1��
k
1

↵k�1p
vk�1+✏

, on the gen-
eralization performance of the network. We present the re-
sults in Figure 1.

As seen from Figure 1, SGD converges to the expected test-
ing error of ⇡ 5% while Adam stagnates in performance at
around ⇡ 7% error. We note that fine-tuning of the learning
rate schedule (primarily the initial value, reduction amount
and the timing) did not lead to better performance. Also,
note that the rapid initial progress of Adam relative to SGD.
This experiment is in agreement with the experimental ob-
servations of Wilson et al. (2017). Interestingly, Adam-
Clip(0, 1) has no tangible effect on the final generalization
performance while Adam-Clip(1,1) partially closes the
generalization gap by achieving a final accuracy of ⇡ 6%.
We observe similar results for several architectures, data
sets and modalities whenever a generalization gap exists
between SGD and Adam. This stands as evidence that the
step sizes learned by Adam could circumstantially be too
small for effective convergence. This observation regarding
the need to lower-bound the step sizes of Adam is similar
to the one made in Anonymous (2018), where the authors
devise a one-dimensional example in which infrequent but
large gradients are not emphasized sufficiently causing the
non-convergence of Adam.

Given the potential insufficiency of Adam, even when con-
straining one side of the accumulator, we consider switch-

ing to SGD once we have reaped the benefits of Adam’s

Figure 1. Training the DenseNet architecture on the CIFAR-10
data set with four optimizers: SGD, Adam, Adam-Clip(1,1) and
Adam-Clip(0, 1). SGD achieves the best testing accuracy while
training with Adam leads to a generalization gap of roughly 2%.
Setting a minimum learning rate for each parameter of Adam par-
tially closes the generalization gap.

rapid initial progress. This raises two questions: (a) when
to switch over from Adam to SGD, and (b) what learn-
ing rate to use for SGD after the switch. Assuming that
the learning rate of SGD after the switchover is tuned, we
found that switching too late does not yield generalization
improvements while switching too early may cause the hy-
brid optimizer to not benefit from Adam’s initial progress.
Indeed, as shown in Figure 2, switching after 10 epochs
leads to a learning curve very similar to that of SGD, while
switching after 80 epochs leads to inferior testing accuracy
of ⇡ 6.5%. To investigate the efficacy of a hybrid strat-
egy whilst ensuring no increase in the number of hyperpa-
rameters (a necessity for fair comparison with Adam), we
propose SWATS, a strategy that automates the process of
switching over by determining both the switchover point
and the learning rate of SGD after the switch.

2.1. Learning rate for SGD after the switch

Consider an iterate wk with a stochastic gradient gk and a
step computed by Adam, pk. For the sake of simplicity,
assume that pk 6= 0 and p

T

k
gk < 0. This is a common

requirement imposed on directions to derive convergence
(Nocedal & Wright, 2006). In the case when �1 = 0 for
Adam, i.e., no first-order exponential averaging is used, this

Keskar, N. S., & Socher, R. (2017). Improving
generalization performance by switching from adam to
sgd. arXiv preprint arXiv:1712.07628.

Training Loss vs Generalization Error

Sebastian Raschka STAT 453: Intro to Deep Learning 52

https://www.lightly.ai/post/which-optimizer-should-i-use-for-my-machine-learning-project

https://www.lightly.ai/post/which-optimizer-should-i-use-for-my-machine-learning-project

Sebastian Raschka STAT 453: Intro to Deep Learning 53

"it is known that Adam will not always give you the best performance, yet most of
the time people know that they can use it with its default parameters and get, if not
the best performance, at least the second best performance on their particular deep
learning problem. "

https://parameterfree.com/2020/12/06/
neural-network-maybe-evolved-to-make-
adam-the-best-optimizer/

"Usually people try new architectures keeping the optimization algorithm fixed, and most
of the time the algorithm of choice is Adam. This happens because, as explained above,
Adam is the default optimizer."

https://parameterfree.com/2020/12/06/neural-network-maybe-evolved-to-make-adam-the-best-optimizer/
https://parameterfree.com/2020/12/06/neural-network-maybe-evolved-to-make-adam-the-best-optimizer/
https://parameterfree.com/2020/12/06/neural-network-maybe-evolved-to-make-adam-the-best-optimizer/

Sebastian Raschka STAT 453: Intro to Deep Learning 54

for neural networks that perfectly fit the training data and minimize the loss function while making
mostly incorrect predictions on test data. Miraculously, commonly used optimizers reliably avoid
such “bad” minima of the loss function, and succeed at finding “good” minima that generalize well.

Our goal here is to develop an intuitive understanding of neural network generalization using
visualizations and experiments rather than analysis. We begin with some experiments to understand
why generalization is puzzling, and how over-parameterization impacts model behavior. Then,
we explore how the “flatness” of minima correlates with generalization, and in particular try to
understand why this correlation exists. We explore how the high dimensionality of parameter spaces
biases optimizers towards landing in flat minima that generalize well. Finally, we present some
counterfactual experiments to validate the intuition we develop. Code to reproduce experiments is
available at https://github.com/wronnyhuang/gen-viz.

2 Why is generalization so puzzling?

Neural networks define a highly expressive model class. In fact, given enough parameters, a neural
network can approximate virtually any function (Cybenko [1989]). But just because neural nets have
the power to represent any function does not mean they have the power to learn any function from a
finite amount of training data.

Neural network classifiers are trained by minimizing a loss function that measures model performance
using only training data. A standard classification loss has the form

L(✓) =
1

|Dt|
X

(x,y)2Dt

� log p✓(x, y), (1)

where p✓(x, y) is the probability that data sample x lies in class y according to a neural net with
parameters ✓, and Dt is the training dataset of size |Dt|. This loss is near zero when a model with
parameters ✓ accurately classifies the training data.

Over-parameterized neural networks (i.e., those with more parameters than training data) can represent
arbitrary, even random, labeling functions on large datasets [Zhang et al., 2016]. As a result, an
optimizer can reliably fit an over-parameterized network to training data and achieve near zero
loss [Laurent and Brecht, 2018, Kawaguchi, 2016]. However, this comes with no guarantee of
generalization to unseen test data.

Figure 2: (left) CIFAR10 trained with ResNet-18 and a
linear model having comparable number of parameters.
Both can fit the training data well, but neural nets are
able to generalize to unseen data, while linear models
cannot. (right) CIFAR10 trained with various optimiz-
ers using VGG13, generalizing well irrespective of the
optimizer used.

We illustrate the difference between model fit-
ting and generalization with an experiment.
The CIFAR-10 training dataset contains 50,000
small images. We train two over-parameterized
models on this dataset. The first is a neural
network (ResNet-18) with 269,722 parameters
(nearly 6⇥ the number of training images). The
second is a linear model with a feature set that
includes pixel intensities as well as pair-wise
products of pixels intensities.1 This linear model
has 298, 369 parameters, which is comparable
to the neural network, and both are trained using
SGD. On the left of Figure 2, we see that over-
parameterization causes both models to achieve
perfect accuracy on training data. But the linear
model achieves only 49% test accuracy, while
ResNet-18 achieves 92%.

The excellent performance of the neural network
model raises the question of whether bad min-
ima exist at all. Maybe deep networks generalize
because bad minima are rare and lie far away from the region of parameter space where initialization
takes place? We can confirm the existence of bad minima by “poisoning” the loss function with a

1For computing the pair-wise pixel intensity products, images are first downsampled by a factor of 2.

2

https://arxiv.org/abs/1906.03291

https://arxiv.org/abs/1906.03291

Sebastian Raschka STAT 453: Intro to Deep Learning 55

https://github.com/juntang-zhuang/Adabelief-Optimizer

"trains fast as Adam,
generalizes well as SGD, and is
stable to train GANs"

https://arxiv.org/abs/2010.07468

datasets such as ImageNet [19]; furthermore, compared with Adam, many optimizers are empirically
unstable when training generative adversarial networks (GAN) [20].

To solve the problems above, we propose “AdaBelief”, which can be easily modified from Adam.
Denote the observed gradient at step t as gt and its exponential moving average (EMA) as mt. Denote
the EMA of g2

t
and (gt �mt)2 as vt and st, respectively. mt is divided by

p
vt in Adam, while it

is divided by
p
st in AdaBelief. Intuitively, 1p

st
is the “belief” in the observation: viewing mt as

the prediction of the gradient, if gt deviates much from mt, we have weak belief in gt, and take a
small step; if gt is close to the prediction mt, we have a strong belief in gt, and take a large step.
We validate the performance of AdaBelief with extensive experiments. Our contributions can be
summarized as:

• We propose AdaBelief, which can be easily modified from Adam without extra parameters.
AdaBelief has three properties: (1) fast convergence as in adaptive gradient methods, (2) good
generalization as in the SGD family, and (3) training stability in complex settings such as GAN.

• We theoretically analyze the convergence property of AdaBelief in both convex optimization and
non-convex stochastic optimization.

• We validate the performance of AdaBelief with extensive experiments: AdaBelief achieves fast
convergence as Adam and good generalization as SGD in image classification tasks on CIFAR
and ImageNet; AdaBelief outperforms other methods in language modeling; in the training of a
W-GAN [21], compared to a well-tuned Adam optimizer, AdaBelief significantly improves the
quality of generated images, while several recent adaptive optimizers fail the training.

2 Methods

2.1 Details of AdaBelief Optimizer

Notations By the convention in [8], we use the following notations:

• f(✓) 2 R, ✓ 2 Rd: f is the loss function to minimize, ✓ is the parameter in Rd

•
Q

F,M
(y) = argmin

x2F ||M1/2(x� y)||: projection of y onto a convex feasible set F
• gt: the gradient and step t
• mt: exponential moving average (EMA) of gt
• vt, st: vt is the EMA of g2

t
, st is the EMA of (gt �mt)2

• ↵, ✏: ↵ is the learning rate, default is 10�3; ✏ is a small number, typically set as 10�8

• �1,�2: smoothing parameters, typical values are �1 = 0.9,�2 = 0.999
• �1t,�2t are the momentum for mt and vt respectively at step t, and typically set as constant

(e.g. �1t = �1,�2t = �2, 8t 2 {1, 2, ...T}

Algorithm 1: Adam Optimizer
Initialize ✓0, m0 0 , v0 0, t 0
While ✓t not converged

t t+ 1
gt r✓ft(✓t�1)
mt �1mt�1 + (1� �1)gt
vt �2vt�1 + (1� �2)g2t
Bias Correction

cmt mt

1��
t

1
, bvt vt

1��
t

2

Update
✓t

Q
F,

p
bvt

⇣
✓t�1� ↵cmtp

bvt+✏

⌘

Algorithm 2: AdaBelief Optimizer
Initialize ✓0, m0 0 , s0 0, t 0
While ✓t not converged

t t+ 1
gt r✓ft(✓t�1)
mt �1mt�1 + (1� �1)gt
st �2st�1+(1��2)(gt�mt)2+✏
Bias Correction

cmt mt

1��
t

1
, bst st

1��
t

2

Update
✓t

Q
F,

p
bst

⇣
✓t�1 � ↵cmtp

bst+✏

⌘

Comparison with Adam Adam and AdaBelief are summarized in Algo. 1 and Algo. 2, where
all operations are element-wise, with differences marked in blue. Note that no extra parameters
are introduced in AdaBelief. Specifically, in Adam, the update direction is mt/

p
vt, where vt is

the EMA of g2
t
; in AdaBelief, the update direction is mt/

p
st, where st is the EMA of (gt �mt)2.

Intuitively, viewing mt as the prediction of gt, AdaBelief takes a large step when observation gt is
close to prediction mt, and a small step when the observation greatly deviates from the prediction. b.
represents bias-corrected value. Note that an extra ✏ is added to st during bias-correction, in order to

2

"uses the exponential moving
average of variance of gradient
instead of the exponential moving
average of square of gradients to
calculate the adaptive learning rate"

https://github.com/juntang-zhuang/Adabelief-Optimizer
https://arxiv.org/abs/2010.07468

