STAT 453: Introduction to Deep Learning and Generative Models

Sebastian Raschka
http://stat.wisc.edu/~sraschka/teaching

Lecture 10

Regularization Methods
for Neural Networks

http://stat.wisc.edu/~sraschka/teaching

Goal: Reduce Overfitting

usually achieved by reducing model
capacity and/or reduction of the variance of
the predictions (as explained last lecture)

Regularization

In the context of deep learning, regularization can be
understood as the process of adding information / changing
the objective function to prevent overfitting

Regularization / Regularizing Effects

Goal: reduce overfitting

usually achieved by reducing model capacity and/or
reduction of the variance of the predictions (as explained last
lecture)

Common Regularization Techniques for DNNSs:

» Early stopping
- L1/L2 regularization (norm penalties)

* Dropout

Regularization (mathematics)

From Wikipedia, the free encyclopedia

This article only describes one highly specialized aspect of its
Q associated subject. Please help improve this article by adding more
general information. The talk page may contain suggestions. (November 2020)

In mathematics, statistics, finance,!!! computer science, particularly
in machine learning and inverse problems, regularization is the
process of adding information in order to solve an ill-posed problem (\

or to prevent overfitting.!?!

Regularization applies to objective functions in ill-posed optimization y
problems. The regularization term, or penalty, imposes a cost on the
optimization function for overfitting the function or to find an optimal

solution.

In machine learning, regularization is any modification one makes to
a learning algorithm that is intended to reduce its generalization X
error but not its training error®!

The green and blue functions both incur &
Cantante Thidal zero loss on the given data points. A learned

Sebastian Raschka STAT 458: Intro to Deep Learning

1.

5.

Lecture Overview

Improving generalization performance

Avoiding overfitting with (1) more data and (2)
data augmentation

Reducing network capacity & early stopping

Adding norm penalties to the loss: L1 & L2
regularization

Dropout

An Overview of Techniques for ...

1. Improving generalization performance

2. Avoiding overfitting with (1) more data and (2) data
augmentation

Reducing network capacity & early stopping
4. Adding norm penalties to the loss: L1 & L2 regularization

5. Dropout

Sebastian Raschka STAT 458: Intro to Deep Learning

Collecting more data

Data augmentation

Label smoothing_

Dataset

Semi-supervised

Leveraging unlabeled data
T < Self-supervised
Meta-learning

Leveraging related data
T < Transfer learning

Weight initialization strategies

Activation functions

Architecture setup

Residual layers

Knowledge distillation

Improving generalization Input standardization

BatchNorm and variants

Normalization

Weight standardization

Gradient centralization

Adaptive learning rates

Training loop Auxiliary losses

Gradient clipping

L2 (/L1) regularization

Regularization Early stopping_

Dropout

Sebastian Raschka STAT 458: Intro to Deep Learning

First step to improve performance:
Focusing on the dataset itself

2. Avoiding overfitting with (1) more data and (2) data
augmentation

Often, the Best Way to Reduce Overfitting is
Collecting More Data

1.00
0.98

0.96
a 0.94
G === [raln

| -
§0-92 —@= Test
<T 0.90

0.88

0.86

1000 2000 3000 4000 5000
Training Set Size

Softmax on MNIST subset (test set size is kept constant)

Data Augmentation in PyTorch via
TorchVision

Original N P /

0 20 0 20 0 20 0 20
10 A

Randomly Augmented 4 o % o ? o l

0 20 0 20 0 20 0 20

https://qgithub.com/rasbt/stat453-deep-learning-ss21/blob/master/L.10/code/data-augmentation.ipynb

https://github.com/rasbt/stat453-deep-learning-ss21/blob/master/L10/code/data-augmentation.ipynb

Note transforms.ToTensor() scales input images
to 0-1 range

training_transforms = torchvision.transforms.Compose([
torchvision.transforms.Resize(size=(32, 32)),
torchvision.transforms.RandomCrop(size=(28, 28)),
torchvision.transforms.RandomRotation(degrees=30, interpolation=PIL.Image.BILINEAR),
torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize(mean=(0.5,), std=(0.5,)),
normalize does (x_1 - mean) / std
1f images are [0, 1], they will be [-1, 1] afterwards

1)

test_transforms = torchvision.transforms.Compose([
torchvision.transforms.ToTensor(),
torchvision.transforms.Resize(size=(32, 32)),
torchvision.transforms.CenterCrop(size=(28, 28)),
torchvision.transforms.Normalize(mean=(0.5,), std=(0.5,)),

1)

for more see
https://pytorch.org/docs/stable/torchvision/transforms.html

train_dataset = datasets.MNIST(root='data',
train=True,
transform=training_transforms,
download=True)

test_dataset = datasets.MNIST(root='data',

train=False,
transform=test_transforms)

https://qgithub.com/rasbt/stat453-deep-learning-ss21/blob/master/L.10/code/data-augmentation.ipynb

Sebastian Raschka STAT 458: Intro to Deep Learning

12

https://github.com/rasbt/stat453-deep-learning-ss21/blob/master/L10/code/data-augmentation.ipynb

Note transforms.ToTensor() scales input images
to 0-1 range

training_transforms = torchvision.transforms.Compose([
torchvision.transforms.Resize(size=(32, 32)),
torchvision.transforms.RandomCrop(size=(28, 28)),
torchvision.transforms.RandomRotation(degrees=30, interpolation=PIL.Image.BILINEAR),
torchvision.transforms.ToTensor (p=
torchvision.transforms.Normalize|(mean=(0.5,), std=(0.5,)),
normalize does (x_1 — mean) / 'st&
1f images are [0, 1], they will be [-1, 1] afterwards

1)

Use (0.5, 0.5, 0.5) for RGB images

test_transforms = torchvision.transforms.Compo
torchvision.transforms.ToTensor(),
torchvision.transforms.Resize(size=(32, 32)),
torchvision.transforms.CenterCror+size-(23, 28

torchvision.transforms.Normalize|(mean=(0.5,), std=(0.5,)),

1)

for more see
https://pytorch.org/docs/stable/torchvision/transforms.html

train_dataset = datasets.MNIST(root='data',
train=True,
transform=training_transforms,
download=True)

test_dataset = datasets.MNIST(root='data',

train=False,
transform=test_transforms)

https://qgithub.com/rasbt/stat453-deep-learning-ss21/blob/master/L.10/code/data-augmentation.ipynb

Sebastian Raschka STAT 458: Intro to Deep Learning

13

https://github.com/rasbt/stat453-deep-learning-ss21/blob/master/L10/code/data-augmentation.ipynb

Other Ways for Dealing with Overfitting
if Collecting More Data is not Feasible

=> Reducing Network's Capacity by Other Means

3. Reducing network capacity & early stopping

Early Stopping

Step 1: Split your dataset into 3 parts (always
recommended)

» use test set only once at the end (for unbiased estimate of
generalization performance)

- use validation accuracy for tuning (always recommended)

Dataset

Training Validation Test
dataset dataset dataset

Sebastian Raschka STAT 458: Intro to Deep Learning

15

Early Stopping

Step 2: Early stopping (not very common anymore)

» reduce overfitting by observing the training/validation
accuracy gap during training and then stop at the "right" point

A

Good early stopping point

Training set

Accuracy

Validation set

Epochs

Other Ways for Dealing with Overfitting
if Collecting More Data is not Feasible

Adding a Penalty Against Complexity

4. Adding norm penalties to the loss: L1 & L2 regularization

L1/L2 Regularization

As | am sure you already know it from various statistics
classes, we will keep it short:

 Li-regularization => LASSO regression

 Lo-regularization => Ridge regression (Thikonov regularization)

Basically, a "weight shrinkage" or a "penalty against
complexity”

L> Regularization for Linear Models
(e.g., Logistic Regression)

1 L
Costw 1, = — Lyl ol
OStw b = — > Ly, 91"

1=1

1 < 1o A
L2-Regularized-Cost,, , = - Z Ly, gty + = Z w?
i=1

where: » w? =||w|[3
J

and A is a hyperparameter

Geometric Interpretation of Lo Regularization

1st component:

Wj A
minimize cost function
Q S
\ —

ond component: Compromise between penalty

L and cost
minimize penalty term

Sebastian Raschka, Vahid Mirjalili. Python Machine Learning. 3rd Edition.

Effect of Norm Penalties on the Decision
Boundary

Assume a nonlinear model

A A /N

%%O x /O X -

g c7y0 o 0O x \O 0O

X ><>< X Kk X
> —> | 3

Zaw\,& @ jv\(@w’%(ﬂb‘ﬂ Pmﬂé Low r"d"‘("w‘oid‘."” Good (owpronafe

= 1/7,3(4 bias =) l/vdbl Vanau o

L> Regularization for Multilayer Neural Networks

L2-Regularized-Cost,, }, = Z L(y) + — Z w3

/

sum over layers

where HW(Z) \ |%1 is the Frobenius norm (squared):

=223 (v)’

L> Regularization for Neural Nets

Regular gradient descent update:

o
n@wi,j

Wi,j -— Wij

Gradient descent update with L2 regularization:

oL 2\)

Wi i = Wi — 1 | W
7] (8%,3' Y

L> Regularization for Neural Nets in
PyTorch

regularize loss
L2 = 0.
for name, p in model.named parameters():
if 'weight' in name:
L2 = L2 + (p**2).sum()

cost = cost + 2./targets.size(0) * LAMBDA * L2

optimizer.zero grad()
cost.backward()

L> Regularization for Logistic Regression
In PyTorch

Automatically:

HHHHH AT HHHH A AT HHHH AT HHH A AT HHHHATTFHH A AT HHHHA AT HH A
Apply L2 regularization
optimizer = torch.optim.SGD(model.parameters(),

1r=0.1,

weight decay=LAMBDA)

for epoch in range(num epochs):

Compute outputs
out = model (X train tensor)

Compute gradients

cost = F.blinary cross entropy(out, y train tensor)
optimizer.zero grad()

cost.backward()

Sebastian Raschka STAT 458: Intro to Deep Learning

25

Dropout

1. Improving generalization performance

2. Avoiding overfitting with (1) more data and (2) data
augmentation

3. Reducing network capacity & early stopping
4. Adding norm penalties to the loss: L1 & L2 regularization
5. Dropout

5.1 The Main Concept Behind Dropout

5.2 Dropout: Co-Adaptation Interpretation

5.3 Dropout: Ensemble Method Interpretation

5.4 Dropout in PyTorch

Sebastian Raschka STAT 458: Intro to Deep Learning

Dropout

Original research articles:

Hinton, G. E., Srivastava, N., Krizhevsky, A., Sutskever, |., & Salakhutdinov, R. (2012).
Improving neural networks by preventing co-adaptation of feature detectors. arXiv
preprint arXiv:1207.0580.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, |., & Salakhutdinov, R. (2014).
Dropout: a simple way to prevent neural networks from overfitting. The Journal of
Machine Learning Research, 15(1), 1929-19358.

Dropout in a Nutshell: Dropping Nodes

(1)

aq
2l a(2)
1
X @
) aéz)
o0

Originally, drop probability 0.5

(but 0.2-0.8 also common now)

Dropout in a Nutshell: Dropping Nodes

How do we drop the nodes practically/efficiently?

Bernoulli Sampling (during training):

* p :=drop probability

v ;= random sample from uniform distribution in range [0, 1]
« Viev: v, :=0i1fv;, <pelsel

a:=a@®v (o X 100% of the activations a will be zeroed)

Dropout in a Nutshell: Dropping Nodes

How do we drop the nodes practically/efficiently?

Bernoulli Sampling (during training):

* p :=drop probability
v .= random sample from uniform distribution in range [0, 1]

« Viev: v, :=0i1fv;, <pelsel
a:—a@©v (o X 100% of the activations a will be zeroed)

Then, after training when making predictions (during "inference")

scale activationsvia a:=a ® (1 — p)

Q for you: Why is this required?

Dropout

1. Improving generalization performance

2. Avoiding overfitting with (1) more data and (2) data
augmentation

3. Reducing network capacity & early stopping

Adding norm penalties to the loss: L1 & L2 regularization
5. Dropout

5.1 The Main Concept Behind Dropout

5.2 Dropout: Co-Adaptation Interpretation

5.3 Dropout: Ensemble Method Interpretation

5.4 Dropout in PyTorch

Sebastian Raschka STAT 458: Intro to Deep Learning

31

Dropout: Co-Adaptation Interpretation
Why does Dropout work well?

Network will learn not to rely on particular connections too heavily

Thus, will consider more connections (because it cannot rely on
individual ones)

The weight values will be more spread-out (may lead to smaller
weights like with L2 norm)

Side note: You can certainly use different dropout probabilities in
different layers (assigning them proportional to the number of units in
a layer is not a bad idea, for example)

Dropout

1. Improving generalization performance

2. Avoiding overfitting with (1) more data and (2) data
augmentation

3. Reducing network capacity & early stopping
4. Adding norm penalties to the loss: L1 & L2 regularization
5. Dropout

5.1 The Main Concept Behind Dropout

5.2 Dropout: Co-Adaptation Interpretation

5.3 Dropout: Ensemble Method Interpretation

5.4 Dropout in PyTorch

Sebastian Raschka STAT 458: Intro to Deep Learning

Dropout: Ensemble Method Interpretation

 |n dropout, we have a "different model" for each minibatch

* Via the minibatch iterations, we essentially sample over M=2"
models, where h is the number of hidden units

» Restriction is that we have weight sharing over these models,
which can be seen as a form of regularization

» During "inference” we can then average over all these models
(but this is very expensive)

Dropout: Ensemble Method Interpretation

» During "inference"” we can then average over all these models
(but this is very expensive)

This Is basically just averaging log likelihoods
(this is for one particular class):

Mo M
PEnsemble — { H p{Z}}
j=1

= exp [1/M f: log(p{i})}

=1
(you may know this as the "geometric mean" from other classes)

For multiple classes, we need to normalize so that the probas

sum L PEnsemble, j
PEnsemble, j —

_ k
tO 1 . ijl pEnsemble,]

Dropout: Ensemble Method Interpretation

» During "inference"” we can then average over all these models
(but this is very expensive)

- However, using the last model after training and scaling the
predictions by a factor 7-p approximates the geometric mean
and is much cheaper
(actually, it's exactly the geometric mean if we have a linear
model)

Dropout

1. Improving generalization performance

2. Avoiding overfitting with (1) more data and (2) data
augmentation

Reducing network capacity & early stopping
4. Adding norm penalties to the loss: L1 & L2 regularization
5. Dropout
5.1 The Main Concept Behind Dropout
5.2 Dropout: Co-Adaptation Interpretation
5.3 Dropout: Ensemble Method Interpretation
5.4 Dropout in PyTorch

Sebastian Raschka STAT 458: Intro to Deep Learning

37

Inverted Dropout

« Most frameworks implement inverted dropout

» Here, the activation values are scaled by the factor (7-p)

during training instead of scaling the activations during
"Inference”

| believe Google started this trend (because it's

computationally cheaper in the long run if you use your
model a lot after training)

* PyTorch's Dropout implementation is also inverted Dropout

Dropout in PyTorch

class MultilayerPerceptron(torch.nn.Module):

def __init__ (self, num_features, num_classes, drop_proba,
num_hidden_1, num_hidden_2):
super().__init__ ()

self.my_network = torch.nn.Sequential(
1st hidden layer
torch.nn.Flatten(),
torch.nn.Linear(num_features, num_hidden_1),
torch.nn.RelLU(),
torch.nn.Dropout(drop_proba),
2nd hidden layer
torch.nn.Linear(num_hidden_1, num_hidden_2),
torch.nn.RelLU(),
torch.nn.Dropout(drop_proba),
output layer
torch.nn.Linear(num_hidden_2, num_classes)

)

def forward(self, x):
logits = self.my_network(x)
return logits

Sebastian Raschka STAT 458: Intro to Deep Learning

Dropout in PyTorch

Here, Is is very important that you use model.train() and model.eval()!

for epoch in range(NUM EPOCHS):
model.train()
for batch idx, (features, targets) in enumerate(train loader):

features = features.view(-1, 28*28).to(DEVICE)

FORWARD AND BACK PROP
logits = model(features)

cost = F.cross entropy(logits, targets)
optimizer.zero grad()

cost.backward()
minibatch cost.append(cost)
UPDATE MODEL PARAMETERS
optimizer.step()

model.eval ()
with torch.no grad():
cost = compute loss(model, train loader)
epoch cost.append(cost)
print ('Epoch: %03d/%03d Train Cost: %.4f' % (
epoch+1, NUM EPOCHS, cost))
print('Time elapsed: %.2f min' % ((time.time() - start time)/60))

Sebastian Raschka STAT 458: Intro to Deep Learning

40

Without dropout:

wv
v

0.5 1

0.4 -

0.3 1

0.2 -

0.1 1

00

- Minibatch Loss
—— Running Average

T T

0 2000 4000 6000 8000 10000

Iterations
0 10 20 30 40 50
Epochs

With 50% dropout:

Loss

10 1

0.8 1

0.6 1

0.4 -

0.2 1

00

- Minibatch Loss
~— Running Average

T T

0 2000 4000 6000 8000 10000

Iterations
0 10 20 30 40 50
Epochs

100.0

97.5 1

95.0 1

92.5 -

90.0 -

Accuracy

87.5 -
85.0 -

82.5 1 — Training
— \alidation

80.0 — T
0 10

20

Epoch

—

100.0
- Training
97.5 4 — \alidation

95.0 -
92.5 1

90.0 1

Accuracy

87.5 1

85.0 -

82.5 1

80.0 T

20

Epoch

30

https://github.com/rasbt/stat453-deep-learning-ss21/blob/master/LL10/code/dropout.ipynb

Sebastian Raschka

STAT 458: Intro to Deep Learning

41

https://github.com/rasbt/stat453-deep-learning-ss21/blob/master/L10/code/dropout.ipynb

Dropout: More Practical Tips

* Don't use Dropout if your model does not overfit

 However, Iin that case above, it is then recommended to

iIncrease the capacity to make it overfit, and then use dropout
to be able to use a larger capacity model (but make it not

overfit)

DropConnect:
Randomly Dropping Weights

al!
aq
a(l) \
2

oD

DropConnect

- Generalization of Dropout
» More "possibilities”

» Less popular & doesn't work so well in practice

Original research article:

Wan, L., Zeiler, M., Zhang, S., Le Cun, Y., & Fergus, R. (2013, February). Regularization

of neural networks using DropConnect. In International conference on machine learning
(pp. 1058-1060).

Recommended Reading Assignment

e Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014).

Dropout: a simple way to prevent neural networks from overfitting. The Journal of
Machine Learning Research, 15(1), 1929-1958.

http://imlr.org/papers/volumel5/srivastaval4a/srivastavail4a.pdf

http://jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf

