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Performance
estimation

Large dataset

2-way holdout method
(train/test split)

Confidence interval via
normal approximation

Small dataset
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Model selection
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What are
Hyperparameters?



Hyperparameters

nonparametric model: k-nearest neighbors
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class sklearn.tree.DecisionTreeClassifier(*, criterion="'gini', splitter="'best’,
max_depth=None, min_samples_split=2, min_samples_leaf=1,
min_weight_fraction_leaf=0.0, max_features=None, random_state=None,
max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None,
class_weight=None, presort="deprecated', ccp_alpha=0.0)

class sklearn.ensemble.HistGradientBoostingClassifier(/oss='auto’, *,
learning_rate=0.1, max_iter=100, max_leaf_nodes=31, max_depth=None,
min_samples_leaf=20, I12_reqularization=0.0, max_bins=255, monotonic_cst=None,
warm_start=False, early_stopping="auto', scoring="'loss’, validation_fraction=0.1,
n_iter_no_change=10, tol=1e-07, verbose=0, random_state=None)
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Hyperparameters

parametric model: logistic regression
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Main points why we evaluate the predictive
performance of a model:

1. Want to estimate the generalization performance, the
predictive performance of our model on future (unseen) data.

2. Want to increase the predictive performance by tweaking the
learning algorithm and selecting the best performing model
from a given hypothesis space.

3. Want to identify the ML algorithm that is best-suited for the
problem at hand; thus, we want to compare different
algorithms, selecting the best-performing one as well as the
best performing model from the algorithm’s hypothesis space.
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k-Fold Cross-Validation
Part 1

Model Evaluation



k-Fold Cross-Validation
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k-Fold Cross-Validation

non-overlapping validation folds; utilizes all data for testing

overlapping training folds

some variance estimate from different training sets, (but no unbiased estimate)
more pessimistic for small k because we withhold data from fitting
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k-Fold CV special cases: k=2 & k=n
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k-Fold CV special cases: k=2 & k=n
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k-Fold Cross-Validation

"[...] where available sample sizes are modest, holding back
compounds for model testing is ill-advised. This
fragmentation of the sample harms the calibration and does
not give a trustworthy assessment of fit anyway. It is better
to use all data for the calibration step and check the fit by
cross-validation, making sure that the cross-validation is
carried out correctly. [...] The only motivation to rely on the
holdout sample rather than cross-validation would be if
there was reason to think the cross-validation not
trustworthy -- biased or highly variable. But neither
theoretical results nor the empiric results sketched here give
any reason to disbelieve the cross-validation results." [1]

1. Hawkins, D. M., Basak, S. C., & Mills, D. (2003). Assessing model fit by cross-validation. Journal of chemical
information and computer sciences, 43(2), 579-586.
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LOOCV vs Holdout

Experiment Mean Standard deviation
True R?> — ¢° 0.010 0.149
True R? — hold 50 0.028 0.184
True R? — hold 20 0.055 0.305
True R? — hold 10 0.123 0.504

1. Hawkins, D. M., Basak, S. C., & Mills, D. (2003). Assessing model fit by cross-validation. Journal of Chemical
Information and Computer Sciences, 43(2), 579-586.

The reported "mean” refers to the averaged difference between the true coefficients
of determination (R2) and the coefficients obtained via LOOCYV (here called g2) after
repeating this procedure on multiple, different 100-example training sets

In rows 2-4, the researchers used the holdout method for fitting models to the 100-
example training sets, and they evaluated the performances on holdout sets of sizes
10, 20, and 50 samples. Each experiment was repeated 75 times, and the mean
column shows the average difference between the estimated R2 and the true Rz
values.

(why not changing the random seed in LOOCV?)
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Problems with LOOCYV for Classification

 While LOOCYV is almost unbiased, one downside of using
LOOCYV over k-fold cross-validation with k < n is the large
variance of the LOOCV estimate.

e LOOCV is "defect" when using a discontinuous loss-function
such as the 0-1 loss in classification or even in continuous loss
functions such as the mean-squared-error.

e LOOCYV has high variance because the test set only contains
one example.
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Problems with LOOCV for
Classification

"With k=n, the cross-validation estimator is approximately
unbiased for the true (expected) prediction error, but can have
high variance because the n "training sets" are so similar to one
another.” [1]

[1] Friedman, J., Hastie, T., & Tibshirani, R. (2001). The elements of statistical learning (Vol. 1, No. 10). New York, NY, USA:
Springer series in statistics.
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Empirical Study and Recommendation
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Kohavi, R. (1995, August). A study of cross-validation and bootstrap for accuracy estimation and model selection. In Jjcai (Vol. 14, No. 2, pp. 1137-1145).
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Summarizing k-Fold CV for
Model Evaluation

What happens if we increase k?

* The bias of the performance estimator creases
(more accurate / more variable?)

* The variance of the performance estimators creases
(more accurate / more variable?)

* The computational cost creases
(more iterations, larger training sets during fitting)

* Exception: decreasing the value of k in k-fold cross-validation to
small values (for example, 2 or 3) also creases the variance
on small datasets due to random sampling effects
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https://github.com/rasbt/stat451-machine-learning-fs20/
blob/master/LL10/code/10 04 kfold-eval.ipynb
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k-Fold Cross-Validation Part 2
Model Selection




Training Data

Training Labels

a Data
Labels

Test Data

Test Labels

— Performance

H
values
Training Data Learning
Hyperparameter . Perf
values Algorlthm errormance
Training Labels
Hyperparameter
values

— Performance

Best
Hyperparameter
Values

Learning
Algorithm

Training Data
-
Training Labels

Prediction

Test Data

Performance

Test Labels

Best
Hyperparameter
Values

Data
—p
Labels

Learning
Algorithm




Training Data

\

Data

Training Labels

Labels

Test Data

H t
(yperparame er )
values

Training Data

Test Labels

Training Labels

H
(yperparameter )
values

Training Data

values Algorithm

Learning
~ Gyperparameter

Best
Hyperparameter

Values

Training Labels

Learning
Algorithm

— Performance

—— Performance

— Performance

29



Test Data

Prediction

Test Labels

— Performance

Data

Best
Hyperparameter
Values

Labels

Learning
Algorithm

30



Grid Search

Exhaustive search

Thorough but expensive

Specify grid for parameter search
Can be run in parallel

Can suffer from poor coverage
Often run with multiple resolutions

Grid Layout

Unimportant parameter

Important parameter

Bergstra, J., & Bengio, Y. (2012). Random search for hyper-
parameter optimization. The Journal of Machine Learning
Research, 13(1), 281-305.
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Randomized Search

Search based on a time budget

Preferred if there are many hyperparameters (e.g. > 3 distinct ones)
specify distribution for parameter search

can be run in parallel
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Figure 1: Grid and random search of nine trials for optimizing a function f(x,y) = g(x) + h(y) =
g(x) with low effective dimensionality. Above each square g(x) is shown in green, and
left of each square h(y) is shown in yellow. With grid search, nine trials only test g(x)
in three distinct places. With random search, all nine trials explore distinct values of
g. This failure of grid search is the rule rather than the exception in high dimensional
hyper-parameter optimization.

Bergstra, J., & Bengio, Y. (2012). Random search for hyper-parameter optimization. The Journal of Machine Learning Research,
13(1), 281-305.
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https://github.com/rasbt/stat451-machine-learning-fs20/
blob/master/L10/code/10 06 kfold-sele.ipynb
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https://github.com/rasbt/stat451-machine-learning-fs20/blob/master/L10/code/10_06_kfold-sele.ipynb
https://github.com/rasbt/stat451-machine-learning-fs20/blob/master/L10/code/10_06_kfold-sele.ipynb
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The Law of Parsimony

Occam's Razor: "Among competing hypotheses, the
one with the fewest assumptions should be selected.”

https://en.wikipedia.org/wiki/Occam%27s razor

36


https://en.wikipedia.org/wiki/Occam%27s_razor

The Law of Parsimony

"Simpler models are more accurate. This belief is sometimes
equated with Occam's razor, but the razor only says that
simpler explanations are preferable, not why. They're
preferable because they're easier to understand, remember,
and reason with. Sometimes the simplest hypothesis
consistent with the data is less accurate for prediction than a
more complicated one. Some of the most powerful learning
algorithms output models that seem gratuitously elaborate --
sometimes even continuing to add to them after they've
perfectly fit the data -- but that's how they beat the less
powerful ones.”

Pedro Domingos: "Ten Myths about Machine Learning"
https://medium.com/@pedromdd/ten-myths-about-machine-learning-d888b48334a3
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The 1-standard error method

"... However, if two models perform equally well, the simpler
one seems more likely (among other advantages)”

Pedro Domingos: "Ten Myths about Machine Learning"
https://medium.com/@pedromdd/ten-myths-about-machine-learning-d888b48334a3
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The 1-standard error method

"... However, if two models perform equally well, the simpler
one seems more likely (among other advantages)”

Pedro Domingos: "Ten Myths about Machine Learning"

1. Consider the numerically optimal estimate and its
standard error.

2. Select the model whose performance is within one
standard error of the value obtained in step 1.
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The 1-standard error method
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(Some toy data | generated via scikit-learn)
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The 1-standard error method

Consider a RBF-kernel SVM, where gamma
controls the influence of the training points

(don't need to know the details, yet)

Gaussian/RBF-kernel: K(x;,x) = exp(—y||x;—x[1*),7 > 0.
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The 1-standard error method

Which parameter would you select?
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(note: here | used 10-fold CV)
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The 1-standard error method

Which parameter would you select?
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https://github.com/rasbt/stat451-machine-learning-fs20/

blob/master/L10/code/10 08 1stderr.ipynb
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https://github.com/rasbt/stat451-machine-learning-fs20/blob/master/L10/code/10_08_1stderr.ipynb
https://github.com/rasbt/stat451-machine-learning-fs20/blob/master/L10/code/10_08_1stderr.ipynb
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