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Why do we care?

Dimensionality Reduction
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Why do we care?

Dimensionality Reduction

Curse of dimensionality

Storage space

Computational efficiency

Interpretability

Easier data collection
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Dimensionality Reduction

Feature Selection Feature Extraction

Today! Next lecture
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12https://en.wikipedia.org/wiki/Sea_lamprey#/media/File:Sea_lamprey_on_brown_trout_flipped.jpg

Discovery of a pheromone receptor inhibitor for invasive species control (sea lamprey) 
in the Great Lakes
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Sebastian Raschka, Nan Liu, Santosh Gunturu, Anne M. Scott, Mar Huertas, Weiming Li, and Leslie A. Kuhn (2018) Facilitating the Hypothesis-driven Prioritization of Small Molecules in Large 
Databases: Screenlamp and its Application to GPCR Inhibitor Discovery. Journal of Computer-Aided Molecular Design, 32(3), 415-433.
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69% signal inhibition

62% signal inhibition

"Sulfate-tail"  
sufficient 

for bioactivity
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1. Different categories of feature selection

2. Filter methods

3. Embedded methods


3.1.  L1-regularized logistic regression

3.2.  Random forest feature importance


4. Wrapper methods

4.1.  Recursive feature elimination

4.2.  Permutation importance

4.3.  Permutation importance code example

4.4.  Sequential feature selection

4.5.  Sequential feature selection code example
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Filter Methods

Wrapper Methods

Embedded Methods

Feature Selection
Feature Extraction

Dimensionality Reduction
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Filter Methods

Wrapper Methods

Embedded Methods

Feature Selection

Dimensionality Reduction

• L1 (LASSO) regularization
• Decision tree
• ...

• Information gain
• Correlation with target
• Pairwise correlation
• Variance threshold
• ...

• Recursive Feature Elimination (RFE)
• Sequential Feature Selection (SFS)
• Permutation importance
• ...
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Variance Threshold (Filter)

• Compute the variance of each feature


• Assume that features with a higher variance may contain more useful 
information

x1 x2
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Variance Threshold (Filter)

• Compute the variance of each feature


• Assume that features with a higher variance may contain more useful 
information

x1

x1

x1
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x1
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Variance

Var(X) =
n

∑
i=1

pi ⋅ (xi − μ)2

Variance of discrete random variable:

Var(X) = 1
n

n

∑
i=1

(xi − μ)2

E.g., dataset with  datapoints (for sample variance, n-1)n



Sebastian Raschka                              STAT 451: Intro to ML                        Lecture 13: Feature Selection 19

Variance of Bernoulli variable (Boolean feature, e.g., after one-hot encoding)

Var(X) = p(1 − p)

Var(X) = 1
n

n

∑
i=1

(xi − μ)2

E.g., dataset with  datapoints (for sample variance, n-1)n
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https://scikit-learn.org/stable/modules/classes.html?highlight=feature%20selection#module-sklearn.feature_selection

More Filter Methods

https://scikit-learn.org/stable/modules/classes.html?highlight=feature%20selection#module-sklearn.feature_selection
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0.8 × (1 − 0.8) = 0.16
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Be aware of feature scaling!

Var(X) = 1
n

n

∑
i=1

(xi − μ)2

E.g., dataset with  datapoints (for sample variance, n-1)n
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Variance Threshold (Filter)

• Compute the variance of each feature


• Assume that features with a higher variance may contain more useful 
information


• Select the subset of features based on a user-specified threshold  
("keep if greater or equal to x” or “keep the the top k features with 
largest variance”)


• Good: fast!


• Bad: does not take the relationship among features into account
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Filter Methods

Wrapper Methods

Embedded Methods

Feature Selection

Dimensionality Reduction

• L1 (LASSO) regularization
• Decision tree
• ...

• Information gain
• Correlation with target
• Pairwise correlation
• Variance threshold
• ...

• Recursive Feature Elimination (RFE)
• Sequential Feature Selection (SFS)
• Permutation importance
• ...
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1. Different categories of feature selection

2. Filter methods

3. Embedded methods 

3.1.  L1-regularized logistic regression 
3.2.  Random forest feature importance


4. Wrapper methods

4.1.  Recursive feature elimination

4.2.  Permutation importance

4.3.  Permutation importance code example

4.4.  Sequential feature selection

4.5.  Sequential feature selection code example
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Logistic Regression
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Logistic Regression

Source: Raschka, Liu, and Mirjalili. Machine Learning with PyTorch and Scikit-Learn, Ch 3
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Logistic Regression Hyperparameters

λ | |w | |1 = λ
m

∑
j=1

|wj |L1 norm:

L1 Norm /  
LASSO (Least Absolute Shrinkage and Selection Operator)

Regular loss function to minimize during training

L(w, b ∣ x) = − ∑
i=1

[y(i) log (σ (z(i))) + (1 − y(i)) log (1 − σ (z(i)))]
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L1 penalty against complexity

L1-penalized loss

+λ∥w∥1

L1 Regularization / LASSO (Embedded)
Least Absolute Shrinkage and Selection Operator

LL1(w, b ∣ x) = − ∑
i=1

[y(i) log (σ (z(i))) + (1 − y(i)) log (1 − σ (z(i)))]

λ | |w | |1 = λ
m

∑
j=1

|wj |

hyperparameter
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Cost minimum
(regularized estimate)

w2

w1

Overall Goal: 
Minimize cost + penalty

Goal 1: Minimize cost

Goal 2) Minimize penalty

L1 Regularization / LASSO (Embedded)
Least Absolute Shrinkage and Selection Operator

Logistic loss minimum

Regularized logistic loss minimum

Minimum of the 

L1 penalty term

For more details, see Tibshirani, Ryan, and L. Wasserman. "A closer look at sparse regression." Lecture notes (2016).
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Wine Dataset
https://archive.ics.uci.edu/ml/machine-learning-databases/wine/wine.data

'Class label' 'Alcohol' 'Malic acid' 'Ash'Alcalinity 
 of ash'

 'Magnesium' 'Total phenols''Flavanoids' 'Nonflavanoid 
phenols'

 'Proanthocyanins''Color intensity' 'Hue'OD280/OD315  
of diluted wines'

'Proline'

L1 Regularization / LASSO (Embedded)

Least Absolute Shrinkage and Selection Operator

https://archive.ics.uci.edu/ml/machine-learning-databases/wine/wine.data
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LASSO Path

L1 Regularization / LASSO (Embedded)

Least Absolute Shrinkage and Selection Operator
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1. Different categories of feature selection

2. Filter methods

3. Embedded methods


3.1.  L1-regularized logistic regression

3.2.  Decision trees & random forest feature importance 

4. Wrapper methods

4.1.  Recursive feature elimination

4.2.  Permutation importance

4.3.  Permutation importance code example

4.4.  Sequential feature selection

4.5.  Sequential feature selection code example
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Filter Methods

Wrapper Methods

Embedded Methods

Feature Selection

Dimensionality Reduction

• L1 (LASSO) regularization
• Decision trees & Random Forests
• ...

• Information gain
• Correlation with target
• Pairwise correlation
• Variance threshold
• ...

• Recursive Feature Elimination (RFE)
• Sequential Feature Selection (SFS)
• Permutation importance
• ...
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Feature Selection in Decision Trees (1)
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Feature Selection in Decision Trees (2)
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Feature Selection in Decision Trees (3)
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Random Forest Feature Importance

Usually measured as follows:


• for a given feature


• for each tree


• compute impurity decrease (Gini, Entropy) 


• weight by number of examples at that node 


• averaged over all trees


• normalize importances  so that sum of feature importances sum to 1

Method A: Impurity-based feature importance
(this is used in scikit-learn)
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Random Forest Feature Importance
 Caveats

• Impurity-based feature importance are inflated for categorical features 
with lots of unique values (we will cover permutation-based 
performance later, which addresses this)


• Correlated features share importance
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Out-of-bag accuracy: 

• During training, for each tree, make prediction for OOB sample  
(~1/3 of the training data)


• Based on those predictions where example i  was OOB, compute label via majority vote 
among the trees that did not use example i during model fitting


• The proportion over all examples where the prediction (by majority vote) is correct is the 
OOB accuracy estimate


Out-of-bag feature importance via permutation: 
(we will also cover a generalized version with a hold out set later)


• Count votes for correct class

• Given feature i, permute this feature in OOB examples of a tree

• Compute the number of correct votes after permutation from the number of votes before 

permutation for given tree

• Repeat for all trees in the random forest and average the importance

• Repeat for other features

Random Forest Feature Importance
Method B: Permutation Importance
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Filter Methods

Wrapper Methods

Embedded Methods

Feature Selection

Dimensionality Reduction

• L1 (LASSO) regularization
• Decision tree
• ...

• Information gain
• Correlation with target
• Pairwise correlation
• Variance threshold
• ...

• Recursive Feature Elimination (RFE)
• Sequential Feature Selection (SFS)
• Permutation importance
• ...
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1. Different categories of feature selection

2. Filter methods

3. Embedded methods


3.1.  L1-regularized logistic regression

3.2.  Random forest feature importance


4. Wrapper methods 

4.1.  Recursive feature elimination 
4.2.  Permutation importance

4.3.  Permutation importance code example

4.4.  Sequential feature selection

4.5.  Sequential feature selection code example
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Filter Methods

Wrapper Methods

Embedded Methods

Feature Selection

Dimensionality Reduction

• L1 (LASSO) regularization
• Decision tree
• ...

• Information gain
• Correlation with target
• Pairwise correlation
• Variance threshold
• ...

• Recursive Feature Elimination (RFE)
• Sequential Feature Selection (SFS)
• Permutation importance
• ...
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Recursive Feature Elimination (Wrapper)

Consider a (generalized) linear model (like linear or logistic regression): 

1. Fit model to dataset


2. Eliminate feature with the smallest coefficient ("most unimportant")


3. Repeat steps 1-2 until desired number of features is reached

\
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0.3

-0.4

-0.2
1.9

0.3 × (-0.2) + (-0.4) × 1.9 + 0.0 = -0.82 
1

1 + e−(−0.82) = 0.305764... ̂y = {1  if activation ≥ 0.5
0  otherwise 

0.0

Logistic Regression
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RFE Code example (1)
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RFE Code example (2)
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RFE Code example (3)
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RFE Code example (4)
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https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.RFE.html

RFE with other models

https://scikit-learn.org/stable/modules/generated/sklearn.feature_selection.RFE.html
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Recursive Feature Elimination Pros and Cons

(+) Can explicitly select number of features

(+) Not super expensive (if linear model is used)

(+) Takes feature interaction into account


(-) Assumes linear separability (if linear model is used)

(-) Does not optimize performance metric directly

(-) Needs search method to find good number of features
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1. Different categories of feature selection

2. Filter methods

3. Embedded methods


3.1.  L1-regularized logistic regression

3.2.  Random forest feature importance


4. Wrapper methods

4.1.  Recursive feature elimination

4.2.  Permutation importance 
4.3.  Permutation importance code example

4.4.  Sequential feature selection

4.5.  Sequential feature selection code example



Sebastian Raschka                              STAT 451: Intro to ML                        Lecture 13: Feature Selection 61

Filter Methods

Wrapper Methods

Embedded Methods

Feature Selection

Dimensionality Reduction

• L1 (LASSO) regularization
• Decision tree
• ...

• Information gain
• Correlation with target
• Pairwise correlation
• Variance threshold
• ...

• Recursive Feature Elimination (RFE)
• Sequential Feature Selection (SFS)
• Permutation importance
• ...
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Permutation Importance

For each feature column:

1. shuffle feature column

2. observe performance and compare to original
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Permutation Importance

For each feature column:

1. shuffle feature column

2. observe performance and compare to original
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Permutation Importance
Permutation importance often gives similar results as  

random forest impurity-based importance but it is model agnostic
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Permutation Importance

Also, permutation importance is not strictly feature selection, but it tells 
us which features a model relies on the most

Permutation importance often gives similar results as  
random forest impurity-based importance but it is model agnostic
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Permutation Importance

Also, permutation importance is not strictly feature selection, but it tells 
us which features a model relies on the most

Permutation importance often gives similar results as  
random forest impurity-based importance but it is model agnostic

You can think of permutation importance as a Generalization of Method B in the 
random forest video but hold out set instead of OOB samples
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Permutation Importance

1. Take a model that was fit to the training set

2. Estimate the predictive performance of the model on an 
independent dataset (e.g., validation dataset) and record it as the 
baseline performance

3. For each feature j

a. randomly permute feature column j in the original 
dataset

b. record the predictive performance of the model on the 
dataset with the permuted column

c. compute the feature importance as the difference 
between the baseline performance (step 2) and the 
performance on the permuted dataset

Repeat a-c exhaustively (all combinations) or a large number of 
times and compute the feature importance as the average difference

intuitive & model-agnostic

>>> randomforest.fit(X_train, y_train)
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Permutation Importance

1. Take a model that was fit to the training set

2. Estimate the predictive performance of the model on an 
independent dataset (e.g., validation dataset) and record it as the 
baseline performance

3. For each feature j

a. randomly permute feature column j in the original 
dataset

b. record the predictive performance of the model on the 
dataset with the permuted column

c. compute the feature importance as the difference 
between the baseline performance (step 2) and the 
performance on the permuted dataset

Repeat a-c exhaustively (all combinations) or a large number of 
times and compute the feature importance as the average differ

intuitive & model-agnostic

>>> randomforest.fit(X_train, y_train)

>>> acc = randomforest.score(X_val, y_val) 
>>> print(acc) 
0.99
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Permutation Importance

1. Take a model that was fit to the training set

2. Estimate the predictive performance of the model on an 
independent dataset (e.g., validation dataset) and record it as the 
baseline performance

3. For each feature j

a. randomly permute feature column j in the original 
dataset

b. record the predictive performance of the model on the 
dataset with the permuted column

c. compute the feature importance as the difference 
between the baseline performance (step 2) and the 
performance on the permuted dataset

Repeat a-c exhaustively (all combinations) or a large number of 
times and compute the feature importance as the average difference

intuitive & model-agnostic

>>> randomforest.fit(X_train, y_train)

>>> acc = randomforest.score(X_val, y_val) 
>>> print(acc) 
0.99
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Permutation Importance

1. Take a model that was fit to the training set

2. Estimate the predictive performance of the model on an 
independent dataset (e.g., validation dataset) and record it as the 
baseline performance

3. For each feature j

a. randomly permute feature column j in the original 
dataset

b. record the predictive performance of the model on the 
dataset with the permuted column

c. compute the feature importance as the difference 
between the baseline performance (step 2) and the 
performance on the permuted dataset

Repeat a-c exhaustively (all combinations) or a large number of 
times and compute the feature importance as the average difference

intuitive & model-agnostic

>>> randomforest.fit(X_train, y_train)

>>> acc = randomforest.score(X_val, y_val) 
>>> print(acc) 
0.99

training

examples

features

>>> acc = randomforest.score( 
...    X_val_perm, y_val_perm) 
>>> print(acc) 
0.85
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Permutation Importance

1. Take a model that was fit to the training set

2. Estimate the predictive performance of the model on an 
independent dataset (e.g., validation dataset) and record it as the 
baseline performance

3. For each feature j

a. randomly permute feature column j in the original 
dataset

b. record the predictive performance of the model on the 
dataset with the permuted column

c. compute the feature importance as the difference 
between the baseline performance (step 2) and the 
performance on the permuted dataset

Repeat a-c exhaustively (all combinations) or a large number of 
times and compute the feature importance as the average difference

intuitive & model-agnostic

>>> randomforest.fit(X_train, y_train)

>>> acc = randomforest.score(X_val, y_val) 
>>> print(acc) 
0.99

training

examples

features

>>> acc = randomforest.score( 
...    X_val_perm, y_val_perm) 
>>> print(acc) 
0.85
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For each feature column j: 
1. temporarily remove column

2.fit model to reduced dataset

3.compute validation set performance and compare to before

(will adopt something similar for SFS)

More accurate but more expensive (and not for 1 particular model)

Column-Drop variant:
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Permutation Importance Pros and Cons

(+) Model agnostic


(+) Based on metric of choice


(+) Easy to understand


(+/-) Feature importance is for that particular model (feature might be more/less       

       important to another model)


(+) Unlike impurity-based random forest importance, it does not suffer from 

     "overfitting" since an independent dataset is used


(-) Like in impurity-based random forest importance, the importance is undervalued 

     if two features are highly correlated
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1. Different categories of feature selection

2. Filter methods

3. Embedded methods


3.1.  L1-regularized logistic regression

3.2.  Random forest feature importance


4. Wrapper methods

4.1.  Recursive feature elimination

4.2.  Permutation importance

4.3.  Permutation importance code example 
4.4.  Sequential feature selection

4.5.  Sequential feature selection code example
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Permutation Importance -- Dataset Preparation (1)
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Dataset Preparation (2)
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Random Forest Model (1)



Sebastian Raschka                              STAT 451: Intro to ML                        Lecture 13: Feature Selection 78

Random Forest Model (2)
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Random Forest Model (3)
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Random Forest Model (4)
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Random Forest Model (4)

More useful not to scale the feature importance as we can read the accuracy drop from it
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mlxtend vs scikit-learn

mlxtend

scikit-learn
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Random Feature as Control (1)
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Random Feature as Control (2)
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Correlated Features (1)
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Correlated Features (2)
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Correlated Features (3)
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Correlated Features (4)
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1. Different categories of feature selection

2. Filter methods

3. Embedded methods


3.1.  L1-regularized logistic regression

3.2.  Random forest feature importance


4. Wrapper methods

4.1.  Recursive feature elimination

4.2.  Permutation importance

4.3.  Permutation importance code example

4.4.  Sequential feature selection 
4.5.  Sequential feature selection code example
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Filter Methods

Wrapper Methods

Embedded Methods

Feature Selection

Dimensionality Reduction

• L1 (LASSO) regularization
• Decision tree
• ...

• Information gain
• Correlation with target
• Pairwise correlation
• Variance threshold
• ...

• Recursive Feature Elimination (RFE)
• Sequential Feature Selection (SFS)
• Permutation importance
• ...
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Which feature selection would 
guarantee optimal model 

performance?
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Which feature selection would 
guarantee optimal model 

performance?

Trying all possible feature combinations --> exhaustive feature selection

(1) Sepal length

(2) Sepal width

(3) Petal length

(4) Petal width

1. {0}
2. {1}
3. {2}
4. {3}
5. {0, 1}
6. {0, 2}
7. {0, 3}

8.{1, 2}
9.{1, 3}
10. {2, 3}
11. {0, 1, 2}
12. {0, 1, 3}
13. {0, 2, 3}
14. {1, 2, 3}
15. {0, 1, 2, 3}

https://en.wikipedia.org/wiki/Iris_(plant)#/media/
File:Iris_germanica_(Purple_bearded_Iris),_Wakehurst_Place,_UK_-
_Diliff.jpg
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Which feature selection would 
guarantee optimal model 

performance?

Trying all possible feature combinations --> exhaustive feature selection

(1) Sepal length

(2) Sepal width

(3) Petal length

(4) Petal width

m

∑
i=1

(m
i ) Combinations!

(4
1) + (4

2) + (4
3) + (4

4) = 15
https://en.wikipedia.org/wiki/Iris_(plant)#/media/
File:Iris_germanica_(Purple_bearded_Iris),_Wakehurst_Place,_UK_-
_Diliff.jpg
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Which feature selection would 
guarantee optimal model 

performance?

Trying all possible feature combinations --> exhaustive feature selection

m

∑
i=1

(m
i ) Combinations!

(13
1 ) + (13

2 ) + … + (13
13) = 8191

(1) Alcohol

(2) Malic acid

...

(13) Color intensity

https://www.kaggle.com/uciml/red-wine-quality-cortez-et-al-2009
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Which feature selection would 
guarantee optimal model 

performance?

Trying all possible feature combinations --> exhaustive feature selection

• Very expensive!

• We will look at an approximation called Sequential Feature Selection



Sebastian Raschka                              STAT 451: Intro to ML                        Lecture 13: Feature Selection 96

Joe Bemister-Buffington, Alex J. Wolf, Sebastian Raschka, and Leslie A. Kuhn (2020)

Machine Learning to Identify Flexibility Signatures of Class A GPCR Inhibition

Biomolecules 2020, 10, 454. (https://www.mdpi.com/2218-273X/10/3/454#)

Biomolecules 2020, 10, 454 10 of 22

maximizes a user-specified performance criterion, for example, the accuracy of a classification model
trained to predict active/inactive protein structures. While this approach is guaranteed to find the
optimal feature subset, it is computationally intractable due to the large number of feature subsets to
be considered, unless the initial feature set is small. Even for small feature sets, the number of subsets
can be prohibitively large. For example, the number of possible feature subsets of size 8 that can be
created from a set of 29 features is more than 3 million (3,108,105).

Similar to EFS, sequential feature selection (SFS) reduces the original d-dimensional feature space
to a k-dimensional feature subspace, where k < d. By contrast, SFS is a greedy search paradigm that
constructs feature sets in an iterative fashion guaranteed to only improve the quality of prediction,
but it does not evaluate every possible feature set. SFS is a computationally manageable alternative
to EFS, and in our case was used as a feature-filtering step prior to EFS. This approach reduces the
feature space to focus on features with the most predictive power. SFS exists in two modes, forward
and backward SFS [25]. Backward mode SFS (Figure 4) removes features from the original feature
set in an iterative fashion until the new, smaller feature subspace contains a user-specified number
of features. In each iteration of the selection algorithm, an objective function is to be optimized. For
instance, the objective function is commonly defined as minimizing the performance di↵erence of a
predictive model before and after removing a specific feature. In each round, backward-mode SFS
eliminates the feature that causes the least performance loss upon removal [24].

Figure 4. Illustration of backward sequential feature selection for identifying feature subsets that
maximize the performance of a predictive model. In this study, the candidate feature subsets
were evaluated by using leave-one-out cross-validation and the out-of-bag bootstrap method with a
three-nearest neighbor classifier. The classifier accuracy in predicting active/inactive cases in the GPCR
held-out test data was used to evaluate each feature subset, as detailed in Table 2.

https://www.mdpi.com/2218-273X/10/3/454#
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Sequential Backward Selection (1)

... = 29H1.1 H1.2 H1.3 ICL1 H2.1 H2.2 H2.3 ECL1 H3.1 H3.2 H8.2

... = 28H1.1 H1.2 H1.3 ICL1 H2.1 H2.2 H2.3 ECL1 H3.1 H3.2 H8.2

... = 28H1.1 H1.2 H1.3 ICL1 H2.1 H2.2 H2.3 ECL1 H3.1 H3.2 H8.2

... = 28H1.1 H1.2 H1.3 ICL1 H2.1 H2.2 H2.3 ECL1 H3.1 H3.2 H8.2

...

Evaluate candidate
feature subset

Start with original feature set of size n=29

Iteration 1. Generate all possible feature subsets of size n – 1=28.

... = 27H1.1 H1.3 ICL1 H2.1 H2.2 H2.3 ECL1 H3.1 H3.2 H8.2

Iteration 2. (Suppose Subset 2 corresponded to the highest evaluation score.)
Generate all possible feature subsets of size (n – 1) – 1 =27.

Subset 1

Subset 2

Subset 28

...

Remove the feature that is absent from the subset with the highest evaluation score.

1

2

3

4

... = 27H1.1 H1.3 ICL1 H2.1 H2.2 H2.3 ECL1 H3.1 H3.2 H8.2

...
... = 27H1.1 H1.3 ICL1 H2.1 H2.2 H2.3 ECL1 H3.1 H3.2 H8.2

Repeat steps 3 and 4 until the feature subset contains only single feature.

FIgure xx. Illustration of backward-mode sequential feature selection for identifying feature 
subsets that maximize the performance of predictive models. In this study, the candidate 
feature subsets were evaluated using leave-one-out cross-validation and the out-of-bag 
bootstrap method with a 3-nearest neighbor classifier. The evaluation score was measured 
as the classification accuracy of the classifier.

Evaluate candidate
feature subset

Evaluate candidate
feature subset

Evaluate candidate
feature subset

Evaluate candidate
feature subset

Evaluate candidate
feature subset

5 Considering all iterations 1 ... n – 1, the subset with the highest evaluation score is selected as 
the final feature subset. In case of a tie, the smallest feature subset is selected.

(Given an initial feature set of size n, there are n – 1 iterations in total.)
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... = 29H1.1 H1.2 H1.3 ICL1 H2.1 H2.2 H2.3 ECL1 H3.1 H3.2 H8.2

... = 28H1.1 H1.2 H1.3 ICL1 H2.1 H2.2 H2.3 ECL1 H3.1 H3.2 H8.2

... = 28H1.1 H1.2 H1.3 ICL1 H2.1 H2.2 H2.3 ECL1 H3.1 H3.2 H8.2

... = 28H1.1 H1.2 H1.3 ICL1 H2.1 H2.2 H2.3 ECL1 H3.1 H3.2 H8.2

...

Evaluate candidate
feature subset

Start with original feature set of size n=29

Iteration 1. Generate all possible feature subsets of size n – 1=28.

... = 27H1.1 H1.3 ICL1 H2.1 H2.2 H2.3 ECL1 H3.1 H3.2 H8.2

Iteration 2. (Suppose Subset 2 corresponded to the highest evaluation score.)
Generate all possible feature subsets of size (n – 1) – 1 =27.

Subset 1

Subset 2

Subset 28

...

Remove the feature that is absent from the subset with the highest evaluation score.

1

2

3

4

... = 27H1.1 H1.3 ICL1 H2.1 H2.2 H2.3 ECL1 H3.1 H3.2 H8.2

...
... = 27H1.1 H1.3 ICL1 H2.1 H2.2 H2.3 ECL1 H3.1 H3.2 H8.2

Repeat steps 3 and 4 until the feature subset contains only single feature.

FIgure xx. Illustration of backward-mode sequential feature selection for identifying feature 
subsets that maximize the performance of predictive models. In this study, the candidate 
feature subsets were evaluated using leave-one-out cross-validation and the out-of-bag 
bootstrap method with a 3-nearest neighbor classifier. The evaluation score was measured 
as the classification accuracy of the classifier.

Evaluate candidate
feature subset

Evaluate candidate
feature subset

Evaluate candidate
feature subset

Evaluate candidate
feature subset

Evaluate candidate
feature subset

5 Considering all iterations 1 ... n – 1, the subset with the highest evaluation score is selected as 
the final feature subset. In case of a tie, the smallest feature subset is selected.

(Given an initial feature set of size n, there are n – 1 iterations in total.)

Sequential Backward Selection (2)
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... = 29H1.1 H1.2 H1.3 ICL1 H2.1 H2.2 H2.3 ECL1 H3.1 H3.2 H8.2

... = 28H1.1 H1.2 H1.3 ICL1 H2.1 H2.2 H2.3 ECL1 H3.1 H3.2 H8.2
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...

Evaluate candidate
feature subset

Start with original feature set of size n=29

Iteration 1. Generate all possible feature subsets of size n – 1=28.

... = 27H1.1 H1.3 ICL1 H2.1 H2.2 H2.3 ECL1 H3.1 H3.2 H8.2

Iteration 2. (Suppose Subset 2 corresponded to the highest evaluation score.)
Generate all possible feature subsets of size (n – 1) – 1 =27.

Subset 1

Subset 2

Subset 28

...

Remove the feature that is absent from the subset with the highest evaluation score.
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... = 27H1.1 H1.3 ICL1 H2.1 H2.2 H2.3 ECL1 H3.1 H3.2 H8.2

...
... = 27H1.1 H1.3 ICL1 H2.1 H2.2 H2.3 ECL1 H3.1 H3.2 H8.2

Repeat steps 3 and 4 until the feature subset contains only single feature.

FIgure xx. Illustration of backward-mode sequential feature selection for identifying feature 
subsets that maximize the performance of predictive models. In this study, the candidate 
feature subsets were evaluated using leave-one-out cross-validation and the out-of-bag 
bootstrap method with a 3-nearest neighbor classifier. The evaluation score was measured 
as the classification accuracy of the classifier.

Evaluate candidate
feature subset

Evaluate candidate
feature subset

Evaluate candidate
feature subset

Evaluate candidate
feature subset

Evaluate candidate
feature subset

5 Considering all iterations 1 ... n – 1, the subset with the highest evaluation score is selected as 
the final feature subset. In case of a tie, the smallest feature subset is selected.

(Given an initial feature set of size n, there are n – 1 iterations in total.)

Sequential Backward Selection (2)

... = 29H1.1 H1.2 H1.3 ICL1 H2.1 H2.2 H2.3 ECL1 H3.1 H3.2 H8.2
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Evaluate candidate
feature subset

Start with original feature set of size n=29

Iteration 1. Generate all possible feature subsets of size n – 1=28.

... = 27H1.1 H1.3 ICL1 H2.1 H2.2 H2.3 ECL1 H3.1 H3.2 H8.2

Iteration 2. (Suppose Subset 2 corresponded to the highest evaluation score.)
Generate all possible feature subsets of size (n – 1) – 1 =27.

Subset 1

Subset 2

Subset 28

...

Remove the feature that is absent from the subset with the highest evaluation score.
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... = 27H1.1 H1.3 ICL1 H2.1 H2.2 H2.3 ECL1 H3.1 H3.2 H8.2

...
... = 27H1.1 H1.3 ICL1 H2.1 H2.2 H2.3 ECL1 H3.1 H3.2 H8.2

Repeat steps 3 and 4 until the feature subset contains only single feature.

FIgure xx. Illustration of backward-mode sequential feature selection for identifying feature 
subsets that maximize the performance of predictive models. In this study, the candidate 
feature subsets were evaluated using leave-one-out cross-validation and the out-of-bag 
bootstrap method with a 3-nearest neighbor classifier. The evaluation score was measured 
as the classification accuracy of the classifier.

Evaluate candidate
feature subset

Evaluate candidate
feature subset

Evaluate candidate
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Evaluate candidate
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Evaluate candidate
feature subset

5 Considering all iterations 1 ... n – 1, the subset with the highest evaluation score is selected as 
the final feature subset. In case of a tie, the smallest feature subset is selected.

(Given an initial feature set of size n, there are n – 1 iterations in total.)
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Different Flavors of  
Sequential Feature Selection

Sequential Backward Selection

Sequential Forward Selection

Sequential Floating Forward Selection

Sequential Floating Backward Selection
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Sequential Forward Selection

1 2 3 4

Original feature set

1

2

3

4

Round 1

train classifier get performance

train classifier get performance

train classifier get performance

train classifier get performance

select 
best 

feature
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Sequential Forward Selection

1 2 3 4

Original feature set

1

2

3

4

Round 1

train classifier get performance

train classifier get performance

train classifier get performance

train classifier get performance

Round 2

1

3

4

train classifier get performance

train classifier get performance

train classifier get performance

select 
best 

feature

2

2

2

2

select 
best 

feature
...
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Pudil, P., Novovičová, J., & Kittler, J. (1994). "Floating search methods in feature selection." Pattern recognition letters 
15.11 (1994): 1119-1125.
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When To Use Forward/Backward Selection
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Different Flavors of  
Sequential Feature Selection

Sequential Backward Selection

Sequential Forward Selection

Sequential Floating Forward Selection

Sequential Floating Backward Selection
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Sequential Floating Forward Selection (1)

1 2 3 4

Original feature set

After Round 4

2 3

Regular Round 5

train classifier get performance

5 6

1 4

2 3 1 4

2 3 1 4

5

6 train classifier get performance

For reference; no floating selection here
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Sequential Floating Forward Selection (1)

Floating Round 5

train classifier get performance2 3 1 4

2 3 1 4

2 3 1 4

2 3 1 4

train classifier get performance

train classifier get performance

train classifier get performance

1 2 3 4

Original feature set

After Round 4

2 3

5 6

1 4

Remove feature if 
it improves 

performance

Regular Round 5

train classifier get performance2 3 1 4

2 3 1 4

5

6 train classifier get performance
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Different Flavors of  
Sequential Feature Selection

Sequential Backward Selection

Sequential Forward Selection

Sequential Floating Forward Selection

Sequential Floating Backward Selection
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Ferri, F. J., Pudil P., Hatef, M., Kittler, J. (1994). "Comparative study of techniques for large-scale feature selection." 
Pattern Recognition in Practice IV : 403-413.
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http://rasbt.github.io/mlxtend/user_guide/feature_selection/SequentialFeatureSelector/

http://rasbt.github.io/mlxtend/user_guide/feature_selection/SequentialFeatureSelector/
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1. Different categories of feature selection

2. Filter methods

3. Embedded methods


3.1.  L1-regularized logistic regression

3.2.  Random forest feature importance


4. Wrapper methods

4.1.  Recursive feature elimination

4.2.  Permutation importance

4.3.  Permutation importance code example

4.4.  Sequential feature selection

4.5.  Sequential feature selection code example


