STAT 453: Introduction to Deep Learning and Generative Models

Sebastian Raschka
http://stat.wisc.edu/~sraschka/teaching

Lecture 11

Feature Normalization and
Weight Initialization

http://stat.wisc.edu/~sraschka/teaching

"Tricks" for Improving
Deep Neural Network Training

Today:
1. Feature/Input Normalization (BatchNorm)

2. Weight Initialization (Xavier Glorot, Kaiming He)

Next Lecture:
3. Optimization Algorithms (RMSProp, Adagrad, ADAM)

Lecture Overview

1. Input normalization

. Batch normalization

. BatchNorm in PyTorch

. Why does BatchNorm work?

. Weight initialization -- why do we care?

. Xavier & He Initialization

~N O O B W DN

. Weight initialization schemes in PyTorch

Normalizing inputs to improve
gradient descent

1. Input normalization

Batch normalization

BatchNorm in PyTorch

Why does BatchNorm work?

Weight initialization -- why do we care?

Xavier & He Initialization

N o o &~ W Db

Weight initialization schemes in PyTorch

Sebastian Raschka STAT 458: Intro to Deep Learning

Recap: Why We Normalize Inputs for Gradient Descent

>

o

minimum

Surface of a convex cost function
(for simplicity)

~N

(Keep in mind that we are using
the same learning rate for all weights, so large parameters

will dominate the updates)
>

w9

"Standardization” of input features

(scaled feature will have zero mean,
unit variance)

However, normalizing
the inputs to the network
only affects the first hidden layer ...
What about the other hidden layers?

Extending input normalization to the
hidden layers

2. Batch normalization

Batch Normalization ("BatchNorm*")

loffe, S., & Szegedy, C. (2015). Batch Normalization: Accelerating
Deep Network Training by Reducing Internal Covariate Shift. In
International Conference on Machine Learning (pp. 448-456).

http://proceedings.mir.press/v37/ioffe15.html

Sebastian Raschka STAT 458: Intro to Deep Learning

http://proceedings.mlr.press/v37/ioffe15.html

Batch Normalization ("BatchNorm")

* Normalizes hidden layer inputs

» Helps with exploding/vanishing gradient problems

« (Can increase training stability and convergence rate

» Can be understood as additional (hormalization) layers

(with additional parameters)

Suppose, we have net input zf)

associated with an activation in the 2nd hidden layer

Now, consider all examples in a minibatch such that the net input

of a given training example at layer 2 is written as Z%Z) 7]

where ¢ € {1,...,n}

In the next slides, let's omit the
layer index, as it may be
distracting...

L1

Lo

BatchNorm Step 1: Normalize Net Inputs

1 } : 7]
! i), 2
032 — E (ZJ Hj)

BatchNorm Step 1: Normalize Net Inputs

(/
] i~
1] Z: — In practice:

rle) _’uj

J
V ¢

For numerical stability, where
epsilon is a small number like 1E-5

BatchNorm Step 2: Pre-Activation Scaling

rle) _’uj

J
J e

a,E'Z] = ;- Z’E-Z] + 8

N

These are learnable parameters

BatchNorm Step 2: Pre-Activation Scaling

| N

Controls the spread or scale

Controls the mean

BatchNorm Step 2: Pre-Activation Scaling

a :%°Z/£°Z]+5j

| N

Controls the spread or scale

Controls the mean

Technically, a BatchNorm layer could learn to perform
"standardization” with zero mean and unit variance

Sebastian Raschka STAT 458: Intro to Deep Learning

16

BatchNorm Step 1 & 2 Summarized

- R\v < A i
AN, 2 il F T M i) 712]
§ “ii;% A ©j =0 E A
, 1 1 1 1 . .
b1 z§) — z’g) 'a’g) > a§) first hidden layer
2 /(2) 2 .
zé) —2 §) ’a’g) > ag)| second hidden layer

BatchNorm -- Additional Things to Consider

a/gz] = ;- Z/E-Z] + 8

O\

This parameter makes the bias units redundant

Also, note that the batchnorm parameters
are vectors with the same number of
elements as the bias vector

X1

o)

How to use BatchNorm in Practice and
During Inference

3. BatchNorm in PyTorch

class MultilayerPerceptron(torch.nn.Module):

def __init_ (self, num_features, num_classes, drop_proba,
num_hidden_1, num_hidden_2):
super().__init_ ()

self.my_network = torch.nn.Sequential(
1st hidden layer
torch.nn.Flatten(),
torch.nn.Linear(num_features, num_hidden_1, bias=False)
torch.nn.BatchNormld(num_hidden_1),
torch.nn.RelLU(),
2nd hidden layer
torch.nn.Linear(num_hidden_1, num_hidden_2, bias=False)
torch.nn.BatchNormld (num_hidden_2),
torch.nn.RelLU(),
output layer
torch.nn.Linear(num_hidden_2, num_classes)

)

def forward(self, x):
logits = self.my_network(x)
return logits

https://github.com/rasbt/stat453-deep-learning-ss21/blob/main/L11/code/batchnorm.ipynb

Sebastian Raschka STAT 458: Intro to Deep Learning

20

https://github.com/rasbt/stat453-deep-learning-ss21/blob/main/L11/code/batchnorm.ipynb

before activation, no bias

self.my_network = torch.nn.Sequential(

)

1st hidden layer
torch.nn.Flatten(),

torch.nn.Linear(num_features, num_hidden_1, bias=False),

torch.nn.BatchNormld(num_hidden_1),
torch.nn.ReLU(),
2nd hidden layer

torch.nn.Linear(num_hidden_1, num_hidden_2, bias=False),

torch.nn.BatchNormld(num_hidden_2),
torch.nn.ReLU(),

output layer
torch.nn.Linear(num_hidden_2, num_classes)

after activation, with bias

self.my_network = torch.nn.Sequential(

1st hidden layer

torch.nn.Flatten(),

torch.nn.Linear(num_features, num_hidden_1, bias=True),
torch.nn.RelLU(),

torch.nn.BatchNormld(num_hidden_1),

2nd hidden layer

torch.nn.Linear(num_hidden_1, num_hidden_2, bias=True),
torch.nn.ReLU(),

torch.nn.BatchNormld (num_hidden_2),|

output layer

torch.nn.Linear(num_hidden_2, num_classes)

before activation + dropout
self.my_network = torch.nn.Sequential(

1st hidden layer

torch.nn.Flatten(),

torch.nn.Linear(num_features, num_hidden_1, bias=False),
torch.nn.BatchNormld(num_hidden_1),

torch.nn.RelLU(),

torch.nn.Dropout(drop_proba),

2nd hidden layer

torch.nn.Linear(num_hidden_1, num_hidden_2, bias=False),
torch.nn.BatchNormld(num_hidden_2),

torch.nn.RelLU(),

torch.nn.Dropout(drop_proba),

output layer

torch.nn.Linear(num_hidden_2, num_classes)

before activation, with bias

self.my_network = torch.nn.Sequential(

1st hidden layer

torch.nn.Flatten(),
torch.nn.Linear(num_features, num_hidden_1),
torch.nn.BatchNormld(num_hidden_1),
torch.nn.RelLU(),

2nd hidden layer
torch.nn.Linear(num_hidden_1, num_hidden_2),
torch.nn.BatchNormld(num_hidden_2),
torch.nn.ReLU(),

output layer

torch.nn.Linear(num_hidden_2, num_classes)

after activation + dropout

self.my_network = torch.nn.Sequential(

)

1st hidden layer

torch.nn.Flatten(),

torch.nn.Linear(num_features, num_hidden_1, bias=True),
torch.nn.RelLU(),

torch.nn.BatchNormld (num_hidden_1),
torch.nn.Dropout(drop_proba),

2nd hidden layer

torch.nn.Linear(num_hidden_1, num_hidden_2, bias=True),
torch.nn.ReLU(),

torch.nn.BatchNormld(num_hidden_2),
torch.nn.Dropout(drop_proba),

output layer

torch.nn.Linear(num_hidden_2, num_classes)

_ AT 455: intro 10 veep Learning

def train_model(model, num_epochs, train_loader,
valid_loader, test_loader, optimizer, device):

start_time = time.time()
minibatch_loss_list, train_acc_list, valid_acc_list = [], [], []
for epoch in range(num_epochs):

model.train()
for batch_idx, (features, targets) in enumerate(train_loader):

features = features.to(device)
targets = targets.to(device)

FORWARD AND BACK PROP

logits = model(features)

loss = torch.nn.functional.cross_entropy(logits, targets)
optimizer.zero_grad()

loss.backward()

UPDATE MODEL PARAMETERS don't forget model.train()
optimizer.step() and model . eval ()

LOGGING in training and test loops

minibatch_loss_list.append(loss.item())
if not batch_idx % 50:
print(f'Epoch: {epoch+1:03d}/{num_epochs:03d} '
f'| Batch {batch_idx:04d}/{len(train_loader):04d} '
f'| Loss: {loss:.4f}"')

model.eval()

with torch.no_grad(): # save memory during inference
train_acc = compute_accuracy(model, train_loader, device=device)

Sebastian Raschka STAT 458: Intro to Deep Learning

BatchNorm During Prediction ("Inference")

» Use exponentially weighted average (moving average) of mean
and variance

running_mean = momentum * running_mean
+ (1 - momentum) * sample_mean

(where momentum is typically ~0.1; and same for variance)

 Alternatively, can also use global training set mean and variance

BatchNorm: Some theories and practical
advice

4. Why does BatchNorm work?

BatchNorm and Internal Covariate Shift

loffe, S., & Szegedy, C. (2015, June). Batch Normalization: Accelerating
Deep Network Training by Reducing Internal Covariate Shift. In International

Conference on Machine Learning (pp. 448-456).

http://proceedings.mir.press/v37/ioffe15.html

Internal Covariate Shift is jargon for saying that the layer
input distribution changes ("feature shift" in hidden layers)

But there is no guarantee or strong evidence
that BatchNorm helps with covariate shift

Maybe BatchNorm just provides additional parameters that
will help layers to learn a little bit more independently

http://proceedings.mlr.press/v37/ioffe15.html

at. MLL] 6 Mar 2019

How Does Batch Normalization Help Optimization?

Shibani Santurkar* Dimitris Tsipras™ Andrew Ilyas™ Aleksander Madry
MIT MIT MIT MIT
shibani@mit.edu tsipras@mit.edu ailyas@mit.edu madry@mit.edu
Abstract

Batch Normalization (BatchNorm) is a widely adopted technique that enables
faster and more stable training of deep neural networks (DNNs). Despite its
pervasiveness, the exact reasons for BatchNorm’s effectiveness are still poorly
understood. The popular belief is that this effectiveness stems from controlling
the change of the layers’ input distributions during training to reduce the so-called
“internal covariate shift”. In this work, we demonstrate that such distributional
stability of layer inputs has little to do with the success of BatchNorm. Instead,
we uncover a more fundamental impact of BatchNorm on the training process: it
makes the optimization landscape significantly smoother. This smoothness induces
a more predictive and stable behavior of the gradients, allowing for faster training.

BatchNorm Enables Faster Convergence By
Allowing Larger Learning Rates

100 100 Standard Standard + BatchNorm
(LR=0.1) (LR=0.1)

> Q) —= |
> >) ™
@) g #
© > 5
5 —— Standard, LR=0.1 % —— Standard, LR=0.1 s
8 50 — Standard + BatchNorm, LR=0.1 5 50 — Standard + BatchNorm, LR=0.1 8
< = = Standard, LR=0.5 8 = = Standard, LR=0.5
(@)} - = Standard + BatchNorm, LR=0.5 < - = Standard + BatchNorm, LR=0.5
C
= O] :
© = %
= 1 s sfigy [TR TN BN l:‘h ll LY ah, GL"

s""l,’f‘t' ¢ \"nl\l AN \ ",,‘n‘l'\‘,,,". vindyh .’. iy 02020 BT s s s s >

' —
0 5k 10k 15k 0 5k 10k 15k
Steps Steps

Figure 1: Comparison of (a) training (optimization) and (b) test (generalization) performance of a
standard VGG network trained on CIFAR-10 with and without BatchNorm (details in Appendix A).
There 1s a consistent gain in training speed in models with BatchNorm layers. (c¢) Even though the
gap between the performance of the BatchNorm and non-BatchNorm networks 1s clear, the difference
in the evolution of layer input distributions seems to be much less pronounced. (Here, we sampled
activations of a given layer and visualized their distribution over training steps.)

Santurkar, S., Tsipras, D., llyas, A., & Madry, A. (2018). How does batch normalization help
optimization?. In Advances in Neural Information Processing Systems (pp. 2488-2498).

https://arxiv.org/abs/1805.11604

https://arxiv.org/abs/1805.11604

Good Performance of BatchNorm Seems
Unrelated to Covariate Shift Prevention

Standard Standard + Standard +

BatchNorm "Noisy" BatchNorm
100

N

ETY

>, 80 v

O)

©
-

O 60

) o

< #

o o

£ 40 o

(i -
'©

= — Standard m

= 20 m

—— Standard + BatchNorm #

—— Standard + "Noisy" Batchnorm ’0;{

0 ©

0 5k 10k 15« —

Steps

Figure 2: Connections between distributional stability and BatchNorm performance: We compare
VGG networks trained without BatchNorm (Standard), with BatchNorm (Standard + BatchNorm)
and with explicit “covariate shift” added to BatchNorm layers (Standard + “Noisy” BatchNorm).
In the later case, we induce distributional instability by adding time-varying, non-zero mean and
non-unit variance noise independently to each batch normalized activation. The “noisy” BatchNorm
model nearly matches the performance of standard BatchNorm model, despite complete distributional
instability. We sampled activations of a given layer and visualized their distributions (also cf. Figure 7).

Santurkar, S., Tsipras, D., llyas, A., & Madry, A. (2018). How does batch normalization help
optimization?. In Advances in Neural Information Processing Systems (pp. 2488-2498).

How Does BatchNorm Work?

Why Does BatchNorm Help?
2015:

Reduces covariate shift.

loffe, S., & Szegedy, C. (2015). Batch normalization: Accelerating deep network training by reducing internal
covariate shift. arXiv preprint arXiv:1502.03167 .

2018:
Networks with BatchNorm train well with or without ICS.
Hypothesis is that BatchNorm makes the optimization landscape

smoother.

Santurkar, S., Tsipras, D., llyas, A., & Madry, A. (2018). How does batch normalization help optimization? In
Advances in Neural Information Processing Systems (pp. 2483-2493).

2018:
"Batch normalization implicitly discourages single direction
reliance" (here, "single direction reliance" means that an input

influences only a single unit or linear combination of single units)

Morcos, A. S., Barrett, D. G., Rabinowitz, N. C., & Botvinick, M. (2018). On the importance of single directions for
generalization. arXiv preprint arXiv:1803.06959.

How Does BatchNorm Work?
Why Does BatchNorm Help?

2018:
BatchNorm acts as an implicit regularizer and improves
generalization accuracy

Luo, P, Wang, X., Shao, W., & Peng, Z. (2018). Towards understanding regularization in batch normalization. arXiv
preprint arXiv:1809.00846.

2019:
BatchNorm causes exploding gradients, requiring careful tuning
when training deep neural nets without skip connections (more

about skip connections soon)

Yang, G., Pennington, J., Rao, V., Sohl-Dickstein, J., & Schoenholz, S. S. (2019). A mean field theory of batch
normalization. arXiv preprint arXiv:1902.08129.

BatchNorm Variants

Pre-Activation

"Original” version
as discussed in
previous slides

compute net inputs

l

Batcthorm

apply activation function

l

compute next-layer net
inputs

Post-Activation

May make more sense,
but less common

compute net inputs

l

apply activation function

l

BatchNorm

l

compute next-layer net
Inputs

Some Benchmarks

https://github.com/ducha-aiki/caffenet-benchmark/blob/master/
batchnorm.md#bn----before-or-after-relu

BN -- before or after ReLU?

Name Accuracy LoglLoss Comments
Before 0.474 2.35 Asin paper
Before + scale&bias layer 0.478 2.33 Asin paper
After 0.499 2.21

After + scale&bias layer 0.493 2.24

https://github.com/ducha-aiki/caffenet-benchmark/blob/master/batchnorm.md#bn----before-or-after-relu
https://github.com/ducha-aiki/caffenet-benchmark/blob/master/batchnorm.md#bn----before-or-after-relu

—+—Batch Norm

-\-e—Group Norm

244

Practical Consideration
BatchNorm become more stable with

22
32

Wu, Y., & He, K. (2018). Group normalization. In Proceedings of the European Conference on Computer Vision (ECCV) (pp. 3-19).

16

batch size (images per worker)

8

4

2

larger minibatch sizes

Figure 1. ImagelNet classification error vs. batch
sizes. The model is ResNet-50 trained in the Ima-
geNet training set using 8 workers (GPUs) and evalu-
ated in the validation set. BN’s error increases rapidly
when reducing the batch size. GN’s computation is in-
dependent of batch sizes, and its error rate is stable
despite the batch size changes. GN has substantially
lower error (by 10%) than BN with a batch size of 2.

Further Reading

Conditional batch norm

De Vries, H., Strub, F., Mary, J., Larochelle, H., Pietquin, O., & Courville, A. (2017). Modulating early visual
processing by language. arXiv preprint arXiv:1707.00683.
https://github.com/pytorch/pytorch/issues/8985

https://arxiv.org/abs/1707.00683

Shallue, C. J., Lee, J., Antognini, J., Sohl-Dickstein, J., Frostig, R., & Dahl, G. E. (2018). Measuring the
effects of data parallelism on neural network training. arXiv preprint arXiv:1811.03600.

-> "We find no evidence that larger batch sizes degrade out-of-sample performance”
https://arxiv.org/abs/1811.03600

Cai, Z., Ravichandran, A., Maji, S., Fowlkes, C., Tu, Z., & Soatto, S. (2021). Exponential Moving Average
Normalization for Self-supervised and Semi-supervised Learning. arXiv preprint arXiv:2107.08482.

-> "We present a plug-in replacement for batch normalization (BN) called exponential moving average
normalization (EMAN), which improves the performance of existing student-teacher based self- and semi-
supervised learning techniques. ..."

https://arxiv.org/abs/2101.08482

Brock, A., De, S., Smith, S. L., & Simonyan, K. (2021). High-Performance Large-Scale Image Recognition
Without Normalization. arXiv preprint arXiv:2102.06171.

“Although recent work has succeeded in training deep ResNets without normalization layers, these models do
not match the test accuracies of the best batch-normalized networks, and are often unstable for large
learning rates or strong data augmentations. In this work, we develop an adaptive gradient clipping technique
which overcomes these instabilities, and design a significantly improved class of Normalizer-Free ResNets.”
https://arxiv.org/abs/2102.06171

Sebastian Raschka STAT 453: Intro to Deep Learning 34

https://github.com/pytorch/pytorch/issues/8985
https://arxiv.org/abs/1707.00683
https://arxiv.org/abs/1811.03600
https://arxiv.org/abs/2101.08482
https://arxiv.org/abs/2102.06171

Why Minibatch Sizes as Powers of 27

- Related to SIMD - Single Instruction Multiple Data -
paradigm used by CPUs/GPUs

« Comes from mapping the computations (e.g., dot
products) to physical processing cores on the GPU, where
the number of processing cores is usually a power of 2

- E.qg., if we have 32 columns in a matrix, SIMD | Instruction Pool
we can map 2 dot products to each
processing core if we have 16
processing cores (GPUs usually have
many, many more processing cores)

Data Pool

=
C
>
—
@)
s
g
>

Source: https://upload.wikimedia.org/wikipedia/

commons/thumb/c/ce/SIMD2.svg/440px-
SIMD2.svg.png

Sebastian Raschka STAT 458: Intro to Deep Learning

35

Besides input normalization, weight
Initialization matters, too

5. Weight initialization -- why do we care?

Weight Initialization

» We previously discussed that we want to initialize weight to small,
random numbers to break symmetry

- Also, we want the weights to be relatively small, why?

Surface of a convex cost function

minimum (for simplicity)

wq —
o (K-p m—rn—d?h—a ing
the same learning for all weigh large param
will dominate the updates)
w2
— "Standardization" of input features
- A —
C((C))] %
wl lI "' |) / | |
\ KL-//] (scaled feature will have
\&“ B // zero mean, unit variance)
w2

Sebastian Raschka STAT 458: Intro to Deep Learning

Sidenote: Vanishing/Exploding Gradient
Problems

Now, imagine, we have many

— — layers and sigmoid
ol dl 9o | da” |0ai” activations ...
8w§2 do (’9(152) (90,51) 8w§1£
+5’l - Oo 8@2523 | 80151)
do 8&52) 8&%1) 8wﬁ

Sebastian Raschka STAT 458: Intro to Deep Learning

1.0 ~

0.8 A

0.6 1

0.4 1

0.2 1

0.0 A

Sidenote: Vanishing/Exploding Gradient
Problems

do(z)/dz

0.25 -

0.20 -

0.15 A

0.10 -

0.05 -

0.00 -

Sidenote: Vanishing/Exploding Gradient
Problems

Assume, we have the largest gradient:

d

—0(0.0) = 0(0.0)(1 — (0.0)) = 0.25

Even then, for, e.g., 10 layers, we degrade the other gradients
substantially!

0.2510 ~ 106

Welight Initialization

Traditionally, we can initialize weights by sampling from a random uniform
distribution in range [0, 1], or better, [-0.5, 0.5]

Or, we could sample from a Gaussian distribution with mean 0
and small variance (e.g., 0.1 or 0.01)

A quick look at two common weight
initialization schemes

6. Xavier & He Initialization

Weight Initialization -- Xavier Initialization

Xavier Glorot and Yoshua Bengio. "Understanding the difficulty of training deep feedforward neural
networks." Proceedings of the thirteenth international conference on artificial intelligence and
statistics. 2010.

» TanH is a bit more robust regarding vanishing gradients
(compared to logistic sigmoid)

- |t still has the problem of saturation (near zero gradients if
inputs are very large, positive or negative values)

» Xavier initialization is a small improvement for initializing
weights for tanH

Weight Initialization -- Xavier Initialization

Xavier Glorot and Yoshua Bengio. "Understanding the difficulty of training deep feedforward neural
networks." Proceedings of the thirteenth international conference on artificial intelligence and

statistics. 2010.

Method:

Step 1: Initialize weights from Gaussian or uniform distribution

Step 2: Scale the weights proportional to the number of inputs to the layer

(For the first hidden layer, that is the number of features in the dataset;
for the second hidden layer, that is the number of units in the 1st hidden layer

etc.)

Weight Initialization -- Xavier Initialization

Xavier Glorot and Yoshua Bengio. "Understanding the difficulty of training deep feedforward neural

networks." Proceedings of the thirteenth international conference on artificial intelligence and
statistics. 2010.

Method:

Scale the weights proportional to the number of inputs to the layer

In particular, scale as follows:
where m Is the

WO .— w . \/ L number of input
m(l—1) units to the next
e \

layer
W; ;D ~ N(u=0,02=0.01)

(or uniform distr. in a fixed interval, as in the original paper)

Weight Initialization -- Xavier Initialization

Xavier Glorot and Yoshua Bengio. "Understanding the difficulty of training deep feedforward neural

networks." Proceedings of the thirteenth international conference on artificial intelligence and
statistics. 2010.

Sidenote: If you didn't initialize the bias units to
all zeros, also include those in the scaling.

where m Is the

wO .— w . \/ L number of input
m(l—1) units to the next
e \

layer
W; ;D ~ N(u=0,02=0.01)

(or uniform distr. in a fixed interval, as in the original paper)

Weight Initialization -- Xavier Initialization

Glorot, Xavier, and Yoshua Bengio. "Understanding the difficulty of training deep feedforward neural networks."
Proceedings of the thirteenth international conference on artificial intelligence and statistics. 2010.

Rationale behind this scaling:

Variance of the sample (between data points, not variance of the mean)
linearly increases as the sample size increases (variance of the sum of
iIndependent variables is the sum of the variances); square root for
standard deviation

where m Is the

wO . — wO . \/ 1 number of input
m(l—1) units to the next
N

layer
W; ;D ~ N(u=0,02=0.01)

(or uniform distr. in a fixed interval, as in the original paper)

Sebastian Raschka STAT 458: Intro to Deep Learning

47

Weight Initialization -- Xavier Initialization

Glorot, Xavier, and Yoshua Bengio. "Understanding the difficulty of training deep feedforward neural networks."
Proceedings of the thirteenth international conference on artificial intelligence and statistics. 2010.

Rationale behind this scaling:
Variance of the sample (between data points, not variance of the mean)

linearly increases as the sample size increases (variance of the sum of
independent variables is the sum of the variances); square root for

standard deviation

mp—1
Var (z§l)> = Var Z W](,i) g_l)
j=1

(=1 (=1
Z Var { (l> (l_l)} = Z Var {WJ(,?} Var { (_1)}
i=1

(1= 1)

Z Var { (l)} Var {a(l_l)} — m{=Y Var {W(l)} Var [a(l_l)}

Sebastian Raschka STAT 458: Intro to Deep Learning

48

Weight Initialization -- Xavier Initialization

1
w .— w .

/

Again, some DL jargon: This is sometimes called "fan in"
(= number of inputs to a layer)

Weight Initialization -- Xavier Initialization

However, in practice,

: : 1 some people also
W .= wb . = use "fan in" + "fan
m out” In the

denominator,
and it works fine

Again, some DL jargon: This is sometimes called "fan in"
(= number of inputs to a layer)

Weight Initialization -- Xavier Initialization

Glorot, Xavier, and Yoshua Bengio. "Understanding the difficulty of training deep feedforward neural networks."
Proceedings of the thirteenth international conference on artificial intelligence and statistics. 2010.

DLayer 1
Layer 2

X Layer 3|

+ Layer 4

Layer 5| .

a
5 . s
: : " S
N> o TRV R e S | B, 4
4 R 3 TR o Ve

06 04 02 0 02 04

0.8 1
Activation Value
100 | | | | !
: —Layer 1
Layer 2
— Layer 3
()| —Layer 4|
5 | ; i 5 5 Layer 5
0 . i _MWA%U Wt ; ' 1
-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2

Backpropagated gradients

Vanishing gradient problem!

Weight Initialization -- Xavier Initialization

Glorot, Xavier, and Yoshua Bengio. "Understanding the difficulty of training deep feedforward neural networks."
Proceedings of the thirteenth international conference on artificial intelligence and statistics. 2010.

100 i T ;
: —Layer 1
Layer 2
: — Layer 3
50_ _Layer 4 o]
: i } Layer 5
. I) ey ,:A—M‘w' ! ‘!‘EE 7."-‘; : i |
0
-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2
Backpropagated gradients
10 | : : n
| 'T.['Hl —Layer 1
'i ,‘; Illirl'l ' U Layer 2
I Ml fl | |
‘ lll 1.‘..1 | |~ Layer 3
5 L J vJ:“H ,Hll;}l' ... _Layer 4 .
"HVH “f q]!i\ 1“ Layer 5
N | docinoud e O M{”l'“.i | | I | ‘l'l‘:"'.'-‘-“.llh".'hfh_ﬂmu. 1

-025 -02 -0.15 -01 -005 O 005 0.1 015 02 0.25
Backpropagated gradients

Figure 7: Back-propagated gradients normalized his-
tograms with hyperbolic tangent activation, with standard

(top) vs normalized (bottom) initialization. Top: 0-peak
decreases for higher layers.

Welight Initialization -- He Initialization

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. "Delving deep into rectifiers: Surpassing human-level

performance on imagenet classification." In Proceedings of the IEEE international conference on computer vision, pp.
1026-1034. 2015.

 Assuming activations with mean 0, which is reasonable,
Xavier Initialization assumes a derivative of 1 for the
activation function (which is reasonable for tanH)

e For RelLU, this is different, as the activations are not
centered at zero anymore

 He initialization takes this into account (to see that worked
out in math, see the paper)

* The result is that we add a scaling factor of 205

2
0 .— w
wh .= W \/m<z_1>

How does PyTorch handle weight
initialization and how do we override it?

7. Weight initialization schemes in PyTorch

PyTorch Default Weights

PyTorch (now) uses the Kaiming He scheme by default

def __init_ (self, in_features: int, out_features: int, bias: bool = True) -> None:
super(Linear, self).__init__ ()
self.in_features = in_features
self.out_features = out_features
self.weight = Parameter(torch.Tensor(out_features, in_features))
if bias:
self.bias = Parameter(torch.Tensor(out_features))
else:
self.register_parameter('bias', None)
self.reset_parameters()

def reset_parameters(self) -> None:
init.kaiming_uniform_(self.weight, a=math.sqrt(5))
if self.bias is not None:
fan_in, _ = init._calculate_fan_in_and_fan_out(self.weight)
bound = 1 / math.sqgrt(fan_in)
init.uniform_(self.bias, -bound, bound)

https://qgithub.com/pytorch/pytorch/blob/master/torch/nn/modules/linear.py#1 86

Sebastian Raschka STAT 458: Intro to Deep Learning

55

https://github.com/pytorch/pytorch/blob/master/torch/nn/modules/linear.py#L86

class MultilayerPerceptron(torch.nn.Module):

def __init__ (self, num_features, num_classes, drop_proba,
num_hidden_1, num_hidden_2):
super().__init__ ()

self.my_network = torch.nn.Sequential(
1st hidden layer
torch.nn.Flatten(),
torch.nn.Linear(num_features, num_hidden_1),
torch.nn.ReLU(),
2nd hidden layer
torch.nn.Linear(num_hidden_1, num_hidden_2),
torch.nn.ReLU(),
output layer
torch.nn.Linear(num_hidden_2, num_classes)

for m in self.modules():
if isinstance(m, torch.nn.Linear):
torch.nn.init.kaiming_uniform_(m.weight, mode='fan_in', nonlinearity='relu')
if m.bias is not None:
m.bias.detach().zero_()

def forward(self, x):
logits = self.my_network(x)
return logits

Sebastian Raschka STAT 458: Intro to Deep Learning

56

class MultilayerPerceptron(torch.nn.Module):

def __init__ (self, num_features, num_classes, drop_proba,
num_hidden_1, num_hidden_2):
super().__init__()

self.my_network = torch.nn.Sequential(
1st hidden layer
torch.nn.Flatten(),
torch.nn.Linear(num_features, num_hidden_1),
torch.nn.ReLU(),
2nd hidden layer
torch.nn.Linear(num_hidden_1, num_hidden_2),
torch.nn.ReLU(),
output layer
torch.nn.Linear(num_hidden_2, num_classes)

for m in self.modules():
if isinstance(m, torch.nn.Linear):
m.weight.detach().normal_(0, 0.001)
if m.bias 1s not None:
m.bias.detach().zero_()

def forward(self, x):
logits = self.my_network(x)
return logits

https://github.com/rasbt/stat453-deep-learning-ss21/blob/main/L11/code/weight normal.ipynb

Sebastian Raschka STAT 458: Intro to Deep Learning

57

https://github.com/rasbt/stat453-deep-learning-ss21/blob/main/L11/code/weight_normal.ipynb

Loss

Accuracy

Normal (Gaussian) initialization Kaiming He initialization

‘o —_— Minipatch Loss a3s | - Minibatch Loss
! ~ Running Average ~ Running Average
25 1 0.30 1
- 0.25 1
% 0.20 A
15 - S
0.15 1
10 1
0.10 1
0.5 1
0.05 1
00 T T T T T T 0.00 T
0 2000 4000It t‘GOOO 8000 10000 0 2000 4000 6000 8000 10000
erations Iterations
0 10 20 . 30 40 50 0 10 20 30 40 50
pochs Epochs
100.0
—— TFaining 1000
4 - \alidation e
97.5 97.5 1
95.0 - 95.0 1
92.5 1 92.5 -
o
90.0 S 900
¥
87.5 1 87.5 -
85.0 - 85.0 1
82.5 1 82.5 1 = Taining
500 6 16 2'0 3b 4'0 5'0 oo ~ Validation
Epoch 0 10 20 30 40 50
Epoch

Sebastian Raschka STAT 458: Intro to Deep Learning

Note that if BatchNorm is used,
initial feature weight choice is less
Important anyway

Normal (Gaussian) initialization+ BatchNorm Kaiming He initialization

—~— Minibatch Loss 0.35 4 Minibgtch Loss
014 1 —— Running Average — Running Average
012 1 0.30 1
0.10 1 0.25 1
A % 0.20 -
§ 008 S
0.06 1 0.15 1
004 -1 0.10 1
0.02 1 0.05 1
0.00 T 0.00 T T
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000
Iterations Iterations
0 10 20 30 40 50 0 10 20 30 40 50
Epochs Epochs
100.0 = 100.0
95.0 1 95.0 1
92.5 1 925 4
5 900 A 5 90.0
fa o
< 4
87.5 1 87.5 -
85.0 - 85.0 1
82.5 1 = Taining 82.5 1 = Taining
— \alidation —— Validation
mo Ll] L 1 L] L mo T r . T r
0 10 20 30 40 50 0 10 20 30 40 50
Epoch Epoch

Sebastian Raschka STAT 458: Intro to Deep Learning

