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Main points why we evaluate the predictive 
performance of a model: 
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Main points why we evaluate the predictive 
performance of a model: 

1. Want to estimate the generalization performance, 
the predictive performance of our model on future 
(unseen) data.
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Main points why we evaluate the predictive 
performance of a model: 

1. Want to estimate the generalization performance, 
the predictive performance of our model on future 
(unseen) data.


2. Want to increase the predictive performance by 
tweaking the learning algorithm and selecting the 
best performing model from a given hypothesis 
space.
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Main points why we evaluate the predictive 
performance of a model: 

1. Want to estimate the generalization performance, 
the predictive performance of our model on future 
(unseen) data.


2. Want to increase the predictive performance by 
tweaking the learning algorithm and selecting the 
best performing model from a given hypothesis 
space.


3. Want to identify the ML algorithm that is best-suited 
for the problem at hand; thus, we want to compare 
different algorithms, selecting the best-performing 
one as well as the best performing model from the 
algorithm’s hypothesis space.
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• Training set error is an optimistically 
biased estimator of the generalization 
error


• Test set error is an unbiased estimator 
of the generalization error (test sample 
and hypothesis chosen independently)


• (In practice, the test set error is 
actually pessimistically biased; why?)

Some unfortunate facts about  
test sets
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Often, using the holdout 
method is not a good idea ...

12
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Test set error as generalization error estimator is ____imistically 
biased (not so bad) 

But it does not account for variance in the training data (bad)

Often using the holdout 
method is not a good idea ...
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Suppose we have the following ranking based on accuracy:

h2: 75% > h1: 70% > h3: 65%,

we would still rank them the same way if we add a 10% pessimistic bias:

h2: 65% > h1: 60% > h3: 55%.

Why is pessimistic bias not  
"so bad"?
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Test set errors can also be 
optimistically biased
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https://arxiv.org/abs/1806.00451

Recht, B., Roelofs, R., Schmidt, L., & Shankar, V. (2018). Do CIFAR-10 classifiers generalize to CIFAR-10?. arXiv preprint arXiv:1806.00451.

Do CIFAR-10 Classifiers Generalize to CIFAR-10?

Benjamin Recht
UC Berkeley

Rebecca Roelofs
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Ludwig Schmidt
MIT

Vaishaal Shankar
UC Berkeley

June 4, 2018

Abstract

Machine learning is currently dominated by largely experimental work focused on improve-

ments in a few key tasks. However, the impressive accuracy numbers of the best performing

models are questionable because the same test sets have been used to select these models

for multiple years now. To understand the danger of overfitting, we measure the accuracy of

CIFAR-10 classifiers by creating a new test set of truly unseen images. Although we ensure that

the new test set is as close to the original data distribution as possible, we find a large drop

in accuracy (4% to 10%) for a broad range of deep learning models. Yet, more recent models

with higher original accuracy show a smaller drop and better overall performance, indicating

that this drop is likely not due to overfitting based on adaptivity. Instead, we view our results

as evidence that current accuracy numbers are brittle and susceptible to even minute natural

variations in the data distribution.

1 Introduction

Over the past five years, machine learning has become a decidedly experimental field. Driven by
a surge of research in deep learning, the majority of published papers has embraced a paradigm
where the main justification for a new learning technique is its improved performance on a few key
benchmarks. At the same time, there are few explanations as to why a proposed technique is a
reliable improvement over prior work. Instead, our sense of progress largely rests on a small number
of standard benchmarks such as CIFAR-10, ImageNet, or MuJoCo. This raises a crucial question:

How reliable are our current measures of progress in machine learning?

Properly evaluating progress in machine learning is subtle. After all, the goal of a learning algorithm
is to produce a model that generalizes well to unseen data. Since we usually do not have access to
the ground truth data distribution, we instead evaluate a model’s performance on a separate test set.
This is indeed a principled evaluation protocol, as long as we do not use the test set to select our

models.

Unfortunately, we typically have limited access to new data from the same distribution. It is now
commonly accepted to re-use the same test set multiple times throughout the algorithm and model
design process. Examples of this practice are abundant and include both tuning hyperparameters
(number of layers, etc.) within a single publication, and building on other researchers’ work across
publications. While there is a natural desire to compare new models to previous results, it is

1
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https://www.cs.toronto.edu/~kriz/cifar.html

The CIFAR-10 dataset
CIFAR -> Canadian Institute For Advanced Research

• 60,000 32x32 color images 
in 10 classes


• 6,000 images per class

• 50,000 training images and 

10,000 test images

https://www.cs.toronto.edu/~kriz/cifar.html
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Recht, B., Roelofs, R., Schmidt, L., & Shankar, V. (2018). Do CIFAR-10 classifiers generalize to CIFAR-10?. arXiv preprint arXiv:1806.00451.

(a) Test Set A (b) Test Set B

Figure 1: Class-balanced random draws from the new and original test sets.1

Final Assembly. After collecting a sufficient number of high-quality images for each keyword, we
sampled a random subset from our pruned candidate set. The sampling procedure was such that the
keyword-level distribution of our new dataset matches the keyword-level distribution of CIFAR-10
(see Appendix E). In the final stage, we again proceeded similar to the original CIFAR-10 dataset
creation process and used `2-nearest neighbors to filter out near duplicates. In particular, we removed
near-duplicates within our new dataset and also images that had a near duplicate in the original
CIFAR-10 dataset (train or test). The latter aspect is particularly important since our reproducibility
study is only interesting if we evaluate on truly unseen data. Hence we manually reviewed the top-10
nearest neighbors for each image in our new test set. After removing near-duplicates in our dataset,
we re-sampled the respective keywords until this process converged to our final dataset.

We remark that we did not run any classifiers on our new dataset during the data collection phase
of our study. In order to ensure that the new data does not depend on the existing classifiers, it is
important to strictly separate the data collection phase from the following evaluation phase.

4 Model Performance Results

After we completed the new test set, we evaluated a broad range of image classification models. The
main question was how the accuracy on the original CIFAR-10 test set compares to the accuracy on
our new test set. To this end, we experimented with a broad range of classifiers spanning multiple
years of machine learning research. The models include widely used convolutional networks (VGG
and ResNet [7, 18]), more recent architectures (ResNeXt, PyramidNet, DenseNet [6, 10, 20]), the
published state-of-the-art (Shake-Drop [21]), and a model derived from RL-based hyperparameter
search (NASNet) [23]. In addition, we also evaluated “shallow” approaches based on random features
[2, 16]. Overall, the accuracies on the original CIFAR-10 test set range from about 80% to 97%.

For all deep architectures, we used code previously published online (see Appendix A for a list).
To avoid bias due to specific model repositories or frameworks, we also evaluated two widely used

1Test Set A is the new test set and Test Set B is the original test set.

6
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(a) All models (b) High accuracy models

Figure 2: Model accuracy on new test set vs. model accuracy on original test set.

a0. The “hard” sub-population is  times more difficult in the sense that the classification error on
these examples is  times larger. Hence the accuracy on this sub-population is 1� (1� a0). If the
relative frequencies of these two sub-populations are p1 and p2, we get the following overall accuracy:

accorig = p1 · a0 + p2 · (1� (1� a0))

which we can rewrite as a simple linear function of a0:

accorig = � · a0 + � .

For the new test set, we also assume a mixture distribution consisting of a different proportion of
the same two components, with relative frequencies now q1 and q2. We can then write the accuracy
on the new test set as

accnew = q1 · a0 + q2 · (1� (1� a0))

= �0 · a0 + �0

where we collected terms into a simple linear function as before.

It is now easy to see that the new accuracy is indeed a linear function of the original accuracy:

accnew =
�0

�
(�a0 + �)� �0

�
� + �0

=
�0

�
accorig .

We remark that we do not see this mixture model as a ground truth explanation, but rather as
an illustrative example for how a linear dependency between the original and new test accuracies
naturally arises with small distribution shifts between data sets. In reality, the two test sets have a
more complex composition with different accuracies on various sub-populations. Nevertheless, this

9

Recht, B., Roelofs, R., Schmidt, L., & Shankar, V. (2018). Do CIFAR-10 classifiers generalize to CIFAR-10?. arXiv preprint arXiv:1806.00451.
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Table 1: Model accuracy on the original CIFAR-10 test set and the new test set, with the gap
reported as the difference between the two accuracies. � Rank is the relative difference in the
ranking from the original test set to the new test set. For example, �Rank = �2 means a model
dropped in the rankings by two positions on the new test set.

Original Accuracy New Accuracy Gap � Rank

shake_shake_64d_cutout [3, 4] 97.1 [96.8, 97.4] 93.0 [91.8, 94.0] 4.1 0
shake_shake_96d [4] 97.1 [96.7, 97.4] 91.9 [90.7, 93.1] 5.1 -2
shake_shake_64d [4] 97.0 [96.6, 97.3] 91.4 [90.1, 92.6] 5.6 -2
wide_resnet_28_10_cutout [3, 22] 97.0 [96.6, 97.3] 92.0 [90.7, 93.1] 5 +1
shake_drop [21] 96.9 [96.5, 97.2] 92.3 [91.0, 93.4] 4.6 +3
shake_shake_32d [4] 96.6 [96.2, 96.9] 89.8 [88.4, 91.1] 6.8 -2
darc [11] 96.6 [96.2, 96.9] 89.5 [88.1, 90.8] 7.1 -4
resnext_29_4x64d [20] 96.4 [96.0, 96.7] 89.6 [88.2, 90.9] 6.8 -2
pyramidnet_basic_110_270 [6] 96.3 [96.0, 96.7] 90.5 [89.1, 91.7] 5.9 +3
resnext_29_8x64d [20] 96.2 [95.8, 96.6] 90.0 [88.6, 91.2] 6.3 +3
wide_resnet_28_10 [22] 95.9 [95.5, 96.3] 89.7 [88.3, 91.0] 6.2 +2
pyramidnet_basic_110_84 [6] 95.7 [95.3, 96.1] 89.3 [87.8, 90.6] 6.5 0
densenet_BC_100_12 [10] 95.5 [95.1, 95.9] 87.6 [86.1, 89.0] 8 -2
neural_architecture_search [23] 95.4 [95.0, 95.8] 88.8 [87.4, 90.2] 6.6 +1
wide_resnet_tf [22] 95.0 [94.6, 95.4] 88.5 [87.0, 89.9] 6.5 +1
resnet_v2_bottleneck_164 [8] 94.2 [93.7, 94.6] 85.9 [84.3, 87.4] 8.3 -1
vgg16_keras [14, 18] 93.6 [93.1, 94.1] 85.3 [83.6, 86.8] 8.3 -1
resnet_basic_110 [7] 93.5 [93.0, 93.9] 85.2 [83.5, 86.7] 8.3 -1
resnet_v2_basic_110 [8] 93.4 [92.9, 93.9] 86.5 [84.9, 88.0] 6.9 +3
resnet_basic_56 [7] 93.3 [92.8, 93.8] 85.0 [83.3, 86.5] 8.3 0
resnet_basic_44 [7] 93.0 [92.5, 93.5] 84.2 [82.6, 85.8] 8.8 -3
vgg_15_BN_64 [14, 18] 93.0 [92.5, 93.5] 84.9 [83.2, 86.4] 8.1 +1
resnet_preact_tf [7] 92.7 [92.2, 93.2] 84.4 [82.7, 85.9] 8.3 0
resnet_basic_32 [7] 92.5 [92.0, 93.0] 84.9 [83.2, 86.4] 7.7 +3
cudaconvnet [13] 88.5 [87.9, 89.2] 77.5 [75.7, 79.3] 11 0
random_features_256k_aug [2] 85.6 [84.9, 86.3] 73.1 [71.1, 75.1] 12 0
random_features_32k_aug [2] 85.0 [84.3, 85.7] 71.9 [69.9, 73.9] 13 0
random_features_256k [2] 84.2 [83.5, 84.9] 69.9 [67.8, 71.9] 14 0
random_features_32k [2] 83.3 [82.6, 84.0] 67.9 [65.9, 70.0] 15 -1
alexnet_tf 82.0 [81.2, 82.7] 68.9 [66.8, 70.9] 13 +1

8

Recht, B., Roelofs, R., Schmidt, L., & Shankar, V. (2018). Do CIFAR-10 classifiers generalize to CIFAR-10?. arXiv preprint arXiv:1806.00451.
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• Test set error as generalization error estimator is 
pessimistically biased (not so bad) 

• Does not account for variance in the training data (bad)

Often using the holdout method 
is not a good idea ...
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Issues with Subsampling (Independence Violation)

The Iris dataset consists of 50 Setosa, 50 Versicolor, and 50 Virginica flowers; the flower species are distributed uniformly:
• 33.3% Setosa
• 33.3% Versicolor
• 33.3% Virginia

If our random function assigns 2/3 of the flowers (100) to the training set and 1/3 of the flowers (50) to the test set, it may yield 
the following:
• training set → 38 x Setosa, 28 x Versicolor, 34 x Virginica
• test set → 12 x Setosa, 22 x Versicolor, 16 x Virginica

Dataset before splitting (n = 150)

Test dataset (n = 50)

This work by Sebastian Raschka is licensed under a 
Creative Commons Attribution 4.0 International License.

Sepal Length [cm]

Training dataset (n = 100)

Sepal Length [cm]
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Can we use the holdout method 
for model selection?
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(Image credit: Screenshot from https://en.wikipedia.org/wiki/Binomial_distribution_)

Binomial distribution

https://en.wikipedia.org/wiki/Binomial_distribution_
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• coin lands on head ("success")

p• probability of success

ERRS(h) = 1
n ∑x∈S δ( f(x), h(x))

ERR𝒟(h) = Pr
x∈𝒟

[ f(x) ≠ h(x)]• true error

Coin Flip (Bernoulli Trial) 0-1 Loss

• example misclassified (0-1 loss)

Pr(k) =
n!

k!(n − k)!
pk(1 − p)n−k .Binomial distribution

• sample (test set) error•       , estimator of 
k
n

p

• mean, number of successes
μk = np
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Coin Flip (Bernoulli Trial) 0-1 Loss

Pr(k) =
n!

k!(n − k)!
pk(1 − p)n−k .Binomial distribution

• mean, number of successes
μk = np

• variance

σk = np(1 − p)• standard deviation

σ2
k = np(1 − p)

ERRS = 1
n ∑x∈S δ( f(x), h(x))

We are interested in proportions

σ2 = p(1 − p)

σ = p(1 − p)

SE =
ERRS(1 − ERRS)

n
=

ERRS(1 − ERRS)
n
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Confidence Intervals
A XX% confidence interval of some parameter p is an 
interval that is expected to contain p with probability 
XX%.*

* the more precise definition is "In an infinite long series of trials in which 
repeated samples of n are taken from the same distribution, the 95% 
Confidence Interval is calculated using the same method, the proportion of 
intervals covering the true parameter p is xx%."
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Normal Approximation Interval

• Less tedious than confidence interval for Binomial distribution and hence 
often used in (ML) practice for large n 

• Rule of thumb: if n larger than 40, the Binomial distribution can be 
reasonably approximated by a Normal distribution; and np and n(1 - p) 
should be greater than 5

CI = ERRS ± z
ERRS(1 − ERRS)

n
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The z constant for different confidence intervals:


• 99%: z=2.58

• 95%: z=1.96

• 90%: z=1.64
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https://github.com/rasbt/stat451-machine-learning-fs20/blob/master/L09/code/09-eval2-
ci__4-confidence-intervals_iris.ipynb

Code

https://github.com/rasbt/stat451-machine-learning-fs20/blob/master/L09/code/09-eval2-ci__4-confidence-intervals_iris.ipynb
https://github.com/rasbt/stat451-machine-learning-fs20/blob/master/L09/code/09-eval2-ci__4-confidence-intervals_iris.ipynb
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Later in this lecture we will 
construct confidence intervals 

using different Bootstrap 
Techniques
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1. Introduction


2. Holdout method for model evaluation


3. Holdout method for model selection


4. Confidence intervals -- normal approximation


5. Resampling & repeated holdout 

6. Empirical confidence intervals via Bootstrap


7. The 0.632 and 0.632+ Bootstrap
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Model selection

Algorithm Selection

Statistical Tests
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Proportionally large test sets increase the pessimistic bias if a 
model has not reached its full capacity, yet.

• To produce the plot above, I took 500 random samples of each of the ten classes from MNIST


• The sample  was then randomly divided into a 3500-example training subset and a test set 
(1500 examples) via stratification.


• Even smaller subsets of the 3500-sample training set were produced via randomized, 
stratified splits, and I used these subsets to fit softmax classifiers and used the same 1500-
sample test set to evaluate their performances; samples may overlap between these training 
subsets.

Code: https://github.com/rasbt/stat451-machine-learning-fs20/blob/master/L09/code/09-eval2-ci__3_pessimistic-bias-in-holdout.ipynb

https://github.com/rasbt/stat451-machine-learning-fs20/blob/master/L09/code/09-eval2-ci__3_pessimistic-bias-in-holdout.ipynb
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http://rasbt.github.io/mlxtend/user_guide/plotting/plot_learning_curves/

http://rasbt.github.io/mlxtend/user_guide/plotting/plot_learning_curves/
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Decreasing the size of the test set brings up another problem: 
It may result in a substantial variance increase of our model’s 
performance estimate.
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Resampling

The reason is that it depends on which instances end up in training set, and which particular instances end up in test set. 
Keeping in mind that each time we resample our data, we alter the statistics of the distribution of the sample.

Here, I repeatedly subsampled 
a two-dimensional Gaussian
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Repeated Holdout: Estimate Model Stability

ACCavg =
1
k

k

∑
j=1

ACCj,

ACCj = 1 −
1
n

n

∑
i=1

L(h(x[i]), f(x[i])) .

Average performance over k repetitions

where ACCj is the accuracy estimate of the jth test set of size m,

(also called Monte Carlo Cross-Validation)
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Repeated Holdout: Estimate Model Stability

50/50 Train-Test Split 
Avg. Acc. 0.95

90/10 Train-Test Split 
Avg. Acc. 0.96

Left: I performed 50 stratified training/test splits with 
75 samples in the test and training set each; a K-
nearest neighbors model was fit to the training set 
and evaluated on the test set in each repetition.

Right: Here, I repeatedly performed 
90/10 splits, though, so that the test set 
consisted of only 15 samples.

How repeated holdout validation may look like for different training-
test split using the Iris dataset to fit to 3-nearest neighbors 
classifiers:

Code: https://github.com/rasbt/stat451-machine-learning-fs20/blob/master/L09/code/09-eval2-ci__2_holdout-and-repeated-sampling.ipynb

https://archive.ics.uci.edu/ml/datasets/Iris
https://github.com/rasbt/stat451-machine-learning-fs20/blob/master/L09/code/09-eval2-ci__2_holdout-and-repeated-sampling.ipynb
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Code: https://github.com/rasbt/stat451-machine-learning-fs20/blob/master/
L09/code/09-eval2-ci__2_holdout-and-repeated-sampling.ipynb

https://github.com/rasbt/stat451-machine-learning-fs20/blob/master/L09/code/09-eval2-ci__2_holdout-and-repeated-sampling.ipynb
https://github.com/rasbt/stat451-machine-learning-fs20/blob/master/L09/code/09-eval2-ci__2_holdout-and-repeated-sampling.ipynb
https://github.com/rasbt/stat451-machine-learning-fs20/blob/master/L09/code/09-eval2-ci__2_holdout-and-repeated-sampling.ipynb


Sebastian Raschka                              STAT 451: Intro to ML                        Lecture 9: Model Evaluation 2 50

1. Introduction


2. Holdout method for model evaluation


3. Holdout method for model selection


4. Confidence intervals -- normal approximation


5. Resampling & repeated holdout


6. Empirical confidence intervals via Bootstrap 

7. The 0.632 and 0.632+ Bootstrap
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The Bootstrap Method and 
Empirical Confidence Intervals

Circa 1900, to pull (oneself) up by (one’s) bootstraps was used figuratively of an 
impossible task (Among the “practical questions” at the end of chapter one of 
Steele’s “Popular Physics” schoolbook (1888) is, “30. Why can not a man lift himself 
by pulling up on his boot-straps?”). By 1916 its meaning expanded to include “better 
oneself by rigorous, unaided effort.” The meaning “fixed sequence of instructions to 
load the operating system of a computer” (1953) is from the notion of the first-loaded 
program pulling itself, and the rest, up by the bootstrap.

(Source: Online Etymology Dictionary)

Source: https://memim.com/bootstrapping.html

http://www.etymonline.com/index.php?allowed_in_frame=0&search=bootstrap
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• The bootstrap method is a resampling technique for estimating a 
sampling distribution

• Here, we are particularly interested in estimating the uncertainty of our 
performance estimate

• The bootstrap method was introduced by Bradley Efron in 1979 [1]
• About 15 years later, Bradley Efron and Robert Tibshirani even devoted 

a whole book to the bootstrap, “An Introduction to the Bootstrap” [2]
• In brief, the idea of the bootstrap method is to generate new data from a 

population by repeated sampling from the original dataset with 
replacement — in contrast, the repeated holdout method can be 
understood as sampling without replacement.
[1] Efron, Bradley. 1979. “Bootstrap Methods: Another Look at the Jackknife.” The Annals of Statistics 7 (1).  
     Institute of Mathematical Statistics: 1–26. doi:10.1214/aos/1176344552.

[2] Efron, Bradley, and Robert Tibshirani. 1994. An Introduction to the Bootstrap. Chapman & Hall.

The Bootstrap Method and 
Empirical Confidence Intervals
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Using the bootstrap, we can estimate sample statistics and 
compute the standard error of the mean and confidence intervals 
as if we have drawn a number of samples from an infinite 
population. In a nutshell, the bootstrap procedure can be 
described as follows:


1. Draw a sample with replacement


2. Compute the sample statistic


3. Repeat step 1-2 n times


4. Compute the standard deviation (standard error of the mean 
of the statistic)


5. Compute the confidence interval

The Bootstrap Method and Empirical Confidence Intervals
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The Bootstrap Method and Empirical Confidence Intervals
For Evaluating Classifier Performance

1.We are given a dataset of size n.

2.For b bootstrap rounds:

1.We draw one single instance from this dataset and assign it to 
our jth bootstrap sample. We repeat this step until our bootstrap 
sample has size n (the size of the original dataset). Each time, 
we draw samples from the same original dataset so that certain 
samples may appear more than once in our bootstrap sample 
and some not at all.

3.We fit a model to each of the b bootstrap samples and compute 
the resubstitution accuracy.

4.We compute the model accuracy as the average over the b 
accuracy estimates

ACCboot =
1
b

b

∑
j=1

1
n

n

∑
i=1

(1 − L(h(x[i]), f(x[i])) .
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The Bootstrap Method and Empirical Confidence Intervals

• As we discussed previously, the resubstitution accuracy usually leads to an 
extremely optimistic bias, since a model can be overly sensible to noise in a 
dataset. 

• Originally, the bootstrap method aims to determine the statistical properties of 
an estimator when the underlying distribution was unknown and additional 
samples are not available. 

• So, in order to exploit this method for the evaluation of predictive models, such 
as hypotheses for classification and regression, we may prefer a slightly 
different approach to bootstrapping using the so-called Leave-One-Out 
Bootstrap (LOOB) technique. 

• Here, we use out-of-bag samples as test sets for evaluation instead of 
evaluating the model on the training data. Out-of-bag samples are the unique 
sets of instances that are not used for model fitting
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The Bootstrap Method and Empirical Confidence Intervals
We can compute the 95% confidence interval of the bootstrap estimate as

ACCboot =
1
b

b

∑
i=1

ACCi

and use it to compute the standard error

(In practice, at least 200 bootstrap rounds are recommended)

SEboot =
1

b − 1

b

∑
i=1

(ACCi − ACCboot)2 .

Finally, we can then compute the confidence interval around the mean estimate as

ACCboot ± t × SEboot .

For instance, given a sample with n=100, we find that tα=0.05,99 = 1.984 (95% CI)
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Code: https://github.com/rasbt/stat451-machine-learning-fs20/blob/master/L09/code/09-eval2-ci__4-confidence-intervals_iris.ipynb

https://github.com/rasbt/stat451-machine-learning-fs20/blob/master/L09/code/09-eval2-ci__4-confidence-intervals_iris.ipynb
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Code: https://github.com/rasbt/stat451-machine-learning-fs20/blob/master/L09/code/09-eval2-ci__4-confidence-intervals_iris.ipynb

https://github.com/rasbt/stat451-machine-learning-fs20/blob/master/L09/code/09-eval2-ci__4-confidence-intervals_iris.ipynb
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Code: https://github.com/rasbt/stat451-machine-learning-fs20/blob/master/L09/code/09-eval2-ci__4-confidence-intervals_iris.ipynb

https://github.com/rasbt/stat451-machine-learning-fs20/blob/master/L09/code/09-eval2-ci__4-confidence-intervals_iris.ipynb
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The Bootstrap Method and Empirical Confidence Intervals

And if our samples do not follow a normal distribution? A more robust, yet 
computationally straight-forward approach is the percentile method as 
described by B. Efron (Efron, 1981). Here, we pick our lower and upper 
confidence bounds as follows:

ACClower = α1th percentile of the ACCboot distribution

ACCupper = α1th percentile of the ACCboot distribution

where               and                        and      is our degree of confidence to compute  
 
the                                 confidence interval.


α1 = α α2 = 1 − α α

100 × (1 − 2 × α)

For instance, to compute a 95% confidence interval, we pick          
to obtain the 2.5th and 97.5th percentiles of the b bootstrap samples distribution 
as our upper and lower confidence bounds.

α = 0.025
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Code: https://github.com/rasbt/stat451-machine-learning-fs20/blob/master/L09/code/09-eval2-ci__4-confidence-intervals_iris.ipynb

https://github.com/rasbt/stat451-machine-learning-fs20/blob/master/L09/code/09-eval2-ci__4-confidence-intervals_iris.ipynb
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Bootstrapping the Test set

Code: https://github.com/rasbt/stat451-machine-learning-fs20/blob/master/L09/code/09-eval2-ci__4-confidence-intervals_iris.ipynb

https://github.com/rasbt/stat451-machine-learning-fs20/blob/master/L09/code/09-eval2-ci__4-confidence-intervals_iris.ipynb
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Iris dataset

3-NN classifier

Code: https://github.com/rasbt/stat451-machine-learning-fs20/blob/master/L09/code/09-eval2-ci__4-confidence-intervals_iris.ipynb

https://github.com/rasbt/stat451-machine-learning-fs20/blob/master/L09/code/09-eval2-ci__4-confidence-intervals_iris.ipynb
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1. Introduction


2. Holdout method for model evaluation


3. Holdout method for model selection


4. Confidence intervals -- normal approximation


5. Resampling & repeated holdout


6. Empirical confidence intervals via Bootstrap


7. The 0.632 and 0.632+ Bootstrap
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https://github.com/rasbt/stat451-machine-learning-fs20/blob/master/L09/code/09-eval2-ci__5.ipynb

OOB Bootstrap 
Object Oriented API

https://github.com/rasbt/stat451-machine-learning-fs20/blob/master/L09/code/09-eval2-ci__5.ipynb
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https://github.com/rasbt/stat451-machine-learning-fs20/blob/master/L09/code/09-eval2-ci__5.ipynb

OOB Bootstrap 
Object Oriented API

https://github.com/rasbt/stat451-machine-learning-fs20/blob/master/L09/code/09-eval2-ci__5.ipynb
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Code: https://github.com/rasbt/stat451-machine-learning-fs20/blob/master/L09/code/09-eval2-ci__4-confidence-intervals_iris.ipynb

OOB Bootstrap 
Functional API

https://github.com/rasbt/stat451-machine-learning-fs20/blob/master/L09/code/09-eval2-ci__4-confidence-intervals_iris.ipynb
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The 0.632 Bootstrap Method

•In 1983, Bradley Efron described the .632 Estimate, a 
further improvement to address the pessimistic bias of 
the bootstrap [1]. 

•The pessimistic bias in the “classic” bootstrap method 
can be attributed to the fact that the bootstrap 
samples only contain approximately 63.2% of the 
unique samples from the original dataset.

[1] Efron, Bradley. 1983. “Estimating the Error Rate of a Prediction Rule: Improvement on Cross-Validation.” Journal of the American 
Statistical Association 78 (382): 316. doi:10.2307/2288636.
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P(not chosen) = (1 −
1
n )

n

,

1
e

≈ 0.368, n → ∞ .

Bootstrap Sampling
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P(not chosen) = (1 −
1
n )

n

,

1
e

≈ 0.368, n → ∞ .

P(chosen) = 1 − (1 −
1
n )

n

≈ 0.632
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The .632 Bootstrap Method

[1] Efron, Bradley. 1983. “Estimating the Error Rate of a Prediction Rule: Improvement on Cross-Validation.” Journal of the American 
Statistical Association 78 (382): 316. doi:10.2307/2288636.

The .632 Estimate, is computed via the following equation:

ACCboot =
1
b

b

∑
i=1

(0.632 ⋅ ACCh,i + 0.368 ⋅ ACCr,i),

ACCr,i

ACCh,i

where                 

               is the resubstitution accuracy

               is the accuracy on the out-of-bag sample.
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Code: https://github.com/rasbt/stat451-machine-learning-fs20/blob/master/L09/code/09-eval2-ci__4-confidence-intervals_iris.ipynb

https://github.com/rasbt/stat451-machine-learning-fs20/blob/master/L09/code/09-eval2-ci__4-confidence-intervals_iris.ipynb
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The .632+ Bootstrap Method

Now, while the .632 Boostrap attempts to address the pessimistic bias of the estimate, an optimistic 
bias may occur with models that tend to overfit so that Bradley Efron and Robert Tibshirani proposed 
the The .632+ Bootstrap Method [1]. 

Instead of using a fixed “weight” ω = 0.632

ACCboot =
1
b

b

∑
i=1

(ω ⋅ ACCh,i + (1 − ω) ⋅ ACCr,i),

in

we compute the weight as ω =
0.632

1 − 0.368 × R
,

where R is the relative overfitting rate

R =
(−1) × (ACCh,i − ACCr,i)

γ − (1 − ACCh,i)
.

[1] Efron, Bradley, and Robert Tibshirani. 1997. “Improvements on Cross-Validation: The .632+ Bootstrap Method.” 
Journal of the American Statistical Association 92 (438): 548. doi:10.2307/2965703.
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The .632+ Bootstrap Method
R is the relative overfitting rate

R =
(−1) × (ACCh,i − ACCr,i)

γ − (1 − ACCh,i)
.

[1] Efron, Bradley, and Robert Tibshirani. 1997. “Improvements on Cross-Validation: The .632+ Bootstrap Method.” 
Journal of the American Statistical Association 92 (438): 548. doi:10.2307/2965703.

Now, we need to determine the no-information rate γ
in order to compute R.
For instance, we can compute γ
by fitting a model to a dataset that contains all possible combinations between the 
examples and
target class labels:

γ =
1
n2

n

∑
i=1

n

∑
i′ =1

(1 − L(h(x[i]), f(x[i])) .
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Code: https://github.com/rasbt/stat451-machine-learning-fs20/blob/master/L09/code/09-eval2-ci__4-confidence-intervals_iris.ipynb

https://github.com/rasbt/stat451-machine-learning-fs20/blob/master/L09/code/09-eval2-ci__4-confidence-intervals_iris.ipynb


Sebastian Raschka                              STAT 451: Intro to ML                        Lecture 9: Model Evaluation 2 78

Iris dataset

3-NN classifier

MNIST 5k subset

DT classifier

Code: https://github.com/rasbt/stat451-machine-learning-fs20/blob/master/L09/code/09-eval2-ci__4-confidence-intervals_iris.ipynb

https://github.com/rasbt/stat451-machine-learning-fs20/blob/master/L09/code/09-eval2-ci__4-confidence-intervals_iris.ipynb
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