Lecture 10

Regularization Methods for Neural Networks
Goal: Reduce Overfitting

usually achieved by reducing model capacity and/or reduction of the variance of the predictions (as explained last lecture)
Regularization

In the context of deep learning, regularization can be understood as the process of adding information / changing the objective function to prevent overfitting.
Regularization / Regularizing Effects

Goal: reduce overfitting
usually achieved by reducing model capacity and/or reduction of the variance of the predictions (as explained last lecture)

Common Regularization Techniques for DNNs:

• Early stopping
• L_1/L_2 regularization (norm penalties)
• Dropout
Regularization (mathematics)

In mathematics, statistics, finance, computer science, particularly in machine learning and inverse problems, regularization is the process of adding information in order to solve an ill-posed problem or to prevent overfitting.

Regularization applies to objective functions in ill-posed optimization problems. The regularization term, or penalty, imposes a cost on the optimization function for overfitting the function or to find an optimal solution.

In machine learning, regularization is any modification one makes to a learning algorithm that is intended to reduce its generalization error but not its training error.

The green and blue functions both incur zero loss on the given data points. A learned
Lecture Overview

1. Improving generalization performance
2. Avoiding overfitting with (1) more data and (2) data augmentation
3. Reducing network capacity & early stopping
4. Adding norm penalties to the loss: L1 & L2 regularization
5. Dropout
An Overview of Techniques for ...

1. **Improving generalization performance**
2. Avoiding overfitting with (1) more data and (2) data augmentation
3. Reducing network capacity & early stopping
4. Adding norm penalties to the loss: L1 & L2 regularization
5. Dropout
Improving generalization

Dataset
- Collecting more data
- Data augmentation
- Label smoothing
- Leveraging unlabeled data
- Leveraging related data

Semi-supervised
- Self-supervised

Meta-learning
- Transfer learning

Architecture setup
- Weight initialization strategies
- Activation functions
- Residual layers
- Knowledge distillation

Input standardization
- BatchNorm and variants
- Weight standardization
- Gradient centralization

Adaptive learning rates
- Auxiliary losses
- Gradient clipping

Regularization
- L2 (L1) regularization
- Early stopping
- Dropout
First step to improve performance: Focusing on the dataset itself

1. Improving generalization performance
2. Avoiding overfitting with (1) more data and (2) data augmentation
3. Reducing network capacity & early stopping
4. Adding norm penalties to the loss: L1 & L2 regularization
5. Dropout
Often, the Best Way to Reduce Overfitting is Collecting More Data

![Graph showing accuracy vs training set size for Softmax on MNIST subset](image)

Softmax on MNIST subset (test set size is kept constant)
Data Augmentation in PyTorch via TorchVision

Original

Randomly Augmented

Note transforms.ToTensor() scales input images
to 0–1 range

training_transforms = torchvision.transforms.Compose([
 torchvision.transforms.Resize(size=(32, 32)),
 torchvision.transforms.RandomCrop(size=(28, 28)),
 torchvision.transforms.RandomRotation(degrees=30, interpolation=PIL.Image.BILINEAR),
 torchvision.transforms.ToTensor(),
 torchvision.transforms.Normalize(mean=(0.5,), std=(0.5,)),
 # normalize does (x_i - mean) / std
 # if images are [0, 1], they will be [-1, 1] afterwards
])

test_transforms = torchvision.transforms.Compose([
 torchvision.transforms.ToTensor(),
 torchvision.transforms.Resize(size=(32, 32)),
 torchvision.transforms.CenterCrop(size=(28, 28)),
 torchvision.transforms.Normalize(mean=(0.5,), std=(0.5,)),
])

for more see

train_dataset = datasets.MNIST(root='data',
 train=True,
 transform=training_transforms,
 download=True)

test_dataset = datasets.MNIST(root='data',
 train=False,
 transform=test_transforms)

Note transforms.ToTensor() scales input images
to 0-1 range

```
training_transforms = torchvision.transforms.Compose([
    torchvision.transforms.Resize(size=(32, 32)),
    torchvision.transforms.RandomCrop(size=(28, 28)),
    torchvision.transforms.RandomRotation(degrees=30, interpolation=PIL.Image.BILINEAR),
    torchvision.transforms.ToTensor(),
    torchvision.transforms.Normalize(mean=(0.5,), std=(0.5,)),
    # normalize does (x_i - mean) / std
    # if images are [0, 1], they will be [-1, 1] afterwards
])

test_transforms = torchvision.transforms.Compose([
    torchvision.transforms.ToTensor(),
    torchvision.transforms.Resize(size=(32, 32)),
    torchvision.transforms.CenterCrop(size=(28, 28)),
    torchvision.transforms.Normalize(mean=(0.5,), std=(0.5,)),
])

# for more see
```

```
train_dataset = datasets.MNIST(root='data',
    train=True,
    transform=training_transforms,
    download=True)

test_dataset = datasets.MNIST(root='data',
    train=False,
    transform=test_transforms)
```

Other Ways for Dealing with Overfitting if Collecting More Data is not Feasible

=> Reducing Network's Capacity by Other Means

1. Improving generalization performance
2. Avoiding overfitting with (1) more data and (2) data augmentation
3. Reducing network capacity & early stopping
4. Adding norm penalties to the loss: L1 & L2 regularization
5. Dropout
Early Stopping

Step 1: Split your dataset into 3 parts (always recommended)

- use test set only once at the end (for unbiased estimate of generalization performance)
- use validation accuracy for tuning (always recommended)

Dataset

<table>
<thead>
<tr>
<th>Training dataset</th>
<th>Validation dataset</th>
<th>Test dataset</th>
</tr>
</thead>
</table>
Step 2: Early stopping (not very common anymore)

- reduce overfitting by observing the training/validation accuracy gap during training and then stop at the "right" point
Other Ways for Dealing with Overfitting if Collecting More Data is not Feasible

Adding a Penalty Against Complexity

1. Improving generalization performance
2. Avoiding overfitting with (1) more data and (2) data augmentation
3. Reducing network capacity & early stopping
4. Adding norm penalties to the loss: L1 & L2 regularization
5. Dropout
As I am sure you already know it from various statistics classes, we will keep it short:

- L_1-regularization \Rightarrow LASSO regression
- L_2-regularization \Rightarrow Ridge regression (Thikonov regularization)

Basically, a "weight shrinkage" or a "penalty against complexity"
L₂ Regularization for Linear Models (e.g., Logistic Regression)

\[
Cost_{\mathbf{w}, \mathbf{b}} = \frac{1}{n} \sum_{i=1}^{n} \mathcal{L}(y[i], \hat{y}[i])
\]

\[
\text{L2-Regularized-Cost}_{\mathbf{w}, \mathbf{b}} = \frac{1}{n} \sum_{i=1}^{n} \mathcal{L}(y[i], \hat{y}[i]) + \frac{\lambda}{n} \sum_{j} w_j^2
\]

where: \(\sum_{j} w_j^2 = \|\mathbf{w}\|_2^2 \)

and \(\lambda \) is a hyperparameter
Geometric Interpretation of L_2 Regularization

1st component:
minimize cost function

2nd component:
minimize penalty term

Compromise between penalty and cost
Effect of Norm Penalties on the Decision Boundary

Assume a nonlinear model

- Large regularization penalty
 - high bias
- Low regularization
 - high variance
- Good compromise
L₂ Regularization for Multilayer Neural Networks

\[
\text{L2-Regularized-Cost}_{\mathbf{w}, \mathbf{b}} = \frac{1}{n} \sum_{i=1}^{n} \mathcal{L}(y^{[i]}, \hat{y}^{[i]}) + \frac{\lambda}{n} \sum_{l=1}^{L} \| \mathbf{w}^{(l)} \|_F^2
\]

where \(\| \mathbf{w}^{(l)} \|_F^2 \) is the Frobenius norm (squared):

\[
\| \mathbf{w}^{(l)} \|_F^2 = \sum_{i} \sum_{j} (w_{i,j}^{(l)})^2
\]
L$_2$ Regularization for Neural Nets

Regular gradient descent update:

$$w_{i,j} := w_{i,j} - \eta \frac{\partial L}{\partial w_{i,j}}$$

Gradient descent update with L$_2$ regularization:

$$w_{i,j} := w_{i,j} - \eta \left(\frac{\partial L}{\partial w_{i,j}} + \frac{2\lambda}{n} w_{i,j} \right)$$
L₂ Regularization for Neural Nets in PyTorch

```python
# regularize loss
L2 = 0.
for name, p in model.named_parameters():
    if 'weight' in name:
        L2 = L2 + (p**2).sum()

cost = cost + 2./targets.size(0) * LAMBDA * L2

optimizer.zero_grad()
cost.backward()
```
L₂ Regularization for Logistic Regression in PyTorch

Automatically:

```python
# Apply L2 regularization
optimizer = torch.optim.SGD(model.parameters(),
    lr=0.1,
    weight_decay=LAMBDA)

for epoch in range(num_epochs):
    #### Compute outputs ####
    out = model(X_train_tensor)

    #### Compute gradients ####
    cost = F.binary_cross_entropy(out, y_train_tensor)
    optimizer.zero_grad()
    cost.backward()
```
Dropout

1. Improving generalization performance
2. Avoiding overfitting with (1) more data and (2) data augmentation
3. Reducing network capacity & early stopping
4. Adding norm penalties to the loss: L1 & L2 regularization

5. Dropout
 5.1 The Main Concept Behind Dropout
 5.2 Dropout: Co-Adaptation Interpretation
 5.3 Dropout: Ensemble Method Interpretation
 5.4 Dropout in PyTorch
 Dropout

Original research articles:

Dropout in a Nutshell: Dropping Nodes

Originally, drop probability 0.5
(but 0.2-0.8 also common now)
Dropout in a Nutshell: Dropping Nodes

How do we drop the nodes practically/efficiently?

Bernoulli Sampling (during training):

- $p := \text{drop probability}$
- $v := \text{random sample from uniform distribution in range } [0, 1]$
- $\forall i \in v : v_i := 0 \text{ if } v_i < p \text{ else } 1$
- $a := a \odot v \quad (p \times 100\% \text{ of the activations } a \text{ will be zeroed})$
Dropout in a Nutshell: Dropping Nodes

How do we drop the nodes practically/efficiently?

Bernoulli Sampling (during training):

- $p :=$ drop probability
- $v :=$ random sample from uniform distribution in range $[0, 1]$
- $\forall i \in v : v_i := 0$ if $v_i < p$ else 1
- $a := a \odot v$ \hspace{1cm} ($p \times 100\%$ of the activations a will be zeroed)

Then, after training when making predictions (during "inference")

scale activations via $a := a \odot (1 - p)$

Q for you: Why is this required?
 Dropout

1. Improving generalization performance
2. Avoiding overfitting with (1) more data and (2) data augmentation
3. Reducing network capacity & early stopping
4. Adding norm penalties to the loss: L1 & L2 regularization

5. Dropout
 5.1 The Main Concept Behind Dropout
 5.2 Dropout: Co-Adaptation Interpretation
 5.3 Dropout: Ensemble Method Interpretation
 5.4 Dropout in PyTorch
Dropout: Co-Adaptation Interpretation

Why does Dropout work well?

- Network will learn not to rely on particular connections too heavily
- Thus, will consider more connections (because it cannot rely on individual ones)
- The weight values will be more spread-out (may lead to smaller weights like with L2 norm)
- Side note: You can certainly use different dropout probabilities in different layers (assigning them proportional to the number of units in a layer is not a bad idea, for example)
Dropout

1. Improving generalization performance
2. Avoiding overfitting with (1) more data and (2) data augmentation
3. Reducing network capacity & early stopping
4. Adding norm penalties to the loss: L1 & L2 regularization

5. **Dropout**

 5.1 The Main Concept Behind Dropout
 5.2 Dropout: Co-Adaptation Interpretation
 5.3 Dropout: Ensemble Method Interpretation
 5.4 Dropout in PyTorch
Dropout: Ensemble Method Interpretation

- In dropout, we have a "different model" for each minibatch.

- Via the minibatch iterations, we essentially sample over $M = 2^h$ models, where h is the number of hidden units.

- Restriction is that we have weight sharing over these models, which can be seen as a form of regularization.

- During "inference" we can then average over all these models (but this is very expensive).
Dropout: Ensemble Method Interpretation

• During "inference" we can then average over all these models (but this is very expensive)

This is basically just averaging log likelihoods (this is for one particular class):

\[p_{\text{Ensemble}} = \left[\prod_{j=1}^{M} p^{\{i\}} \right]^{1/M} = \exp \left[1/M \sum_{j=1}^{M} \log(p^{\{i\}}) \right] \]

(you may know this as the "geometric mean" from other classes)

For multiple classes, we need to normalize so that the probas sum to 1:

\[p_{\text{Ensemble}, j} = \frac{p_{\text{Ensemble}, j}}{\sum_{j=1}^{k} p_{\text{Ensemble}, j}} \]
Dropout: Ensemble Method Interpretation

• During "inference" we can then average over all these models (but this is very expensive)

• However, using the last model after training and scaling the predictions by a factor \(1-p\) approximates the geometric mean and is much cheaper (actually, it's exactly the geometric mean if we have a linear model)
Dropout

1. Improving generalization performance
2. Avoiding overfitting with (1) more data and (2) data augmentation
3. Reducing network capacity & early stopping
4. Adding norm penalties to the loss: L1 & L2 regularization

5. Dropout
 5.1 The Main Concept Behind Dropout
 5.2 Dropout: Co-Adaptation Interpretation
 5.3 Dropout: Ensemble Method Interpretation
 5.4 Dropout in PyTorch
Inverted Dropout

• Most frameworks implement inverted dropout
• Here, the activation values are scaled by the factor \((1-p)\) during training instead of scaling the activations during "inference"
• I believe Google started this trend (because it's computationally cheaper in the long run if you use your model a lot after training)
• PyTorch's Dropout implementation is also inverted Dropout
```python
class MultilayerPerceptron(torch.nn.Module):
    def __init__(self, num_features, num_classes, drop_proba, 
                   num_hidden_1, num_hidden_2):
        super().__init__()

        self.my_network = torch.nn.Sequential(
            # 1st hidden layer
            torch.nn.Flatten(),
            torch.nn.Linear(num_features, num_hidden_1),
            torch.nn.ReLU(),
            torch.nn.Dropout(drop_proba),
            # 2nd hidden layer
            torch.nn.Linear(num_hidden_1, num_hidden_2),
            torch.nn.ReLU(),
            torch.nn.Dropout(drop_proba),
            # output layer
            torch.nn.Linear(num_hidden_2, num_classes)
        )

    def forward(self, x):
        logits = self.my_network(x)
        return logits
```
Dropout in PyTorch

Here, is is very important that you use `model.train()` and `model.eval()`!

```python
for epoch in range(NUM_EPOCHS):
    model.train()
    for batch_idx, (features, targets) in enumerate(train_loader):
        features = features.view(-1, 28*28).to(DEVICE)
#
## FORWARD AND BACK PROP
logits = model(features)
cost = F.cross_entropy(logits, targets)
optimizer.zero_grad()
cost.backward()
minibatch_cost.append(cost)
## UPDATE MODEL PARAMETERS
optimizer.step()
model.eval()
with torch.no_grad():
    cost = compute_loss(model, train_loader)
    epoch_cost.append(cost)
    print('Epoch: %03d/%03d Train Cost: %.4f' % (epoch+1, NUM_EPOCHS, cost))
    print('Time elapsed: %.2f min' % ((time.time() - start_time)/60))
```
Without dropout:

With 50% dropout:

Dropout: More Practical Tips

• Don't use Dropout if your model does not overfit

• However, in that case above, it is then recommended to increase the capacity to make it overfit, and then use dropout to be able to use a larger capacity model (but make it not overfit)
DropConnect: Randomly Dropping Weights
DropConnect

- Generalization of Dropout
- More "possibilities"
- Less popular & doesn't work so well in practice

Original research article:
Recommended Reading Assignment