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Main points why we evaluate the predictive
performance of a model:

1. Want to estimate the generalization performance,
the predictive performance of our model on future
(unseen) data.

2. Want to increase the predictive performance by
tweaking the learning algorithm and selecting the
best performing model from a given hypothesis
space.

3. Want to identify the ML algorithm that is best-suited
for the problem at hand; thus, we want to compare
different algorithms, selecting the best-performing
one as well as the best performing model from the
algorithm’s hypothesis space.

Sebastian Raschka STAT 451: Intro to ML Lecture 9: Model Evaluation 2



Some unfortunate facts about
test sets

* Training set error is an optimistically
biased estimator of the generalization
error

e Jest set error is an unbiased estimator
of the generalization error (test sample
and hypothesis chosen independently)

e (In practice, the test set error is
actually pessimistically biased; why?)
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test sets

* Training set error is an optimistically
biased estimator of the generalization
error

e Jest set error is an unbiased estimator
of the generalization error (test sample
and hypothesis chosen independently)

e (in practice, the test set error is
actually pessimistically biased; why?)
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raining Evaluation

Holdout Method
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Often, using the holdout
method is not a good idea ...
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Often using the holdout
method is not a good idea ...

Test set error as generalization error estimator is imistically
biased (not so bad)

But it does not account for variance in the training data (bad)
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Why Is pessimistic bias not
'so bad"?

Suppose we have the following ranking based on accuracy:
h21 /5% > h12 70% > h3Z 650/0,
we would still rank them the same way if we add a 109% pessimistic bias:

h21 65% > h1Z 60% > h3Z 55%.
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Test set errors can also be
optimistically biased



Do CIFAR-10 Classifiers Generalize to CIFAR-107

Benjamin Recht Rebecca Roelofs Ludwig Schmidt Vaishaal Shankar
UC Berkeley UC Berkeley MIT UC Berkeley

June 4, 2018

Abstract

Machine learning is currently dominated by largely experimental work focused on improve-
ments in a few key tasks. However, the impressive accuracy numbers of the best performing
models are questionable because the same test sets have been used to select these models
for multiple years now. To understand the danger of overfitting, we measure the accuracy of
CIFAR-10 classifiers by creating a new test set of truly unseen images. Although we ensure that
the new test set is as close to the original data distribution as possible, we find a large drop
in accuracy (4% to 10%) for a broad range of deep learning models. Yet, more recent models
with higher original accuracy show a smaller drop and better overall performance, indicating
that this drop is likely not due to overfitting based on adaptivity. Instead, we view our results
as evidence that current accuracy numbers are brittle and susceptible to even minute natural

variations in the data distribution.

Recht, B., Roelofs, R., Schmidt, L., & Shankar, V. (2018). Do CIFAR-10 classifiers generalize to CIFAR-107?. arXiv preprint arXiv:1806.00451.

https://arxiv.org/abs/1806.00451
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The CIFAR-10 dataset

CIFAR -> Canadian Institute For Advanced Research

* 60,000 32x32 color images
In 10 classes

* 6,000 images per class

50,000 training images and
10,000 test images
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https://www.cs.toronto.edu/~kriz/cifar.ntml
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(a) Test Set A (b) Test Set B

Figure 1: Class-balanced random draws from the new and original test sets.!

Recht, B., Roelofs, R., Schmidt, L., & Shankar, V. (2018). Do CIFAR-10 classifiers generalize to CIFAR-107. arXiv preprint arXiv:1806.00451.
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Figure 2: Model accuracy on new test set vs. model accuracy on original test set.

Recht, B., Roelofs, R., Schmidt, L., & Shankar, V. (2018). Do CIFAR-10 classifiers generalize to CIFAR-107?. arXiv preprint arXiv:1806.00451.
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Table 1: Model accuracy on the original CIFAR-10 test set and the new test set, with the gap
reported as the difference between the two accuracies. A Rank is the relative difference in the
ranking from the original test set to the new test set. For example, ARank = —2 means a model
dropped in the rankings by two positions on the new test set.

Original Accuracy New Accuracy Gap A Rank

shake_shake_64d_cutout (3, 4] 97.1 [96.8, 97.4] 93.0 [91.8, 94.0] 4.1 0
shake_shake_96d [4] 97.1 [96.7, 97.4]  91.9 [90.7, 93.1] 5.1 -2
shake_shake_64d [4] 97.0 [96.6, 97.3] 91.4 [90.1, 92.6] 5.6 -2
wide_resnet_28_10_cutout [3, 22] 97.0 [96.6, 97.3]  92.0 [90.7, 93.1] 5 +1
shake_drop [21] 96.9 [96.5, 97.2] 92.3 [91.0,93.4] 4.6 +3
shake_shake_32d [4] 96.6 [96.2, 96.9]  89.8 [88.4, 91.1] 6.8 -2
darc [11] 96.6 [96.2, 96.9] 89.5 [88.1,90.8] 7.1 -4
resnext_29_4x64d [20] 96.4 [96.0,96.7] 89.6 [88.2, 90.9] 6.8 -2
pyramidnet_basic_110_270 [6] 96.3 [96.0, 96.7] 90.5 [89.1,91.7] 5.9 +3
resnext_29_8x64d [20] 96.2 [95.8, 96.6]  90.0 [88.6, 91.2] 6.3 +3
wide_resnet_28_10 [22] 95.9 [95.5, 96.3] 89.7 [88.3,91.00 6.2 S52
pyramidnet_basic_110_84 [6] 95.7 195.3, 96.1]  89.3 [87.8, 90.6] 6.5 0
densenet_BC_100_12 [10] 95.5 [95.1, 95.9] 87.6 [86.1, 89.0] 8 -2
neural_architecture_search [23] 95.4 [95.0, 95.8]  88.8 [87.4,90.2] 6.6 +1
wide_resnet_tf [22] 95.0 [94.6, 95.4] 88.5[87.0,89.9] 6.5 +1
resnet_v2_bottleneck_164 [§] 94.2 [93.7, 94.6]  85.9 [84.3,87.4] 8.3 -1
vggl6_keras [14, 18] 93.6 [93.1, 94.1] 85.3 [83 6, 86.8] 8.3 -1
resnet_basic_110 [7] 93.5 [93.0, 93.9] 85.2[83.5,86.7] 8.3 -1
resnet_v2_basic_110 [§] 93.4 [92.9, 93.9] 86.5 [849 88.00 6.9 +3
resnet_basic_56 [7] 93.3 [92.8, 93.8]  85.0 [83.3, 86.5] 8.3 0
resnet_basic_44 [7] 93.0 [92.5, 93.5] 84.2 [82.6, 85.8] 8.8 -3
vgg_15_BN_64 [14, 18| 93.0 [92.5, 93.5]  84.9 [83.2,86.4] 8.1 +1
resnet_preact_tf [7] 92.7 [92.2, 93.2] 84.4 [82.7,85.9] 8.3 0
resnet_basic_32 [7] 92.5 [92.0, 93.0] 84.9 [83.2,86.4] 7.7 +3
cudaconvnet [13] 88.5 [87.9, 89.2] T77.5 [75.7, 79.3] 11 0
random_features_256k_aug [2] 85.6 [84.9, 86.3]  73.1 [71.1, 75.1] 12 0
random_features_32k_aug [2] 85.0 [84.3, 85.7] 71.9 [69.9, 73.9] 13 0
random_features_256k [2] 84.2 [83.5, 84.9]  69.9 [67.8, 71.9] 14 0
random_features_32k [2] 83.3 [82.6, 84.0] 67.9 [65.9, 70.0] 15 -1
alexnet_tf 82.0 [81.2,82.7]  68.9 [66.8, 70.9] 13 +1

Recht, B., Roelofs, R., Schmidt, L., & Shankar, V. (2018). Do CIFAR-10 classifiers generalize to CIFAR-107?. arXiv preprint arXiv:1806.00451.
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Often using the holdout method
IS not a good idea ...

o TJest set error as generalization error estimator is
pessimistically biased (not so bad)

* Does not account for variance in the training data (bad)
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Issues with Subsampling (Independence Violation)

Dataset before splitting (n = 150)
0.6 - This work by Sebastian Raschka is licensed und
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Creative Commons Attribution 4.0 International License.
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The Iris dataset consists of 50 Setosa, 50 Versicolor, and 50 Virginica flowers; the flower species are distributed uniformly:
e 33.3% Setosa
e 33.3% Versicolor
* 33.3% Virginia

If our random function assigns 2/3 of the flowers (100) to the training set and 1/3 of the flowers (50) to the test set, it may yield
the following:

* training set = 38 x Setosa, 28 x Versicolor, 34 x Virginica

e testset = 12 x Setosa, 22 x Versicolor, 16 x Virginica

STAT 451: Intro to ML Lecture 9: Model Evaluation 2
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1. Introduction
2. Holdout method for model evaluation
3. Holdout method for model selection

4. Confidence intervals -- normal approximation

5. Resampling & repeated holdout
6. Empirical confidence intervals via Bootstrap

/. The 0.632 and 0.632+ Bootstrap
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Can we use the holdout method
for model selection?



Holdout validation
(hyperparam. tuning)
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1. Introduction
2. Holdout method for model evaluation
3. Holdout method for model selection

4. Confidence intervals -- normal approximation

5. Resampling & repeated holdout
6. Empirical confidence intervals via Bootstrap

/. The 0.632 and 0.632+ Bootstrap
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Binomial distribution

-
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(Image credit: Screenshot from https://en.wikipedia.org/wiki/Binomial distribution )

Sebastian Raschka

Notation
Parameters

Support
pmf
CDF
Mean
Median
Mode
Variance

STAT 451: Intro to ML

B(n, p)

n e Ng — number of trials

p € [0,1] — success probability in each
trial

ke {0, ..., n} — number of successes
(b)) P (1 —p)" "
Ii_p(n—k,1+k)

np

[np] or [np]

[(n+1)p|or [(n+1)p| -1
np(1 — p)

Lecture 9: Model Evaluation 2
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n!

Binomial distribution Pr(k) = —p(1 = p)F.
k'(n—k)!
Coin Flip (Bernoulli Trial) 0-1 Loss
e coin lands on head ("success") * example misclassified (0-1 loss)
e probability of success p * true error ERRg(h) = Pr [f(x) # h(x)]
XED

k .
e — ,estimatorof P e sample (test set) error

n

ERR§(h) =~ % s 8(f(x), h(x))

e mean, number of successes
Hi = np



Binomial distribution Prrk) =

Coin Flip (Bernoulli Trial)

e mean, number of successes
Hi = np

* variance o7 = np(1 —p)

e standard deviation o, = \/np(1 — p)

n!
1 = p).

K —io

0-1 Loss

We are interested in proportions
ERRg=~Y _ 3(f(x),h(x))

o> =p(1 - p)
o =+/p(1 = p)

SE

/ERR{(T — ERRy) \/ ERR(1 — ERR)
n

Jn
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Confidence Intervals

A XX% confidence interval of some parameter p is an

interval that is expected to contain p with probabillity
XX%.”

* the more precise definition is "In an infinite long series of trials in which
repeated samples of n are taken from the same distribution, the 95%
Confidence Interval is calculated using the same method, the proportion of
intervals covering the true parameter p is xx%."
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import matplotlib.pyplot as plt
import numpy as np

np.random.seed(123)
std_norm_sample = np.random.randn(1000000)

plt.hist(std_norm_sample, bins=np.arange(-4, 4, 0.01), density=True)
plt.show()

0.40 4
0.35 1
0.30 1
0.25 1
0.20 1
0.15 1
0.10 A1

0.05 A1

0.00 -

binom_sample = np.random.binomial(n=100, p=0.2, size=1000000)
plt.hist(binom_sample, bins=np.arange(@, 40, 0.5), density=True)
plt.show()

0.200 A

0.175 1

0.150 -

0.125

0.100 -

0.075 -

0.050 -

0.025 A1

0.000 T T . ‘
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Normal Approximation Interval

e | ess tedious than confidence interval for Binomial distribution and hence
often used in (ML) practice for large n

* Rule of thumb: if n larger than 40, the Binomial distribution can be
reasonably approximated by a Normal distribution; and np and n(1 - p)
should be greater than 5

ERR(1 — ERRy)

n

38
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The z constant for different confidence intervals:

e 99%: z=2.58
e 95%:2=1.96
e 90%: z=1.64

Sebastian Raschka STAT 451: Intro to ML Lecture 9: Model Evaluation 2 39



Code

clf.fit(X_train, y_train)
acc_test_na = clf.score(X_test, y_test)
ci_test_na = 1.96 * np.sqrt((acc_test_nax(l-acc_test_na)) / y_test.shapel0])

test_na_lower
test_na_upper

acc_test_na-cli_test_na
acc_test_na+ci_test_na

print(test_na_lower, test_na_upper)

0.8731774862637585 1.0398659919971112

https://github.com/rasbt/stat451-machine-learning-fs20/blob/master/L 09/code/09-eval2-

ci__4-confidence-intervals iris.ipynb

Sebastian Raschka STAT 451: Intro to ML Lecture 9: Model Evaluation 2
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https://github.com/rasbt/stat451-machine-learning-fs20/blob/master/L09/code/09-eval2-ci__4-confidence-intervals_iris.ipynb
https://github.com/rasbt/stat451-machine-learning-fs20/blob/master/L09/code/09-eval2-ci__4-confidence-intervals_iris.ipynb

Later in this lecture we will
construct confidence intervals
using different Bootstrap
Techniques

41



1. Introduction

2. Holdout method for model evaluation

3. Holdout method for model selection

4. Confidence intervals -- normal approximation
5. Resampling & repeated holdout

6. Empirical confidence intervals via Bootstrap

/. The 0.632 and 0.632+ Bootstrap
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Proportionally large test sets increase the pessimistic bias if a
model has not reached its full capacity, yet.

1.00
0.98
0.96

094 o Train

0.92  —a— Test
0.90

0.88
0.86

Accuracy

1000 2000 3000 4000 5000
Training Set Size

e To produce the plot above, | took 500 random samples of each of the ten classes from MNIST

e The sample was then randomly divided into a 3500-example training subset and a test set
(1500 examples) via stratification.

e Even smaller subsets of the 3500-sample training set were produced via randomized,
stratified splits, and | used these subsets to fit softmax classifiers and used the same 1500-
sample test set to evaluate their performances; samples may overlap between these training
subsets.

Code: https://github.com/rasbt/stat451-machine-learning-fs20/blob/master/L09/code/09-eval2-ci 3 pessimistic-bias-in-holdout.ipynb

44


https://github.com/rasbt/stat451-machine-learning-fs20/blob/master/L09/code/09-eval2-ci__3_pessimistic-bias-in-holdout.ipynb

from mlxtend.plotting import plot_learning_curves
import matplotlib.pyplot as plt

from mlxtend.data import iris_data

from mlxtend.preprocessing import shuffle_arrays_unison
from sklearn.neighbors import KNeighborsClassifier
import numpy as np

# Loading some example data

X, y = iris_data()

X, y = shuffle_arrays_unison(arrays=[X, y], random_seed=123)
X_train, X_test = X[:100], X[100:]

y_train, y_test = y[:100], y[100:]

clf = KNeighborsClassifier(n_neighbors=5)

plot_learning_curves(X_train, y_train, X_test, y_test, clf)
plt.show()

Learning Curves

KNeighborsClassifier(algorithm='auto', leaf size=30, metric="minkowski’,
metric_params=None, n_jobs=1, n_neighbors=5, p=2,
weights="'uniform')

== training set

0.12 =g fest set

0.10
0.08
0.06
0.04

0.02

0 20 40 60 80 100
Training set size in percent

Performance (misclassification error)

http://rasbt.github.io/mixtend/user guide/plotting/plot learning curves/

Sebastian Raschka STAT 451: Intro to ML Lecture 9: Model Evaluation 2
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Decreasing the size of the test set brings up another problem:
It may result in a substantial variance increase of our model’s
performance estimate.

28
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©
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(70%) (30%) (70%) (30%)

The reason is that it depends on which instances end up in training set, and which particular instances end up in test set.
Keeping in mind that each time we resample our data, we alter the statistics of the distribution of the sample.

Sebastian Raschka STAT 451: Intro to ML Lecture 9: Model Evaluation 2
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Repeated Holdout: Estimate Model Stability

(also called Monte Carlo Cross-Validation)

Average performance over k repetitions

1 k
ACCan — ; ZACC,
j=1

where ACC; is the accuracy estimate of the jth test set of size m,

I & R
ACC;=1-— ; L(h(xM), fx1M)) .

47



Repeated Holdout: Estimate Model Stability

1.0

0.9

O
o

Accuracy
o
~

0.6

0.5
0

How repeated holdout validation may look like for different training-
test split using the Iris dataset to fit to 3-nearest neighbors

classifiers:

50/50 Train-Test Split 90/10 Train-Test Split

Avg. Acc. 0.95 Avg. Acc. 0.96

lllllllllllllllllll lllllllllllllllllll

10 50 O 40 50
RepeUUon RepeUUon

Left: | performed 50 stratified training/test splits with Right: Here, | repeatedly performed
75 samples in the test and training set each; a K- 90/10 splits, though, so that the test set
nearest neighbors model was fit to the training set consisted of only 15 samples.

and evaluated on the test set in each repetition.

Code: https://github.com/rasbt/stat451-machine-learning-fs20/blob/master/L09/code/09-eval2-ci 2 holdout-and-repeated-sampling.ipynb

Sebastian Raschka STAT 451: Intro to ML Lecture 9: Model Evaluation 2 48


https://archive.ics.uci.edu/ml/datasets/Iris
https://github.com/rasbt/stat451-machine-learning-fs20/blob/master/L09/code/09-eval2-ci__2_holdout-and-repeated-sampling.ipynb

rng = np.random.RandomState(seed=12345)

seeds = np.arange(l0**5)
rng.shuffle(seeds)
seeds = seeds[:50]

pred 2 = []

for 1 in seeds:
X train, X test, y train,

y_test = train test_split(X, y,
test_size=0.5,
random state=i,
stratify=y)

y pred i = clf 1.fit(X_train, y train).predict(X_test)
y pred i acc = np.mean(y test == y pred i)
pred 2.append(y pred i_acc)

pred 2 = np.asarray(pred 2)

print('Average: %.2f%¥%' % (pred_2.mean()*100))

with plt.style.context(('fivethirtyeight')):
plt.bar(range(0, pred 2.shape[0]), pred 2, color='gray', alpha=0.7)

plt.axhline(pred_ 2.max(),
plt.axhline(pred 2.min(),
plt.axhspan(pred 2.min(),
plt.ylim([0, pred 2.max()
plt.xlabel( 'Repetition’)
plt.ylabel( 'Accuracy’)
plt.ylim([0.5, 1.05])
plt.tight layout()

color="k', linewidth=1, linestyle='--")
color="k', linewidth=1, linestyle='--")
pred 2.max(), alpha=0.2, color='steelblue')
+ 0.1])

#plt.savefig('figures/model-eval-iris 0.svg')

plt.show()

Average: 95.41%

0.9 __ERIRRRERARARARARRARARRANE

0 10 20
Repetit

Sebasti

PELLP LRl

30 40 0 Code: https://github.com/rasbt/stat451-machine-learning-fs20/blob/master/
on L09/code/09-eval2-ci 2 holdout-and-repeated-sampling.ipynb
an Raschka STAT 451: Intro to ML Lecture 9: Model Evaluation 2
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https://github.com/rasbt/stat451-machine-learning-fs20/blob/master/L09/code/09-eval2-ci__2_holdout-and-repeated-sampling.ipynb

1. Introduction
2. Holdout method for model evaluation
3. Holdout method for model selection

4. Confidence intervals -- normal approximation

5. Resampling & repeated holdout
6. Empirical confidence intervals via Bootstrap

/. The 0.632 and 0.632+ Bootstrap
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The Bootstrap Method and
Empirical Confidence Intervals

Circa 1900, to pull (oneself) up by (one’s) bootstraps was used figuratively of an
impossible task (Among the “practical questions” at the end of chapter one of
Steele’s “Popular Physics” schoolbook (1888) is, “30. Why can not a man lift himself
by pulling up on his boot-straps?”). By 1916 its meaning expanded to include “better
oneself by rigorous, unaided effort.” The meaning “fixed sequence of instructions to
load the operating system of a computer” (1953) is from the notion of the first-loaded
program pulling itself, and the rest, up by the bootstrap.

(Source: Online Etymology Dictionary) \

”r ' BOOTSTRAP

Source: https://memim.com/bootstrapping.html

Sebastian Raschka STAT 451: Intro to ML Lecture 9: Model Evaluation 2
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The Bootstrap Method and
Empirical Confidence Intervals

- The bootstrap method is a resampling technique for estimating a
sampling distribution

* Here, we are particularly interested in estimating the uncertainty of our
performance estimate

- The bootstrap method was introduced by Bradley Efron in 1979 [1]

- About 15 years later, Bradley Efron and Robert Tibshirani even devoted
a whole book to the bootstrap, “An Introduction to the Bootstrap” [2]

- In brief, the idea of the bootstrap method is to generate new data from a
population by repeated sampling from the original dataset with
replacement — in contrast, the repeated holdout method can be
understood as sampling without replacement.

[1] Efron, Bradley. 1979. “Bootstrap Methods: Another Look at the Jackknife.” The Annals of Statistics 7 (1).
Institute of Mathematical Statistics: 1-26. doi:10.1214/a0s/1176344552.

[2] Efron, Bradley, and Robert Tibshirani. 1994. An Introduction to the Bootstrap. Chapman & Hall.
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The Bootstrap Method and Empirical Confidence Intervals

Using the bootstrap, we can estimate sample statistics and
compute the standard error of the mean and confidence intervals
as if we have drawn a number of samples from an infinite
population. In a nutshell, the bootstrap procedure can be

described as follows:
1. Draw a sample with replacement
2. Compute the sample statistic
3. Repeat step 1-2 n times

4. Compute the standard deviation (standard error of the mean
of the statistic)

5. Compute the confidence interval
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The Bootstrap Method and Empirical Confidence Intervals
For Evaluating Classifier Performance

1.We are given a dataset of size n.

2.For b bootstrap rounds:

1.We draw one single instance from this dataset and assign it to
our jth bootstrap sample. We repeat this step until our bootstrap
sample has size n (the size of the original dataset). Each time,
we draw samples from the same original dataset so that certain
samples may appear more than once in our bootstrap sample
and some not at all.

3.We fit a model to each of the b bootstrap samples and compute
the resubstitution accuracy.

4.We compute the model accuracy as the average over the b
accuracy estimates

n

1 & 1 ] |
ACC 0 = ZJ:ZIZZ <1 — L(h(x[])af(x[])) -

=1
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The Bootstrap Method and Empirical Confidence Intervals

* As we discussed previously, the resubstitution accuracy usually leads to an
extremely optimistic bias, since a model can be overly sensible to noise in a
dataset.

- Originally, the bootstrap method aims to determine the statistical properties of
an estimator when the underlying distribution was unknown and additional
samples are not available.

» S0, in order to exploit this method for the evaluation of predictive models, such
as hypotheses for classification and regression, we may prefer a slightly
different approach to bootstrapping using the so-called Leave-One-Out
Bootstrap (LOOB) technique.

* Here, we use out-of-bag samples as test sets for evaluation instead of
evaluating the model on the training data. Out-of-bag samples are the unique
sets of instances that are not used for model fitting
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Original Dataset

Bootstrap 1

Bootstrap 2

Bootstrap 3

Bootstrap Sampling

X1 X2 X3 X4 X5 X6 X7 X8 X9 X1 0
Xg | Xg | X5 | Xg [ Xe [ Xg | X4 | X, | Xg | X,
X1 0 X1 X3 X5 X1 X7 X4 X2 X1 X8
Xo | Xo | X [ X [ X [ X [ X, | Xs | X | X,

Training Sets

Out-of-bag samples

X3

X

X1O
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The Bootstrap Method and Empirical Confidence Intervals

We can compute the 95% confidence interval of the bootstrap estimate as

1 b
ACC,,,, = - Z ACC,

i=1

and use it to compute the standard error

SEbaot —

1 b
— 2 (ACC; = ACGp)”

\o-15

Finally, we can then compute the confidence interval around the mean estimate as

ACCy,.: £t X SE,,; .

For instance, given a sample with n=100, we find that 7,_j o599 = 1.984 (95% Cl)

(In practice, at least 200 bootstrap rounds are recommended)
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4.1 Iris Simulation

: from mlxtend.data import iris data
from sklearn.neighbors import KNeighborsClassifier
from sklearn.model selection import train test split

X, vy = iris data()

X train, X test, y train, y test = train test split(X, vy,
test size=0.15,
random state=12345,
stratify=y)

clf = KNeighborsClassifier(n neighbors=3,
weights="'uniform',
algorithm="'kd tree’,
leaf size=30,
p=2,
metric="'minkowski',
metric params=None,
n_jobs=1)

Code: https://github.com/rasbt/stat451-machine-learning-fs20/blob/master/L09/code/09-eval2-ci _4-confidence-intervals iris.ipynb
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https://github.com/rasbt/stat451-machine-learning-fs20/blob/master/L09/code/09-eval2-ci__4-confidence-intervals_iris.ipynb

4.1.1 Out-of-Bag (OOB) Bootstrap; Bootstrapping Training Sets -- Setup
Step

e If you don't tune your model on the training set, you actually don't need a test set for this
approach

: import numpy as np
rng = np.random.RandomState(seed=12345)
idx = np.arange(y train.shape[0])
bootstrap train accuracies = []
for i in range(200):

train idx = rng.choice(idx, size=idx.shape[0], replace=True)
test idx = np.setdiffld(idx, train idx, assume unique=False)

boot train X, boot train y = X train[train idx], y train[train idx]
boot test X, boot test y = X train[test idx], y train[test idx]

clf.fit(boot train X, boot train y)
acc = clf.score(boot test X, boot test y)
bootstrap train accuracies.append(acc)

bootstrap train mean = np.mean(bootstrap train accuracies)
bootstrap train mean

0.9552421700709434

Code: https://github.com/rasbt/stat451-machine-learning-fs20/blob/master/L09/code/09-eval2-ci _4-confidence-intervals iris.ipynb
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4.1.2 Bootstrap 1-sample Confidence Interval (Based on OOB
Estimates)

se = np.sqrt( (1. / (200-1)) * np.sum([(acc - bootstrap train mean) **2
for acc in bootstrap train accuracies]))

)

ci=1.97 * se # 1.97 based on T distribution

bootstrap na lower = bootstrap train mean-ci
bootstrap na upper = bootstrap train mean+ci

print(bootstrap na lower, bootstrap na upper)

0.900528306142954 1.0099560339989329

80 1 === bootstrap train mean
« CI95 bootstrap, normal approx.
70 1
60 4
50 p
40 -
30 4
20 -
10 -
0 T T T — T
0.80 0.85 0.90 095 100 105 110

Code: https://github.com/rasbt/stat451-machine-learning-fs20/blob/master/L09/code/09-eval2-ci _4-confidence-intervals iris.ipynb
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The Bootstrap Method and Empirical Confidence Intervals

And if our samples do not follow a normal distribution? A more robust, yet
computationally straight-forward approach is the percentile method as
described by B. Efron (Efron, 1981). Here, we pick our lower and upper
confidence bounds as follows:

ACCyer = ayth percentile of the ACC,,,, distribution

ACC,,per = aith percentile of the ACC,,,, distribution

wherea; =a anda, =1—a and @ isour degree of confidence to compute

the 100 X (1 — 2 X @) confidence interval.

For instance, to compute a 95% confidence interval, we pick a = 0.025
to obtain the 2.5th and 97.5th percentiles of the b bootstrap samples distribution
as our upper and lower confidence bounds.
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4.1.3 Bootstrap Percentile Method

bootstrap percentile lower
bootstrap percentile upper

np.percentile(bootstrap train accuracies, 2.5)

np.percentile(bootstrap train accuracies, 97.5)

print(bootstrap percentile lower, bootstrap percentile upper)

0.8977324263038549 1.0

1 === bootstrap train mean

CI95 bootstrap, normal approx.

1 == = CI95 bootstrap, percentile

80

W rEssssan
o

0.85 0

0.95

O - - -
)

0 105

110

Code: https://github.com/rasbt/stat451-machine-learning-fs20/blob/master/L09/code/09-eval2-ci _4-confidence-intervals iris.ipynb
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Bootstrapping the Test set

4.1.5 Bootstrapping the Test Set predictions

e Avoids retraining the model

clf.fit(X train, y train)

predictions test = clf.predict(X test)
acc_test = np.mean(predictions test == y test)

rng = np.random.RandomState(seed=12345)
idx = np.arange(y test.shape[0])

test accuracies = []
for i in range(200):
pred idx = rng.choice(idx, size=idx.shape[0], replace=True)

acc_test boot = np.mean(predictions test[pred idx] == y test[pred idx])
test accuracies.append(acc test boot)

mean_ test accuracies = np.mean(test accuracies)
bootstrap lower test np.percentile(test accuracies, 2.5)
bootstrap upper test np.percentile(test accuracies, 97.5)

print(bootstrap lower test, bootstrap upper test)

0.8695652173913043 1.0

Code: https://github.com/rasbt/stat451-machine-learning-fs20/blob/master/L09/code/09-eval2-ci _4-confidence-intervals iris.ipynb
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Iris dataset
3-NN classifier

95% confidence intervals

.632+ Bootstrap, percentile method - ®
.632 Bootstrap, percentile method - @
Bootstrap, percentile method - &
Bootstrap, sample Cl - @
Bootstrapping the test set, percentile method - @
Normal approx. sample Cl (test set, no bootstrap) - @

0.86 0.88 0.90 0.92 0.94 0.96 0.98 1.00
Prediction Accuracy

Code: https://github.com/rasbt/stat451-machine-learning-fs20/blob/master/L09/code/09-eval2-ci _4-confidence-intervals iris.ipynb
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Original Dataset

Bootstrap 1

Bootstrap 2

Bootstrap 3

Bootstrap Sampling

X1 X2 X3 X4 X5 X6 X7 X8 X9 X1 0
Xg | Xg | X5 | Xg [ Xe [ Xg | X4 | X, | Xg | X,
X1 0 X1 X3 X5 X1 X7 X4 X2 X1 X8
Xo | Xo | X [ X [ X [ X [ X, | Xs | X | X,

Training Sets

Out-of-bag samples

X3

X

X1O
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OOB Bootstrap
Object Oriented API

In this section, we are going to look at the OOB bootstrap method, which | recently implemented in
mixtend.

from mlxtend.evaluate import BootstrapOutOfBag
import numpy as np

oob = BootstrapOutOfBag(n splits=3, random seed=1)
for train, test in oob.split(np.array([1l, 2, 3, 4, 5]1)):
print(train, test)

(3401 3] [2]
[0 014 4] [2 3]
(1242 4] [0 3]

The reason why | chose a object-oriented implementation is that we can plug it into scikit-learn's
cross val score function, which is super convenient.

https://github.com/rasbt/stat451-machine-learning-fs20/blob/master/L 09/code/09-eval2-ci _5.ipynb

Sebastian Raschka STAT 451: Intro to ML Lecture 9: Model Evaluation 2

67
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from mlxtend.data import iris data OOB BOOtStrap
from sklearn.tree import DecisionTreeClassifier Object Oriented API

from sklearn.model selection import cross val score
from sklearn.model_selection import train test split

X, y = iris data()

X train, X test, y train, y test = train test split(
X, vy, test size=0.4, random state=123, stratify=y)

model = DecisionTreeClassifier(random state=123)

bootstrap scores = \
cross val score(model, X train, y train,
cv=BootstrapOutOfBag(n splits=200, random seed=123))

print( 'Mean Bootstrap score', np.mean(bootstrap scores))
print('Score Std', np.std(bootstrap scores))

Mean Bootstrap score 0.9483980861793887
Score Std 0.039817322453014004

lower = np.percentile(bootstrap scores, 2.5)
upper = np.percentile(bootstrap scores, 97.5)
print('95%% Confidence interval: [%.2f, %.2f]' % (100*lower, 100*upper))

95% Confidence interval: [83.33, 100.00]

https://github.com/rasbt/stat451-machine-learning-fs20/blob/master/L 09/code/09-eval2-ci 5.ipynb
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OOB Bootstrap
Functional API

4.1.5 OOB Bootstrap with Percentile Method

Same as "4.1.2 Normal Approximation-based Bootstrap Interval (Based on OOB Estimates)" but using mixtend

from mlxtend.evaluate import bootstrap point632 score

bootstrap scores = bootstrap pointé632 score(clf,
X train, y train,
n splits=200,
method="'oob"',
random seed=12345)

bootstrap oob mean = np.mean(bootstrap scores)
print( 'Mean Bootstrap score', bootstrap oob mean)
print('Score Std', np.std(bootstrap scores))

bootstrap oob percentile lower = np.percentile(bootstrap scores, 2.5)
bootstrap oob percentile upper = np.percentile(bootstrap scores, 97.5)

Mean Bootstrap score 0.9552421700709434
Score Std 0.027704014141397008

print (bootstrap percentile lower, bootstrap percentile upper)

0.8977324263038549 1.0

Code: https://github.com/rasbt/stat451-machine-learning-fs20/blob/master/L09/code/09-eval2-ci _4-confidence-intervals iris.ipynb
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The 0.632 Bootstrap Method

* |In 1983, Bradley Efron described the .632 Estimate, a
further improvement to address the pessimistic bias of
the bootstrap [1].

* The pessimistic bias in the “classic” bootstrap method
can be attributed to the fact that the bootstrap
samples only contain approximately 63.2% of the
unique samples from the original dataset.

[1] Efron, Bradley. 1983. “Estimating the Error Rate of a Prediction Rule: Improvement on Cross-Validation.” Journal of the American
Statistical Association 78 (382): 316. doi:10.2307/2288636.
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Bootstrap Sampling
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The .632 Bootstrap Method

The .632 Estimate, is computed via the following equation:

b
ACC,,,, = % Y (0.632- ACCy,; +0.368 - ACC,,),

=1

where
ACCW- is the resubstitution accuracy

ACCh,i is the accuracy on the out-of-bag sample.

[1] Efron, Bradley. 1983. “Estimating the Error Rate of a Prediction Rule: Improvement on Cross-Validation.” Journal of the American
Statistical Association 78 (382): 316. doi:10.2307/2288636.
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4.1.6 .632 Bootstrap

The .632 Bootstrap is the default setting of bootstrap point632 score; it tends to be overly optimistic.

bootstrap scores = bootstrap point632 score(clf,
X train, y train,
n splits=200,
random seed=12345)

bootstrap 632 mean = np.mean(bootstrap scores)
print( 'Mean Bootstrap score', bootstrap 632 mean)
print('Score Std', np.std(bootstrap scores))

bootstrap 632 percentile lower = np.percentile(bootstrap scores, 2.5)
bootstrap 632 percentile upper = np.percentile(bootstrap scores, 97.5)

Mean Bootstrap score 0.967105807390348
Score Std 0.016625361563867836

print(bootstrap 632 percentile lower, bootstrap 632 percentile upper)

0.930974050743657 0.9942047244094488

Code: https://github.com/rasbt/stat451-machine-learning-fs20/blob/master/L09/code/09-eval2-ci _4-confidence-intervals iris.ipynb
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The .632+ Bootstrap Method

Now, while the .632 Boostrap attempts to address the pessimistic bias of the estimate, an optimistic
bias may occur with models that tend to overfit so that Bradley Efron and Robert Tibshirani proposed

the The .632+ Bootstrap Method [1].

Instead of using a fixed “weight” @ = 0.632 in
1 &
ACCbOOt — Z Z <60 y ACCh’i + (1 — a)) : ACCr,l‘),

i=1

_ 0.632
we compute the weight as W = )
1 -—0.368 XR

where R is the relative overfitting rate
R (— 1) X (ACCh,l — ACCr,i)
- y—(1-ACC,)

[1] Efron, Bradley, and Robert Tibshirani. 1997. “Improvements on Cross-Validation: The .632+ Bootstrap Method.”
Journal of the American Statistical Association 92 (438): 548. doi:10.2307/2965703.
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The .632+ Bootstrap Method

R is the relative overfitting rate
(— 1) X (ACCh,l — ACCr’i)
y — (1 =ACC,,) |

R =

Now, we need to determine the no-information rate y
In order to compute A.

For instance, we can compute y

by fitting a model to a dataset that contains all possible combinations between the
examples and

target class labels:

,,,222 (1 = L(hG!), fx11)) .

=1 i'=1

[1] Efron, Bradley, and Robert Tibshirani. 1997. “Improvements on Cross-Validation: The .632+ Bootstrap Method.”
Journal of the American Statistical Association 92 (438): 548. doi:10.2307/2965703.
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4.1.7 .632+ Bootstrap

The .632+ Boostrap method attempts to address the optimistic bias of the regular .632 Boostrap.

bootstrap scores = bootstrap pointé632 score(clf, X train, y train,
n splits=200,
method="'.632+",
random seed=12345)

bootstrap 632plus mean = np.mean(bootstrap scores)
print( 'Mean Bootstrap score', bootstrap 632plus mean)
print( 'Score Std', np.std(bootstrap scores))

Mean Bootstrap score 0.9663500334312962
Score Std 0.01757293812762708

bootstrap 632plus percentile lower = np.percentile(bootstrap scores, 2.5)
bootstrap 632plus percentile upper np.percentile(bootstrap scores, 97.5)

print(bootstrap 632plus percentile lower, bootstrap 632plus percentile upper)
0.9282626011381683 0.9941168892152473

Code: https://github.com/rasbt/stat451-machine-learning-fs20/blob/master/L09/code/09-eval2-ci _4-confidence-intervals iris.ipynb
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95% confidence intervals

.632+ Bootstrap, percentile method A @ Iris dataset
3-NN classifier
.632 Bootstrap, percentile method - @
Bootstrap, percentile method - O
Bootstrap, sample CI |
Bootstrapping the test set, percentile method - @
Normal approx. sample CI (test set, no bootstrap) - @

0.86 0.88 0.90 0.92 0.94 0.96 0.98 1.00
Prediction Accuracy

95% confidence intervals

.632+ Bootstrap, percentile method - —_— MNIST 5k subset
DT classifier

.632 Bootstrap, percentile method - S

Bootstrap, percentile method - @

Bootstrap, sample CI O

Bootstrapping the test set, percentile method - @

Normal approx. sample CI (test set, no bootstrap) - @

0.725 0.750 0.775 0.800 0.825 0.850
Prediction Accuracy

Code: https://github.com/rasbt/stat451-machine-learning-fs20/blob/master/L09/code/09-eval2-ci _4-confidence-intervals iris.ipynb
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