STAT 453: Introduction to Deep Learning and Generative Models

Sebastian Raschka
http://stat.wisc.edu/~sraschka/teaching

Lecture 03

The Perceptron
An Introduction to Single Layer Neural Networks

http://stat.wisc.edu/~sraschka/teaching

Announcements

 Project groups (by next Thu), 3 members per group -- TA will set

up a document where you can add your team member
preferences

 Project topics (brainstorm with group members)

- HW1 (related to the Perceptron; more about that later)

» Piazza for questions, encouraged to help each other

(but don't share your HW solutions)

After this lecture, you will be able to
implement your first neuron model for
making predictions!

Lecture Overview

1. Brains and neuron models

2. The perceptron learning rule

3. Interlude: "vectorization” in Python
4

Implementing a perceptron in Python
using NumPy and PyTorch

o

Optional: The perceptron convergence theorem

6. Geometric intuition

Sebastian Raschka STAT 458: Intro to Deep Learning

Inspired by Biological Brains and Neurons

[4 & T

https://publicdomainpictures.net/en/view-image.php?image=130359&picture=human-brain https://commons.wikimedia.org/wiki/Neuron#/media/File:Mouse_cingulate_cortex_neurons.jpg https://commons.wikimedia.org/wiki/Neuron#/media/File:Pyramidal_hippocampal_neuron_40x.jpg

Do our brains use deep learning?

Sebastian Raschka STAT 458: Intro to Deep Learning

A

ource: https://media.mnn.com/assets/images/2016/10/plane-birds.jpg.1000x0_qg80_crop-smart.jpg

Sebastian Raschka STAT 453: Intro to Deep Learning

Number of neurons in brains ...

Article Talk

Wb e siA List of animals by number of neurons
Oves O B bores From Wikipedia, the free encyclopedia

sixteen billion three hundred forty million On a sidenote:

Name Short
scale
Isotropic (US
16,340,000,000 fractionator :
Human + 2,170,000,000[38] Pallium (cortex Homo sapiens E
21,000,000,000* Optical (b A Eastern
fractionator Eu rope
)
English
Canadian,
Risso's dolphin 18,750,000,000A Estimated Pallium (cortex) Grampus griseus Australian
]
and
Short-finned pilot p— modern
ori-inned pilo 35,000,000,000 Estimated Pallium (cortex) obicephala
whale macrorhynchus Britis h)
= Million 108
L ol 37,200,000,000° S Pallium (cortex) Globicephala melas .
whale e fractionator P Milliard
Billion 10°
Optical) .
Killer whale 43,100,000,000" fractionator Pallium (cortex) Orcinus orca
Billiard
Trillion 1012

Source: https://en.wikipedia.org/wiki/
List of animals by number of neurons

Sebastian Raschka STAT 458: Intro to Deep Learning

Long
scale
(Western,
Central
Europe,
older
British,
and
French
Canadian)

106
109
1012
1015
1018

https://en.wikipedia.org/wiki/List_of_animals_by_number_of_neurons
https://en.wikipedia.org/wiki/List_of_animals_by_number_of_neurons

A Biological Neuron

Ve viden
(De_v\dﬁ*eﬁ ol ;:s\-,
A~ Symaphic
\;\\ Axon i
> /AC::_V
}M/ A) f&
sal
7 Q \”3{
Nu(,&“g ’?

McCulloch & Pitts Neuron Model

A LOGICAL CALCULUS OF THE
IDEAS IMMANENT IN NERVOUS ACTIVITY

WARREN S. McCuLLocH and WALTER H. Pitts 1943

%
@ weighted)—» — binary signal
sum

Logical AND Gate

T X2 Out
0 0 0
0 1 0)
1 0 0

weighted

10

Logical OR Gate

T Lo Out
0 0 0
0 1 1

weighted

11

Logical NOT Gate

wl_l
> —> —>

12

Logical XOR Gate

(Take-home exercise)

13

Training Single-Layer Neural
Networks

2. The perceptron learning rule

14

Rosenblatt's Perceptron

A learning rule for the computational/mathematical neuron model

Rosenblatt, F. (1957). The perceptron, a perceiving and recognizing
automaton. Project Para. Cornell Aeronautical Laboratory.

-2 |
N 3

. $ ol .
' . M
: !

"ma
Perceptront &) §

a1
= -
L'-.
N
f -

1l) B
"] ¢
f "

, .

Source: http://www.enzyklopaedie-der-wirtschaftsinformatik.de/wi-enzyklopaedie/Members/wilex4/Rosen-2.jpg

Sebastian Raschka STAT 453: Intro to Deep Learning 15

Perceptron Variants

Note that Rosenblatt (and later others) proposed many
variants of the Perceptron model and learning rule.

We discuss a "basic" version;
let's say,

"Perceptron” ;= "a classic Rosenblatt Perceptron”

16

A Computational Model of a Biological Neuron

0. 2<46
Threshold f(z) = { ’ ;
Dend BQM;:;J? wl 1, < >
/\J:‘\? ;\iﬂjijﬂkf‘m
Axon -~ N
N X
s (j/ Output
Q@/gw\) A : Net input
N Eueon

fo (szwz) =
1=1

Inputs

17

Terminology

General (logistic regression, multilayer nets, ...):

- Net input = weighted inputs, 7

- Activations = activation function(net input); a = o6(2)

- Label output = threshold(activations of last layer); y = f(a)

Special cases:
* |n perceptron: activation function = threshold function
* In linear regression: activation = net input = output

0, 2<6
Threshold f(z) = { °=

@\ 1, z>10
w7

utput
Net input

Inputs

18

Perceptron Output

. 0, z2<46
77 1, z> 460

More convenient to re-arrange:

. 0, 2—-0<0
s 1, z—6 >0

negative threshold

>
_9 — ”biaS"

General Notation for Single-Layer Neural Networks

- Common notation (in most modern texts): define the bias unit separately

 However, often inconvenient for mathematical notation

L "separate” bias unit
Activation

E_'OQ (wamb h‘b

utput
0 <0
o) =4 "7
1, 2z>0

Net input

b= —0

20

General Notation for Single-Layer Neural Networks

- Often more convenient notation: define bias unit as w, and
prepend a 1 to each input vector as an additional "feature” value

- Modifying input vectors is more inconvenient/inefficient
coding-wise, though

bias unit "included” as w,

m
\‘; Z xiwi> — 0 (XTW) =9
L
Activation

) (2) 0, 2 <0
o\2) =
O- Y I, 2>0
Output

w():—(g

Net input

Inputs

21

General Notation for Single-Layer Neural Networks

Net input

Activation

[

A

Y
utput

Vector dot product
o (Z LIZ‘ZUJZ> — O'(XTW) — Q
1=0

(O, z—0<0
\1, z—60>0

o(z) = <

UJ():—@

22

Assume binary classification task, Perceptron finds decision boundary

Perceptron Learning Rule

if classes are separable

Iberation O i)

[animated GIF]

23

The Perceptron Learning Algorithm

» If correct: Do nothing if the prediction if output is equal to the target

- If incorrect, scenario a):
If output is O and target is 1, add input vector to weight vector

- If incorrect, scenario b):
If output is 1 and target is 0, subtract input vector from weight vector

Guaranteed to converge if a solution exists
(more about that later...)

|eration 4%

24

The Perceptron Learning Algorithm

Let
D = ({1,), (x4), (xl7, ylm)) € (R™ x {0,1})"

1. Initialize w := 0" (assume notation where weight incl. bias)
2. For every training epoch:
A. Forevery (x'/ ¢!}y € D:
(a) Q[i] = O'(X[i]TW)
(b) err:= (y — ')

(c) W:i=wterrX X[i]

o

25

Efficient Scientific Computing:
Vectorization in Python

3. Interlude: "vectorization" in Python

26

Running Computations is a Big Part of Deep Learning!

Image source: https://encrypted-tbn0.gstatic.com/images?q=tbn:ANd9GcRYIMXrK6UIC4IBvLKW4qfHgMUCbQLQ-vnvgA&usqp=C

Sebastian Raschka STAT 458: Intro to Deep Learning

27

Interlude: "Vectorization" in Python

Question for you: What are we computing here?

In [1]:

x0, x1, x2 = 1.

2., 3.
bias, wl, w2 1

4
0.1, 0.3, 0.5

x = [x0, x1, x2]
w = [bias, wl, w2]
A simple for-loop:
In [2]:
z = 0.

for i in range(len(x)):
z += xX[1] * w[i1]

print(z)

2.2

Interlude: "Vectorization"” in Python

A simple for-loop:

In [2]:
z = 0.
for i1 in range(len(x)):

z += x[1] * w[1]

print(z)

2.2

A little bit better, list comprehensions:

In [3]:

z = sum(x_1i*w i for x i, w 1 in zip(x, w))
print(z)

2.2

29

Interlude: "Vectorization"” in Python

list comprehensions (still sequential):

In [3]:
z = sum(x_1i*w i for x i, w 1 in zip(x, wW))
print(z)
2.2
A vectorized implementation using NumPy:
In [4]:

import numpy as np

X vec, w_vec = np.array(x), np.array(w)

Zz = (X vec.transpose()).dot(w_vec)
print(z)

z = X vec.dot(w_vec)

print(z)

2.2

2.2

30

Interlude: "Vectorization" in Python

a) def forloop(x, W):
z = 0.
for i in range(len(x)):
z += X[1] * w[1]

return z

l)) def listcomprehension(x, w):

return sum(x i*w 1 for x i, w 1 in zip(x, Ww))

C) def vectorized(x, w):

return x vec.dot(w_vec)

X, w = np.random.rand(100000), np.random.rand(100000)

Questions for you:
Which one is the fastest?
How much faster is the fastest one compared to the slowest one?

31

Interlude: "Vectorization"” in Python

In [6]: gtimeit -r 100 -n 10 forloop(x, w)

38.9 ms * 1.32 ms per loop (mean * std. dev. of 100 r

uns, 10 loops each)

In [7]: g¢timeit -r 100 -n 10 listcomprehension(x, w)

29.7 ms * 842 us per loop (mean * std. dev. of 100 ru

ns, 10 loops each)

In [8]: gtimeit -r 100 -n 10 vectorized(x vec, w vec)

46.8 us * 8.07 us per loop (mean * std. dev. of 100 r

uns, 10 loops each)

32

Interlude: Connections and Parallel Computation

Image Source: https://timedotcom.files.wordpress.com/

Image Source: https://fossbytes.com/wp-content/uploads/ 2014/05/brain.jpg?w=1100&quality=85
2017/05/nvidia-volta-v100-gpu.jpg

NVIDIA Volta with approx. 2.1 x 1010 transistors Brain with 1.6 x 1010 neurons

approx. only 10 connections per transistor 104 -10° connections per neuron

approx. 101> connections in total

Sebastian Raschka STAT 453: Intro to Deep Learning 33

Implementing a perceptron in
Python using NumPy and PyTorch

4. Implementing a perceptron in Python using NumPy and PyTorch

34

Perceptron Learning Rule

Assume binary classification task, Perceptron finds decision boundary
if classes are separable

4
L1 2
O ® ¢ @
i i
0 o)
i
® ,0 ‘Q.o o o
i ' ®
> o ¢
° [animated GIF]
4 -2 0 2 A

Iteration 0 To

35

The Perceptron Learning Algorithm

» If correct: Do nothing if the prediction if output is equal to the target

- If incorrect, scenario a):
If output is O and target is 1, add input vector to weight vector

- If incorrect, scenario b):
If output is 1 and target is 0, subtract input vector from weight vector

Guaranteed to converge if a solution exists
(more about that later...)

|eration 4%

36

The Perceptron Learning Algorithm

Let
D = ({1,), (x4), (xl7, ylm)) € (R™ x {0,1})"

1. Initialize w := 0" (assume notation where weight incl. bias)
2. For every training epoch:
A. Forevery (x'/ ¢!}y € D:
(a) Q[i] = O'(X[i]TW)
(b) err:= (y — ')

(c) W:i=wterrX X[i]

o

37

Perceptron Code Examples

https://github.com/rasbt/stat453-deep-learning-ss21/blob/
master/L 03

Sebastian Raschka STAT 458: Intro to Deep Learning

38

https://github.com/rasbt/stat479-deep-learning-ss19/tree/master/L03_perceptron/code/perceptron-numpy.ipynb
https://github.com/rasbt/stat453-deep-learning-ss21/blob/master/L03
https://github.com/rasbt/stat453-deep-learning-ss21/blob/master/L03

Why Do | "Make" You Understand
NumPy?

39

SN oo s W

N = OO O 0

e

[

B W

[
Py

SN o sE WN = S

WWwWWNNNNNNNNN

WNMe=S WO

w
g

~N Sy

B WWWWW
O 00

o~
>

class Perceptron():
def __init__(self, num_features):
self.num_features = num_features
self.weights = np.zeros((num_features, 1), dtype=np.float)
self.bias = np.zeros(1l, dtype=np.float)

def forward(self, x):
linear = np.dot(x, self.weights) + self.bias
predictions = np.where(linear > 0., 1, 0)
return predictions

def backward(self, x, y):
predictions = self.forward(x)
errors = y - predictions
return errors

def train(self, x, y, epochs):
for e in range(epochs):

for i in range(y.shape(@]):

errors = self.backward(x[i].reshape(1l, self.num_features),
y[i]l).reshape(-1)

self.weights += (errors * x[i]).reshape(self.num_features,
1)

self.bias += errors

def evaluate(self, x, y):
predictions = self.forward(x).reshape(-1)
accuracy = np.sum(predictions == y) / y.shapel[0]
return accuracy

Sebastian Raschka

Ooo~NOULL & W

38
30
-

40

class Perceptron():
def __init__ (self, num_features):

self.num_features = num_features

self.weights = torch.zeros(num_features, 1,
dtype=torch.float32, device=device)
self.bias = torch.zeros(1, dtype=torch.float32, device=device)

placeholder vectors so they don't
need to be recreated each time
self.ones = torch.ones(1)
self.zeros = torch.zeros(1)

forward(self, x):

linear = torch.add(torch.mm(x, self.weights), self.bias)
predictions = torch.where(linear > 0., self.ones, self.zeros)
return predictions

backward(self, x, y):
predictions = self.forward(x)
errors = y - predictions
return errors

train(self, x, y, epochs):
for e in range(epochs):

for i in range(y.shape[0]):

use view because backward expects a matrix (i.e., 2D tensor)

errors = self.backward(x[i].reshape(1l, self.num_features),

y[i]).reshape(-1)

self.weights += (errors * x[i]).reshape(self.num_features,

self.bias += errors

def evaluate(self, x, y):

predictions = self.forward(x).reshape(-1)
accuracy = torch.sum(predictions == y).float() / y.shape(0]
return accuracy

STAT 458: Intro to Deep Learning

The perceptron convergence
theorem

5. Optional: The perceptron convergence theorem

41

Perceptron Convergence Theorem

Let
D = ({x1,y11), (x y2), . (xlyl)) € (R™ x {0,1})"

vyl € Dy gyl =1
o Ly and D1UDy; =D
vyl € Dy 1yl = 0

Assume the input vectors come from two linearly

separable classes such that a feasible weight vector w *
exists.

The perceptron learning algorithm is guaranteed to
converge to a weight vector in the feasible region in a
finite number of iterations such that

vx! ¢ D : w ' xd >0

vx!i ¢ Do : w | x <0

42

Perceptron Convergence Theorem -- Proof

Let us slightly rewrite the update rule (upon misclassification)
for convenience when we construct the proof:

wlitl = wlil ¢ xlif (wlih Tl <0 %l e Dy

[i+1] _ wlil _ [; i) T 5 [4] d
W x i (wi) T x>0, x" e Dy

Here [i + 1] refers to the weight vector of the next
training example (that is, the weight after updating)

43

Perceptron Convergence Theorem -- Proof

From the previous slide:

wlitll — wll £ 5[0 i (Wl Txl) <o xl0 e D,
We can rewrite this as follows:

wlitll — w0l 1 o]

p

Also, we can drop this term if we
initialize the weight vector as ()"

L

44

Perceptron Convergence Theorem -- Proof

From the previous slide, the update rule:

i4-1] 1]

L

wl — <!

Let's multiply both sides bw™ :

(w*)Twlt = (w)Txl + 4 (w*)Txl

All these terms are > 0, because remember that we have
so the updates are all to make the net inputs more positive

NOW, let & = Hl[gl (W*)Tx[j]a] — 17 7Z
x

i+1] <

then (W*)TW[%)

45

Perceptron Convergence Theorem -- Proof

From the previous slide, we had the inequality:

H/_/
Using the Cauchy-Schwarz inequality, we can then say

w2 - [[wlit]2 > (w) Twlit1)?
as well as

w7 [[w T2 > (ad)3

So, we can finally define the lower bound of the size of the weights

2.:2
[7;+1]H2 S 4t

46

Perceptron Convergence Theorem -- Proof

Now that we defined the lower bound of the size of the weights,

let us get the upper bound.

For that, let's go back to the update rule

wlitll —

wit 4 xldif (wlihTxld <0 x e Dy

and apply the squared L2 norm on both sides

W

z—|—1 H2

'W'.-

7|

+xJ7

P+ 2(x) w4 [2

47

Perceptron Convergence Theorem -- Proof

Now that we defined the lower bound of the size of the weights,
let us get the upper bound.

For that, let's go back to the update rule

wlittl = wiil 4 xlil i (wlh)Txli) < o xli e D,

and apply the squared L2 norm on both sides
w2 = ||w x| 2

= [[wi]? + 2(x) T w' + [[x]

Leads to

w2 < flw 2 o+ (]2

48

Perceptron Convergence Theorem -- Proof

Now that we defined the lower bound of the size of the weights,

let us get the upper bound.

For t

nat, let's go back to the update rule

w

(w2 = | |w 4 x!9))2
= ||w![|? + 2(x")Twl 4 [|x1]|?
Hf—/
< 0
Thus
w12 < w12 4 |[x)2

1] _ ol _I_X[q;] £ (W[i])TX[i] <0 7X[fi] c D4
HH

and apply the squared L2 norm on both sides

mplies

49

Perceptron Convergence Theorem -- Proof
Now, we simply expand:
w12 < w2]
v

w2 < w1 o el [l
v

w2 < w2 o a2 [l 2 [l

w2 < w24y X2
j=1

[wh 2 <y =2
j=1

50

Perceptron Convergence Theorem -- Proof

1
From HW[H”HQ < Z HXMHZ we can finally get the
j=1
upper bound.

Let B = max|[x|?

then ||wltl||2 < gi

51

Perceptron Convergence Theorem -- Proof

lower bound
2.2
Hw[z’—l—l]HQ Z 1
[|w*|[2
combined
- 72

B; > [|wlHH|]? >

Z [|w* |2
_ Bllw P

upper bound

w2 < pi

Since the number of iterations / has an upper
bound,

we can conclude that the weights only
change a finite number of times and will
converge if the classes are linearly
separable.

52

Perceptron Convergence Theorem -- Proof

52- > HW[Z—H]H2 > ()42i2

w121 2

53

Perceptron Convergence Theorem -- Proof

*
In the convergence theorem, we can assume that||w™|| = 1
(so you may remove it from all equations)

11112 a?i? .
i Z ||W - - W o
52 WP > e B w2 2
* | |2
i < 5HW2H s i<l
o o

54

Geometric Intuition

Brains and neuron models

The perceptron learning rule

Interlude: "vectorization" in Python

Implementing a perceptron in Python using NumPy and PyTorch

Optional: The perceptron convergence theorem

o o &~ b -

Geometric intuition

Sebastian Raschka STAT 458: Intro to Deep Learning

55

The Perceptron Learning Algorithm

» If correct: Do nothing if the prediction if output is equal to the target

- If incorrect, scenario a):
If output is O and target is 1, add input vector to weight vector

- If incorrect, scenario b):
If output is 1 and target is 0, subtract input vector from weight vector

Guaranteed to converge if a solution exists
(more about that later...)

|eration 4%

56

The Perceptron Learning Algorithm

Let
D = ({1,), (x4), (xl7, ylm)) € (R™ x {0,1})"

1. Initialize w := 0" (assume notation where weight incl. bias)
2. For every training epoch:
A. Forevery (x'/ ¢!}y € D:
(a) Q[i] = O'(X[i]TW)
(b) err:= (y — ')

(c) W:i=wterrX X[i]

o

57

Geometric Intuition

Decision boundary

Weight vector is perpendicular
to the boundary. Why?

58

Geometric Intuition

Decision boundary Weight vector is perpendicular

to the boundary. Why?

0 Remember,
4
i 0, wlix <0
y p—
\1, wix >0

w'x = ||w|| - |]x]] - cos(6)

—

So this needs to be 0 at the boundary,
and it is zero at 90°

59

Geometric Intuition

: Every input vector on this side
What else does this mean? / will have an angle with the weight

vector that is < 9(0°

Decision boundary

Assume origin (0, 0)
and no bias

So, we could scale the weights and/or inputs by an arbitrary factor and
still get the same classification results
(but large inputs will take much longer to converge if you check the bounds

we defined previously ...)

60

Geometric Intuition

input vector for an example with label 1

weight vector must be somewhere such that the angle
CORRECT SIDE IS < 90 degrees to make a correct prediction

WRONG SIDE
The dot product will then be positive, i.e., > 0, since
r,, _
wox = |[w]| - [[x]] - cos(6)
Sebastian Raschka STAT 458: Intro to Deep Learning

61

Geometric Intuition

iInput vector for an example with label 1

This is the new weight vector
CORRECT SIDE

WRONG SIDE
For this weight vector, we make a wrong prediction;
hence, we update

Sebastian Raschka STAT 458: Intro to Deep Learning

62

The Perceptron Learning Algorithm

» If correct: Do nothing if the prediction if output is equal to the target

- If incorrect, scenario a):
If output is O and target is 1, add input vector to weight vector

- If incorrect, scenario b):
If output is 1 and target is 0, subtract input vector from weight vector

Guaranteed to converge if a solution exists
(more about that later...)

|eration 4%

63

Perceptron Conclusions

The (classic) Perceptron has many problems
(as discussed in the previous lecture)

 Linear classifier, no non-linear boundaries possible

Binary classifier

» Does not converge if classes are not linearly separable
Many "optimal” solutions in terms of 0/1 loss on the
training data, most will not be optimal in terms of

generalization performance

64

http://theconversation.com/want-to-beat-climate-change-protect-our-natural-forests-121491

Sebastian Raschka STAT 453: Intro to Deep Learning 65

Perceptron Fun Fact

[...] Where a perceptron had been trained to distinguish between - this was for
military purposes - it was looking at a scene of a forest in which there were
camouflaged tanks in one picture and no camouflaged tanks in the other. And the
perceptron - after a little training - made a 100% correct distinction between
these two different sets of photographs. Then they were embarrassed a few hours
later to discover that the two rolls of film had been developed differently. And so
these pictures were just a little darker than all of these pictures and the
perceptron was just measuring the total amount of light in the scene. But it was
very clever of the perceptron to find some way of making the distinction.

-- Marvin Minsky, Al researcher & author of the "Perceptrons™ book

Source: https://www.webofstories.com/play/marvin.minsky/122

66

