STAT 453: Introduction to Deep Learning and Generative Models

Sebastian Raschka
http://stat.wisc.edu/~sraschka/teaching

Lecture 06

Automatic Differentiation
with Py Torch


http://stat.wisc.edu/~sraschka/teaching

Today

Computing partial derivatives more easily
(and automatically) with PyTorch



o &~ L b =

Lecture Overview

PyTorch Resources

Computation Graphs

Automatic Differentiation in PyTorch

Training ADALINE Manually Vs Automatically in PyTorch
A Closer Look at the PyTorch API



Learning More About Pylorch

PyTorch Resources

Computation Graphs

1.

2

3. Automatic Differentiation in PyTorch

4. Training ADALINE Manually Vs Automatically in PyTorch
5

. A Closer Look at the PyTorch API

Sebastian Raschka STAT 458: Intro to Deep Learning



PyTorch

FROM

O PyTorch B

e deep learning platform that p vides a seamless path from
hp otyping to podct n deployme

https://pytorch.org/

At a Glance: ¢ Based on Torch 7, which was based on Lua and inspired by Lush
e PyTorch started in 2016
e Focuses on flexibility and minimizing cognitive overhead

e Dynamic nature of autograd APl inspired by Chainer

e (Core features
e Automatic differentiation
e Dynamic computation graphs
e NumPy integration

e written in C++ and CUDA (CUDA is like C++ for the GPU)
e Python is the usability glue

Sebastian Raschka STAT 458: Intro to Deep Learning


https://pytorch.org/

PyTO rch Get Started Features Ecosystem Blog Tutorials

FROM

O PyTorch Eewdio

e deep leal gpl atform that provides a seamless path from
hp totyping to production deployment.

https://pytorch.org/

At a Glance:

PyTorch vs NumPy

e NumPy integration ® Support GPU

® distribute ops across multiple devices
® keep track of computation graph and
ops that created them

Sebastian Raschka STAT 453: Intro to Deep Learning 6


https://pytorch.org/

PyTorch

FROM

G PyTorch [N

e deep lea gpltfrm that provides a seamless path from
hp totyping to pd on deployment.

https://pytorch.org/

At a Glance:

“the speedup gained by taking Python out of

the computation is 10% or less"
-- Stevens et al.: Deep Learning with PyTorch

e written in C++ and CUDA (CUDA is like C++ for the GPU)
e Python is the usability glue

Sebastian Raschka STAT 458: Intro to Deep Learning


https://pytorch.org/

Installation

Recommendation for Laptop (e.g., MacBook) Recommendation for Desktop (Linux) with GPU

PyTorch Build Preview (Nightly) PyTorch Build Stable (1.7.1) Preview (Nightly)

Your OS Linux _ Windows Your OS in Windows

Package Pip LibTorch Source Package Conda Pip LibTorch Source
CUDA 92 10.1 102 110 m CUDA 9 101 102 _ None

NOTE: Python 3.9 users will need to add '-c=conda-forge' for installation . NOTE: Python 3.9 users will need to add '-c=conda-forge' for installation
conda install pytorch torchvision torchaudio -c pytorch Run this Command:

Run this Command:
conda install pytorch torchvision torchaudio cudatoolkit=11.0 -c pytoxch

https://pytorch.org/

As mention in the installation tips on Canvas

And don't forget that you import PyTorch as "import torch," not "import pytorch" :)
In [1]: import torch

In [2]: torch.__version_ _
yOut[2]: '1.7.0"

In [3]1: |}

Sebastian Raschka STAT 453: Intro to Deep Learning 8


https://pytorch.org/

Many Useful Tutorials (recommend that you read some of them)

O PyTorch

1.7.1

Q Search Tutorials

PyTorch Recipes

See All Recipes

Learning PyTorch

Deep Learning with PyTorch: A 60 Minute Blitz
Learning PyTorch with Examples

What is torch.nn really?

Visualizing Models, Data, and Training with
TensorBoard

Image/Video

TorchVision Object Detection Finetuning
Tutorial

Transfer Learning for Computer Vision Tutorial

Adversarial Example Generation

Get Started Ecosystem Mobile

Tutorials > Welcome to PyTorch Tutorials

Blog Tutorials Docs v

WELCOME TO PYTORCH TUTORIALS

New to PyTorch?

The 60 min blitz is the most common starting
point and provides a broad view on how to use
PyTorch. It covers the basics all the way to

constructing deep neural networks.

Start 60-min blitz >

PyTorch Recipes

Bite-size, ready-to-deploy PyTorch code

examples.

Explore Recipes >

()]

- CUDA

n Audio Best Practice

Frontend APIs

Getting Started Image/Video Interpretability

Memory Format

https://pytorch.org/tutorials/

Sebastian Raschka STAT 458: Intro to Deep Learning

Resources v Github

Shortcuts

Welcome to PyTorch Tutori:

Additional Resources


https://pytorch.org/
https://pytorch.org/tutorials/

Many Useful Tutorials (recommend that you read some of them)

O PyTorch

1.7.1

Q Search Tutorials

PyTorch Recipes

See All Recipes

Learning PyTorch

Deep Learning with PyTorch: A 60 Minute Blitz
Learning PyTorch with Examples

What is torch.nn really?

Visualizing Models, Data, and Training with
TensorBoard

Image/Video

TorchVision Object Detection Finetuning
Tutorial

Transfer Learning for Computer Vision Tutorial
Adversarial Example Generation

DCGAN Tutorial

Get Started Ecosystem Mobile Blog Tutorials Docs v Resources v Github

Tutorials > Deep Learning with PyTorch: A 60 Minute Blitz Shortcuts

DEEP LEARNING WITH PYTORCH: A 60 MINUTE  RX&vinuteniz
B L I TZ What is PyTorch?

Goal of this tutorial:

Author: Soumith Chintala

@ PyTorch Tutorial: A Quick Preview o) ~»

Watch later Share

PyTor - 1-Minute Blitz

A QUICK . i Cview

What is PyTorch?

https://pytorch.org/tutorials/beginner/deep learning 60min blitz.html

Sebastian Raschka STAT 453: Intro to Deep Learning 10


https://pytorch.org/tutorials/beginner/deep_learning_60min_blitz.html

Essential Excerpts

Eli Stevens
Luca Antiga

/lll MANNING

https://pytorch.org/assets/deep-learning/Deep-Learning-with-PyTorch.pdf

Sebastian Raschka STAT 458: Intro to Deep Learning

11


https://pytorch.org/assets/deep-learning/Deep-Learning-with-PyTorch.pdf

Very Active & Friendly Community and Help/Discussion Forum

O PyTorch @

Do you want live notifications when people reply to your posts? Enable Notifications X
all categories » | | all « New (47) Unread (104) Top Categories + New Topic
Topic Replies Views Activity
-@\}Jssc::g MSELoss instead of CrossEntropy for Ordinal Regression/Classification 9 ﬁ 5 83 1h

ISI

Optimizer.load_state_dict() weird behaviour with Adam optimizer &

Is there a way to train 3 dataloaders using multiprocessing? « @ 0 11 2h
vl Getting different feature vectors from frozen layers after training
M vision 'e@ . o an
I Libtorch_cuda.so is too large (>2GB) & O
W deployment O ﬁ Q @ 22 346 2h
Undo pruning - How to ‘unmask’ pruned weights - ﬂ 0 8 oh
M vision
If input.dim() == 2 and bias is not None: AttributeError: ‘tuple’ object has no attribute ‘dim « . - lam 3 41 2h
Export unsupported/compound ops to ONNX « e 0 5 oh
M deployment

https://discuss.pytorch.org

Sebastian Raschka STAT 458: Intro to Deep Learning


https://pytorch.org/
https://discuss.pytorch.org

Understanding Automatic
Differentiation via Computation

Graphs

2. Computation Graphs

13



In the context of deep learning (and PyTorch)
it is helpful to think about neural networks
as computation graphs



Computation Graphs

Suppose we have the following activation function:

a(x, w, b) = relu(w -z + b)

z itz>0
81 relu(z) = { 0 otherwise

for example,
activation a 4 -

-100 -75 -50 -25 00 25 50 7.5
for example, net input 7

RelLU = Rectified Linear Unit

(prob. the most commonly used activation function in DL)



Side-note about RelLU Function

You may note that

0 if 2 <0
o'(z) =1 1 if 2>0
DNE ifz=0

But in the machine learning--computer

science context, for convenience, we can
just say

(2) = 0 ifz<0
C\VETY 1 >0

Why not differentiable?
Derivative does not exist (DNE) at 0O,
because the derivative is different

if we approach the limit from the left or
right:

o/ (2) = lim max(0, z + Az) — max(0, 2)
z—0 Az

ron .. 0+Az—=0
0—0
o’'(0) = lim =0

z—0— AZ



Computation Graphs

Suppose we have the following activation function:
net input

P a(x, w, b) = ’relu(w X+ Qk
bias

multivariable function

featu re

activation function .
(suppose only 1 training example)

weight parameter
(assume only 1 input feature)

z ifz>0
0 otherwise

o] relu(z) = {




Computation Graphs

a(x, w, b) = relu(w -x + b)
\ J

\iv_l

(V)

>[a = relu(v)]

Sebastian Raschka STAT 458: Intro to Deep Learning

18



Computation Graphs

Sebastian Raschka STAT 458: Intro to Deep Learning

19



Computation Graphs

Sebastian Raschka STAT 458: Intro to Deep Learning

20



Computation Graphs

Sebastian Raschka STAT 458: Intro to Deep Learning

21



Computation Graphs

Sebastian Raschka STAT 458: Intro to Deep Learning

22



Computation Graphs

Sebastian Raschka STAT 458: Intro to Deep Learning

23



da B 0v da
b 0b Ov
b=1

Computation Graphs

— O

ov
db

w=2
da _ du aa\/

aw 6w 6u

ou dv da

ow du ov

aw

Sebastian Raschka

STAT 453: Intro to Deep Learning




Computation Graphs

da 3 Jdv da v
b b dv ETA
b=1

da _du da v
ow owou 9% ou
aw
3 ou dv da
0w du O

Sebastian Raschka STAT 458: Intro to Deep Learning

25



Computation Graphs

da 3 Jv da A
b b v EY2

da 1
dv

7\

P[a = relu(v)]

oa _ ou da dv relu(z) :{ g i)ftfleiw(;se
ow owou 9 ou

3 ou ov da
"~ 9w du Ov

Sebastian Raschka STAT 458: Intro to Deep Learning

26



Computation Graphs

da 3 Jv da A
b b dv T

da 1
dv

7\

P[a = relu(v)]

da 3 ou da

Function Derivative

aw"awﬁ a_u

I fx)+g(x)  fl(z)+4' ()
3 ou dv da

~ Ow ou ov

Sebastian Raschka STAT 458: Intro to Deep Learning

27



==
" —

da _du da 5_77:1
ow owaou 9% _, ou
ow
_Odu dvoda

9w ou Ov

Computation Graphs

da 1
dv

7 N\

P[a = relu(v)]

Sebastian Raschka STAT 458: Intro to Deep Learning

28



Computation Graphs

c’?a_c’?vc’)a,_1 A
db _ 9b dv o5 = .
/ %:1
b=1 NG
w="13 P[a = relu(v)]
QU T
w=2 \/
aa_auaa\/ w _
ow owou 9% _, ou
ow
_O0u dv da _ 3% = 3

"~ Ow du Ov

Sebastian Raschka STAT 458: Intro to Deep Learning



Some More Computation
Graphs


https://github.com/rasbt/stat479-deep-learning-ss19/blob/master/L06_pytorch/code/pytorch-autograd.ipynb

Graph with Single Path

0l Ol 0Odo Oaq

(univariate chain rule)

8—w1:80.8a1.8w1



Graph with Weight Sharing

L(y,o3|01(wy - 1), 09(w1 - 1))

Ol

01(21) = a1

8@1
ouy, (@1 Do /
daq ﬁ l
0o L(y,0) =1
_ / — l
0'3(&1, CLQ) — 0
\ as
8@2
(9101 02(21) = a9
Upper path

ol 0Oo Oag dl 0o Oas

(9101

:80.5’a1.6’w1+80.8a2

9w, (multivariable chain rule)

Lower path



Graph with Fully-Connected Layers (later in this
course)

Sebastian Raschka STAT 458: Intro to Deep Learning

33



Automatic Differentiation with
Py Torch
-- An Autograd Example

3. Automatic Differentiation in PyTorch

34



PyTorch Autograd Example

https://github.com/rasbt/stat453-deep-learning-ss21/tree/master/L 06/code/pytorch-

autograd.ipynb

Sebastian Raschka STAT 458: Intro to Deep Learning

35


https://github.com/rasbt/stat453-deep-learning-ss21/tree/master/L06/code/pytorch-autograd.ipynb
https://github.com/rasbt/stat453-deep-learning-ss21/tree/master/L06/code/pytorch-autograd.ipynb

Training an Adaptive Linear Neuron
IN Py lorch

4. Training ADALINE Manually Vs Automatically in PyTorch

36



simplify to super().__init__() in constructor

PyTorch ADALINE (neuron model)
Example

https://github.com/rasbt/stat453-deep-learning-ss21/tree/master/L 06/code/adaline-

with-autograd.ipynb

Sebastian Raschka STAT 458: Intro to Deep Learning

37


https://github.com/rasbt/stat453-deep-learning-ss21/tree/master/L06/code/adaline-with-autograd.ipynb
https://github.com/rasbt/stat453-deep-learning-ss21/tree/master/L06/code/adaline-with-autograd.ipynb

Using PyTorch: A Closer Look at
the Object-Oriented and
Functional APIs

5. A Closer Look at the PyTorch API

38



class MultilayerPerceptron(torch.nn.Module): «

def

def

PyTorch Usage: Step 1 (Definition)

Backward will be inferred
automatically if we use the nn.Module

__init (self, num features, num classes): class!
super (MultilayerPerceptron, self). init ()

### lst hidden layer _

self.linear 1 = torch.nn.Linear(num feat, num hl) :
- — ~ Define model parameters
### 2nd hidden layer that will be instantiated
self.linear 2 = torch.nn.Linear(num hl, num h2) when created an object of
this class
### Output layer
self.linear out = torch.nn.Linear(num_h2, num classes) |
forward(self, x): T
out = self.linear_ 1(x) Define how and it what
out = F.relu(out) order the model parameters

out = self.linear 2(out) :
out = F.relu(out) should be used in the

logits = self.linear out(out) forward pass
probas = F.log softmax(logits, dim=1)
return logits, probas 1

Sebastian Raschka STAT 458: Intro to Deep Learning 39



PyTorch Usage: Step 2 (Creation)

torch.manual seed(random seed)
model = MultilayerPerceptron(num_features=num_features,I Instantiate model

num_classes=num_classes) (creates the model parameters)

model = model.to(device)

optimizer

= torch.optim.SGD(model.parameters(),

lr=learning rate) I Define an optimization method

Sebastian Raschka STAT 458: Intro to Deep Learning

40



PyTorch Usage: Step 2 (Creation)

torch.manual seed(random seed)
model = MultilayerPerceptron(num features=num features,

model = model.to(device) «—

optimizer

num classes=num classes)

Optionally move model to GPU, where

= torch.optim.SGD(model.parameters(), device e.g. torch.device('cuda:O')
lr=learning rate)

Sebastian Raschka STAT 458: Intro to Deep Learning

41



PyTorch Usage: Step 3 (Training)

Run for a specified number of

epochs
lterate over minibatches

for epoch in range(num epochs): ,
model.train() / In epoch

for batch idx, (features, targets) in enumerate(train loader):

ot ot ew(-1, 28%28).to(device) If your model is on the
eatures = eatures.view(-41, « CO evice +—
GPU, data should also

targets = targets.to(device) <
be
### FORWARD AND BACK PROP on -the GPU
logits, probas = model (features)
cost = F.cross entropy(probas, targets)
optimizer.zero grad()
cost.backward() y = model(x) calls .__call__and then .forward(), where some

extra stuff is done in __call_;

### UPDATE MODEL PARAMETERS don't run y = model.forward(x) directly
optimizer.step()

model.eval ()
with torch.no_grad(): Gradients at each leaf node are accumulated under the .grad attribute, not just stored. This is why we

# compute accurac
P Y have to zero them before each backward pass

Sebastian Raschka STAT 458: Intro to Deep Learning 49



PyTorch Usage: Step 3 (Training)

for epoch in range(num epochs):
model.train()
for batch idx, (features, targets) in enumerate(train loader):

features = features.view(-1, 28*28).to(device)
targets = targets.to(device)

### FORWARD AND BACK PROP
logits, probas = model(features) <«——— Thiswillrunthe forward() method

loss = F.cross_entropy(logits, targets)<«——— Define a loss function to optimize
optimizer.zero_grad() «——— Set the gradient to zero
(could be non-zero from a previous forward pass)

\ Compute the gradients, the backward is

###.UI.)DATE HMODEL PARAMETERS automatically constructed by "autograd” based on
optimizer.step()

the forward() method and the loss function
model.eval() \ Use the gradients to update the weights according to
with torch.no grad(): the optimization method (defined on the previous

# compute accuracy slide)
E.g., for SGD, w := w + learning rate x gradient

loss.backward()

Sebastian Raschka STAT 458: Intro to Deep Learning



PyTorch Usage: Step 3 (Training)

for epoch in range(num epochs):
model.train()

for batch idx )\ (features, targets) in enumerate(train loader):

features.view(-1, 28*28).to(device)
ts.to(device)

features =
targets = tar

### FORWARD AND
logits, probas = mdel (features)

loss = F.cross _entropy(logits, targets)
optimizer.zero grad()

loss.backward()

### UPDATE MODEL PARAMETER

optimizer.step()
For evaluation, set the model to eval mode (will be

model.eval() < relevant later when we use DropOut or BatchNorm)

with torch.no grad():
# compute accurac;,-‘\\“~\\\\\\\s _ _
This prevents the computation graph for

backpropagation from automatically being build in
the background to save memory

Sebastian Raschka STAT 458: Intro to Deep Learning



PyTorch Usage: Step 3 (Training)

for epoch in range(num epochs):
model.train()

for batch idx, (features, targets) in enumerate(train loader):

features = features.view(-1,
targets = targets.to(device)

### FORWARD AND BACK PROP

28+*%28).to(device)

logits, probas = model(features)
loss = F.cross entropy(logits, targets)

optimizer.zero grad()
loss.backward()

### UPDATE MODEL PARAMETERS
optimizer.step()

model.eval ()
with torch.no grad():
# compute accuracy

N\

logits because of computational efficiency.
Basically, it internally uses a log softmax(logits) function
that is more stable than log(softmax(logits)).

More on logits ("net inputs” of the last layer) in the
next lecture. Please also see

Sebastian Raschka STAT 458: Intro to Deep Learning

45



Objected-Oriented vs Functional® AP|

*Note that with "functional” | mean "functional programming” (one paradigm in CS)
torch.nn.functional = api without internal state

import torch.nn.functional as F

class MultilayerPerceptron(torch.nn.Module):

class MultilayerPerceptron(torch.nn.Module): def init (self, num features, num classes):

o super (MultilayerPerceptron, self). init ()
def _ init__ (self, num features, num classes): T T
super (MultilayerPerceptron, self). init () ### 1st hidden layer
self.linear 1 = torch.nn.Linear(num_ features,

### 1lst hidden layer
self.linear 1 = torch.nn.Linear(num_ features,

num_hidden 1) (Emﬂf.relul = torch.nn.ReLU() :)

num_hidden 1)

### 2nd hidden layer ### 2nd hidden layer
self.linear 2 = torch.nn.Linear(num hidden_l1, self.linear 2 = torch.nn.Linear(num hidden 1,
num_hidden 2) - num_hidden_Z)
### Oquut layer ) ] (}mﬂf.reluz = torch.nn.ReLU() :)
self.linear out = torch.nn.Linear(num hidden 2,
num_classes) ### Output layer
self.linear out = torch.nn.Linear(num hidden 2,
def forward(self, x): - num_classeg)
out = self.linear 1(x) -
out = F.relufout) (}mﬂf.softmax = torch.nn.Softmax():)
out = self.linear 2(out)
out = F.relu(out)
logits = self.linear out(out) def forward(self, x):
probas = F.log softmax(logits, dim=1) out = self.linear 1(x)
return logits, probas out = self.relul(gut)
Unnecessary because these functions out = self.linear_ 2(out)
don't need to store a state but maybe out = self.reluz(out)
ontnee y logits = self.linear out(out)
helpful for keeping track of order of ops probas = self.softmax(logits, dim=1)

(when implementing "forward") return logits, probas

Sebastian Raschka STAT 458: Intro to Deep Learning



Objected-Oriented vs Functional API

Using "Sequential”

import torch.nn.functional as F

class MultilayerPerceptron(torch.nn.Module): class MultilayerPerceptron(torch.nn.Module):
def init (self, num features, num classes): def init_ (self, num features, num classes):
super (MultilayerPerceptron, self). init () super (MultilayerPerceptron, self). init ()
#it# 15? hidden layer ' self.my network = torch.nn.Sequential(
self.linear_1 = torch.nn.Llnear(num_fgatures, torch.nn.Linear (num features, num hidden 1),
num_hidden_1) torch.nn.ReLU(),
. torch.nn.Linear (num _hidden 1, num hidden 2),
### 2nd hidden layer torch.nn.ReLU(),
self.linear 2 = torch.nn.Linear(num hidden 1, torch.nn.Linear(num hidden 2, num classes)

num hidden 2) )

### Output layer def forward(self, x):
self.linear out = torch.nn.Linear(num hidden 2, logits = self.my network(x)

num_classes) probas = F.softmax(logits, dim=1)

return logits, probas
def forward(self, x):

out = self.linear 1(x)
out = F.relu(out)

Much more compact and clear, but

out = self.linear 2(out) "forward" may be harder to debug if there
out = F.relu(out) .

logits = self.linear out(out) are error.s (We Clannotnsmpl“y add

probas = F.log softmax(logits, dim=1) breakpoints or insert "print" statements

return logits, probas

Sebastian Raschka STAT 458: Intro to Deep Learning



Objected-Oriented vs Functional API

Using "Sequential”

1)

class MultilayerPerceptron(torch.nn.Module):

def __ init__ (self, num features, num classes):
super (MultilayerPerceptron, self). init ()

self.my network = torch.nn.Sequential/(

torch.nn.
torch.nn.
torch.nn.
torch.nn.
torch.nn.

)

def

forward(self,

Linear (num_ features, num hidden
RelLU(),
Linear(num _hidden 1, num hidden
RelLU(),
Linear (num_hidden 2, num classe

X):

logits = self.my network(x)
probas = F.softmax(logits, dim=1)
return logits, probas

Much more compact and clear, but
"forward" may be harder to debug if there
are errors (we cannot simply add
breakpoints or insert "print" statements

Sebastian Raschka

However, if you use Sequential, you can
define "hooks" to get intermediate outputs.
For example:

model.net

Sequential(
(8): Linear(in_features=784, out_features=128, bias=True)
(1): RelLU(inplace)
(2): Linear(in_features=128, out_features=256, bias=True)
(3): ReLU(inplace)
(4): Linear(in_features=256, out_features=10, bias=True)
)

If we want to get the output from the 2nd layer during the forward pass, we can register a hook as follows:

outputs = []
def hook(module, input, output):
outputs.append(output)

model.net[2].register_forward_hook(hook)

<torch.utils.hooks.RemovableHandle at @x7f659c6685co>

Now, if we call the model on some inputs, it will save the intermediate results in the "outputs” list:

_ = model(features)

print(outputs)

[tensor([[0.5341, 1.8513, 2.3542,
(0.00008, 0.6676, 0.6620,
(1.1520, 0.0000, ©.0000,

..., 0.0000, 0.0000, 0.0000],
.., 0.0000, 0.0000, 2.4056],
.., 2.5860, 0.8992, 0.9642],
(0.0000, 0.1076, 0.0000, .., 1.8367, 0.0000, 2.5203],
(0.5415, 0.0000, 0.0000, .., 2.7968, 0.8244, 1.6335],
(1.0718, 0.9885, 3.01e3, .., 0.0000, 0.0000, 0.0000]],
device="'cuda:3"', grad_fn=<ThresholdBackwardl>)]

STAT 458: Intro to Deep Learning

43



https://qgithub.com/IgorSusmelj/pytorch-styleguide

Jupyter Notebook vs Python Scripts

In general, we recommend to use jupyter notebooks for initial exploration/ playing around with new models and
code. Python scripts should be used as soon as you want to train the model on a bigger dataset where also
reproducibility is more important.

Our recommended workflow:

1. Start with a jupyter notebook

2. Explore the data and models

3. Build your classes/ methods inside cells of the notebook
4. Move your code to python scripts

5. Train/ deploy on server

Jupyter Notebook Python Scripts

+ Exploration + Running longer jobs without interruption

+ Debugging + Easy to track changes with git

- Can become a huge file - Debugging mostly means rerunning the whole script

- Can be interrupted (don't use for long training)

- Prone to errors and become a mess

Sebastian Raschka STAT 458: Intro to Deep Learning

49


https://github.com/IgorSusmelj/pytorch-styleguide

Type
Packages & Modules
Classes
Constants
Instances
Methods & Functions

Variables

Convention Example
lower_with_under from prefetch_generator import BackgroundGenerator
CapWords class DataLoader

CAPS_WITH_UNDER  BATCH_SIZE=16

lower_with_under dataset = Dataset
lower_with_under() def visualize_tensor()
lower_with_under background_color='Blue'

Sebastian Raschka STAT 458: Intro to Deep Learning

50



More PyTorch features will be introduced step-by-
step later in this course when we start working with
more complex networks, including

« Running code on the GPU
« Using efficient data loaders
- Splitting networks across different GPUs



