STAT 453: Introduction to Deep Learning and Generative Models

Sebastian Raschka
http://stat.wisc.edu/~sraschka/teaching

Lecture 04
Linear Algebra for Deep Learning

http://stat.wisc.edu/~sraschka/teaching

Today: Fundamental Math Skills for DL

o)

So that we can solve the XOR
problem, among other things ...

1-hidden layer MLP
with non-linear activation function (ReLU)

-3 -2

I

Lecture Overview

. Tensors in Deep Learning

Tensors and Py lorch
Vectors, Matrices, and Broadcasting
Notational Conventions for Neural Networks

A Fully Connected (Linear) Layer in PyTorch

Sebastian Raschka STAT 453: Intro to Deep Learning

The Use of Tensors in Deep
Learning

1. Tensors in Deep Learning

Vectors, Matrices, and Tensors -- Notational Conventions

Scalar Vector Matrix
(rank-0 tensor) (rank-1 tensor) (rank-2 tensor)
reR x € R" X ¢ RM*"
but |Q this lecture, e.g.,
e.g., we will assume
X RnX1 L1,1 L1,2 L1.n
r=1.23 = T2 1 T2 2 T2 n
X = . .
e.g., I
wl i Lm,1 Lm,2 Qjm,n_
)
X = ,
ajn
x' = [wl 2o xn} . where x' e RIX"

Vectors, Matrices, and Tensors -- Notational Conventions

We will often use X as a special convention to refer to the

"design matrix." That is, the matrix containing the training
examples and features (inputs)

and assume the structure X € R"**™

because n is often used to refer to the number of examples Iin
literature across many disciplines.

_x[ll] :13[21] i E.g.,
2 2 2 1]
33[1 | $[2 | e an] Lo~ = 2nd feature value of the 1st
X = training example

Vectors, Matrices, and Tensors -- Notational Conventions

3D Tensor
(rank-3 tensor)
X ¢ RMxnxXp (n and m are generic indices here)
L1,1 L1,2 T1n
r21 I22 Ton | L
| Im,1 Lm,2 Lm,n | L
L
_ Lm,1 Im,2 Lm,n |
D
LIm,1 Lm,2 Lm n |

An Example of a 3D Tensor in DL

Single color image

Image Source: https://code.tutsplus.com/tutorials/create-a-retro-crt-distortion-effect-using-rgb-shifting--active-3359

(3D tensor for "multidimensional-array" storage and parallel computing purpose,
we still use regular vector and matrix math)

Sebastian Raschka STAT 458: Intro to Deep Learning

An Example of a 4D Tensor in DL

Batch of images
(as neural network input,
more later)

airplane E% o .="&i
automobile E ot IE ' v ‘
bird a;. ﬂ ’ -.
cat Ba .. !
" EmE RS
. =l o VVAP -
frog ..-- ..
horse .m” nnn
v I P o
truck "‘!ﬁ.':H. fﬂ"

https://www.cs.toronto.edu/~kriz/cifar.html

(4D tensor for "multidimensional-array" storage and parallel computing purpose,
we still use regular vector and matrix math)

Sebastian Raschka

STAT 458: Intro to Deep Learning

10

In the context of TensorFlow, NumPy, PyTorch etc.,
tensors = multidimensional arrays

dimensionality coincides with the number of indices of . shape

In [1]: import torch
In [2]: t = torch.tensor([[1, 2, 31, [4, 5, 611)

In [3]: t

Out[3]:

tensor([[1, 2, 3],
[4, 5, 6]1])

In [4]: t.shape
Out[4]: torch.Size([2, 31)

In [5]: t.ndim
Qut[5]: 2

In [6]1: |}

= - S r-'-rr :-Tl'
Y 4 @ T 5 T 1
= \ 13 q a 4 3|l
5 12 5 _ .35 2!
SCALAR VECTOR MATRIX TENSOR TENSOR
x[2]=85 X[, 0]1=1 x[o, 21]1=5 XL 3, ...2] = ¢
oD D 2D 3D \

N-D DATA > N INDICES

gure 3.2 Tensors are the buillding blocks for representing data in PyTorch.

Image source: Stevens et al.'s "Deep Learning with PyTorch"

Sebastian Raschka

STAT 458: Intro to Deep Learning

12

Sebastian Raschka

STAT 453: Intro to Deep Learning

13

Working with Tensors in PyTorch

2. Tensors and PyTorch

Multidimensional Arrays as Tensors

numpy.array / numpy.ndarray =
(data structure representation of a tensor)

pytorch.tensor / pytorch.Tensor =
(data structure representation of a tensor)

Example:
In [1]: 1mport numpy as np In [5]: import torch
In [2]: a = np.array([1., 2., 3.1]) In [6]: b = torch.tensor([1., 2., 3.1])
In [3]: print(a.dtype) In [7]: print(b.dtype)
floatés torch.float32
In [4]: print(a.shape) In [8]: print(b.shape)

(3,) torch.Size([3])

NumPy and PyTorch Syntax is Very Similar

In [9]: a = np.array([1., 2., 32.1)

18]): print(a.dot(a))

In [12]): print(b.matmul(b))
tensor(14.)

In [13]: b

Out[13]: tensor([1., 2., 3.1)

In [14]): b.numpy() We can convert,

Out[14]: array([1., 2., 3.], dtype=float32) | but pay attention to
default types

Sebastian Raschka STAT 458: Intro to Deep Learning

Note: Traditionally, PyTorch used "matmul”,
but nowadays "dot" also works

In [12]: print(b.matmul(b))
tensor(14.)

In [15]): print(b.dot(b))
tensor(14.)

In [16]: print(b @ b)
tensor(14.)

Sebastian Raschka STAT 458: Intro to Deep Learning

17

Data Types to Memorize

NumPy data . Tensor data type

numpy.uint8 torch.ByteTensor

numpy.intlé6 torch.ShortTensor

numpy.int32 torch.IntTensor

numpy.int torch.LongTensor

numpy.int64 torch.LongTensor default int in NumPy & PyTorch

numpy.floatl6 torch.HalfTensor

numpy.float32 torch.FloatTensor default float in PyTorch
torch.DoubleTensor

torch.DoubleTensor default float in NumPy

numpy.float

numpy.float64d

E.g., Int32 stands for 32 bit integer

32 bit floats are less precise than 64 floats, but for neural nets, it doesn't
matter much

For regular GPUs, we usually want 32 bit floats (vs 64 bit floats) for fast performance

Specify the type upon construction

In [21]: ¢ = torch.tensor([1., 2., 3.], dtype=torch.float)

In [22]: c.dtype
Out[22]: torch.float32

In [23]: ¢ = torch.tensor([1., 2., 3.], dtype=torch.double)

In [24]: c.dtype
Out[24]: torch.floaté4

In [25]: ¢ = torch.tensor([1., 2., 3.], dtype=torch.floaté4)

In [26]: c.dtype
Out[26]: torch.floaté4

Sebastian Raschka STAT 458: Intro to Deep Learning

You can also change types later/on the fly if you must

In [27]: d = torch.tensor([1, 2, 3])

In [28]: d.dtype
Out[28]: torch.inté4

In [29]: e = d.double()

In [38]: e.dtype
Out[38]: torch.floatés

In [31]: f = d.floaté4l()

AttributeError Traceback (most recent call last)
<ipython-input-31-b3b070130d25> 1n <module>

> 1 f = d.floaté4()

AttributeError: 'Tensor' object has no attribute 'floatés'

In [32]: f = d.to(torch.floaté4)

In [33]: f.dtype
Out[33]: torch.floatés

Sebastian Raschka STAT 458: Intro to Deep Learning 20

So, Why Not Just Using NumPy?

» PyTorch has GPU support:

A. we can load the dataset and model parameters into
GPU memory

B. on the GPU we then have better parallelism for
computing (many) matrix multiplications

 Also, PyTorch has automatic differentiation (more later)

* Moreover, PyTorch implements many DL convenience
functions (more later)

Loading Data onto the GPU is Easy!

In [23]: print(torch.cuda.is available())
True

In [24]: b = b.to(torch.device('cuda:0"))
: print(b)

tensor([1l., 2., 3.], device='cuda:0")
In [25]: b = b.to(torch.device('cpu'))

: print(b)
tensor([1l., 2., 3.1])

How to Check Your CUDA Devices

- If you have CUDA installed, you should have access to nvidia-smi

- However, if you are using a laptop, you probably don't have CUDA
compatible graphics cards (my laptops don't)

» We will discuss GPU cloud computing later ...

SYa a@gpuf23:~$ nvidia-smi
Mon Feb 8 21:05:27 2021

e ————— e ——————————————————————————— +
NVIDIA-SMI 455.32.00 Driver Version: 455.32.00 CUDA Version: 11.1

——————————————————————————————— —_— N ——
GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC
Fan Temp Perf Pwr:Usage/Cap Memory-Usage GPU-Util Compute M.
MIG M.
® GeForce RTX 208... Off 00000L0V:1A:00.0 Off N/A
242% 37C PO 71W / 250w OMi1B / 11019MiB 0% Default
N/A

— ——e ——e +

Sebastian Raschka STAT 453: Intro to Deep Learning 23

About Installing PyTorch

If you want to install PyTorch later (after the lecture) ...

- |f you use it on a laptop, you likely don't have a CUDA compatible GPU
- Recommend using CPU version for your laptop (no CUDA)
- |nstallation on GPU-cloud later ...

+ Also, use this selector tool from https://pytorch.org
(conda is recommended):

Your OS Linux _ Windows
Package Pip LibTorch Source
CUDA 9.2 10.1 10.2 11.0 m

NOTE: Python 3.9 usexrs will need to add '-c=conda-forge' for installation
conda install pytoxrch toxchvision torchaudio -c pytoxch

Preview (Nightly)

Run this Command:

Sebastian Raschka STAT 458: Intro to Deep Learning

24

https://pytorch.org

Sebastian Raschka

STAT 453: Intro to Deep Learning

25

Broadcasting semantics:
Making Vector and Matrix computations
more convenient

3. Vectors, Matrices, and Broadcasting

How do we call this again in the context of neural nets?

Wi x4+b=z2

Basic vector operations

- Addition (/subtraction)
* Inner products (e.g., dot product)
« Scalar multiplication

Vectors

where X —

TensorFlow and PyTlorch Tensors are not Real Tensors

In [2]: a = torch.tensor([1, 2, 3])
In [3]: b = torch.tensor([4, 5, 6])

In [4]: a b
Out[4]: tensor([4, 10, 18])

In [5]: torch.tensor([1l, 2, 3]) 1
Out[5]: tensor([2, 3, 4])

While not equivalent to the mathematical definitions, very useful for computing!

(these "extensions" are now also commonly used in mathematical notation in
computer science literature as they are quite convenient)

Matrices

Computing the Output From Multiple Training Examples
at Once

* The perceptron algorithm is typically considered an "online"
algorithm

(i.e., it updates the weights after each training example)

« However, during prediction (e.g., test set evaluation), we could

pass all data points at once (so that we can get rid of the "for-
loop")

x[ll] 33[21] . m%]
$[12] w[22] o x%] + Two opportunities for parallelism:
X — multiplying elements to compute the dot product
- computing multiple dot products
R R

Question for CS majors: What is the Big-O of matrix multiplication (assume 2 NxN matrices)?

Computing the Output From Multiple Training Examples at
Once

« Two opportunities for parallelism:
1. computing the dot product in parallel

2. computing multiple dot products at once

- (1] [1] [1]7

Ty Ty ... T _
wq
L S W
XW+b=1z where X = | w=|
. o
x[ln] CU[Zn] i i
(this is why W is not a "vector" w x4 pT "1
but an m x 1 matrix) w | x2 L} ~12]
Z — p—

Computing the Output From Multiple Training Examples
at Once

XwW+b=12z But NumPy and PyTorch
are not very picky about that:

In [1]: import

In [2]: X = torch.arange(6).view(2, 3)
(this is why W is not a "vector”

_ In [3]: X
but an m x 1 matrix) OBt [3]:
tensor([[0, 1, 21,
[3, 4, 5]])

In [4]: w = torch.tensor([1, 2, 31)

In [5]: X.matmul(w)
same as reshape

Out[5]: tensor([8, 261)
(historic reasons)
) /

In [6]: w = w.view(-1, 1

In [7]: X.matmul(w)

Out[7]:

tensor([[8],
[26]11)

Computing the Output From Multiple Training Examples at
Once

« Two opportunities for parallelism:
1. computing the dot product in parallel

2. computing multiple dot products at once

- (1] [1] [1]7

r{ Ty ... T -
w1
R SN Ws
XwW+b=17z where ~X=1| |, W=/
. . . . w'm
x[ln] 33[2”’] xm] S
(this is why W is not a "vector" “w ! x pT " [1]7
but anm x 1 matrix) w ! x[2] L p - [2]
7 — —
w ! x™ +p Zn

Can you spot the error on this slide? - - _ -

Computing the Output From Multiple Training Examples at
Once

XW+b=12z Can you spot the error on this slide?

\Fhis should be

Xw+1,,b =1z

but we deep learning researchers are lazy! :)

Sebastian Raschka STAT 458: Intro to Deep Learning

34

Broadcasting

« |In PyTorch, it works just fine.
- This (general) feature is called "broadcasting”

In [4]: torch.tensor([1l, 2, 3]) 1
Out[4]: tensor([2, 3, 4])

In [5]: t = torch.tensor([[4, 5, 61, [7, 8, 911)

In [6]: t

out[6]:

tensor([[4, 5, 6],
(7, 8, 911)

In [7]: t torch.tensor([1, 2, 3])
Oout[7]:
tensor([[5, 7, 91,

[8, 10, 12]])

Broadcasting

« |In PyTorch, it works just fine.
- This (general) feature is called "broadcasting”

In [4]: torch.tensor([1l, 2, 3]) 1 I '
Out[4]: tensor([2, 3, 4]) U R

In [5]: t = torch.tensor([[4, 5, 61, [7, 8, 911)

In [6]: t

out[61: 4 15| 6 . | [2| 3 R 517

tensor([[4, 5, 61, 71819 1203 | 8 |10
[7, 8, 911)

In [7]: t + torch.tensor([1l, 2, 3]) Implicit dimensions get added,

Out[7]: elements are implicitly duplicated

tensor([[5, 7, 91,
[8, 10, 12]])

Sebastian Raschka

STAT 453: Intro to Deep Learning

37

Notational Linear Algebra
Conventions in Deep Learning

4. Notational Conventions for Neural Networks

Connections We Have Seen Before ...

Activation
w1
T N
X W+b=2z @wz >ZE_’9
Output
: Net input

e.g., Perceptron with one training example as input
during "inference" (in DL, people now often refer to
Inputs predicting the target variable as "inference")

If we have n training examples, X € R"*™, z ¢ R™"*!

XwW-+b=12z

Connections We Will Encounter Later ...

A Fully Connected Layer

note that Wi,j refers to the weight connecting the
7-th input to the i-th output.

where X =
w11 W12
w21 W22
W =
| Wh,1 Wh,2

Layer activations for 1 training example

O'(WX
= thl

b):a

A Fully Connected Layer

Layer activations for n training examples

c([WX' +b]')=A
A € Rnxh

Machine learning textbooks usually
represent training examples over columns,
and features over rows (instead of using the
"design matrix") -- in that case, we could
drop the transpose.

But Why is the Wx Notation Intuitive?

1 0 1| |21
0 1 L9 L9
A
L9 4
Transformation matrix r1 = 0.29
Lo — 0.5
v
1+- »-
A

But Why is the Wx Notation Intuitive?

scales the x coordinate

IQ @I

IQ‘ ®‘|
<

\

a

d

X

.

moves z in y direction

Ty

moves y into z direction

e
b
N\

scales the y coordinate

But Why is the Wx Notation Intuitive?

Stretching x-axis by factor of 3:

3 0| [z] [3x y
0 1]|ly| |y

Stretching y-axis by factor of 2: !

1 0] [z B T y

0 2| |y| |2y /

Stretching x-axis by factor of 3 and y-axis by a factor of 2:

3 0| [z] [3z
0 2] |y 21

Sebastian Raschka

STAT 453: Intro to Deep Learning

46

A Fully Connected (Linear) Layer
In PyTorch

5. A Fully Connected (Linear) Layer in PyTorch

S N a
S S 5

@C @C @C

24

558

Fully Connected Layer in PyTorch

import torch

X = torch.arange(50, dtype=torch.float).view(10, 5)
.view() and .reshape() are equivalent
X

tensor([[0., 1., 2., 3., 4.
[5., 6., 7., 8., 9.
[10., 11., 12., 13., 14.
[15., 16., 17., 18., 19.
[20., 21., 22., 23., 24.
[25., 26., 27., 28., 29.
[30., 31., 32., 33., 34.
[35., 36., 37., 38., 39.
[40., 41., 42., 43., 44.
[45., 46., 47., 48., 49.

’

-

-

-

-

-

-

-

]
]
]
]
]
]
]
]
]
]

’
1)
fc_layer = torch.nn.Linear(in_features=5,

out_features=3)

fc_layer.weight
Parameter containing:
tensor([[-0.1706, ©0.1684, ©.3509, 0.1649, 0.1903],
[-0.1356, 0.0663, -0.4357, 0.2710, 0.1179],
[-0.0736, ©0.0413, -0.0186, 0.4032, 0.0992]], requires_grad=True)

fc_layer.bias

Parameter containing:
tensor([-0.2552, ©0.3918, 0.2693], requires_grad=True)

Sebastian Raschka STAT 458: Intro to Deep Learning

Fully Connected Layer in PyTorch

print('X dim:"', X.size())
print('w dim:', fc_layer.weight.size())
print('b dim:', fc_layer.bias.size())
.size() 1s equivalent to .shape
= fc_layer(X)
print('A:', A)
print('A dim:', A.size())

X dim: torch.Size([10, 5])

W dim: torch.Size([3, 5])

b dim: torch.Size([3])

A: tensor([[1.2004, 2.3291, 2.0036],
[4.5367, 7.7858, 5.4519],
[7.8730, 13.2424, 8.9003],
[11.2093, 18.6991, 12.3486],
[14.5457, 24.1557, 15.797@],
[17.8820, 29.6123, 19.2453],
[21.2183, 35.0690, 22.6937],
[24.5546, 40.5256, 26.1420],
[27.8910, 45.9823, 29.5904],
[31.2273, 51.4389, 33.0387]1], grad_fn=<ThAddmmBackward>)

A dim: torch.Size([10, 3])

Sebastian Raschka STAT 458: Intro to Deep Learning

Based on PyTorch, We Have Another Convention

e _101’1 w1,2 “. 1Ul,n1_
w21 w2 2 “. W2 m
where W=
wh,l Wh,2 c. wh’m
X = [561 Lo ... Lim

Layer activations for 1 training example
oc(xW' +b) =a

= Rth

Layer activations for n training example

note that Wi,; refers to the weight

connecting the O'(XWT -+ b) — A

7-th input to the ¢-th output.

WT c Rth

You can find the source code here: A c Rn X h

https://qgithub.com/pytorch/pytorch/blob/18edd3ab0828acaa81ldc@52dba8644c874dc62db/torch/nn/functional.py#L1368

https://github.com/pytorch/pytorch/blob/18edd3ab0828acaa81dc052dba8644c874dc62db/torch/nn/functional.py#L1368

Conclusion

» Always think about how the dot products are computed when
writing and implementing matrix multiplication

» Theoretical intuition and convention does not always match up
with practical convenience (coding)

» When switching between theory and code, these rules may be
useful:

AB=(B'A")'

(AB)! =B'A'

Summary: Traditional vs PyTorch

(Transformation matrix should ideally be always in the front)

wl,l w12 ... wl,m W; -
Wa1 Waz ... Wam not.e that ’l/,? refers to the
where W= . S weight connecting the

J-th input to the -th output.

_wh71 Wh,2 WhH,m

Layer activations for 1 training example

J(WX—l—b) —a _ acR"™ win xeR™!

& J(:XTWT]T —|—b) = a with x € R™*1

& o(xW']+b) =a with x € R1*™ (PyTorch)

Layer activations for n training examples

c((WXT]T+b)=A | A c R wn X € R
& o'([XWT] + b) — A with X € R™**™

Ungraded Homework Exercise / Experiment

Revisit our Perceptron NumPy code:

https://github.com/rasbt/stat453-deep-learning-ss20/blob/master/L 03-perceptron/code/
perceptron-numpy.ipynb

1. Without running the code, can you tell if the perceptron could
predict the class labels if we feed an array of multiple training examples
at once (i.e., via its forward method)?

- If yes, why?
- If no, what change would you need to make

2. Run the code to verify your intuition.

3. What about the train method? Can we have parallelism through matrix multiplication
without affecting the perceptron learning rule?

https://github.com/rasbt/stat453-deep-learning-ss20/blob/master/L03-perceptron/code/perceptron-numpy.ipynb
https://github.com/rasbt/stat453-deep-learning-ss20/blob/master/L03-perceptron/code/perceptron-numpy.ipynb

Next Lecture:;
A better” learning algorithm
for neural networks

* compared to the perceptron rule

