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Model Eval Lectures

Basics

Bias and Variance

Overfitting and Underfitting

Holdout method

Confidence Intervals

Resampling methods
Repeated holdout

Empirical confidence intervals

Cross-Validation

Hyperparameter tuning

Model selection

Algorithm Selection

Statistical Tests

Evaluation Metrics

This Lecture

Overview
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Performance
estimation

Model selection
(hyperparameter optimization)
and performance estimation

Large dataset

▪ 2-way holdout method 
        (train/test split)
▪ Confidence interval via 

        normal approximation

Small dataset

▪ 3-way holdout method
        (train/validation/test split)

▪ (Repeated) k-fold cross-validation
        without independent test set
▪ Leave-one-out cross-validation

        without independent test set
▪ Confidence interval via 

        0.632(+) bootstrap

Model & algorithm 
comparison

▪ Multiple independent 
        training sets + test sets 
        (algorithm comparison, AC)

▪ McNemar test 
        (model comparison, MC)
▪ Cochran’s Q + McNemar test 

(MC)

▪ Combined 5x2cv F test (AC)
▪ Nested cross-validation (AC)

Large dataset

Small dataset

Large dataset

Small dataset

▪ (Repeated) k-fold cross-validation
        with independent test set
▪ Leave-one-out cross-validation

        with independent test set

This work by Sebastian Raschka is licensed under a
Creative Commons Attribution 4.0 International License.

These are my

personal recommendations;


MC = model comparison,

AC = algorithm comparison;


Terms that are still unfamiliar 

(McNemar's test, 5x2cv F test, 
etc.) will be covered next lecture.
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What are 
Hyperparameters?
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Hyperparameters
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class sklearn.ensemble.HistGradientBoostingClassifier(loss='auto', *, 
learning_rate=0.1, max_iter=100, max_leaf_nodes=31, max_depth=None, 
min_samples_leaf=20, l2_regularization=0.0, max_bins=255, monotonic_cst=None, 
warm_start=False, early_stopping='auto', scoring='loss', validation_fraction=0.1, 
n_iter_no_change=10, tol=1e-07, verbose=0, random_state=None)

class sklearn.tree.DecisionTreeClassifier(*, criterion='gini', splitter='best', 
max_depth=None, min_samples_split=2, min_samples_leaf=1, 
min_weight_fraction_leaf=0.0, max_features=None, random_state=None, 
max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, 
class_weight=None, presort='deprecated', ccp_alpha=0.0)
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parametric model: logistic regression

Hyperparameter

Hyperparameters
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3-Way Holdout
instead of "regular" holdout to avoid "data 
leakage" during hyperparameter 
optimization

2
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Main points why we evaluate the predictive 
performance of a model: 

1. Want to estimate the generalization performance, the 
predictive performance of our model on future (unseen) data.


2. Want to increase the predictive performance by tweaking the 
learning algorithm and selecting the best performing model 
from a given hypothesis space.


3. Want to identify the ML algorithm that is best-suited for the 
problem at hand; thus, we want to compare different 
algorithms, selecting the best-performing one as well as the 
best performing model from the algorithm’s hypothesis space.
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k-Fold Cross-Validation 
Part 1

Model Evaluation
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k-Fold Cross-Validation
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k-Fold Cross-Validation

- non-overlapping validation folds; utilizes all data for testing

- overlapping training folds

- some variance estimate from different training sets, (but no unbiased estimate)

- more pessimistic for small k because we withhold data from fitting
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k-Fold CV special cases: k=2 & k=n 
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k-Fold CV special cases: k=2 & k=n 
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k-Fold Cross-Validation

"[...] where available sample sizes are modest, holding back 
compounds for model testing is ill-advised. This 

fragmentation of the sample harms the calibration and does 
not give a trustworthy assessment of fit anyway. It is better 
to use all data for the calibration step and check the fit by 
cross-validation, making sure that the cross-validation is 

carried out correctly. [...] The only motivation to rely on the 
holdout sample rather than cross-validation would be if 

there was reason to think the cross-validation not 
trustworthy -- biased or highly variable. But neither 

theoretical results nor the empiric results sketched here give 
any reason to disbelieve the cross-validation results." [1]

1. Hawkins, D. M., Basak, S. C., & Mills, D. (2003). Assessing model fit by cross-validation. Journal of chemical 
information and computer sciences, 43(2), 579-586.
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LOOCV vs Holdout

The reported "mean" refers to the averaged difference between the true coefficients 
of determination (R2) and the coefficients obtained via LOOCV (here called q2) after 
repeating this procedure on multiple, different 100-example training sets

Sebastian Raschka STAT479 FS18. L10: Cross Validation Page 10

Table 1: Summary of the findings from the LOOCV vs. holdout comparison study conducted by
Hawkins and others Douglas M Hawkins, Subhash C Basak, and Denise Mills. “Assessing model
fit by cross-validation”. In: Journal of Chemical Information and Computer Sciences 43.2 (2003),
pp. 579–586. See text for details.

Experiment Mean Standard deviation
True R2 — q2 0.010 0.149
True R2 — hold 50 0.028 0.184
True R2 — hold 20 0.055 0.305
True R2 — hold 10 0.123 0.504

sets and averaging the results. In rows 2-4, the researchers used the holdout method for
fitting models to the 100-example training sets, and they evaluated the performances on
holdout sets of sizes 10, 20, and 50 samples. Each experiment was repeated 75 times, and
the mean column shows the average di↵erence between the estimated R2 and the true R2

values. As we can see, the estimates obtained via LOOCV (q2) are the closest to the true R2

on average. The estimates obtained from the 50-example test set via the holdout method
are also passable, though. Based on these particular experiments, we may agree with the
researchers’ conclusion:

Taking the third of these points, if you have 150 or more compounds available,
then you can certainly make a random split into 100 for calibration and 50 or
more for testing. However it is hard to see why you would want to do this.

Douglas M Hawkins, Subhash C Basak, and Denise Mills. “Assessing model
fit by cross-validation”. In: Journal of Chemical Information and Computer

Sciences 43.2 (2003), pp. 579–586

One reason why we may prefer the holdout method may be concerns about computational
e�ciency, if the dataset is su�ciently large. As a rule of thumb, we can say that the
pessimistic bias and large variance concerns are less problematic the larger the dataset.
Moreover, it is not uncommon to repeat the k-fold cross-validation procedure with di↵erent
random seeds in hope to obtain a ”more robust” estimate. For instance, if we repeated a
5-fold cross-validation run 100 times, we would compute the performance estimate for 500
test folds report the cross-validation performance as the arithmetic mean of these 500 folds.
(Although this is commonly done in practice, we note that the test folds are now overlap-
ping.) However, there is no point in repeating LOOCV, since LOOCV always produces the
same splits.

10.6 K-fold Cross-Validation and the Bias-Variance Trade-o↵

Based on the study by Hawkins and others Hawkins, Basak, and Mills, “Assessing model fit
by cross-validation” discussed in Section 10.5 we may prefer LOOCV over single train/test
splits via the holdout method for small and moderately sized datasets. In addition, we
can think of the LOOCV estimate as being approximately unbiased: the pessimistic bias of
LOOCV (k = n) is intuitively lower compared k < n-fold cross-validation, since almost all
(for instance, n� 1) training samples are available for model fitting.

While LOOCV is almost unbiased, one downside of using LOOCV over k-fold cross-validation
with k < n is the large variance of the LOOCV estimate. First, we have to note that LOOCV
is defect when using a discontinuous loss-function such as the 0-1 loss in classification or
even in continuous loss functions such as the mean-squared-error. It is said that LOOCV
”[LOOCV has] high variance because the test set only contains one sample” Pang-Ning Tan,
Michael Steinbach, and Vipin Kumar. In Introduction to Data Mining. Boston: Pearson

1. Hawkins, D. M., Basak, S. C., & Mills, D. (2003). Assessing model fit by cross-validation. Journal of Chemical 
Information and Computer Sciences, 43(2), 579-586.

(why not changing the random seed in LOOCV?)

In rows 2-4, the researchers used the holdout method for fitting models to the 100-
example training sets, and they evaluated the performances on holdout sets of sizes 
10, 20, and 50 samples. Each experiment was repeated 75 times, and the mean 
column shows the average difference between the estimated R2 and the true R2 
values.
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Problems with LOOCV for Classification

• While LOOCV is almost unbiased, one downside of using 
LOOCV over k-fold cross-validation with k < n is the large 
variance of the LOOCV estimate. 


• LOOCV is "defect" when using a discontinuous loss-function 
such as the 0-1 loss in classification or even in continuous loss 
functions such as the mean-squared-error. 


• LOOCV has high variance because the test set only contains 
one example.
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Problems with LOOCV for 
Classification

"With k=n, the cross-validation estimator is approximately 
unbiased for the true (expected) prediction error, but can have 

high variance because the n "training sets" are so similar to one 
another." [1]

[1] Friedman, J., Hastie, T., & Tibshirani, R. (2001). The elements of statistical learning (Vol. 1, No. 10). New York, NY, USA: 
Springer series in statistics.
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Empirical Study and Recommendation
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Kohavi, R. (1995, August). A study of cross-validation and bootstrap for accuracy estimation and model selection. In Ijcai (Vol. 14, No. 2, pp. 1137-1145).
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• The bias of the performance estimator ____creases  
(more accurate / more variable?)


• The variance of the performance estimators ____creases  
(more accurate / more variable?)


• The computational cost ____creases  
(more iterations, larger training sets during fitting)


• Exception: decreasing the value of k in k-fold cross-validation to 
small values (for example, 2 or 3) also  ____creases the variance 
on small datasets due to random sampling effects

Summarizing k-Fold CV for  
Model Evaluation

What happens if we increase k?
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1. Lecture Overview

2. Hyperparameters

3. Cross-validation for model evaluation

4. CV for model evaluation code examples 
5. Cross-validation for model selection

6. CV for model selection code examples

7. The 1-standard error method

8. 1std err. code examples
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https://github.com/rasbt/stat451-machine-learning-fs20/
blob/master/L10/code/10_04_kfold-eval.ipynb

https://github.com/rasbt/stat451-machine-learning-fs20/blob/master/L10/code/10_04_kfold-eval.ipynb
https://github.com/rasbt/stat451-machine-learning-fs20/blob/master/L10/code/10_04_kfold-eval.ipynb
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k-Fold Cross-Validation Part 2
Model Selection
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Grid Search

• Exhaustive search

• Thorough but expensive

• Specify grid for parameter search

• Can be run in parallel

• Can suffer from poor coverage

• Often run with multiple resolutions 

Bergstra, J., & Bengio, Y. (2012). Random search for hyper-
parameter optimization. The Journal of Machine Learning 
Research, 13(1), 281-305.
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Randomized Search

Bergstra, J., & Bengio, Y. (2012). Random search for hyper-parameter optimization. The Journal of Machine Learning Research, 
13(1), 281-305.

• Search based on a time budget

• Preferred if there are many hyperparameters (e.g. > 3 distinct ones)

• specify distribution for parameter search

• can be run in parallel
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2. Hyperparameters

3. Cross-validation for model evaluation

4. CV for model evaluation code examples

5. Cross-validation for model selection

6. CV for model selection code examples 
7. The 1-standard error method

8. 1std err. code examples
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https://github.com/rasbt/stat451-machine-learning-fs20/
blob/master/L10/code/10_06_kfold-sele.ipynb

https://github.com/rasbt/stat451-machine-learning-fs20/blob/master/L10/code/10_06_kfold-sele.ipynb
https://github.com/rasbt/stat451-machine-learning-fs20/blob/master/L10/code/10_06_kfold-sele.ipynb
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7. The 1-standard error method 
8. 1std err. code examples
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The Law of Parsimony

Occam's Razor: "Among competing hypotheses, the 
one with the fewest assumptions should be selected."

https://en.wikipedia.org/wiki/Occam%27s_razor

https://en.wikipedia.org/wiki/Occam%27s_razor
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The Law of Parsimony

"Simpler models are more accurate. This belief is sometimes 
equated with Occam's razor, but the razor only says that 

simpler explanations are preferable, not why. They're 
preferable because they're easier to understand, remember, 

and reason with. Sometimes the simplest hypothesis 
consistent with the data is less accurate for prediction than a 
more complicated one. Some of the most powerful learning 

algorithms output models that seem gratuitously elaborate -- 
sometimes even continuing to add to them after they've 
perfectly fit the data -- but that's how they beat the less 

powerful ones."

https://medium.com/@pedromdd/ten-myths-about-machine-learning-d888b48334a3
Pedro Domingos: "Ten Myths about Machine Learning"
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The 1-standard error method

"... However, if two models perform equally well, the simpler

one seems more likely (among other advantages)"

https://medium.com/@pedromdd/ten-myths-about-machine-learning-d888b48334a3
Pedro Domingos: "Ten Myths about Machine Learning"
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1. Consider the numerically optimal estimate and its 
standard error.


2. Select the model whose performance is within one 
standard error of the value obtained in step 1.

"... However, if two models perform equally well, the simpler

one seems more likely (among other advantages)"

Pedro Domingos: "Ten Myths about Machine Learning"

The 1-standard error method
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The 1-standard error method

(Some toy data I generated via scikit-learn)
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The 1-standard error method
Consider a RBF-kernel SVM, where gamma 
controls the influence of the training points


(don't need to know the details, yet)

K(xi, xj) = exp(−γ | |xi − xj | |2 ), γ > 0.Gaussian/RBF-kernel:
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The 1-standard error method

= 0.1

= 0.001

= 10.0

(note: here I used 10-fold CV)

Which parameter would you select?
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The 1-standard error method

= 0.1

= 0.001

= 10.0

(note: here I used 10-fold CV)

Which parameter would you select?
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https://github.com/rasbt/stat451-machine-learning-fs20/
blob/master/L10/code/10_08_1stderr.ipynb


https://github.com/rasbt/stat451-machine-learning-fs20/blob/master/L10/code/10_08_1stderr.ipynb
https://github.com/rasbt/stat451-machine-learning-fs20/blob/master/L10/code/10_08_1stderr.ipynb
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