
Sebastian Raschka STAT 451: Intro to ML Lecture 9: Model Evaluation 2

Model Evaluation 2:
Confidence Intervals and Resampling Methods

Lecture 09

1

STAT 451: Machine Learning, Fall 2020

Sebastian Raschka

http://stat.wisc.edu/~sraschka/teaching/stat451-fs2020/

http://pages.stat.wisc.edu/~sraschka/teaching/stat451-fs2020/

Sebastian Raschka STAT 451: Intro to ML Lecture 9: Model Evaluation 2 2

1. Introduction

2. Holdout method for model evaluation

3. Holdout method for model selection

4. Confidence intervals -- normal approximation

5. Resampling & repeated holdout

6. Empirical confidence intervals via Bootstrap

7. The 0.632 and 0.632+ Bootstrap

Sebastian Raschka STAT 451: Intro to ML Lecture 9: Model Evaluation 2 3

Model Eval Lectures

Basics

Bias and Variance

Overfitting and Underfitting

Holdout method

Confidence Intervals

Resampling methods
Repeated holdout

Empirical confidence intervals

Cross-Validation

Hyperparameter tuning

Model selection

Algorithm Selection

Statistical Tests

Evaluation Metrics

This Lecture

Overview

Sebastian Raschka STAT 451: Intro to ML Lecture 9: Model Evaluation 2 4

Main points why we evaluate the predictive
performance of a model:

Sebastian Raschka STAT 451: Intro to ML Lecture 9: Model Evaluation 2 5

Main points why we evaluate the predictive
performance of a model:

1. Want to estimate the generalization performance,
the predictive performance of our model on future
(unseen) data.

Sebastian Raschka STAT 451: Intro to ML Lecture 9: Model Evaluation 2 6

Main points why we evaluate the predictive
performance of a model:

1. Want to estimate the generalization performance,
the predictive performance of our model on future
(unseen) data.

2. Want to increase the predictive performance by
tweaking the learning algorithm and selecting the
best performing model from a given hypothesis
space.

Sebastian Raschka STAT 451: Intro to ML Lecture 9: Model Evaluation 2 7

Main points why we evaluate the predictive
performance of a model:

1. Want to estimate the generalization performance,
the predictive performance of our model on future
(unseen) data.

2. Want to increase the predictive performance by
tweaking the learning algorithm and selecting the
best performing model from a given hypothesis
space.

3. Want to identify the ML algorithm that is best-suited
for the problem at hand; thus, we want to compare
different algorithms, selecting the best-performing
one as well as the best performing model from the
algorithm’s hypothesis space.

Sebastian Raschka STAT 451: Intro to ML Lecture 9: Model Evaluation 2 8

• Training set error is an optimistically
biased estimator of the generalization
error

• Test set error is an unbiased estimator
of the generalization error (test sample
and hypothesis chosen independently)

• (In practice, the test set error is
actually pessimistically biased; why?)

Some unfortunate facts about  
test sets

Sebastian Raschka STAT 451: Intro to ML Lecture 9: Model Evaluation 2 9

1. Introduction

2. Holdout method for model evaluation

3. Holdout method for model selection

4. Confidence intervals -- normal approximation

5. Resampling & repeated holdout

6. Empirical confidence intervals via Bootstrap

7. The 0.632 and 0.632+ Bootstrap

Sebastian Raschka STAT 451: Intro to ML Lecture 9: Model Evaluation 2 10

• Training set error is an optimistically
biased estimator of the generalization
error

• Test set error is an unbiased estimator
of the generalization error (test sample
and hypothesis chosen independently)

• (in practice, the test set error is
actually pessimistically biased; why?)

Some unfortunate facts about  
test sets

Sebastian Raschka STAT 451: Intro to ML Lecture 9: Model Evaluation 2 11

1 2 3 4 5 6 7 8 109

1 2 3 4 5 6 7 8 109

1 2 3 4 5 6 7 8 109

1 2 3 4 5 6 7 8 109

1 2 3 4 5 6 7 8 109

...

1 2 3 4 5 6 7 8 109

1 2 3 4 5 6 7 8 109 Holdout Method

2-Fold Cross-Validation

Repeated Holdout

Training Evaluation

Sebastian Raschka STAT 451: Intro to ML Lecture 9: Model Evaluation 2

Often, using the holdout
method is not a good idea ...

12

Sebastian Raschka STAT 451: Intro to ML Lecture 9: Model Evaluation 2 13

 
Test set error as generalization error estimator is ____imistically
biased (not so bad) 

But it does not account for variance in the training data (bad)

Often using the holdout
method is not a good idea ...

Sebastian Raschka STAT 451: Intro to ML Lecture 9: Model Evaluation 2 14

Suppose we have the following ranking based on accuracy:

h2: 75% > h1: 70% > h3: 65%,

we would still rank them the same way if we add a 10% pessimistic bias:

h2: 65% > h1: 60% > h3: 55%.

Why is pessimistic bias not  
"so bad"?

Sebastian Raschka STAT 451: Intro to ML Lecture 9: Model Evaluation 2 15

Test set errors can also be
optimistically biased

Sebastian Raschka STAT 451: Intro to ML Lecture 9: Model Evaluation 2 16

https://arxiv.org/abs/1806.00451

Recht, B., Roelofs, R., Schmidt, L., & Shankar, V. (2018). Do CIFAR-10 classifiers generalize to CIFAR-10?. arXiv preprint arXiv:1806.00451.

Do CIFAR-10 Classifiers Generalize to CIFAR-10?

Benjamin Recht
UC Berkeley

Rebecca Roelofs
UC Berkeley

Ludwig Schmidt
MIT

Vaishaal Shankar
UC Berkeley

June 4, 2018

Abstract

Machine learning is currently dominated by largely experimental work focused on improve-

ments in a few key tasks. However, the impressive accuracy numbers of the best performing

models are questionable because the same test sets have been used to select these models

for multiple years now. To understand the danger of overfitting, we measure the accuracy of

CIFAR-10 classifiers by creating a new test set of truly unseen images. Although we ensure that

the new test set is as close to the original data distribution as possible, we find a large drop

in accuracy (4% to 10%) for a broad range of deep learning models. Yet, more recent models

with higher original accuracy show a smaller drop and better overall performance, indicating

that this drop is likely not due to overfitting based on adaptivity. Instead, we view our results

as evidence that current accuracy numbers are brittle and susceptible to even minute natural

variations in the data distribution.

1 Introduction

Over the past five years, machine learning has become a decidedly experimental field. Driven by
a surge of research in deep learning, the majority of published papers has embraced a paradigm
where the main justification for a new learning technique is its improved performance on a few key
benchmarks. At the same time, there are few explanations as to why a proposed technique is a
reliable improvement over prior work. Instead, our sense of progress largely rests on a small number
of standard benchmarks such as CIFAR-10, ImageNet, or MuJoCo. This raises a crucial question:

How reliable are our current measures of progress in machine learning?

Properly evaluating progress in machine learning is subtle. After all, the goal of a learning algorithm
is to produce a model that generalizes well to unseen data. Since we usually do not have access to
the ground truth data distribution, we instead evaluate a model’s performance on a separate test set.
This is indeed a principled evaluation protocol, as long as we do not use the test set to select our

models.

Unfortunately, we typically have limited access to new data from the same distribution. It is now
commonly accepted to re-use the same test set multiple times throughout the algorithm and model
design process. Examples of this practice are abundant and include both tuning hyperparameters
(number of layers, etc.) within a single publication, and building on other researchers’ work across
publications. While there is a natural desire to compare new models to previous results, it is

1

ar
X

iv
:1

80
6.

00
45

1v
1

 [c
s.L

G
]

1
Ju

n
20

18

https://arxiv.org/abs/1806.00451

Sebastian Raschka STAT 451: Intro to ML Lecture 9: Model Evaluation 2 17

https://www.cs.toronto.edu/~kriz/cifar.html

The CIFAR-10 dataset
CIFAR -> Canadian Institute For Advanced Research

• 60,000 32x32 color images
in 10 classes

• 6,000 images per class

• 50,000 training images and

10,000 test images

https://www.cs.toronto.edu/~kriz/cifar.html

Sebastian Raschka STAT 451: Intro to ML Lecture 9: Model Evaluation 2 18

Recht, B., Roelofs, R., Schmidt, L., & Shankar, V. (2018). Do CIFAR-10 classifiers generalize to CIFAR-10?. arXiv preprint arXiv:1806.00451.

(a) Test Set A (b) Test Set B

Figure 1: Class-balanced random draws from the new and original test sets.1

Final Assembly. After collecting a sufficient number of high-quality images for each keyword, we
sampled a random subset from our pruned candidate set. The sampling procedure was such that the
keyword-level distribution of our new dataset matches the keyword-level distribution of CIFAR-10
(see Appendix E). In the final stage, we again proceeded similar to the original CIFAR-10 dataset
creation process and used `2-nearest neighbors to filter out near duplicates. In particular, we removed
near-duplicates within our new dataset and also images that had a near duplicate in the original
CIFAR-10 dataset (train or test). The latter aspect is particularly important since our reproducibility
study is only interesting if we evaluate on truly unseen data. Hence we manually reviewed the top-10
nearest neighbors for each image in our new test set. After removing near-duplicates in our dataset,
we re-sampled the respective keywords until this process converged to our final dataset.

We remark that we did not run any classifiers on our new dataset during the data collection phase
of our study. In order to ensure that the new data does not depend on the existing classifiers, it is
important to strictly separate the data collection phase from the following evaluation phase.

4 Model Performance Results

After we completed the new test set, we evaluated a broad range of image classification models. The
main question was how the accuracy on the original CIFAR-10 test set compares to the accuracy on
our new test set. To this end, we experimented with a broad range of classifiers spanning multiple
years of machine learning research. The models include widely used convolutional networks (VGG
and ResNet [7, 18]), more recent architectures (ResNeXt, PyramidNet, DenseNet [6, 10, 20]), the
published state-of-the-art (Shake-Drop [21]), and a model derived from RL-based hyperparameter
search (NASNet) [23]. In addition, we also evaluated “shallow” approaches based on random features
[2, 16]. Overall, the accuracies on the original CIFAR-10 test set range from about 80% to 97%.

For all deep architectures, we used code previously published online (see Appendix A for a list).
To avoid bias due to specific model repositories or frameworks, we also evaluated two widely used

1Test Set A is the new test set and Test Set B is the original test set.

6

Sebastian Raschka STAT 451: Intro to ML Lecture 9: Model Evaluation 2 19

(a) All models (b) High accuracy models

Figure 2: Model accuracy on new test set vs. model accuracy on original test set.

a0. The “hard” sub-population is times more difficult in the sense that the classification error on
these examples is times larger. Hence the accuracy on this sub-population is 1� (1� a0). If the
relative frequencies of these two sub-populations are p1 and p2, we get the following overall accuracy:

accorig = p1 · a0 + p2 · (1� (1� a0))

which we can rewrite as a simple linear function of a0:

accorig = � · a0 + � .

For the new test set, we also assume a mixture distribution consisting of a different proportion of
the same two components, with relative frequencies now q1 and q2. We can then write the accuracy
on the new test set as

accnew = q1 · a0 + q2 · (1� (1� a0))

= �0 · a0 + �0

where we collected terms into a simple linear function as before.

It is now easy to see that the new accuracy is indeed a linear function of the original accuracy:

accnew =
�0

�
(�a0 + �)� �0

�
� + �0

=
�0

�
accorig .

We remark that we do not see this mixture model as a ground truth explanation, but rather as
an illustrative example for how a linear dependency between the original and new test accuracies
naturally arises with small distribution shifts between data sets. In reality, the two test sets have a
more complex composition with different accuracies on various sub-populations. Nevertheless, this

9

Recht, B., Roelofs, R., Schmidt, L., & Shankar, V. (2018). Do CIFAR-10 classifiers generalize to CIFAR-10?. arXiv preprint arXiv:1806.00451.

Sebastian Raschka STAT 451: Intro to ML Lecture 9: Model Evaluation 2 20

Table 1: Model accuracy on the original CIFAR-10 test set and the new test set, with the gap
reported as the difference between the two accuracies. � Rank is the relative difference in the
ranking from the original test set to the new test set. For example, �Rank = �2 means a model
dropped in the rankings by two positions on the new test set.

Original Accuracy New Accuracy Gap � Rank

shake_shake_64d_cutout [3, 4] 97.1 [96.8, 97.4] 93.0 [91.8, 94.0] 4.1 0
shake_shake_96d [4] 97.1 [96.7, 97.4] 91.9 [90.7, 93.1] 5.1 -2
shake_shake_64d [4] 97.0 [96.6, 97.3] 91.4 [90.1, 92.6] 5.6 -2
wide_resnet_28_10_cutout [3, 22] 97.0 [96.6, 97.3] 92.0 [90.7, 93.1] 5 +1
shake_drop [21] 96.9 [96.5, 97.2] 92.3 [91.0, 93.4] 4.6 +3
shake_shake_32d [4] 96.6 [96.2, 96.9] 89.8 [88.4, 91.1] 6.8 -2
darc [11] 96.6 [96.2, 96.9] 89.5 [88.1, 90.8] 7.1 -4
resnext_29_4x64d [20] 96.4 [96.0, 96.7] 89.6 [88.2, 90.9] 6.8 -2
pyramidnet_basic_110_270 [6] 96.3 [96.0, 96.7] 90.5 [89.1, 91.7] 5.9 +3
resnext_29_8x64d [20] 96.2 [95.8, 96.6] 90.0 [88.6, 91.2] 6.3 +3
wide_resnet_28_10 [22] 95.9 [95.5, 96.3] 89.7 [88.3, 91.0] 6.2 +2
pyramidnet_basic_110_84 [6] 95.7 [95.3, 96.1] 89.3 [87.8, 90.6] 6.5 0
densenet_BC_100_12 [10] 95.5 [95.1, 95.9] 87.6 [86.1, 89.0] 8 -2
neural_architecture_search [23] 95.4 [95.0, 95.8] 88.8 [87.4, 90.2] 6.6 +1
wide_resnet_tf [22] 95.0 [94.6, 95.4] 88.5 [87.0, 89.9] 6.5 +1
resnet_v2_bottleneck_164 [8] 94.2 [93.7, 94.6] 85.9 [84.3, 87.4] 8.3 -1
vgg16_keras [14, 18] 93.6 [93.1, 94.1] 85.3 [83.6, 86.8] 8.3 -1
resnet_basic_110 [7] 93.5 [93.0, 93.9] 85.2 [83.5, 86.7] 8.3 -1
resnet_v2_basic_110 [8] 93.4 [92.9, 93.9] 86.5 [84.9, 88.0] 6.9 +3
resnet_basic_56 [7] 93.3 [92.8, 93.8] 85.0 [83.3, 86.5] 8.3 0
resnet_basic_44 [7] 93.0 [92.5, 93.5] 84.2 [82.6, 85.8] 8.8 -3
vgg_15_BN_64 [14, 18] 93.0 [92.5, 93.5] 84.9 [83.2, 86.4] 8.1 +1
resnet_preact_tf [7] 92.7 [92.2, 93.2] 84.4 [82.7, 85.9] 8.3 0
resnet_basic_32 [7] 92.5 [92.0, 93.0] 84.9 [83.2, 86.4] 7.7 +3
cudaconvnet [13] 88.5 [87.9, 89.2] 77.5 [75.7, 79.3] 11 0
random_features_256k_aug [2] 85.6 [84.9, 86.3] 73.1 [71.1, 75.1] 12 0
random_features_32k_aug [2] 85.0 [84.3, 85.7] 71.9 [69.9, 73.9] 13 0
random_features_256k [2] 84.2 [83.5, 84.9] 69.9 [67.8, 71.9] 14 0
random_features_32k [2] 83.3 [82.6, 84.0] 67.9 [65.9, 70.0] 15 -1
alexnet_tf 82.0 [81.2, 82.7] 68.9 [66.8, 70.9] 13 +1

8

Recht, B., Roelofs, R., Schmidt, L., & Shankar, V. (2018). Do CIFAR-10 classifiers generalize to CIFAR-10?. arXiv preprint arXiv:1806.00451.

Sebastian Raschka STAT 451: Intro to ML Lecture 9: Model Evaluation 2 21

• Test set error as generalization error estimator is
pessimistically biased (not so bad) 

• Does not account for variance in the training data (bad)

Often using the holdout method
is not a good idea ...

Sebastian Raschka STAT 451: Intro to ML Lecture 9: Model Evaluation 2 22

Issues with Subsampling (Independence Violation)

The Iris dataset consists of 50 Setosa, 50 Versicolor, and 50 Virginica flowers; the flower species are distributed uniformly:
• 33.3% Setosa
• 33.3% Versicolor
• 33.3% Virginia

If our random function assigns 2/3 of the flowers (100) to the training set and 1/3 of the flowers (50) to the test set, it may yield
the following:
• training set → 38 x Setosa, 28 x Versicolor, 34 x Virginica
• test set → 12 x Setosa, 22 x Versicolor, 16 x Virginica

Dataset before splitting (n = 150)

Test dataset (n = 50)

This work by Sebastian Raschka is licensed under a
Creative Commons Attribution 4.0 International License.

Sepal Length [cm]

Training dataset (n = 100)

Sepal Length [cm]

Sebastian Raschka STAT 451: Intro to ML Lecture 9: Model Evaluation 2 23

Learning
Algorithm

Hyperparameter
Values

Model

Prediction

Test Labels

Performance
Model

Learning
Algorithm

Hyperparameter
Values Final

Model

2

3

4

1

Test Labels

Test Data

Training Data

Training Labels
Data

Labels

Data

Labels

Training Data

Training Labels

Test Data

Holdout evaluation

Sebastian Raschka STAT 451: Intro to ML Lecture 9: Model Evaluation 2 24

1. Introduction

2. Holdout method for model evaluation

3. Holdout method for model selection

4. Confidence intervals -- normal approximation

5. Resampling & repeated holdout

6. Empirical confidence intervals via Bootstrap

7. The 0.632 and 0.632+ Bootstrap

Sebastian Raschka STAT 451: Intro to ML Lecture 9: Model Evaluation 2 25

Learning
Algorithm

Hyperparameter
Values

Model

Prediction

Test Labels

Performance
Model

Learning
Algorithm

Hyperparameter
Values Final

Model

2

3

4

1

Test Labels

Test Data

Training Data

Training Labels
Data

Labels

Data

Labels

Training Data

Training Labels

Test Data

Holdout evaluation

Sebastian Raschka STAT 451: Intro to ML Lecture 9: Model Evaluation 2 26

Can we use the holdout method
for model selection?

Sebastian Raschka STAT 451: Intro to ML Lecture 9: Model Evaluation 2 27

Holdout validation
(hyperparam. tuning)

2

1 Data

Labels

Training Data

Validation
Data

Validation
Labels

Test
Data

Test
Labels

Training Labels

Performance
Model

Validation
Data

Validation
Labels

Prediction

Performance
Model

Validation
Data

Validation
Labels

Prediction

Performance
Model

Validation
Data

Validation
Labels

Prediction

Best
Model

Learning
Algorithm

Hyperparameter
values

ModelHyperparameter
values

Hyperparameter
values

Model

Model

Training Data

Training Labels

Learning
Algorithm

Best
Hyperparameter

Values Final
Model

6 Data

Labels

3

Best
Hyperparameter

values

Prediction

Test Labels

Performance
Model

4

Test Data

Learning
Algorithm

Best
Hyperparameter

Values
Model

Training Data

Training Labels

5

Validation
Data

Validation
Labels

Sebastian Raschka STAT 451: Intro to ML Lecture 9: Model Evaluation 2 28

Holdout validation
(hyperparam. tuning)

2

1 Data

Labels

Training Data

Validation
Data

Validation
Labels

Test
Data

Test
Labels

Training Labels

Performance
Model

Validation
Data

Validation
Labels

Prediction

Performance
Model

Validation
Data

Validation
Labels

Prediction

Performance
Model

Validation
Data

Validation
Labels

Prediction

Best
Model

Learning
Algorithm

Hyperparameter
values

ModelHyperparameter
values

Hyperparameter
values

Model

Model

Training Data

Training Labels

Learning
Algorithm

Best
Hyperparameter

Values Final
Model

6 Data

Labels

3

Best
Hyperparameter

values

Prediction

Test Labels

Performance
Model

4

Test Data

Learning
Algorithm

Best
Hyperparameter

Values
Model

Training Data

Training Labels

5

Validation
Data

Validation
Labels

Sebastian Raschka STAT 451: Intro to ML Lecture 9: Model Evaluation 2 29

Holdout validation
(hyperparam. tuning)

2

1 Data

Labels

Training Data

Validation
Data

Validation
Labels

Test
Data

Test
Labels

Training Labels

Performance
Model

Validation
Data

Validation
Labels

Prediction

Performance
Model

Validation
Data

Validation
Labels

Prediction

Performance
Model

Validation
Data

Validation
Labels

Prediction

Best
Model

Learning
Algorithm

Hyperparameter
values

ModelHyperparameter
values

Hyperparameter
values

Model

Model

Training Data

Training Labels

Learning
Algorithm

Best
Hyperparameter

Values Final
Model

6 Data

Labels

3

Best
Hyperparameter

values

Prediction

Test Labels

Performance
Model

4

Test Data

Learning
Algorithm

Best
Hyperparameter

Values
Model

Training Data

Training Labels

5

Validation
Data

Validation
Labels

Sebastian Raschka STAT 451: Intro to ML Lecture 9: Model Evaluation 2 30

Holdout validation
(hyperparam. tuning)

2

1 Data

Labels

Training Data

Validation
Data

Validation
Labels

Test
Data

Test
Labels

Training Labels

Performance
Model

Validation
Data

Validation
Labels

Prediction

Performance
Model

Validation
Data

Validation
Labels

Prediction

Performance
Model

Validation
Data

Validation
Labels

Prediction

Best
Model

Learning
Algorithm

Hyperparameter
values

ModelHyperparameter
values

Hyperparameter
values

Model

Model

Training Data

Training Labels

Learning
Algorithm

Best
Hyperparameter

Values Final
Model

6 Data

Labels

3

Best
Hyperparameter

values

Prediction

Test Labels

Performance
Model

4

Test Data

Learning
Algorithm

Best
Hyperparameter

Values
Model

Training Data

Training Labels

5

Validation
Data

Validation
Labels

Sebastian Raschka STAT 451: Intro to ML Lecture 9: Model Evaluation 2 31

1. Introduction

2. Holdout method for model evaluation

3. Holdout method for model selection

4. Confidence intervals -- normal approximation

5. Resampling & repeated holdout

6. Empirical confidence intervals via Bootstrap

7. The 0.632 and 0.632+ Bootstrap

Sebastian Raschka STAT 451: Intro to ML Lecture 9: Model Evaluation 2 32

Model Eval Lectures

Basics

Bias and Variance

Overfitting and Underfitting

Holdout method

Confidence Intervals

Resampling methods
Repeated holdout

Empirical confidence intervals

Cross-Validation

Hyperparameter tuning

Model selection

Algorithm Selection

Statistical Tests

Evaluation Metrics

Sebastian Raschka STAT 451: Intro to ML Lecture 9: Model Evaluation 2 33

(Image credit: Screenshot from https://en.wikipedia.org/wiki/Binomial_distribution_)

Binomial distribution

https://en.wikipedia.org/wiki/Binomial_distribution_

Sebastian Raschka STAT 451: Intro to ML Lecture 9: Model Evaluation 2

• coin lands on head ("success")

p• probability of success

ERRS(h) = 1
n ∑x∈S δ(f(x), h(x))

ERR𝒟(h) = Pr
x∈𝒟

[f(x) ≠ h(x)]• true error

Coin Flip (Bernoulli Trial) 0-1 Loss

• example misclassified (0-1 loss)

Pr(k) =
n!

k!(n − k)!
pk(1 − p)n−k .Binomial distribution

• sample (test set) error• , estimator of
k
n

p

• mean, number of successes
μk = np

Sebastian Raschka STAT 451: Intro to ML Lecture 9: Model Evaluation 2 35

Coin Flip (Bernoulli Trial) 0-1 Loss

Pr(k) =
n!

k!(n − k)!
pk(1 − p)n−k .Binomial distribution

• mean, number of successes
μk = np

• variance

σk = np(1 − p)• standard deviation

σ2
k = np(1 − p)

ERRS = 1
n ∑x∈S δ(f(x), h(x))

We are interested in proportions

σ2 = p(1 − p)

σ = p(1 − p)

SE =
ERRS(1 − ERRS)

n
=

ERRS(1 − ERRS)
n

Sebastian Raschka STAT 451: Intro to ML Lecture 9: Model Evaluation 2 36

Confidence Intervals
A XX% confidence interval of some parameter p is an
interval that is expected to contain p with probability
XX%.*

* the more precise definition is "In an infinite long series of trials in which
repeated samples of n are taken from the same distribution, the 95%
Confidence Interval is calculated using the same method, the proportion of
intervals covering the true parameter p is xx%."

Sebastian Raschka STAT 451: Intro to ML Lecture 9: Model Evaluation 2 37

Sebastian Raschka STAT 451: Intro to ML Lecture 9: Model Evaluation 2 38

Normal Approximation Interval

• Less tedious than confidence interval for Binomial distribution and hence
often used in (ML) practice for large n

• Rule of thumb: if n larger than 40, the Binomial distribution can be
reasonably approximated by a Normal distribution; and np and n(1 - p)
should be greater than 5

CI = ERRS ± z
ERRS(1 − ERRS)

n

Sebastian Raschka STAT 451: Intro to ML Lecture 9: Model Evaluation 2 39

The z constant for different confidence intervals:

• 99%: z=2.58

• 95%: z=1.96

• 90%: z=1.64

Sebastian Raschka STAT 451: Intro to ML Lecture 9: Model Evaluation 2 40

https://github.com/rasbt/stat451-machine-learning-fs20/blob/master/L09/code/09-eval2-
ci__4-confidence-intervals_iris.ipynb

Code

https://github.com/rasbt/stat451-machine-learning-fs20/blob/master/L09/code/09-eval2-ci__4-confidence-intervals_iris.ipynb
https://github.com/rasbt/stat451-machine-learning-fs20/blob/master/L09/code/09-eval2-ci__4-confidence-intervals_iris.ipynb

Sebastian Raschka STAT 451: Intro to ML Lecture 9: Model Evaluation 2 41

Later in this lecture we will
construct confidence intervals

using different Bootstrap
Techniques

Sebastian Raschka STAT 451: Intro to ML Lecture 9: Model Evaluation 2 42

1. Introduction

2. Holdout method for model evaluation

3. Holdout method for model selection

4. Confidence intervals -- normal approximation

5. Resampling & repeated holdout

6. Empirical confidence intervals via Bootstrap

7. The 0.632 and 0.632+ Bootstrap

Sebastian Raschka STAT 451: Intro to ML Lecture 9: Model Evaluation 2 43

Model Eval Lectures

Basics

Bias and Variance

Overfitting and Underfitting

Holdout method

Confidence Intervals

Resampling methods
Repeated holdout

Empirical confidence intervals

Cross-Validation

Hyperparameter tuning

Model selection

Algorithm Selection

Statistical Tests

Evaluation Metrics

Sebastian Raschka STAT 451: Intro to ML Lecture 9: Model Evaluation 2 44

Proportionally large test sets increase the pessimistic bias if a
model has not reached its full capacity, yet.

• To produce the plot above, I took 500 random samples of each of the ten classes from MNIST

• The sample was then randomly divided into a 3500-example training subset and a test set
(1500 examples) via stratification.

• Even smaller subsets of the 3500-sample training set were produced via randomized,
stratified splits, and I used these subsets to fit softmax classifiers and used the same 1500-
sample test set to evaluate their performances; samples may overlap between these training
subsets.

Code: https://github.com/rasbt/stat451-machine-learning-fs20/blob/master/L09/code/09-eval2-ci__3_pessimistic-bias-in-holdout.ipynb

https://github.com/rasbt/stat451-machine-learning-fs20/blob/master/L09/code/09-eval2-ci__3_pessimistic-bias-in-holdout.ipynb

Sebastian Raschka STAT 451: Intro to ML Lecture 9: Model Evaluation 2 45

http://rasbt.github.io/mlxtend/user_guide/plotting/plot_learning_curves/

http://rasbt.github.io/mlxtend/user_guide/plotting/plot_learning_curves/

Sebastian Raschka STAT 451: Intro to ML Lecture 9: Model Evaluation 2 46

Decreasing the size of the test set brings up another problem:
It may result in a substantial variance increase of our model’s
performance estimate.

D
at

as
et

D

is
tr

ib
ut

io
n

Sa
m

pl
e

1
Sa

m
pl

e
2

Sa
m

pl
e

3

Train
(70%)

Test
(30%)

Train
(70%)

Test
(30%)

n=1000n=100

R
ea

l W
or

ld

D
is

tr
ib

ut
io

n

Resampling

The reason is that it depends on which instances end up in training set, and which particular instances end up in test set.
Keeping in mind that each time we resample our data, we alter the statistics of the distribution of the sample.

Here, I repeatedly subsampled
a two-dimensional Gaussian

Sebastian Raschka STAT 451: Intro to ML Lecture 9: Model Evaluation 2 47

Repeated Holdout: Estimate Model Stability

ACCavg =
1
k

k

∑
j=1

ACCj,

ACCj = 1 −
1
n

n

∑
i=1

L(h(x[i]), f(x[i])) .

Average performance over k repetitions

where ACCj is the accuracy estimate of the jth test set of size m,

(also called Monte Carlo Cross-Validation)

Sebastian Raschka STAT 451: Intro to ML Lecture 9: Model Evaluation 2 48

Repeated Holdout: Estimate Model Stability

50/50 Train-Test Split
Avg. Acc. 0.95

90/10 Train-Test Split
Avg. Acc. 0.96

Left: I performed 50 stratified training/test splits with
75 samples in the test and training set each; a K-
nearest neighbors model was fit to the training set
and evaluated on the test set in each repetition.

Right: Here, I repeatedly performed
90/10 splits, though, so that the test set
consisted of only 15 samples.

How repeated holdout validation may look like for different training-
test split using the Iris dataset to fit to 3-nearest neighbors
classifiers:

Code: https://github.com/rasbt/stat451-machine-learning-fs20/blob/master/L09/code/09-eval2-ci__2_holdout-and-repeated-sampling.ipynb

https://archive.ics.uci.edu/ml/datasets/Iris
https://github.com/rasbt/stat451-machine-learning-fs20/blob/master/L09/code/09-eval2-ci__2_holdout-and-repeated-sampling.ipynb

Sebastian Raschka STAT 451: Intro to ML Lecture 9: Model Evaluation 2 49

Code: https://github.com/rasbt/stat451-machine-learning-fs20/blob/master/
L09/code/09-eval2-ci__2_holdout-and-repeated-sampling.ipynb

https://github.com/rasbt/stat451-machine-learning-fs20/blob/master/L09/code/09-eval2-ci__2_holdout-and-repeated-sampling.ipynb
https://github.com/rasbt/stat451-machine-learning-fs20/blob/master/L09/code/09-eval2-ci__2_holdout-and-repeated-sampling.ipynb
https://github.com/rasbt/stat451-machine-learning-fs20/blob/master/L09/code/09-eval2-ci__2_holdout-and-repeated-sampling.ipynb

Sebastian Raschka STAT 451: Intro to ML Lecture 9: Model Evaluation 2 50

1. Introduction

2. Holdout method for model evaluation

3. Holdout method for model selection

4. Confidence intervals -- normal approximation

5. Resampling & repeated holdout

6. Empirical confidence intervals via Bootstrap

7. The 0.632 and 0.632+ Bootstrap

Sebastian Raschka STAT 451: Intro to ML Lecture 9: Model Evaluation 2 51

The Bootstrap Method and
Empirical Confidence Intervals

Circa 1900, to pull (oneself) up by (one’s) bootstraps was used figuratively of an
impossible task (Among the “practical questions” at the end of chapter one of
Steele’s “Popular Physics” schoolbook (1888) is, “30. Why can not a man lift himself
by pulling up on his boot-straps?”). By 1916 its meaning expanded to include “better
oneself by rigorous, unaided effort.” The meaning “fixed sequence of instructions to
load the operating system of a computer” (1953) is from the notion of the first-loaded
program pulling itself, and the rest, up by the bootstrap.

(Source: Online Etymology Dictionary)

Source: https://memim.com/bootstrapping.html

http://www.etymonline.com/index.php?allowed_in_frame=0&search=bootstrap

Sebastian Raschka STAT 451: Intro to ML Lecture 9: Model Evaluation 2 52

• The bootstrap method is a resampling technique for estimating a
sampling distribution

• Here, we are particularly interested in estimating the uncertainty of our
performance estimate

• The bootstrap method was introduced by Bradley Efron in 1979 [1]
• About 15 years later, Bradley Efron and Robert Tibshirani even devoted

a whole book to the bootstrap, “An Introduction to the Bootstrap” [2]
• In brief, the idea of the bootstrap method is to generate new data from a

population by repeated sampling from the original dataset with
replacement — in contrast, the repeated holdout method can be
understood as sampling without replacement.
[1] Efron, Bradley. 1979. “Bootstrap Methods: Another Look at the Jackknife.” The Annals of Statistics 7 (1).
 Institute of Mathematical Statistics: 1–26. doi:10.1214/aos/1176344552.

[2] Efron, Bradley, and Robert Tibshirani. 1994. An Introduction to the Bootstrap. Chapman & Hall.

The Bootstrap Method and
Empirical Confidence Intervals

Sebastian Raschka STAT 451: Intro to ML Lecture 9: Model Evaluation 2 53

Using the bootstrap, we can estimate sample statistics and
compute the standard error of the mean and confidence intervals
as if we have drawn a number of samples from an infinite
population. In a nutshell, the bootstrap procedure can be
described as follows:

1. Draw a sample with replacement

2. Compute the sample statistic

3. Repeat step 1-2 n times

4. Compute the standard deviation (standard error of the mean
of the statistic)

5. Compute the confidence interval

The Bootstrap Method and Empirical Confidence Intervals

Sebastian Raschka STAT 451: Intro to ML Lecture 9: Model Evaluation 2 54

The Bootstrap Method and Empirical Confidence Intervals
For Evaluating Classifier Performance

1.We are given a dataset of size n.

2.For b bootstrap rounds:

1.We draw one single instance from this dataset and assign it to
our jth bootstrap sample. We repeat this step until our bootstrap
sample has size n (the size of the original dataset). Each time,
we draw samples from the same original dataset so that certain
samples may appear more than once in our bootstrap sample
and some not at all.

3.We fit a model to each of the b bootstrap samples and compute
the resubstitution accuracy.

4.We compute the model accuracy as the average over the b
accuracy estimates

ACCboot =
1
b

b

∑
j=1

1
n

n

∑
i=1

(1 − L(h(x[i]), f(x[i])) .

Sebastian Raschka STAT 451: Intro to ML Lecture 9: Model Evaluation 2 55

The Bootstrap Method and Empirical Confidence Intervals

• As we discussed previously, the resubstitution accuracy usually leads to an
extremely optimistic bias, since a model can be overly sensible to noise in a
dataset.

• Originally, the bootstrap method aims to determine the statistical properties of
an estimator when the underlying distribution was unknown and additional
samples are not available.

• So, in order to exploit this method for the evaluation of predictive models, such
as hypotheses for classification and regression, we may prefer a slightly
different approach to bootstrapping using the so-called Leave-One-Out
Bootstrap (LOOB) technique.

• Here, we use out-of-bag samples as test sets for evaluation instead of
evaluating the model on the training data. Out-of-bag samples are the unique
sets of instances that are not used for model fitting

Sebastian Raschka STAT 451: Intro to ML Lecture 9: Model Evaluation 2 56

x1

x1

x1

x1 x1x1

x2 x3 x4 x5 x6 x7 x8 x9 x10

x2

x2

x2

x2 x8x8 x10x7x3

x6 x9

x3 x8 x10x7x2x2 x9x6x6 x4x4x5

x10 x8x7x5 x4x3

x4x5x6x8 x9

Training Sets Test Sets

Bootstrap 1

Bootstrap 2

Bootstrap 3

Original Dataset

Bootstrap Sampling

Out-of-bag samples

Sebastian Raschka STAT 451: Intro to ML Lecture 9: Model Evaluation 2 57

The Bootstrap Method and Empirical Confidence Intervals
We can compute the 95% confidence interval of the bootstrap estimate as

ACCboot =
1
b

b

∑
i=1

ACCi

and use it to compute the standard error

(In practice, at least 200 bootstrap rounds are recommended)

SEboot =
1

b − 1

b

∑
i=1

(ACCi − ACCboot)2 .

Finally, we can then compute the confidence interval around the mean estimate as

ACCboot ± t × SEboot .

For instance, given a sample with n=100, we find that tα=0.05,99 = 1.984 (95% CI)

Sebastian Raschka STAT 451: Intro to ML Lecture 9: Model Evaluation 2 58

Code: https://github.com/rasbt/stat451-machine-learning-fs20/blob/master/L09/code/09-eval2-ci__4-confidence-intervals_iris.ipynb

https://github.com/rasbt/stat451-machine-learning-fs20/blob/master/L09/code/09-eval2-ci__4-confidence-intervals_iris.ipynb

Sebastian Raschka STAT 451: Intro to ML Lecture 9: Model Evaluation 2 59

Code: https://github.com/rasbt/stat451-machine-learning-fs20/blob/master/L09/code/09-eval2-ci__4-confidence-intervals_iris.ipynb

https://github.com/rasbt/stat451-machine-learning-fs20/blob/master/L09/code/09-eval2-ci__4-confidence-intervals_iris.ipynb

Sebastian Raschka STAT 451: Intro to ML Lecture 9: Model Evaluation 2 60

Code: https://github.com/rasbt/stat451-machine-learning-fs20/blob/master/L09/code/09-eval2-ci__4-confidence-intervals_iris.ipynb

https://github.com/rasbt/stat451-machine-learning-fs20/blob/master/L09/code/09-eval2-ci__4-confidence-intervals_iris.ipynb

Sebastian Raschka STAT 451: Intro to ML Lecture 9: Model Evaluation 2 61

The Bootstrap Method and Empirical Confidence Intervals

And if our samples do not follow a normal distribution? A more robust, yet
computationally straight-forward approach is the percentile method as
described by B. Efron (Efron, 1981). Here, we pick our lower and upper
confidence bounds as follows:

ACClower = α1th percentile of the ACCboot distribution

ACCupper = α1th percentile of the ACCboot distribution

where and and is our degree of confidence to compute  
 
the confidence interval.

α1 = α α2 = 1 − α α

100 × (1 − 2 × α)

For instance, to compute a 95% confidence interval, we pick  
to obtain the 2.5th and 97.5th percentiles of the b bootstrap samples distribution
as our upper and lower confidence bounds.

α = 0.025

Sebastian Raschka STAT 451: Intro to ML Lecture 9: Model Evaluation 2 62

Code: https://github.com/rasbt/stat451-machine-learning-fs20/blob/master/L09/code/09-eval2-ci__4-confidence-intervals_iris.ipynb

https://github.com/rasbt/stat451-machine-learning-fs20/blob/master/L09/code/09-eval2-ci__4-confidence-intervals_iris.ipynb

Sebastian Raschka STAT 451: Intro to ML Lecture 9: Model Evaluation 2 63

Bootstrapping the Test set

Code: https://github.com/rasbt/stat451-machine-learning-fs20/blob/master/L09/code/09-eval2-ci__4-confidence-intervals_iris.ipynb

https://github.com/rasbt/stat451-machine-learning-fs20/blob/master/L09/code/09-eval2-ci__4-confidence-intervals_iris.ipynb

Sebastian Raschka STAT 451: Intro to ML Lecture 9: Model Evaluation 2 64

Iris dataset

3-NN classifier

Code: https://github.com/rasbt/stat451-machine-learning-fs20/blob/master/L09/code/09-eval2-ci__4-confidence-intervals_iris.ipynb

https://github.com/rasbt/stat451-machine-learning-fs20/blob/master/L09/code/09-eval2-ci__4-confidence-intervals_iris.ipynb

Sebastian Raschka STAT 451: Intro to ML Lecture 9: Model Evaluation 2 65

1. Introduction

2. Holdout method for model evaluation

3. Holdout method for model selection

4. Confidence intervals -- normal approximation

5. Resampling & repeated holdout

6. Empirical confidence intervals via Bootstrap

7. The 0.632 and 0.632+ Bootstrap

Sebastian Raschka STAT 451: Intro to ML Lecture 9: Model Evaluation 2 66

x1

x1

x1

x1 x1x1

x2 x3 x4 x5 x6 x7 x8 x9 x10

x2

x2

x2

x2 x8x8 x10x7x3

x6 x9

x3 x8 x10x7x2x2 x9x6x6 x4x4x5

x10 x8x7x5 x4x3

x4x5x6x8 x9

Training Sets Test Sets

Bootstrap 1

Bootstrap 2

Bootstrap 3

Original Dataset

Bootstrap Sampling

Out-of-bag samples

Sebastian Raschka STAT 451: Intro to ML Lecture 9: Model Evaluation 2 67

https://github.com/rasbt/stat451-machine-learning-fs20/blob/master/L09/code/09-eval2-ci__5.ipynb

OOB Bootstrap
Object Oriented API

https://github.com/rasbt/stat451-machine-learning-fs20/blob/master/L09/code/09-eval2-ci__5.ipynb

Sebastian Raschka STAT 451: Intro to ML Lecture 9: Model Evaluation 2 68

https://github.com/rasbt/stat451-machine-learning-fs20/blob/master/L09/code/09-eval2-ci__5.ipynb

OOB Bootstrap
Object Oriented API

https://github.com/rasbt/stat451-machine-learning-fs20/blob/master/L09/code/09-eval2-ci__5.ipynb

Sebastian Raschka STAT 451: Intro to ML Lecture 9: Model Evaluation 2 69

Code: https://github.com/rasbt/stat451-machine-learning-fs20/blob/master/L09/code/09-eval2-ci__4-confidence-intervals_iris.ipynb

OOB Bootstrap
Functional API

https://github.com/rasbt/stat451-machine-learning-fs20/blob/master/L09/code/09-eval2-ci__4-confidence-intervals_iris.ipynb

Sebastian Raschka STAT 451: Intro to ML Lecture 9: Model Evaluation 2 70

The 0.632 Bootstrap Method

•In 1983, Bradley Efron described the .632 Estimate, a
further improvement to address the pessimistic bias of
the bootstrap [1].

•The pessimistic bias in the “classic” bootstrap method
can be attributed to the fact that the bootstrap
samples only contain approximately 63.2% of the
unique samples from the original dataset.

[1] Efron, Bradley. 1983. “Estimating the Error Rate of a Prediction Rule: Improvement on Cross-Validation.” Journal of the American
Statistical Association 78 (382): 316. doi:10.2307/2288636.

Sebastian Raschka STAT 451: Intro to ML Lecture 9: Model Evaluation 2 71

P(not chosen) = (1 −
1
n)

n

,

1
e

≈ 0.368, n → ∞ .

Bootstrap Sampling

Sebastian Raschka STAT 451: Intro to ML Lecture 9: Model Evaluation 2 72

P(not chosen) = (1 −
1
n)

n

,

1
e

≈ 0.368, n → ∞ .

P(chosen) = 1 − (1 −
1
n)

n

≈ 0.632

Sebastian Raschka STAT 451: Intro to ML Lecture 9: Model Evaluation 2 73

The .632 Bootstrap Method

[1] Efron, Bradley. 1983. “Estimating the Error Rate of a Prediction Rule: Improvement on Cross-Validation.” Journal of the American
Statistical Association 78 (382): 316. doi:10.2307/2288636.

The .632 Estimate, is computed via the following equation:

ACCboot =
1
b

b

∑
i=1

(0.632 ⋅ ACCh,i + 0.368 ⋅ ACCr,i),

ACCr,i

ACCh,i

where

 is the resubstitution accuracy

 is the accuracy on the out-of-bag sample.

Sebastian Raschka STAT 451: Intro to ML Lecture 9: Model Evaluation 2 74

Code: https://github.com/rasbt/stat451-machine-learning-fs20/blob/master/L09/code/09-eval2-ci__4-confidence-intervals_iris.ipynb

https://github.com/rasbt/stat451-machine-learning-fs20/blob/master/L09/code/09-eval2-ci__4-confidence-intervals_iris.ipynb

Sebastian Raschka STAT 451: Intro to ML Lecture 9: Model Evaluation 2 75

The .632+ Bootstrap Method

Now, while the .632 Boostrap attempts to address the pessimistic bias of the estimate, an optimistic
bias may occur with models that tend to overfit so that Bradley Efron and Robert Tibshirani proposed
the The .632+ Bootstrap Method [1]. 

Instead of using a fixed “weight” ω = 0.632

ACCboot =
1
b

b

∑
i=1

(ω ⋅ ACCh,i + (1 − ω) ⋅ ACCr,i),

in

we compute the weight as ω =
0.632

1 − 0.368 × R
,

where R is the relative overfitting rate

R =
(−1) × (ACCh,i − ACCr,i)

γ − (1 − ACCh,i)
.

[1] Efron, Bradley, and Robert Tibshirani. 1997. “Improvements on Cross-Validation: The .632+ Bootstrap Method.”
Journal of the American Statistical Association 92 (438): 548. doi:10.2307/2965703.

Sebastian Raschka STAT 451: Intro to ML Lecture 9: Model Evaluation 2 76

The .632+ Bootstrap Method
R is the relative overfitting rate

R =
(−1) × (ACCh,i − ACCr,i)

γ − (1 − ACCh,i)
.

[1] Efron, Bradley, and Robert Tibshirani. 1997. “Improvements on Cross-Validation: The .632+ Bootstrap Method.”
Journal of the American Statistical Association 92 (438): 548. doi:10.2307/2965703.

Now, we need to determine the no-information rate γ
in order to compute R.
For instance, we can compute γ
by fitting a model to a dataset that contains all possible combinations between the
examples and
target class labels:

γ =
1
n2

n

∑
i=1

n

∑
i′ =1

(1 − L(h(x[i]), f(x[i])) .

Sebastian Raschka STAT 451: Intro to ML Lecture 9: Model Evaluation 2 77

Code: https://github.com/rasbt/stat451-machine-learning-fs20/blob/master/L09/code/09-eval2-ci__4-confidence-intervals_iris.ipynb

https://github.com/rasbt/stat451-machine-learning-fs20/blob/master/L09/code/09-eval2-ci__4-confidence-intervals_iris.ipynb

Sebastian Raschka STAT 451: Intro to ML Lecture 9: Model Evaluation 2 78

Iris dataset

3-NN classifier

MNIST 5k subset

DT classifier

Code: https://github.com/rasbt/stat451-machine-learning-fs20/blob/master/L09/code/09-eval2-ci__4-confidence-intervals_iris.ipynb

https://github.com/rasbt/stat451-machine-learning-fs20/blob/master/L09/code/09-eval2-ci__4-confidence-intervals_iris.ipynb

Sebastian Raschka STAT 451: Intro to ML Lecture 9: Model Evaluation 2 79

Model Eval Lectures

Basics

Bias and Variance

Overfitting and Underfitting

Holdout method

Confidence Intervals

Resampling methods
Repeated holdout

Empirical confidence intervals

Cross-Validation

Hyperparameter tuning

Model selection

Algorithm Selection

Statistical Tests

Evaluation Metrics
Next Lecture

Overview

