STAT 453: Introduction to Deep Learning and Generative Models

Sebastian Raschka
http://stat.wisc.edu/~sraschka/teaching

Lecture 05

Fitting Neurons with
Gradient Descent

http://stat.wisc.edu/~sraschka/teaching

Let's improve upon the
perceptron & learn about
a neural network model
for which the training
always converges

Our Goals

A learning rule that is more robust than the perceptron:
always converges even if the
data is not (linearly) separable

* This lecture

*Next lecture(s)
*Next lecture(s)

More towards

Combine multiple neurons and layers of neurons
("deep neural nets") to learn more complex decision
boundaries (because most real-world problems are not
"linear" problems!)

Handle multiple categories (not just binary) in
classification

Do even fancier things like generating NEW images and the
text end of the
course

Class Label 8

0 =

LB LB X T 8E L All based on the same
0 % 0 % 0 %5 0 25 0 % 0 % 0 %5 0 % 0 % 0 2 |earn|ng algOrIthm and

Class Label 9 extensions thereof.

0

J71819191919(19(/19//9|]9 So, this is prob. the most

0 % 0 % 0 % 0 25 0 % 0 % 0 % 0 % 0 %5 0 25 fundamental lecture!

Sebastian Raschka STAT 458: Intro to Deep Learning

Good news:

e After this lecture, there won't be
any "new" mathematical
concepts.

e Everything in DL will be
extensions & applications of these
basic concepits.

N o O &~ 0 Db =

Lecture Overview

Online, batch, and minibatch mode

Relation between perceptron and linear regression
An iterative training algorithm for linear regression
(Optional) Calculus refresher I: Derivatives
(Optional) Calculus refresher |l: Gradients
Understanding gradient descent

Training an adaptive linear neuron (Adaline)

Sebastian Raschka STAT 453: Intro to Deep Learning

Training neural nets: Online,
batch, and minibatch modes

1. Online, batch, and minibatch mode

Perceptron Recap

AN Activation o (Z Tw; + b) — (XTW + b) _ @

~ =1
B—» Y i
Output 0, 2 <0

Net input a(z) _ {

1, z>0

b= —0

Inputs

Let D = ((x11, yl1), (xyf2) . (xl7], i) € (R™ x {0,1})"
1. Initiize w:=0¢€ R, b:=0
2. For every training epoch:

A. Forevery (x!1 yliy e D .

@ 9 :=ox"Tw+b) < Compute output (prediction)

b) err:= (yl —gli) < Calculate error

1

© w:=w+errxxl!, p:= b+ err« Update parameters

General Learning Principle

Let D= ((x",y"), (x4, ... (xI" y")) € (R™ x {0,1})"

"On-line" mode

1. Initiglize W = 0 € R™ b := 0 This applies to all common neuron
' ' L models and (deep) neural network
2. For every training epoch: architectures!

A. Forevery (x| yliy e D -

(@) Compute output (prediction) [There are some variants of it, namely the
"batch mode" and the "minibatch mode”

which we will briefly go over in the next

() Update w,b slides and then discuss more later

(b) Calculate error

Sebastian Raschka STAT 458: Intro to Deep Learning

General Learning Principle

Let D= ((x",y"), (x4, ... (xI" y")) € (R™ x {0,1})"

"On-line" mode Batch mode
1. |Initiaize w: =0 R™, b:=0 1. Initialize W:=0 € R", b:=0
2. For every training epoch: 2. For every training epoch:
A. For every <X[Z],y[z]> e D . A. Initialize AW — O, Ab — O

o B. Forevery (x4 yli)y e D:
(a) Compute output (prediction)

(b) Calculate error (@) Compute output (prediction)

(b) Calculate error
() Update Aw, Ab

C. Updatew,b:
w:=w+ Aw,b:= +Ab

() Update w,b

General Learning Principle

Let D= ((x",y"), (x4, ... (xI" y")) € (R™ x {0,1})"

"On-line" mode Batch mode
1. Initialize w :=0 € R™, b :=0 1. Initialize W:=0c€ R™, b:=0
2. For every training epoch: 2. For every training epoch:
A_ For every <X[7’]’y[7’]> e D . A. Initialize AW . — O7 Ab . — O

o B. Forevery (x! ylil) e D:
(@) Compute output (prediction)

(b) Calculate error (@) Compute output (prediction)

(b) Calculate error

() Update Aw, Ab

() Update w,b

In practice, we usually shuffle the C. UpdateWw, b:
dataset prior to each epoch w:=w+ Aw,b:= +Ab
to prevent cycles

Sebastian Raschka STAT 453: Intro to Deep Learning 11

1.
2.

General Learning Principle

Let D= ((x",y"), (x4, ... (xI" y")) € (R™ x {0,1})"

"On-line" mode

Initialize w :=0 & R", b := 0
For every training epoch:
A. Forevery (x ylly e D.
(@) Compute output (prediction)
(b) Calculate error

() Update w,b

"On-line" mode Il (alternative)

1. Initialize w :=0¢€ R™, b:=0
2. For for {iterations:
A. Pick random(xl,)y € D:
(a) Compute output (prediction)
(b) Calculate error

() Update w,b

In practice, we usually shuffle the No shuffling required

dataset prior to each epoch
to prevent cycles

Sebastian Raschka

(actually, not reall¥ stochastic because a fixed
tralnlng set instead of sampling from the
population)

STAT 453: Intro to Deep Learning 12

General Learning Principle

Let D= ((x", ¢!, (xZ 2 . x" ") e (R™ x {0,1})"

Minibatch mode
(mix between on-line and batch)

1. Initialize w := 0 € R™, b:=0
The most common mode in
deep learning. Any ideas why?

2. For every training epoch:

3. For every minibatch of size k:
A. Initialize Aw :=0, Ab:=0
B. Forevery {(x!" yl/ly, . (xR RNV = D
(@) Compute output (prediction)
(b) Calculate error
() Update Aw, Ab

C. Updatew,b:
w:=w-+ Aw,b := +Ab

1.
2.

General Learning Principle

Let D = (x4, (x4 (xl ylnlyy e (R™ x {0, 1})"

Minibatch mode

(mix between on-line and batch)

3.

Initialize w := 0 € R", b:=0

For every training epoch:

For every minibatch of size k:

A. Initiaize Aw =0, Ab:=0

B. Forevery {(x!/l 4y, . (xR it =D 2.

(@)
(b)
(c)

Compute output (prediction)

Calculate error

Update Aw, Ab

C. Updatew,b:

w:=w-+ Aw,b := +Ab

Most commonly used in DL, because

Choosing a subset (vs
1 example at a time)
takes advantage of
vectorization (faster
iteration through epoch
than on-line)

having fewer updates
than "on-line" makes
updates less noisy

makes more updates/
epoch than "batch" and
IS thus faster

Sebastian Raschka

STAT 453: Intro to Deep Learning

15

Linear regression as a single-
layer neural network

2. Relation between perceptron and linear regression

Linear Regression

Perceptron: Activation function is the threshold function

/ The output is a binary label y € {0, 1}

Activation

(X o)1
Output
Net input
Wm \

Tnputs Linear Regression: Activation function is the identity function

olx) ==

The output is a real number ¥ € R

Linear Regression

Perceptron: Activation function is the threshold function
The output is a binary label § € {0, 1}

Activation

You can think of linear
0} Y regression as
_ Output a linear neuron!
et nput
W, \

Linear Regression: Activation function is the identity function

Inputs

o(r) ==x
The output is a real number ¥ € R

Sebastian Raschka STAT 453: Intro to Deep Learning 18

(Least-Squares) Linear Regression

In earlier statistics classes, you probably fit a linear regression model
model like this, using the "normal equations” (analytical solution):

_ T —1~ T (assuming that the bias is included in w, and the
W= (X X) X Y design matrix has an additional vector of 1's)

(Least-Squares) Linear Regression

In earlier statistics classes, you probably fit a model like this:
using the "normal equations:”

- T (assuming that the bias is included in w, and the
W — (X X) X Y design matrix has an additional vector of 1's)

« Generally, this is the best approach for linear regression
(although,

the matrix inversion might be problematic on large datasets)

- However, we will now learn about another way to learn these
parameters iteratively

- Why? Because this is what we will be doing in deep neural nets
later, where we have large datasets, many connections, and
non-convex loss functions

Sebastian Raschka

STAT 453: Intro to Deep Learning

21

Training Linear Regression in an
iterative fashion

3. An iterative training algorithm for linear regression

(Least-Squares) Linear Regression
-- iteratively with "brute force"

» A very naive way to fit a linear regression model (and any neural net)

Is to start with initializing the parameters to 0's or small random values
« Then, for k rounds

Choose another random set of weights

If the model performs better, keep those weights

If the model performs worse, discard the weights

This approach is guaranteed to find the optimal
solution for very large k, but it would be terribly slow.

(Least-Squares) Linear Regression iteratively

A very naive way to fit a linear regression model (and any neural net)
IS to start with initializing the parameters to 0's or small random values
Then, for k rounds

Choose another random set of weights

If the model performs better, keep those weights

If the model performs worse, discard the weights

There's a better way!

- We will analyze what effect a change of a parameter has on the
predictive performance (loss) of the model
then, we change the weight a little bit in the direction that
iImproves the performance (minimizes the loss) the most

- We do this in several (small) steps until the loss does not
further decrease

Sebastian Raschka STAT 458: Intro to Deep Learning

24

(Least-Squares) Linear Regression

The update rule turns out to be this:
"On-line" mode

Perceptron |earning rule StOChaStiC gradient descent
1. Initialize w:= 0 € R™, b :=0

2. For every training epoch:

1. Initialize W:=0€ R™ b:=0

2. For every training epoch: . .
o A. Forevery (x!l yllly € D
A. Forevery (x/l_yliy e D

(a) gl = O'(X[i]TW + b)
b) VoLl = (y[i] _ @[i])x[i]
VL = (yli — i)

(a) ?)["3] = O'(XMTW + b)
(b) err:= (y[i] — g)[i])

(c) w:=w+err X x4

b:=b+err € w:=w+nx(-VgL)
b:=b+n X (—Vbﬁ)
Va —_—
learning rate T

negative gradient

(Least-Squares) Linear Regression

The update rule turns out to be this:
"On-line" mode:

Vectorized For-Loop
1. Initiaize w:=0¢€ R™, b:=0 1. Initigize w:=0 € R™, b :=0
2. For every training epoch: 2. For every training epoch:
A. Forevery (x/l_yli) e D A. Forevery (x/l 4y e D
(@ 9" :=o(x""w+b) <> (@ 9" :=o(x""w +b)
i) _ Al < [0 a
b) VwL = (y[I — y[])X[| 63 For weight jin {1, ..., m}:
Vil = (" —g1) -
() 9L _ (4 —)4l
€ w:=w+nx(—VgLl) Ow; ?95
b:=b+nx(=VpL) € w;:=w;+nx(—5—)
/ — 5’wj
- OL _ (i) _ i
learning rate T C. 5 = (y" —g")
negative gradient b:=b+n X (_8_[:)

0b

(Least-Squares) Linear Regression

The update rule turns out to be this:

"On-line" mode

1. Initializew :=0 € R, b := 0

2. For every training epoch:

Coincidentally, this
appears almost

to be the same as the
perceptron rule,
except that the
prediction is a real
number

and we have a
learning rate

A. Forevery (x/l_yli) e D
@) 97 :=ox"Tw+0)

B. Forweight jin {1, ..., m}:

B 9L _ (i gl

821}3'

(€ wj:=w;HnX (=5 —

oL - -
c. 9% i
o (y™" = g™)

b:zbﬁ@x(—g—i)]

This learning rule (from the previous slide)
is called (stochastic) gradient descent.
So, how did we get there?

First, let's briefly cover relevant
background info ...
(Optional section)

Sebastian Raschka

STAT 453: Intro to Deep Learning

30

Recapping Derivative Rules

4. (Optional) Calculus refresher I: Derivatives

Differential Calculus Refresher

Derivative of a function = "rate of change" = "slope"”

Function Derivative

R B (RO €

dr Az—0 Ax

Example 1: f(z) = 2z

dr Azx—0 Ax
, 20 + 2Ax — 2x
= lim

Ax—0 AQZ‘

Numerical vs Analytical/Symbolical Derivatives

ooy df . flz+ Ax) — f(z)
f(w)_@_Aligo Ax

Example 2: f(z) = x°

af flz + Azx) — f(z)

—
dx A:lnrgo Ax
. 2?4+ 2zAx + (Ax)? — 2
= lim
Ax—0 Ax
. 2xAx + (Ax)?
= lim
Ax—0 ASE
= lim 2z + Azx.

Ax—0

Numerical vs Analytical/Symbolical Derivatives

d o
Conceptually, we obtained the derivative@ﬂj = 2o

By approximating the slope (tangent) by a secant
between two points (as before)

Secant

A Cheatsheet for You (1)

Function f(x) Derivative with respect to x

1 a 0

2 x 1

3 azx a

4 z° 2T

5 z° ax® 1

6 a” log(a)a®

7 log(x) 1/x

8 log,() 1/(xlog(a))
9 sin(x) cos(x)

10 cos(x) — sin(x)

p—
p—
CF
Qo
-
~—~
=
~—
N
@D
@)
(\)
~—~
=
~—

A Cheatsheet for You (2)

Function Derivative
Sum Rule f@)+g(x) f(=)+g(z)
Difference Rule f(z) — g(z) f'(x)— ¢'(x)
ProductRule f(z)g(z) f'(z)g(z) + f(z)g'(x)
QuotientRule f(2)/g(z) [9(z)f'(2) — f(z)g'(2)]/[g(z)]?
Reciprocal Rule 1/f(x) —[f"(2)]/[f(2)]?

g

Chain Rule

Chain Rule & "Computation Graph" Intuition

Decomposition of some
(nested) function:

/ AN

"inner" part "outer" part

Derivative of that

nested /

function: A— g T f
ZI

X— g’

Chain Rule & "Computation Graph" Intuition

Later, we will see that PyTorch

can do that automatically for us :)
(PyTorch literally keeps a computation
graph in the background)

/ AN

"Inner" part "outer" part
F'(x)=1(a(x)) g’(x) =2
Also, PyTorch can compute the X —> g > f’
derivatives
of most (differentiable) functions /
automatically ,
X— J

Chain Rule & "Computation Graph" Intuition

In text, for efficiency, we will mostly use the Leibniz notation:

df dg
%[f(g(x))} — dg "y

Chain Rule Example

d Cdf dyg

%[f(g(ff))} = dg "y
Example: f(z) = log(v/)
d d d

substituting é — d_g log(g) - %\/E

o d 11 d 15 1 _
with 7 10g(9)—§—ﬁ and w0 = oa
i 1 1 1

leads us to the solution —— = —— - —_ —

dr Jr 2+\x 2x

Chain Rule for Arbitrarily Long Function Compositions

dFF d d

df dg dh du dv

Chain Rule for Arbitrarily Long Function Compositions

T = L F() = = fg(h(u(e(x))

de ~ dzx
df dg dh du dv
dg dh du dv dx

Also called "reverse mode" as we start
with the outer function. In neural nets, this will be from
right to left.

We could also start from the inner parts ("forward mode")
dv du dh dg df

dr dv du dh dg

- Backpropagation (covered later) is basically "reverse" mode auto-
differentiation

* It is cheaper than forward mode if we work with gradients, since then we have
matrix-"vector" multiplications instead of matrix multiplications

Sebastian Raschka STAT 453: Intro to Deep Learning 43

Sebastian Raschka

STAT 453: Intro to Deep Learning

44

Gradients: Derivatives of
Multivariable Functions

5. (Optional) Calculus refresher Il: Gradients

Gradients: Derivatives of Multivariable* Functions

*note that in some fields, the terms "multivariable" and "multivariate" are used

interchangeably,
but here, we really mean "multivariable" because "multivariate" means "multiple outputs”,

which is
not the case here -- similarly, in most DL applications output one prediction value, or one
prediction value per training example

flz,y,z,...)

Of/0x

(9f / 3y For gradients, we use the "partial”
V f =19 f / Oz symbol to deno.te partial derlyatlves;
more of a notational convention and the

concept is the same as before when we
were computing ordinary derivatives
(denoted them as "d")

Gradients: Derivatives of Multivariable Functions

Example: f(x,y) = 2y + 4

Sebastian Raschka STAT 458: Intro to Deep Learning

47

Gradients: Derivatives of Multivariable Functions

Example: f(z,y) = 2y + 4

Vf(.y) = [g;z;g;j ,

where

of 0 o
_— = — :2
Ox (%w yry Y

(via the power rule and constant rule), and
of 0 , 2
— = — = 1.
9y ayaz y+y=x" +

So, the gradient of the function f is defined as

2xy

Vf(a:,y) — 513'2—|—1

Gradients & the Multivariable Chain Rule

Suppose we have a composite function like this:

f(g(x), h(x))

Remember the regular chain rule for a single input:
d df dg
T [f(g($))} — dg "y

For two inputs, we now have

d _0f dg Of dh

Gradients & the Multivariable Chain Rule

f(g(x), h(z))

L [f o), hx)] =
of dg of ~dh

09 dxr Oh dx

Example:

f(g.h) =g"h+h
where ¢g(z) = 3z, and h(z) = z°

of

8 — = 2
8—f:29h on ~ 9 T
g

dg d 2
A > PN — = —x° =2
dr dex_S dx d:zj:v v

% flg(x))] = [29h 3]+ (9" +1) - 22]

= 22¢% + 6gh + 2x

Gradients & the Multivariable Chain Rule

In Vector Form

d of dg Of dh
@ [f(g(x),h(x))} — 6,_9 ' T | b . %
=V -v'(x).
Where
g(x) d [g(z)] [dg/da

v(r) = (z) vi(z) = - ha)| = |dh/dz

Putting it together:
Vv (z)= df/0g dg/dx| Of dg of ~dh

Of/Oh| |dh/dx| ~ 8¢ dr ' Oh dx

iX)
he Jacobian (Matr
T

f(x1,22,...,2m)

)
J(CIZ’l,ZCQ,CIjg, m

- Of1
85131

Of2
85131

Ofs
85131

9fm

— 8331

df1
8902

Of2
8902

dfs
8902

Ofm
6%2

I (5171751327333,::.
fl (5171,5172,333, o
;2 ($17:E27:E37

3

x37...
L2,
fm (xla

0 f1
8%3

O f2
8903

0 f3
8903

Ofm
82133

Lm
Lm
Lm

N— N’
N——"

Ofm

0L,

The Jacobian (Matrix)

f(Cl?l,CEQ,

J(aj17x27$37 e xm)

fi(z1, 2,23, Tp)
fo (w1, 22,23, - Tp)
,ZEm): f3 ($17x27x37”°xm)
i fm(x17$27'x37'”$m) i
- 01 91 0 f1 Of1 -
8%1 85132 8333 8CUm
Ofs Ofs Of2 O f2
6%1 6332 8333 85Um
Ofs Ofs Ofs Of3
— 0x1 Oxo Ox3 0T,
O fm Ofm O fm O fm
— (9331 8582 a$3 833m -

(Vfi)'

Second Order Derivatives

Lucky for you, we won't need second
order derivatives in this class ;)

Sebastian Raschka

STAT 453: Intro to Deep Learning

56

Training Linear Regression with
Gradient Descent

6. Understanding gradient descent

Back to Linear Regression

@\ Activation
7 X 2|0)7
Output

Net input

Inputs

Convex loss function

L(w,b) = (" =yl

)

Gradient Descent

Convex loss function

L(w,b) => (G —y)?

()

Learning rate and
steepness of the
gradient determine
how much we update

Gradient Descent

L:A

If the learning rate is too large,

we can overshoot __—

EA

If the learning rate is too small,
convergence is very slow

(Least-Squares) Linear Regression

The update rule turns out to be this:
"On-line" mode

Perceptron |earning rule StOChaStiC gradient descent
1. Initialize w:= 0 € R™, b :=0

2. For every training epoch:

1. Initialize W:=0€ R™ b:=0

2. For every training epoch: . .
o A. Forevery (x!l yllly € D
A. Forevery (x/l_yliy e D

(a) gl = O'(X[i]TW + b)
b) VoLl = (y[i] _ @[i])x[i]
VL = (yli — i)

(a) ?)["3] = O'(XMTW + b)
(b) err:= (y[i] — g)[i])

(c) w:=w+err X x4

b:=b+err € w:=w+nx(-VgL)
b:=b+n X (—Vbﬁ)
Va —_—
learning rate T

negative gradient

Linear Regression Loss Derivative

,C(W, b) — Z(Q[i] — y[i])2 Sum Squared Error (SSE) loss

oL 0 - -
OF _ 9 N (gl _ o li]y2
Jw; o, > (@M =y

8wj p
= 3" 2o (w"x) 1) (o (w) — 1)
p 5’wj
do 0
_ T, ldy _ o)l T [7]
_;2(0'(W xt) —y d(WTX[i])aij X
do
_ T]y, [4] 7]
_ZQ(O(W x) —y)d(WTX[i]):Cj (Note that the activation function is the
2 | identity function in linear regression)

Linear Regression Loss Derivative (alt.)

1 B o
L(w,b) = — Z(y[@] _ y[@]) Mean Squared Etror (MSE) loss often
2N scaled by factor 1/2 for convenience

oL 0o 1 Z(@M _)2

0 1 ; ;
~ 9w Z %(U(WTX[]) — gy])2
o
=S L (o wTxl) — i) 2 (o (wTxlily —)
—~n ow
_ 1 Ty _ iy 40 O r
= i (o(w'x") —y w =) (9ij X
1 0 i do 0
- — (U(WTX[]) — y[]) (wT <[flfg-] (Note that the activation function is the
" i (W X) identity function in linear regression)
L T i

Batch Gradient Descent as Surface Plot

t ﬁmin

Updates perpendicular
to contour lines

>

Stochastic Gradient Descent as Surface Plot

ﬁmin

Stochastic updates

are a bit noisier, because

each minibatch is an approximation
of the overall loss on the

training set

(later, in deep neural nets, we

will see why noisier updates are
actually helpful)

>

Batch Gradient Descent as Surface Plot
Lmin

w1

If inputs are on very different scales
some weights will update more than
others ... and it will also harm convergence

(always normalize inputs!)

Sebastian Raschka

STAT 453: Intro to Deep Learning

67

Training a single-layer neural
network with gradient descent

7. Training an adaptive linear neuron (Adaline)

ADALINE

Widrow and Hoff's ADALINE (1960)
A nicely differentiable neuron model

Widrow, B., & Hoff, M. E. (1960). Adaptive switching circuits (No. TR-1553-1). Stanford Univ Ca Stanford Electronics Labs.

Widrow, B. (1960). Adaptive" adaline" Neuron Using Chemical" memistors.".

CLASSIFIED

J
| .
208 | BN

4 v 241 531

M1 :VICES TECHNICAL INFORMATION AGENCY
i ARLINGTON HALL STATION

ARLINGTON 12, VIRGINIA

THIS REPORT HAS BEEN DELIMITED
AND CLEARED FOR PUBLIC RELEASE
UNDER DOD DIRECTIVE 5200.20 AND
NO RESTRICTIONS ARE IMPOSED UPON

ITS USE AND DISCLOSURE,

DISTRIBUTION STATEMENT A

Image source: https://www.researchgate.net/profile/Alexander_Magoun2/
publication/265789430/figure/fig2/AS:392335251787780@1470551421849/
ADALINE-An-adaptive-linear-neuron-Manually-adapted-synapses-Designed-

and-built-by-Ted.png APPROVED FOR PUBLIC RELEASE;

DISTRIBUTION UNLIMITED,

ADALINE

ADAptive LInear NEuron

3

Weight update
Error

oo y—(w)—)L oueu + Perceptron

Net input Threshold J
function function

+ ADALINE

Linear Regression

class label (y)

0.5-

Threshold

feature value (x)

Sebastian Raschka STAT 458: Intro to Deep Learning

71

Code Examples

https://github.com/rasbt/stat453-deep-learning-ss21/
tree/master/|. 05/code

Sebastian Raschka STAT 458: Intro to Deep Learning

72

https://github.com/rasbt/stat453-deep-learning-ss21/tree/master/L05/code
https://github.com/rasbt/stat453-deep-learning-ss21/tree/master/L05/code

Next Lecture:

Neurons with non-linear activation functions

