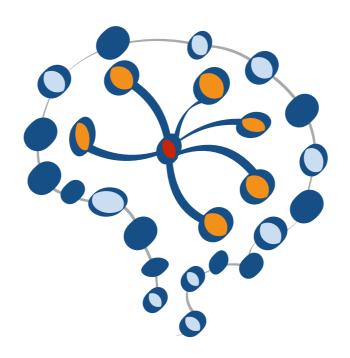
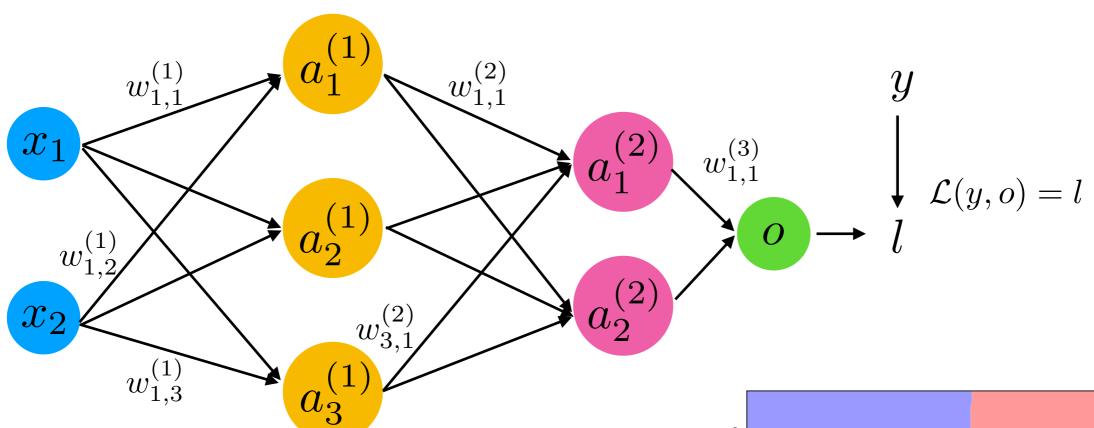
STAT 453: Introduction to Deep Learning and Generative Models

Sebastian Raschka
http://stat.wisc.edu/~sraschka/teaching

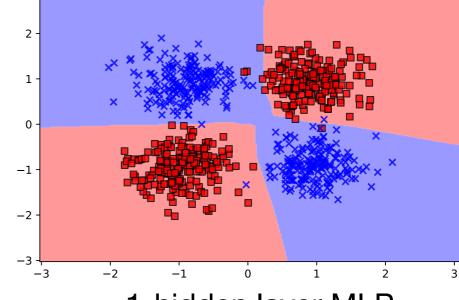


Lecture 04 Linear Algebra for Deep Learning

Today: Fundamental Math Skills for DL



So that we can solve the XOR problem, among other things ...



1-hidden layer MLP with non-linear activation function (ReLU)

Lecture Overview

- 1. Tensors in Deep Learning
- 2. Tensors and PyTorch
- 3. Vectors, Matrices, and Broadcasting
- 4. Notational Conventions for Neural Networks
- 5. A Fully Connected (Linear) Layer in PyTorch

The Use of Tensors in Deep Learning

1. Tensors in Deep Learning

- 2. Tensors and PyTorch
- 3. Vectors, Matrices, and Broadcasting
- 4. Notational Conventions for Neural Networks
- 5. A Fully Connected (Linear) Layer in PyTorch

Vectors, Matrices, and Tensors -- Notational Conventions

Scalar

(rank-0 tensor)

$$x \in \mathbb{R}$$

e.g.,

$$x = 1.23$$

<u>Vector</u>

(rank-1 tensor)

$$\mathbf{x} \in \mathbb{R}^n$$

but in this lecture, we will assume

$$\mathbf{x} \in \mathbb{R}^{n \times 1}$$

$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

Matrix

(rank-2 tensor)

$$\mathbf{X} \in \mathbb{R}^{m \times n}$$

e.g.,

$$\mathbf{X} = \begin{bmatrix} x_{1,1} & x_{1,2} & \dots & x_{1,n} \\ x_{2,1} & x_{2,2} & \dots & x_{2,n} \\ \vdots & \vdots & \ddots & \vdots \\ x_{m,1} & x_{m,2} & \dots & x_{m,n} \end{bmatrix}$$

$$\mathbf{x}^{\top} = \begin{bmatrix} x_1 & x_2 & \dots & x_n \end{bmatrix}, \text{ where } \mathbf{x}^{\top} \in \mathbb{R}^{1 \times n}$$

Vectors, Matrices, and Tensors -- Notational Conventions

We will often use X as a special convention to refer to the "design matrix." That is, the matrix containing the training examples and features (inputs)

and assume the structure $\mathbf{X} \in \mathbb{R}^{n \times m}$

because n is often used to refer to the number of examples in literature across many disciplines.

$$\mathbf{X} = \begin{bmatrix} x_1^{[1]} & x_2^{[1]} & \dots & x_m^{[1]} \\ x_1^{[2]} & x_2^{[2]} & \dots & x_m^{[2]} \\ \vdots & \vdots & \ddots & \vdots \\ x_1^{[n]} & x_2^{[n]} & \dots & x_m^{[n]} \end{bmatrix} \qquad \begin{array}{l} \textbf{E.g.,} \\ x_2^{[1]} = \textbf{2nd feature value of the 1st} \\ \text{training example} \end{array}$$

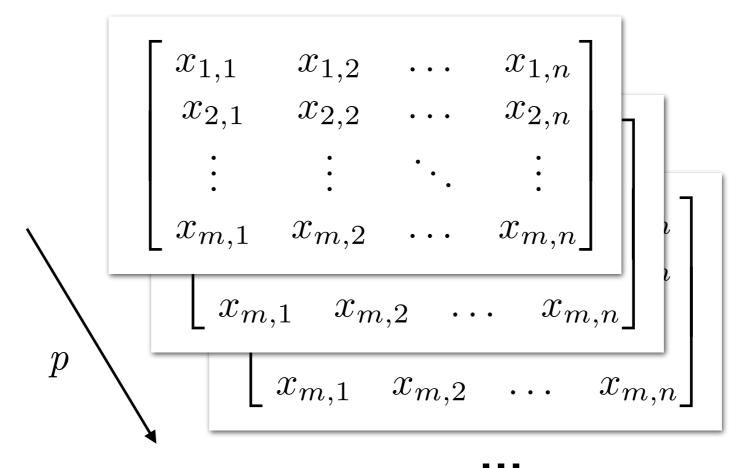
E.g.,
$$x_2^{[1]} = \text{2nd feature value of the 1st}$$
 training example

Vectors, Matrices, and Tensors -- Notational Conventions

3D Tensor

(rank-3 tensor)

$$\mathbf{X} \in \mathbb{R}^{m imes n imes p}$$
 (n and m are generic indices here)



An Example of a 3D Tensor in DL

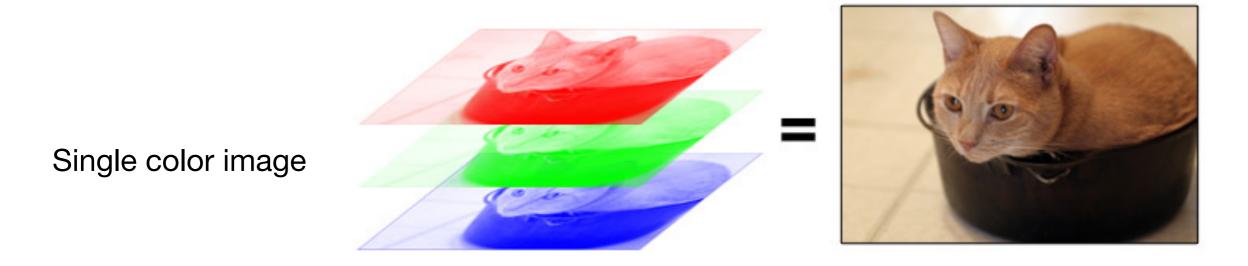
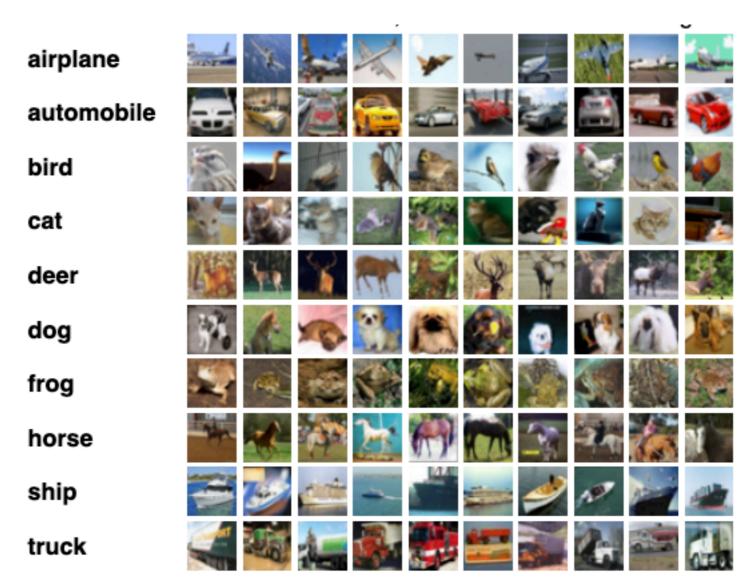


Image Source: https://code.tutsplus.com/tutorials/create-a-retro-crt-distortion-effect-using-rgb-shifting--active-3359

(3D tensor for "multidimensional-array" storage and parallel computing purpose, we still use regular vector and matrix math)

An Example of a 4D Tensor in DL

Batch of images (as neural network input, more later)

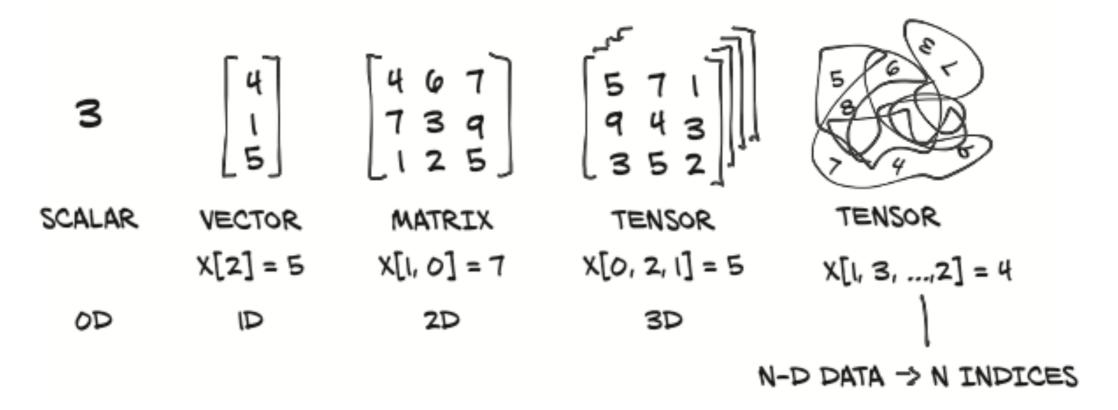


https://www.cs.toronto.edu/~kriz/cifar.html

(4D tensor for "multidimensional-array" storage and parallel computing purpose, we still use regular vector and matrix math)

In the context of TensorFlow, NumPy, PyTorch etc., tensors = multidimensional arrays

dimensionality coincides with the number of indices of .shape



gure 3.2 Tensors are the building blocks for representing data in PyTorch.

Image source: Stevens et al.'s "Deep Learning with PyTorch"

Working with Tensors in PyTorch

- 1. Tensors in Deep Learning
- 2. Tensors and PyTorch
- 3. Vectors, Matrices, and Broadcasting
- 4. Notational Conventions for Neural Networks
- 5. A Fully Connected (Linear) Layer in PyTorch

Multidimensional Arrays as Tensors

Example:

NumPy and PyTorch Syntax is Very Similar

```
[In [10]: print(a.dot(a))
14.0
[In [12]: print(b.matmul(b))
tensor(14.)
[In [13]: b
Out[13]: tensor([1., 2., 3.])
[In [14]: b.numpy()
Out[14]: array([1., 2., 3.], dtype=float32)
```

[In [9]: a = np.array([1., 2., 3.])

We can convert, but pay attention to default types Note: Traditionally, PyTorch used "matmul", but nowadays "dot" also works

```
In [12]: print(b.matmul(b))
tensor(14.)

[In [15]: print(b.dot(b))
tensor(14.)

[In [16]: print(b @ b)
tensor(14.)
```

Data Types to Memorize

NumPy data	Tensor data type	
numpy.uint8	torch.ByteTensor	
numpy.int16	torch.ShortTensor	
numpy.int32	torch.IntTensor	
numpy.int	torch.LongTensor	
numpy.int64	torch.LongTensor	default int in NumPy & PyTorcl
numpy.float16	torch.HalfTensor	
numpy.float32	torch.FloatTensor	default float in PyTorch
numpy.float	torch.DoubleTensor	
numpy.float64	torch.DoubleTensor	default float in NumPy

- E.g., int32 stands for 32 bit integer
- 32 bit floats are less precise than 64 floats, but for neural nets, it doesn't matter much
- For regular GPUs, we usually want 32 bit floats (vs 64 bit floats) for fast performance

Specify the type upon construction

```
[In [21]: c = torch.tensor([1., 2., 3.], dtype=torch.float)
[In [22]: c.dtype
Out[22]: torch.float32
[In [23]: c = torch.tensor([1., 2., 3.], dtype=torch.double)
[In [24]: c.dtype
Out[24]: torch.float64
[In [25]: c = torch.tensor([1., 2., 3.], dtype=torch.float64)
[In [26]: c.dtype
Out[26]: torch.float64
```

You can also change types later/on the fly if you must

```
[In [27]: d = torch.tensor([1, 2, 3])
[In [28]: d.dtype
Out[28]: torch.int64
[In [29]: e = d.double()
[In [30]: e.dtype
Out[30]: torch.float64
[In [31]: f = d.float64()
                                           Traceback (most recent call last)
AttributeError
<ipython-input-31-b3b070130d25> in <module>
----> 1 f = d.float64()
AttributeError: 'Tensor' object has no attribute 'float64'
[In [32]: f = d.to(torch.float64)
[In [33]: f.dtype
Out[33]: torch.float64
```

So, Why Not Just Using NumPy?

- PyTorch has GPU support:
 - A. we can load the dataset and model parameters into GPU memory
 - B. on the GPU we then have better parallelism for computing (many) matrix multiplications
- Also, PyTorch has automatic differentiation (more later)
- Moreover, PyTorch implements many DL convenience functions (more later)

Loading Data onto the GPU is Easy!

```
In [23]: print(torch.cuda.is available())
True
In [24]: b = b.to(torch.device('cuda:0'))
    ...: print(b)
tensor([1., 2., 3.], device='cuda:0')
In [25]: b = b.to(torch.device('cpu'))
    ...: print(b)
tensor([1., 2., 3.])
```

How to Check Your CUDA Devices

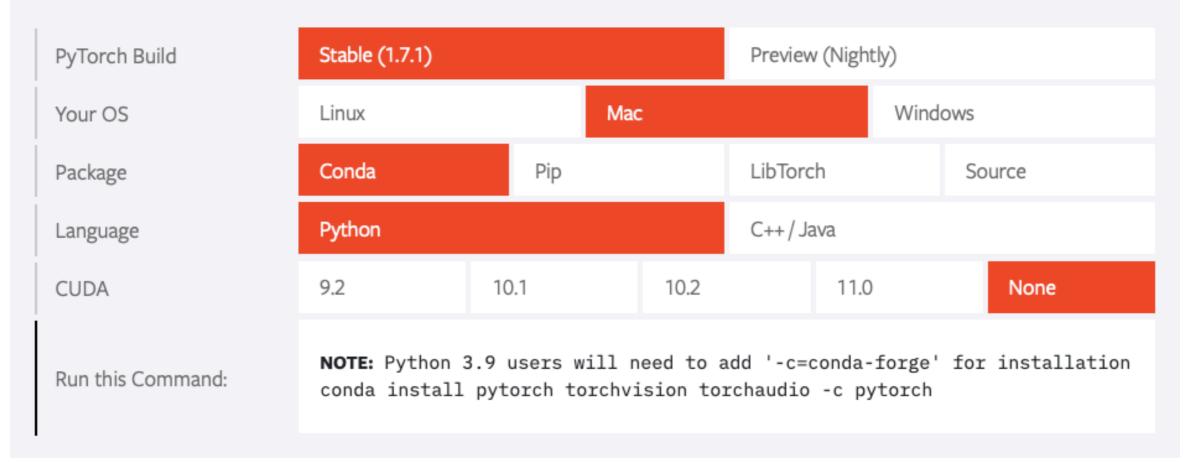
- If you have CUDA installed, you should have access to nvidia-smi
- However, if you are using a laptop, you probably don't have CUDA compatible graphics cards (my laptops don't)
- We will discuss GPU cloud computing later ...

```
[sraschka@gpu03:~$ nvidia-smi
Mon Feb 8 21:05:27 2021
                          Driver Version: 455.32.00 CUDA Version: 11.1
  NVIDIA-SMI 455.32.00
                                                Disp.A | Volatile Uncorr. ECC
                   Persistence-M| Bus-Id
  GPU
       Name
                   Pwr:Usage/Cap|
                                          Memory-Usage
                                                          GPU-Util
  Fan
       Temp
             Perf
                                                                    Compute M.
                                                                        MIG M.
       GeForce RTX 208...
                           0ff
                                  00000000:1A:00.0 Off
                                                                           N/A
                                       0MiB / 11019MiB
                                                                       Default
  24%
        37C
               Ρ0
                     71W / 250W
                                                               0%
                                                                           N/A
```

About Installing PyTorch

If you want to install PyTorch later (after the lecture) ...

- If you use it on a laptop, you likely don't have a CUDA compatible GPU
- Recommend using CPU version for your laptop (no CUDA)
- Installation on GPU-cloud later ...
- Also, use this selector tool from https://pytorch.org
 (conda is recommended):

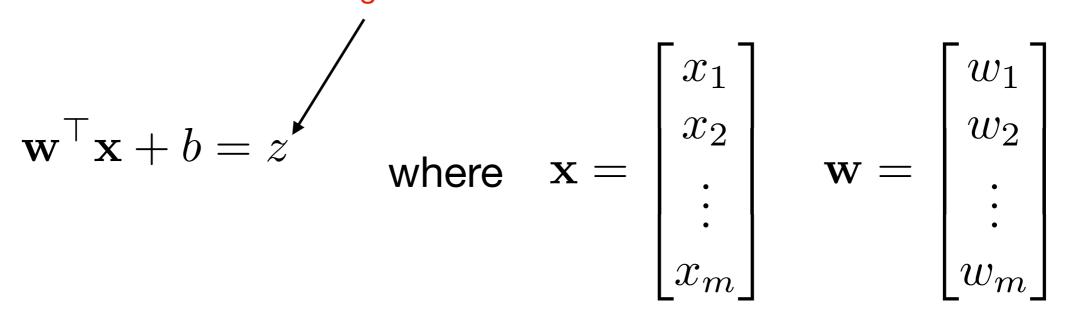


Broadcasting semantics: Making Vector and Matrix computations more convenient

- 1. Tensors in Deep Learning
- 2. Tensors and PyTorch
- 3. Vectors, Matrices, and Broadcasting
- 4. Notational Conventions for Neural Networks
- 5. A Fully Connected (Linear) Layer in PyTorch

Vectors

How do we call this again in the context of neural nets?



Basic vector operations

- Addition (/subtraction)
- Inner products (e.g., dot product)
- Scalar multiplication

TensorFlow and PyTorch Tensors are not Real Tensors

```
In [2]: a = torch.tensor([1, 2, 3])
In [3]: b = torch.tensor([4, 5, 6])
In [4]: a * b
Out[4]: tensor([ 4, 10, 18])
In [5]: torch.tensor([1, 2, 3]) + 1
Out[5]: tensor([2, 3, 4])
```

While not equivalent to the mathematical definitions, very useful for computing!

(these "extensions" are now also commonly used in mathematical notation in computer science literature as they are quite convenient)

Matrices

Computing the Output From Multiple Training Examples at Once

- The perceptron algorithm is typically considered an "online" algorithm (i.e., it updates the weights after each training example)
- However, during prediction (e.g., test set evaluation), we could pass all data points at once (so that we can get rid of the "forloop")

$$\mathbf{X} = \begin{bmatrix} x_1^{[1]} & x_2^{[1]} & \dots & x_m^{[1]} \\ x_1^{[2]} & x_2^{[2]} & \dots & x_m^{[2]} \\ \vdots & \vdots & \ddots & \vdots \\ x_1^{[n]} & x_2^{[n]} & \dots & x_m^{[n]} \end{bmatrix}$$
• Two opportunities for parallelism: multiplying elements to compute the dot product • computing multiple dot products

Question for CS majors: What is the Big-O of matrix multiplication (assume 2 NxN matrices)?

Computing the Output From Multiple Training Examples at Once

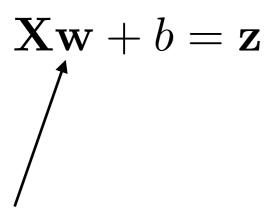
- Two opportunities for parallelism:
 - 1. computing the dot product in parallel
 - 2. computing multiple dot products at once

$$\mathbf{X}\mathbf{w} + b = \mathbf{z}$$
 where $\mathbf{X} = egin{bmatrix} x_1^{[1]} & x_2^{[1]} & \dots & x_m^{[1]} \\ x_1^{[2]} & x_2^{[2]} & \dots & x_m^{[2]} \\ \vdots & \vdots & \ddots & \vdots \\ x_1^{[n]} & x_2^{[n]} & \dots & x_m^{[n]} \end{bmatrix}$, $\mathbf{w} = \begin{bmatrix} w_1 \\ w_2 \\ \vdots \\ w_m \end{bmatrix}$

(this is why ${\bf w}$ is not a "vector" but an $m \times 1$ matrix)

$$\mathbf{z} = \begin{bmatrix} \mathbf{w}^{\top} \mathbf{x}^{[1]} + b \\ \mathbf{w}^{\top} \mathbf{x}^{[2]} + b \\ \vdots \\ \mathbf{w}^{\top} \mathbf{x}^{[n]} + b \end{bmatrix} = \begin{bmatrix} z^{[1]} \\ z^{[2]} \\ \vdots \\ z^{[n]} \end{bmatrix}$$

Computing the Output From Multiple Training Examples at Once



(this is why ${\bf w}$ is not a "vector" but an $m \times 1$ matrix)

But NumPy and PyTorch are not very picky about that:

```
In [1]: import torch
In [2]: X = torch.arange(6).view(2, 3)
In [3]: X
Out [3]:
tensor([[0, 1, 2],
         [3, 4, 5]])
In [4]: w = torch.tensor([1, 2, 3])
In [5]: X.matmul(w)
Out[5]: tensor([ 8, 26])
                                    same as reshape
                                    (historic reasons)
In [6]: w = w.view(-1, 1)
In [7]: X.matmul(w)
Out [7]:
tensor([[ 8],
         [26]])
```

Computing the Output From Multiple Training Examples at Once

- Two opportunities for parallelism:
 - computing the dot product in parallel
 - 2. computing multiple dot products at once

$$\mathbf{X}\mathbf{w} + b = \mathbf{z}$$
 where $\mathbf{X} = egin{bmatrix} x_1^{[1]} & x_2^{[1]} & \dots & x_m^{[1]} \\ x_1^{[2]} & x_2^{[2]} & \dots & x_m^{[2]} \\ \vdots & \vdots & \ddots & \vdots \\ x_1^{[n]} & x_2^{[n]} & \dots & x_m^{[n]} \end{bmatrix}$, $\mathbf{w} = egin{bmatrix} w_1 \\ w_2 \\ \vdots \\ w_m \end{bmatrix}$

but an $m \times 1$ matrix)

(this is why \mathbf{w} is not a "vector"

$$\mathbf{z} = \begin{bmatrix} \mathbf{w}^{\top} \mathbf{x}^{[1]} + b \\ \mathbf{w}^{\top} \mathbf{x}^{[2]} + b \\ \vdots \\ \mathbf{w}^{\top} \mathbf{x}^{[n]} + b \end{bmatrix} = \begin{bmatrix} z^{[1]} \\ z^{[2]} \\ \vdots \\ z^{[n]} \end{bmatrix}$$

Can you spot the error on this slide?

Computing the Output From Multiple Training Examples at Once

$$\mathbf{X}\mathbf{w} + b = \mathbf{z}$$

Can you spot the error on this slide?

This should be

$$\mathbf{X}\mathbf{w} + \mathbf{1}_m b = \mathbf{z}$$

but we deep learning researchers are lazy! :)

Broadcasting

- In PyTorch, it works just fine.
- This (general) feature is called "broadcasting"

```
In [4]: torch.tensor([1, 2, 3]) + 1
Out[4]: tensor([2, 3, 4])
In [5]: t = torch.tensor([[4, 5, 6], [7, 8, 9]])
In [6]: t
Out[6]:
tensor([[4, 5, 6],
        [7, 8, 9]])
In [7]: t + torch.tensor([1, 2, 3])
Out[7]:
tensor([[ 5, 7, 9],
        [ 8, 10, 12]])
```

Broadcasting

In PyTorch, it works just fine.

tensor([[5, 7, 9],

[8, 10, 12]])

This (general) feature is called "broadcasting"

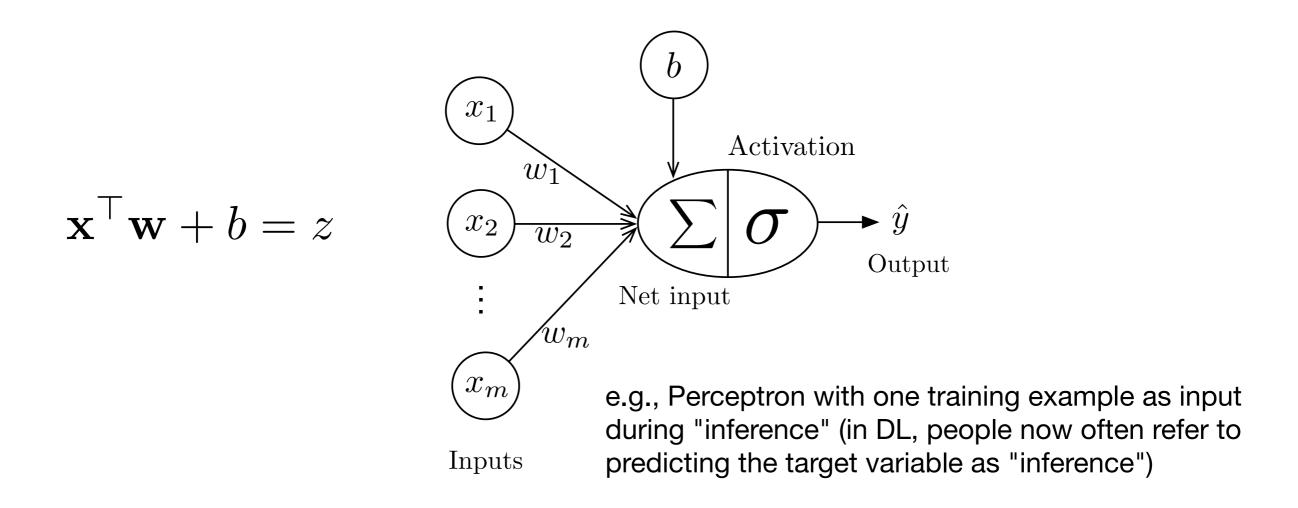
```
In [4]: torch.tensor([1, 2, 3]) + 1
Out[4]: tensor([2, 3, 4])
In [5]: t = torch.tensor([[4, 5, 6], [7, 8, 9]])
In [6]: t
Out[6]:
tensor([[4, 5, 6],
        [7, 8, 9]])
                                               Implicit dimensions get added,
In [7]: t + torch.tensor([1, 2, 3])
Out[7]:
```

elements are implicitly duplicated

Notational Linear Algebra Conventions in Deep Learning

- 1. Tensors in Deep Learning
- 2. Tensors and PyTorch
- 3. Vectors, Matrices, and Broadcasting
- 4. Notational Conventions for Neural Networks
- 5. A Fully Connected (Linear) Layer in PyTorch

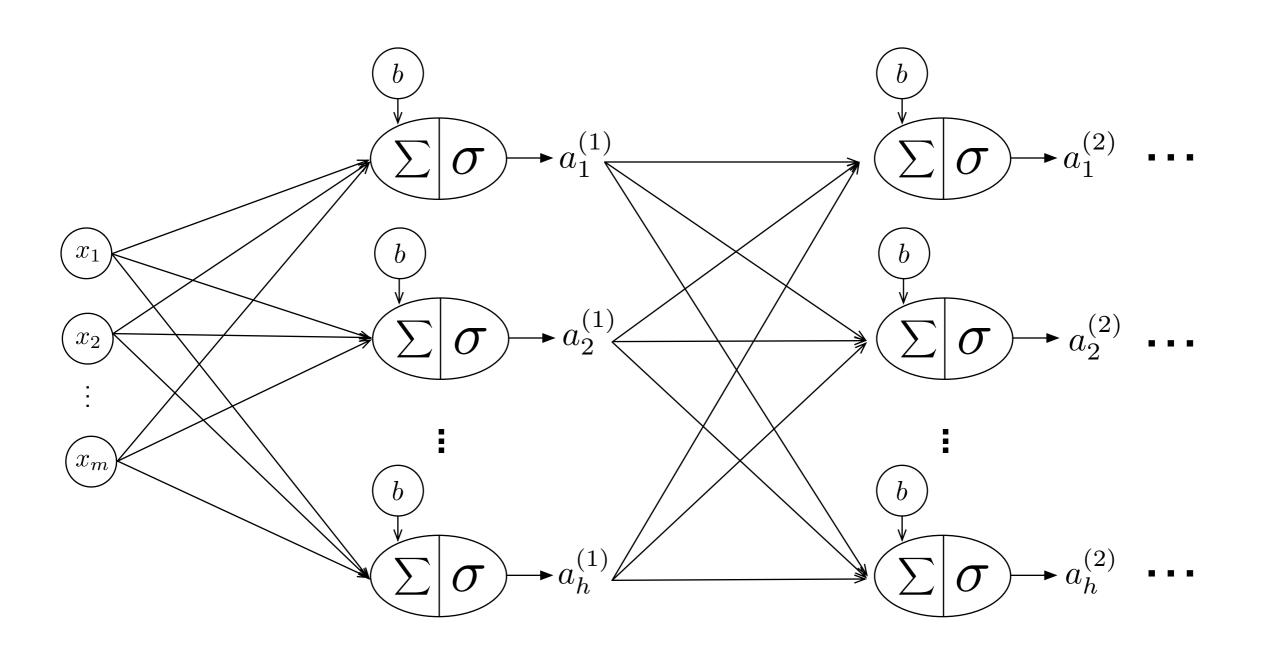
Connections We Have Seen Before ...



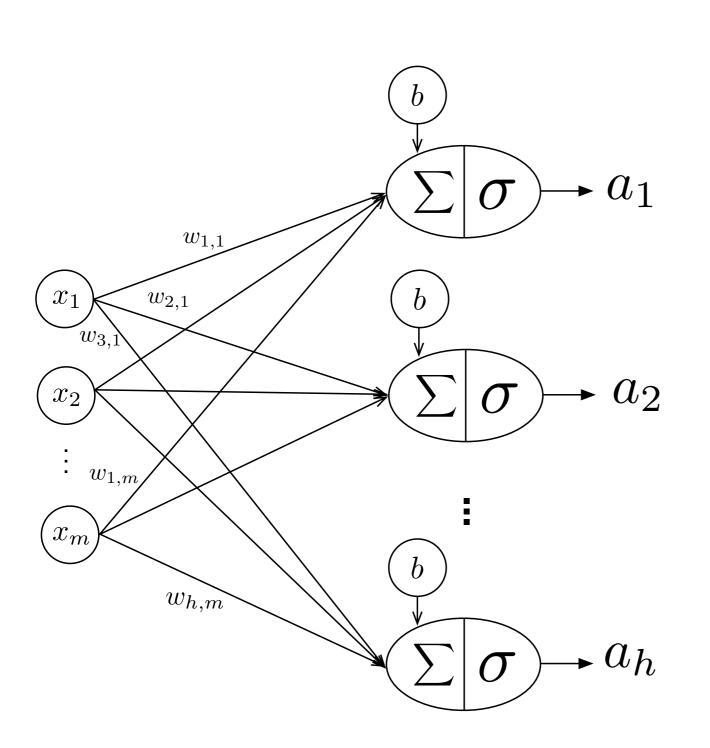
If we have n training examples, $\mathbf{X} \in \mathbb{R}^{n \times m}$, $\mathbf{z} \in \mathbb{R}^{n \times 1}$

$$\mathbf{X}\mathbf{w} + b = \mathbf{z}$$

Connections We Will Encounter Later ...



A Fully Connected Layer



where
$$\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_m \end{bmatrix}$$

$$\mathbf{W} = \begin{bmatrix} w_{1,1} & w_{1,2} & \dots & w_{1,m} \\ w_{2,1} & w_{2,2} & \dots & w_{2,m} \\ \vdots & \vdots & \ddots & \vdots \\ w_{h,1} & w_{h,2} & \dots & w_{h,m} \end{bmatrix}$$

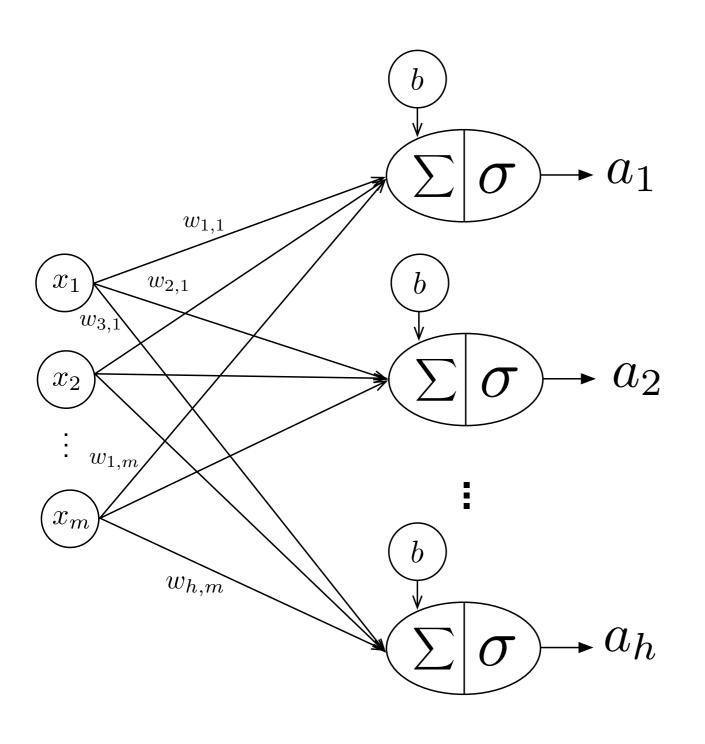
Layer activations for 1 training example

$$\sigma(\mathbf{W}\mathbf{x} + \mathbf{b}) = \mathbf{a}$$

 $\mathbf{a} \in \mathbb{R}^{h \times 1}$

note that $w_{i,j}$ refers to the weight connecting the j-th input to the i-th output.

A Fully Connected Layer



<u>Layer activations for *n* training examples</u>

$$\sigma([\mathbf{W}\mathbf{X}^{\top} + \mathbf{b}]^{\top}) = \mathbf{A}$$

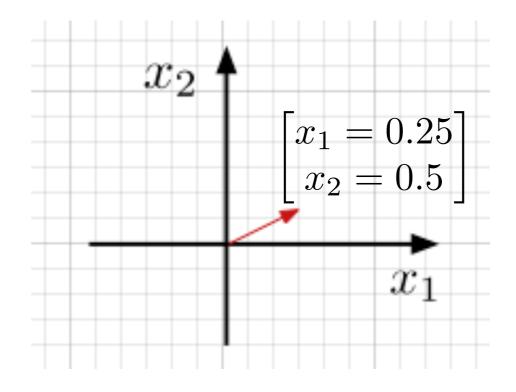
$$\mathbf{A} \in \mathbb{R}^{n \times h}$$

Machine learning textbooks usually represent training examples over columns, and features over rows (instead of using the "design matrix") -- in that case, we could drop the transpose.

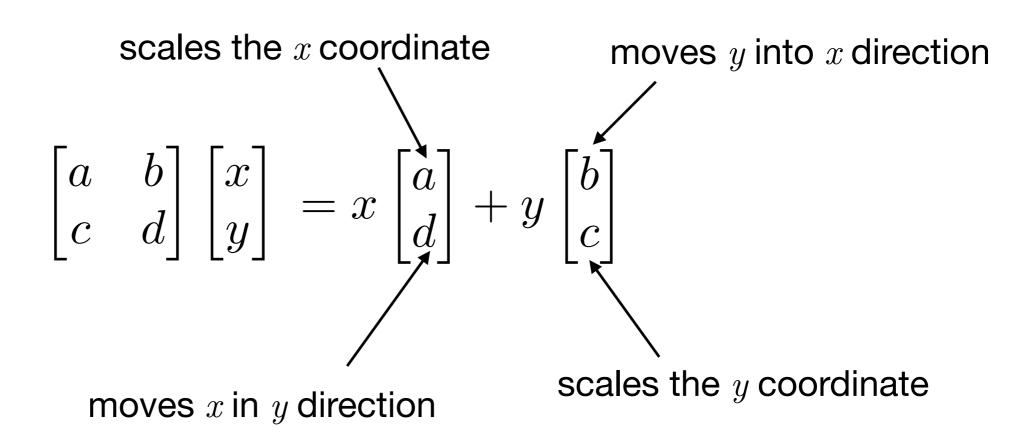
But Why is the Wx Notation Intuitive?

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

Transformation matrix



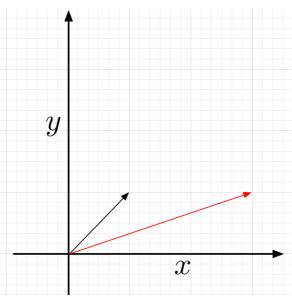
But Why is the Wx Notation Intuitive?



But Why is the Wx Notation Intuitive?

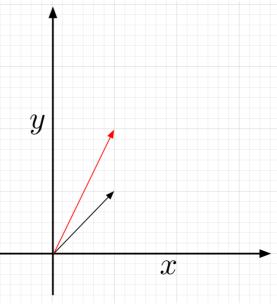
Stretching x-axis by factor of 3:

$$\begin{bmatrix} 3 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 3x \\ y \end{bmatrix}$$



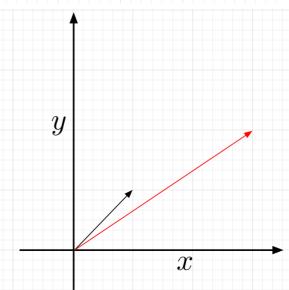
Stretching y-axis by factor of 2:

$$\begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x \\ 2y \end{bmatrix}$$



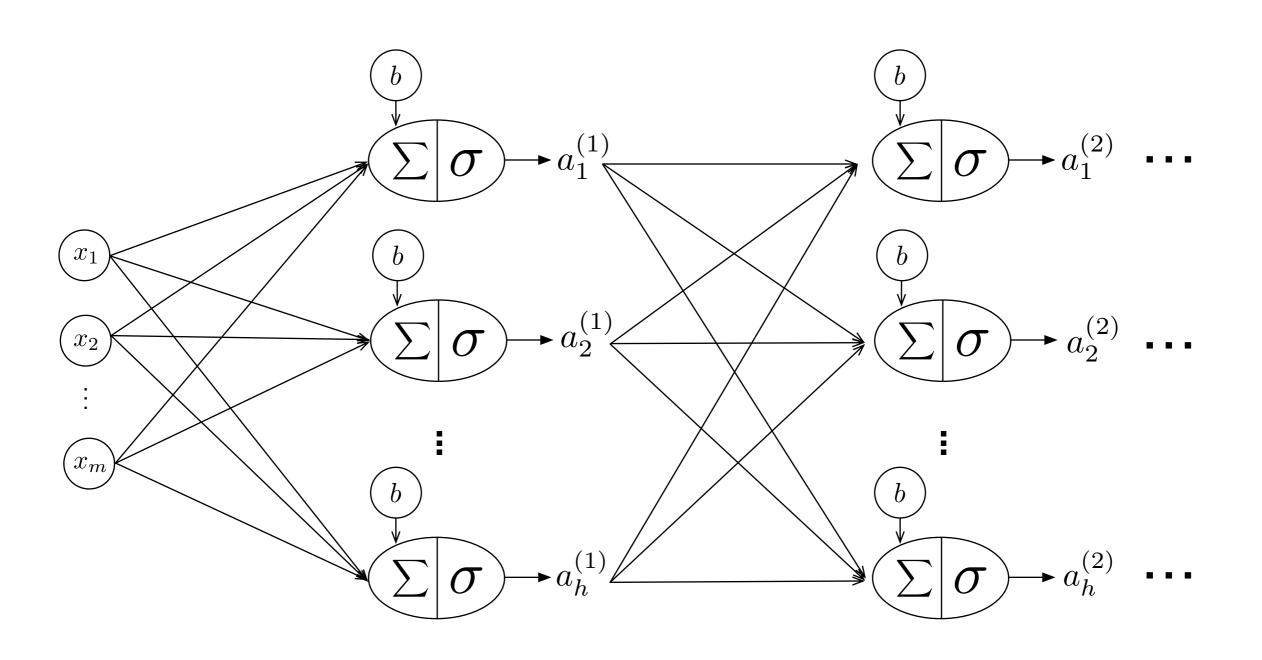
Stretching x-axis by factor of 3 and y-axis by a factor of 2:

$$\begin{bmatrix} 3 & 0 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 3x \\ 2y \end{bmatrix}$$



A Fully Connected (Linear) Layer in PyTorch

- 1. Tensors in Deep Learning
- 2. Tensors and PyTorch
- 3. Vectors, Matrices, and Broadcasting
- 4. Notational Conventions for Neural Networks
- 5. A Fully Connected (Linear) Layer in PyTorch



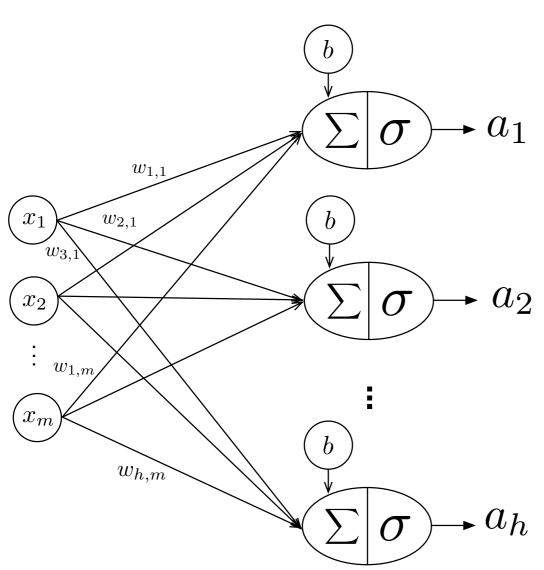
Fully Connected Layer in PyTorch

```
[1]: import torch
[2]: X = torch.arange(50, dtype=torch.float).view(10, 5)
     # .view() and .reshape() are equivalent
     Χ
[2]: tensor([[ 0., 1., 2., 3., 4.],
             [5., 6., 7., 8., 9.],
             [10., 11., 12., 13., 14.],
             [15., 16., 17., 18., 19.],
             [20., 21., 22., 23., 24.],
             [25., 26., 27., 28., 29.],
             [30., 31., 32., 33., 34.],
             [35., 36., 37., 38., 39.],
             [40., 41., 42., 43., 44.],
             [45., 46., 47., 48., 49.]])
[3]: fc_layer = torch.nn.Linear(in_features=5,
                                out_features=3)
[4]: fc_layer.weight
[4]: Parameter containing:
     tensor([[-0.1706, 0.1684, 0.3509, 0.1649, 0.1903],
             [-0.1356, 0.0663, -0.4357, 0.2710, 0.1179],
             [-0.0736, 0.0413, -0.0186, 0.4032, 0.0992]], requires_grad=True)
[5]: fc_layer.bias
[5]: Parameter containing:
     tensor([-0.2552, 0.3918, 0.2693], requires_grad=True)
```

Fully Connected Layer in PyTorch

```
[6]: print('X dim:', X.size())
     print('W dim:', fc_layer.weight.size())
     print('b dim:', fc_layer.bias.size())
     # .size() is equivalent to .shape
     A = fc_{ayer}(X)
     print('A:', A)
     print('A dim:', A.size())
     X dim: torch.Size([10, 5])
     W dim: torch.Size([3, 5])
     b dim: torch.Size([3])
     A: tensor([[ 1.2004, 2.3291, 2.0036],
             [ 4.5367, 7.7858, 5.4519],
             [ 7.8730, 13.2424, 8.9003],
             [11.2093, 18.6991, 12.3486],
             [14.5457, 24.1557, 15.7970],
             [17.8820, 29.6123, 19.2453],
              [21.2183, 35.0690, 22.6937],
             [24.5546, 40.5256, 26.1420],
             [27.8910, 45.9823, 29.5904],
             [31.2273, 51.4389, 33.0387]], grad_fn=<ThAddmmBackward>)
     A dim: torch.Size([10, 3])
```

Based on PyTorch, We Have Another Convention



note that $w_{i,j}$ refers to the weight connecting the j-th input to the i-th output.

You can find the source code here:

where $\mathbf{W} = egin{bmatrix} w_{1,1} & w_{1,2} & \dots & w_{1,m} \ w_{2,1} & w_{2,2} & \dots & w_{2,m} \ \vdots & \vdots & \ddots & \vdots \ w_{h,1} & w_{h,2} & \dots & w_{h,m} \end{bmatrix}$

$$\mathbf{x} = \begin{bmatrix} x_1 & x_2 \dots & x_m \end{bmatrix}$$

Layer activations for 1 training example

$$\sigma(\mathbf{x}\mathbf{W}^{\top} + \mathbf{b}) = \mathbf{a}$$

 $\mathbf{a} \in \mathbb{R}^{1 \times h}$

Layer activations for n training example

$$\sigma(\mathbf{X}\mathbf{W}^{\top} + \mathbf{b}) = \mathbf{A}$$
 $\mathbf{W}^{\top} \in \mathbb{R}^{m \times h}$
 $\mathbf{A} \in \mathbb{R}^{n \times h}$

Conclusion

- Always think about how the dot products are computed when writing and implementing matrix multiplication
- Theoretical intuition and convention does not always match up with practical convenience (coding)
- When switching between theory and code, these rules may be useful:

$$\mathbf{A}\mathbf{B} = (\mathbf{B}^{\top}\mathbf{A}^{\top})^{\top}$$

$$(\mathbf{A}\mathbf{B})^{\top} = \mathbf{B}^{\top}\mathbf{A}^{\top}$$

Summary: Traditional vs PyTorch

(Transformation matrix should ideally be always in the front)

Layer activations for 1 training example

$$\sigma \big(\mathbf{W} \mathbf{x} + \mathbf{b} \big) = \mathbf{a} \ , \ \mathbf{a} \in \mathbb{R}^{h \times 1} \quad \text{with} \ \mathbf{x} \in \mathbb{R}^{m \times 1}$$

$$\Leftrightarrow \sigma \big([\mathbf{x}^\top \mathbf{W}^\top]^\top + \mathbf{b} \big) = \mathbf{a} \qquad \text{with} \ \mathbf{x} \in \mathbb{R}^{m \times 1}$$

$$\Leftrightarrow \sigma \big([\mathbf{x} \mathbf{W}^\top] + \mathbf{b} \big) = \mathbf{a} \qquad \text{with} \ \mathbf{x} \in \mathbb{R}^{1 \times m} \ \text{(PyTorch)}$$

<u>Layer activations for *n* training examples</u>

$$\sigma\big([\mathbf{W}\mathbf{X}^\top]^\top + \mathbf{b}\big) = \mathbf{A} \text{ , } \mathbf{A} \in \mathbb{R}^{n \times h} \text{ with } \mathbf{X} \in \mathbb{R}^{n \times m}$$

$$\Leftrightarrow \sigma\big([\mathbf{X}\mathbf{W}^\top] + \mathbf{b}\big) = \mathbf{A} \text{ with } \mathbf{X} \in \mathbb{R}^{n \times m}$$

Ungraded Homework Exercise / Experiment

Revisit our Perceptron NumPy code:

https://github.com/rasbt/stat453-deep-learning-ss20/blob/master/L03-perceptron/code/perceptron-numpy.ipynb

- 1. Without running the code, can you tell if the perceptron could predict the class labels if we feed an array of multiple training examples at once (i.e., via its forward method)?
 - If yes, why?
 - If no, what change would you need to make
- 2. Run the code to verify your intuition.
- 3. What about the train method? Can we have parallelism through matrix multiplication without affecting the perceptron learning rule?

Next Lecture: A better* learning algorithm for neural networks

* compared to the perceptron rule