
STAT 451: Introduction to Machine Learning

Lecture Notes

Sebastian Raschka
Department of Statistics

University of Wisconsin–Madison

http://stat.wisc.edu/∼sraschka/teaching/stat451-fs2020/

Fall 2020

Contents

9 Model Evaluation 2: Confidence Intervals and Resampling Techniques 1

9.1 Introduction: Essential Model Evaluation Terms and Techniques 1

9.1.1 Performance Estimation: Generalization Performance Vs. Model Se-
lection . 1

9.1.2 Assumptions and Terminology . 2

9.2 Resubstitution Validation and the Holdout Method 5

9.2.1 Stratification . 5

9.3 Holdout Validation . 6

9.3.1 Pessimistic Bias . 8

9.4 Confidence Intervals via Normal Approximation 8

9.5 Overview of the Next Sections on Resampling 10

9.6 Resampling . 10

9.7 Repeated Holdout Validation . 12

9.8 The Bootstrap Method and Empirical Confidence Intervals 14

9.9 Conclusions . 19

http://stat.wisc.edu/~sraschka/teaching/stat451-fs2020/

STAT 451: Introduction to Machine Learning

Lecture Notes

Sebastian Raschka
Department of Statistics

University of Wisconsin–Madison

http://stat.wisc.edu/∼sraschka/teaching/stat451-fs2020/

Fall 2020

9 Model Evaluation 2: Confidence Intervals and Re-
sampling Techniques

9.1 Introduction: Essential Model Evaluation Terms and Tech-
niques

Machine learning has become a central part of our life – as consumers, customers, and
hopefully as researchers and practitioners. Whether we are applying predictive modeling
techniques to our research or business problems, I believe we have one thing in common:
We want to make ”good” predictions. Fitting a model to our training data is one thing, but
how do we know that it generalizes well to unseen data? How do we know that it does not
simply memorize the data we fed it and fails to make good predictions on future samples,
samples that it has not seen before? And how do we select a good model in the first place?
Maybe a different learning algorithm could be better-suited for the problem at hand?

Model evaluation is certainly not just the end point of our machine learning pipeline. Before
we handle any data, we want to plan ahead and use techniques that are suited for our
purposes. In this article, we will go over a selection of these techniques, and we will see how
they fit into the bigger picture, a typical machine learning workflow.

9.1.1 Performance Estimation: Generalization Performance Vs. Model Selec-
tion

Let us consider the obvious question, ”How do we estimate the performance of a machine
learning model?” A typical answer to this question might be as follows: ”First, we feed the
training data to our learning algorithm to learn a model. Second, we predict the labels
of our test set. Third, we count the number of wrong predictions on the test dataset to
compute the model’s prediction accuracy.” Depending on our goal, however, estimating the
performance of a model is not that trivial, unfortunately. Maybe we should address the
previous question from a different angle: ”Why do we care about performance estimates
at all?” Ideally, the estimated performance of a model tells how well it performs on unseen
data – making predictions on future data is often the main problem we want to solve in

http://stat.wisc.edu/~sraschka/teaching/stat451-fs2020/

Sebastian Raschka STAT451 FS20. L09: Model Eval. 2 – Resampling Page 2

applications of machine learning or the development of new algorithms. Typically, machine
learning involves a lot of experimentation, though – for example, the tuning of the internal
knobs of a learning algorithm, the so-called hyperparameters. Running a learning algorithm
over a training dataset with different hyperparameter settings will result in different models.
Since we are typically interested in selecting the best-performing model from this set, we
need to find a way to estimate their respective performances in order to rank them against
each other.

Going one step beyond mere algorithm fine-tuning, we are usually not only experimenting
with the one single algorithm that we think would be the ”best solution” under the given
circumstances. More often than not, we want to compare different algorithms to each other,
oftentimes in terms of predictive and computational performance. Let us summarize the
main points why we evaluate the predictive performance of a model:

1. We want to estimate the generalization performance, the predictive performance of
our model on future (unseen) data.

2. We want to increase the predictive performance by tweaking the learning algorithm
and selecting the best performing model from a given hypothesis space.

3. We want to identify the machine learning algorithm that is best-suited for the problem
at hand; thus, we want to compare different algorithms, selecting the best-performing
one as well as the best performing model from the algorithm’s hypothesis space.

Although these three sub-tasks listed above have all in common that we want to estimate
the performance of a model, they all require different approaches. We will discuss some of
the different methods for tackling these sub-tasks in this and the following lectures.

Of course, we want to estimate the future performance of a model as accurately as possible.
However, we should keep in mind that that biased performance estimates can be okay in
the context of model selection and algorithm selection if the bias affects all models
equally. In other words, if we rank different models or algorithms against each other in
order to select the best-performing one, we only need to know their ”relative” performance.
For example, if all performance estimates are pessimistically biased, and we underestimate
their performances by 10%, it will not affect the ranking order. Let us assume we know the
true model accuracies:

h2(x) : 75% > h1(x) : 70% > h3(x) : 65%,

we would still rank them the same way if all apparent accuracies were measured with a 10%
pessimistic bias:

h2(x) : 65% > h1(x) : 60% > h3(x) : 55%.

However, note that if we reported the generalization (future prediction) accuracy of the best
ranked model (h2(x) to be 65%, this would obviously be quite inaccurate – given that the
true accuracy is 75 %. Estimating the absolute performance of a model is probably one of
the most challenging tasks in machine learning.

9.1.2 Assumptions and Terminology

Model evaluation is certainly a complex topic. To make sure that we do not diverge too much
from the core message, let us make certain assumptions and go over some of the technical
terms that we will use throughout this lecture.

Sebastian Raschka STAT451 FS20. L09: Model Eval. 2 – Resampling Page 3

i.i.d. We assume that the training examples are i.i.d (independent and identically dis-
tributed), which means that all examples have been drawn from the same probability distri-
bution and are statistically independent from each other. A scenario where training examples
are not independent would be working with temporal data or time-series data1.

Supervised learning and classification. The lecture focuses on supervised learning.
Although many concepts also apply to regression analysis, we will focus on classification,
the assignment of categorical target labels to the training and test examples.

0-1 loss and prediction accuracy. In this and the following lectures, we will focus on
the classification accuracy and and misclassification error. Classification accuracy is defined
as the number of all correct predictions divided by the number of examples in the dataset.
We compute the prediction accuracy as the number of correct predictions divided by the
number of examples n. Or in more formal terms, we define the prediction accuracy ACC as

ACC = 1− ERR, (1)

where the prediction error, ERR, is computed as the expected value of the 0-1 loss over n
examples in a dataset S:

ERRS =
1

n

n∑
i=1

L(ŷ[i], y[i]), (2)

with y being the true class label (f(x) = y) and ŷ being the predicted class label (h(x) = ŷ)
as usual.

Remember, the 0-1 loss L(·) is simply a Kronecker function, defined as

L(ŷ[i], y[i]) =


0 if ŷ[i] = y[i]

1 if ŷ[i] 6= y[i],

(3)

where y[i] is the ith true class label and ŷ[i] the ith predicted class label,

h(x[i]) = ŷ[i].

Our objective is to learn a model/hypothesis h that has a good generalization performance.
Such a model maximizes the prediction accuracy or, vice versa, minimizes the probability,
C(h), of making a wrong prediction:

C(h) = Pr
(x,y)∼D

[h(x) 6= y]. (4)

Here, D is the generating distribution the dataset has been drawn from, x is the feature
vector of a training example with class label y.

1We will not discuss time series data in this course, but if you choose a project where the i.i.d. assumption
is violated, you are still encouraged to work on it and research relevant techniques. For example, see
http://scikit-learn.org/stable/modules/generated/sklearn.model selection.TimeSeriesSplit.html

http://scikit-learn.org/stable/modules/generated/sklearn.model_selection.TimeSeriesSplit.html

Sebastian Raschka STAT451 FS20. L09: Model Eval. 2 – Resampling Page 4

Bias. Throughout this article, the term bias refers to the statistical bias (in contrast to

the bias in a machine learning system2). In general terms, the bias of an estimator β̂ is

the difference between its expected value E[β̂] and the true value of a parameter β being
estimated:

Bias = E[β̂]− β. (5)

Thus, if Bias = E[β̂] − β = 0, then β̂ is an unbiased estimator of β. More concretely,
we compute the prediction bias as the difference between the expected prediction accuracy
of a model and its true prediction accuracy. For example, if we computed the prediction
accuracy on the training set, this would be an optimistically biased estimate of the absolute
accuracy of a model since it would overestimate its true accuracy.

Variance. The variance is simply the statistical variance of the estimator β̂ and its ex-

pected value E[β̂]:

Variance = E
[(
β̂ − E[β̂]

)2]
. (6)

The variance is a measure of the variability of a model’s predictions if we repeat the learning
process multiple times with small fluctuations in the training set. The more sensitive the
model-building process is towards these fluctuations, the higher the variance.

Finally, let us disambiguate the terms model, hypothesis, classifier, learning algorithms, and
parameters:

Target function. In predictive modeling, we are typically interested in modeling a par-
ticular process; we want to learn or approximate a specific, unknown function. The target
function f(x) = y is the true function f(·) that we want to model.

Hypothesis. A hypothesis is a certain function that we believe (or hope) is similar to
the true function, the target function f(·) that we want to model. In context of spam
classification, it would be a classification rule we came up with that allows us to separate
spam from non-spam emails.

Model. In the machine learning field, the terms hypothesis and model are often used
interchangeably. In other sciences, these terms can have different meanings: A hypothesis
could be the ”educated guess” by the scientist, and the model would be the manifestation
of this guess to test this hypothesis.

Learning algorithm. Again, our goal is to find or approximate the target function, and
the learning algorithm is a set of instructions that tried to model the target function using
a training dataset. A learning algorithm comes with a hypothesis space, the set of possible
hypotheses it can explore to model the unknown target function by formulating the final
hypothesis.

Hyperparameters. Hyperparameters are the tuning parameters of a machine learning
algorithm – for example, the value of k (number of nearest neighbors in a k-Nearest Neighbor
algorithm, or a value for setting the maximum depth of a decision tree classifier. In contrast,

2We also called this ”machine learning bias” the ”inductive bias” of an algorithm..

Sebastian Raschka STAT451 FS20. L09: Model Eval. 2 – Resampling Page 5

model parameters are the parameters that a learning algorithm fits to the training data –
the parameters of the model itself. For example, the weight coefficients (or slope) of a linear
regression line and its bias term (here: y-axis intercept) are model parameters.

9.2 Resubstitution Validation and the Holdout Method

The holdout method is inarguably the simplest model evaluation technique; it can be sum-
marized as follows. First, we take a labeled dataset and split it into two parts: A training
and a test set. Then, we fit a model to the training data and predict the labels of the test
set. The fraction of correct predictions, which can be computed by comparing the predicted
labels to the ground truth labels of the test set, constitutes our estimate of the model’s
prediction accuracy. Here, it is important to note that we do not want to train and evaluate
a model on the same training dataset (this is called resubstitution validation or resubstitu-
tion evaluation), since it would typically introduce a very optimistic bias due to overfitting.
In other words, we cannot tell whether the model simply memorized the training data, or
whether it generalizes well to new, unseen data. (On a side note, we can estimate this
so-called optimism bias as the difference between the training and test accuracy.)

Typically, the splitting of a dataset into training and test sets is a simple process of random
subsampling. We assume that all data points have been drawn from the same probability
distribution (with respect to each class). And we randomly choose 2/3 of these samples for
the training set and 1/3 of the samples for the test set. Note that there are two problems
with this approach, which we will discuss in the next sections.

9.2.1 Stratification

We have to keep in mind that a dataset represents a random sample drawn from a prob-
ability distribution, and we typically assume that this sample is representative of the true
population – more or less. Now, further subsampling without replacement alters the statistic
(mean, proportion, and variance) of the sample. The degree to which subsampling without
replacement affects the statistic of a sample is inversely proportional to the size of the sam-
ple. Let us have a look at an example using the Iris dataset 3, which we randomly divide
into 2/3 training data and 1/3 test data as illustrated in Figure 1.

When we randomly divide a labeled dataset into training and test sets, we violate the
assumption of statistical independence. The Iris datasets consists of 50 Setosa, 50 Versicolor,
and 50 Virginica flowers; the flower species are distributed uniformly:

• 33.3% Setosa

• 33.3% Versicolor

• 33.3% Virginica

If a random function assigns 2/3 of the flowers (100) to the training set and 1/3 of the
flowers (50) to the test set, it may yield the following (also shown in Figure 1):

• training set → 38 × Setosa, 28 × Versicolor, 34 × Virginica

• test set → 12 × Setosa, 22 × Versicolor, 16 × Virginica

Assuming that the Iris dataset is representative of the true population (for instance, as-
suming that iris flower species are distributed uniformly in nature), we just created two

3https://archive.ics.uci.edu/ml/datasets/iris

Sebastian Raschka STAT451 FS20. L09: Model Eval. 2 – Resampling Page 6

Dataset before splitting (n = 150)

Test dataset (n = 50)

This work by Sebastian Raschka is licensed under a
Creative Commons Attribution 4.0 International License.

Sepal Length [cm]

Training dataset (n = 100)

Sepal Length [cm]

Figure 1: Distribution of Iris flower classes upon random subsampling into training and test sets.

imbalanced datasets with non-uniform class distributions. The class ratio that the learning
algorithm uses to learn the model is ”38% / 28% / 34%.” The test dataset that is used for
evaluating the model is imbalanced as well, and even worse, it is balanced in the ”oppo-
site” direction: ”24% / 44% / 32%.” Unless the learning algorithm is completely insensitive
to these perturbations, this is certainly not ideal. The problem becomes even worse if a
dataset has a high class imbalance upfront, prior to the random subsampling. In the worst-
case scenario, the test set may not contain any instance of a minority class at all. Thus,
a recommended practice is to divide the dataset in a stratified fashion. Here, stratification
simply means that we randomly split a dataset such that each class is correctly represented
in the resulting subsets (the training and the test set) – in other words, stratification is an
approach to maintain the original class proportion in resulting subsets.

It shall be noted that random subsampling in non-stratified fashion is usually not a big
concern when working with relatively large and balanced datasets. However, in my opin-
ion, stratified resampling is usually beneficial in machine learning applications. Moreover,
stratified sampling is incredibly easy to implement, and Ron Kohavi provides empirical ev-
idence4 that stratification has a positive effect on the variance and bias of the estimate in
k-fold cross-validation, a technique that we will revisit once more later for a more detailed
discussion.

9.3 Holdout Validation

Before diving deeper into the pros and cons of the holdout validation method, Figure 2
provides a visual summary of this method that will be discussed in the following text.

4Ron Kohavi. “A study of cross-validation and bootstrap for accuracy estimation and model selection”.
In: International Joint Conference on Artificial Intelligence 14.12 (1995), pp. 1137–1143.

Sebastian Raschka STAT451 FS20. L09: Model Eval. 2 – Resampling Page 7

Learning
Algorithm

Hyperparameter
Values

Model

Prediction

Test Labels

Performance
Model

Learning
Algorithm

Hyperparameter
Values Final

Model

2

3

4

1

Test Labels

Test Data

Training Data

Training Labels
Data

Labels

Data

Labels

Training Data

Training Labels

Test Data

Figure 2: Visual summary of the holdout validation method.

Step 1. First, we randomly divide our available data into two subsets: a training and a
test set. Setting test data aside is a work-around for dealing with the imperfections of a
non-ideal world, such as limited data and resources, and the inability to collect more data
from the generating distribution. Here, the test set shall represent new, unseen data to the
model; it is important that the test set is only used once to avoid introducing bias when
we estimating the generalization performance. Typically, we assign 2/3 to the training set
and 1/3 of the data to the test set. Other common training/test splits are 60/40, 70/30, or
80/20 – or even 90/10 if the dataset is relatively large.

Step 2. After setting test examples aside, we pick a learning algorithm that we think could
be appropriate for the given problem. As a quick reminder regarding the Hyperparameter
Values depicted in Figure 2, hyperparameters are the parameters of our learning algorithm,
or meta-parameters. And we have to specify these hyperparameter values manually – the
learning algorithm does not learn these from the training data in contrast to the actual model
parameters. Since hyperparameters are not learned during model fitting, we need some sort
of ”extra procedure” or ”external loop” to optimize these separately – this holdout approach
is ill-suited for the task. So, for now, we have to go with some fixed hyperparameter values
– we could use our intuition or the default parameters of an off-the-shelf algorithm if we are
using an existing machine learning library.

Sebastian Raschka STAT451 FS20. L09: Model Eval. 2 – Resampling Page 8

Step 3. After the learning algorithm fit a model in the previous step, the next question
is: How ”good” is the performance of the resulting model? This is where the independent
test set comes into play. Since the learning algorithm has not ”seen” this test set before,
it should provide a relatively unbiased estimate of its performance on new, unseen data.
Now, we take this test set and use the model to predict the class labels. Then, we take the
predicted class labels and compare them to the ”ground truth,” the correct class labels, to
estimate the models generalization accuracy or error.

Step 4. Finally, we obtained an estimate of how well our model performs on unseen data.
So, there is no reason for with-holding the test set from the algorithm any longer. Since we
assume that our samples are i.i.d., there is no reason to assume the model would perform
worse after feeding it all the available data. As a rule of thumb, the model will have a better
generalization performance if the algorithms uses more informative data – assuming that it
has not reached its capacity, yet.

9.3.1 Pessimistic Bias

Section 9.2 (Resubstitution Validation and the Holdout Method) referenced two types of
problems that occur when a dataset is split into separate training and test sets. The first
problem that occurs is the violation of independence and the changing class proportions
upon subsampling (discussed in Section 9.2.1). Walking through the holdout validation
method (Section 9.3) touched upon a second problem we encounter upon subsampling a
dataset: Step 4 mentioned capacity of a model, and whether additional data could be useful
or not. To follow up on the capacity issue: If a model has not reached its capacity, the
performance estimate would be pessimistically biased. This assumes that the algorithm
could learn a better model if it was given more data – by splitting off a portion of the
dataset for testing, we withhold valuable data for estimating the generalization performance
(for instance, the test dataset). To address this issue, one might fit the model to the whole
dataset after estimating the generalization performance (see Figure 2 step 4). However,
using this approach, we cannot estimate its generalization performance of the refit model,
since we have now ”burned” the test dataset. It is a dilemma that we cannot really avoid
in real-world application, but we should be aware that our estimate of the generalization
performance may be pessimistically biased if only a portion of the dataset, the training
dataset, is used for model fitting (this is especially affects models fit to relatively small
datasets).

9.4 Confidence Intervals via Normal Approximation

Using the holdout method as described in Section 9.3, we computed a point estimate of the
generalization performance of a model. Certainly, a confidence interval around this estimate
would not only be more informative and desirable in certain applications, but our point
estimate could be quite sensitive to the particular training/test split (for instance, suffering
from high variance). A simple approach for computing confidence intervals of the predictive
accuracy or error of a model is via the so-called normal approximation. Here, we assume
that the predictions follow a normal distribution, to compute the confidence interval on the
mean on a single training-test split under the central limit theorem. The following text
illustrates how this works.

As discussed earlier, we compute the prediction accuracy as follows:

ACCS =
1

n

n∑
i=1

δ(L(ŷ[i], y[i])), (7)

Sebastian Raschka STAT451 FS20. L09: Model Eval. 2 – Resampling Page 9

where L(·) is the 0-1 loss function (Equation 3), and n denotes the number of samples in the
test dataset. Further, let ŷ[i] be the predicted class label and y[i] be the ground truth class
label of the ith test example, respectively. So, we could now consider each prediction as a
Bernoulli trial, and the number of correct predictions X is following a binomial distribution
X ∼ (n, p) with n test examples, k trials, and the probability of success p, where n ∈
N and p ∈ [0, 1] :

f(k;n, p) = Pr(X = k) =

(
n

k

)
pk(1− p)n−k, (8)

for k = 0, 1, 2, ..., n, where

(
n

k

)
=

n!

k!(n− k)!
. (9)

(Here, p is the probability of success, and consequently, (1− p) is the probability of failure
– a wrong prediction.)

Now, the expected number of successes is computed as µ = np, or more concretely, if the
model has a 50% success rate, we expect 20 out of 40 predictions to be correct. The estimate
has a variance of

σ2 = np(1− p) = 10 (10)

and a standard deviation of

σ =
√
np(1− p) = 3.16. (11)

Since we are interested in the average number of successes, not its absolute value, we compute
the variance of the accuracy estimate as

σ2 =
1

n
ACCS(1−ACCS), (12)

and the respective standard deviation as

σ =

√
1

n
ACCS(1−ACCS). (13)

Under the normal approximation, we can then compute the confidence interval as

ACCS ± z
√

1

n
ACCS (1−ACCS), (14)

where α is the error quantile and z is the 1− α
2 quantile of a standard normal distribution.

For a typical confidence interval of 95%, (α = 0.05), we have z = 1.96.

In practice, however, I would rather recommend repeating the training-test split multiple
times to compute the confidence interval on the mean estimate (for instance, averaging the
individual runs). In any case, one interesting take-away for now is that having fewer samples
in the test set increases the variance (see n in the denominator above) and thus widens the
confidence interval. Confidence intervals and estimating uncertainty will be discussed in
more detail in the next section, Section 9.5.

Sebastian Raschka STAT451 FS20. L09: Model Eval. 2 – Resampling Page 10

9.5 Overview of the Next Sections on Resampling

In a previous section (Section 9.1, Introduction: Essential Model Evaluation Terms and
Techniques), I introduced the general ideas behind model evaluation in supervised machine
learning. We then discussed the holdout method, which helps us to deal with real world
limitations such as limited access to new, labeled data for model evaluation. Using the
holdout method, we split our dataset into two parts: A training and a test set. First, we
provide the training data to a supervised learning algorithm. The learning algorithm builds
a model from the training set of labeled observations. Then, we evaluate the predictive
performance of the model on an independent test set that shall represent new, unseen data.
Also, we briefly introduced the normal approximation, which requires us to make certain
assumptions that allow us to compute confidence intervals for modeling the uncertainty of
our performance estimate based on a single test set, which we have to take with a grain of
salt.

This section introduces some of the advanced techniques for model evaluation. We will start
by discussing techniques for estimating the uncertainty of our estimated model performance
as well as the model’s variance and stability. And after getting these basics under our belt,
we will look at cross-validation techniques for model selection in the next lecture. As we
remember from Section 9.1, there are three related, yet different tasks or reasons why we
care about model evaluation:

1. We want to estimate the generalization accuracy, the predictive performance of a model
on future (unseen) data.

2. We want to increase the predictive performance by tweaking the learning algorithm
and selecting the best-performing model from a given hypothesis space.

3. We want to identify the machine learning algorithm that is best-suited for the problem
at hand. Hence, we want to compare different algorithms, selecting the best-performing
one as well as the best-performing model from the algorithm’s hypothesis space.

9.6 Resampling

The first section of these lecture notes document introduced the prediction accuracy or
error measures of classification models. To compute the classification error or accuracy on
a dataset S, we defined the following equation:

ERRS =
1

n

n∑
i=1

L
(
ŷ[i], y[i]

)
= 1−ACCS . (15)

Here, L(·) represents the 0-1 loss, which is computed from a predicted class label (ŷ[i]) and
a true class label (y[i]) for i = 1, ..., n in dataset S:

L(ŷ[i], y[i]) =


0 if ŷ[i] = y[i]

1 if ŷ[i] 6= y[i].

(16)

In essence, the classification error is simply the count of incorrect predictions divided by the
number of samples in the dataset. Vice versa, we compute the prediction accuracy as the
number of correct predictions divided by the number of samples.

Sebastian Raschka STAT451 FS20. L09: Model Eval. 2 – Resampling Page 11

Note that the concepts presented in this section also apply to other types of supervised
learning, such as regression analysis. To use the resampling methods presented in the fol-
lowing sections for regression models, we swap the accuracy or error computation by, for
example, the mean squared error (MSE):

MSES =
1

n

n∑
i=1

(ŷ[i] − y[i])2. (17)

As we learned in Section 9.1, performance estimates may suffer from bias and variance, and
we are interested in finding a good trade-off. For instance, the resubstitution evaluation
(fitting a model to a training set and using the same training set for model evaluation) is
heavily optimistically biased. Vice versa, withholding a large portion of the dataset as a
test set may lead to pessimistically biased estimates. While reducing the size of the test set
may decrease this pessimistic bias, the variance of a performance estimates will most likely
increase. An intuitive illustration of the relationship between bias and variance is given
in Figure 3. This section will introduce alternative resampling methods for finding a good
balance between bias and variance for model evaluation and selection.

Low Variance
(Precise)

High Variance
(Not Precise)

Lo
w

 B
ia

s
(A

cc
ur

at
e)

H
ig

h
B

ia
s

(N
ot

 A
cc

ur
at

e)

Figure 3: Illustration of bias and variance.

The reason why a proportionally large test sets increase the pessimistic bias is that the
model may not have reached its full capacity, yet. In other words, the learning algorithm
could have formulated a more powerful, more generalizable hypothesis for classification if it
had seen more data. To demonstrate this effect, Figure 4 shows learning curves of a softmax
classifiers5, which were fitted to small subsets of the MNIST6 dataset.

5A softmax classifier is another term for multinomial logistic regression; if we have time, we will discuss
it later in this course. I initially picked it for computational simplicity here, but for alternative examples
with random forests and k-Nearest Neighbors, please see the accompanying code notebook.

6http://yann.lecun.com/exdb/mnist

Sebastian Raschka STAT451 FS20. L09: Model Eval. 2 – Resampling Page 12

Figure 4: Learning curves of softmax classifiers fit to MNIST.

To generate the learning curves shown in Figure 4, 500 random samples of each of the
ten classes from MNIST – instances of the handwritten digits 0 to 9 – were drawn. The
5000-sample MNIST subset was then randomly divided into a 3500-sample training subset
and a test set containing 1500 samples while keeping the class proportions intact via strat-
ification. Finally, even smaller subsets of the 3500-sample training set were produced via
randomized, stratified splits, and these subsets were used to fit softmax classifiers and the
same 1500-sample test set was used to evaluate their performances (samples may overlap
between these training subsets). Looking at the plot above, we can see two distinct trends.
First, the resubstitution accuracy (training set) declines as the number of training samples
grows. Second, we observe an improving generalization accuracy (test set) with an increasing
training set size. These trends can likely be attributed to a reduction in overfitting. If the
training set is small, the algorithm is more likely picking up noise in the training set so that
the model fails to generalize well to data that it has not seen before. This observation also
explains the pessimistic bias of the holdout method: A training algorithm may benefit from
more training data, data that was withheld for testing. Thus, after we evaluated a model,
we may want to run the learning algorithm once again on the complete dataset before we
use it in a real-world application.

Now, that we established the point of pessimistic biases for disproportionally large test sets,
we may ask whether it is a good idea to decrease the size of the test set. Decreasing the
size of the test set brings up another problem: It may result in a substantial variance of our
model’s performance estimate. The reason is that it depends on which instances end up in
training set, and which particular instances end up in test set. Keeping in mind that each
time we resample a dataset, we alter the statistics of the distribution of the sample. Most
supervised learning algorithms for classification and regression as well as the performance
estimates operate under the assumption that a dataset is representative of the population
that this dataset sample has been drawn from. As discussed in Section 9.2.1, stratification
helps with keeping the sample proportions intact upon splitting a dataset. However, the
change in the underlying sample statistics along the features axes is still a problem that
becomes more pronounced if we work with small datasets, which is illustrated in Figure 5.

9.7 Repeated Holdout Validation

One way to obtain a more robust performance estimate that is less variant to how we split
the data into training and test sets is to repeat the holdout method k times with different
random seeds and compute the average performance over these k repetitions:

Sebastian Raschka STAT451 FS20. L09: Model Eval. 2 – Resampling Page 13

D
at

as
et

D

is
tr

ib
ut

io
n

Sa
m

pl
e

1
Sa

m
pl

e
2

Sa
m

pl
e

3

Train
(70%)

Test
(30%)

Train
(70%)

Test
(30%)

n=1000n=100

R
ea

l W
or

ld

D
is

tr
ib

ut
io

n

Resampling

Figure 5: Repeated subsampling from a two-dimensional Gaussian distribution.

ACCavg =
1

k

k∑
j=1

ACCj , (18)

where ACCj is the accuracy estimate of the jth test set of size m,

ACCj = 1− 1

m

m∑
i=1

L
(
ŷ[i], y[i]

)
. (19)

This repeated holdout procedure, sometimes also called Monte Carlo Cross-Validation, pro-
vides a better estimate of how well our model may perform on a random test set, compared
to the standard holdout validation method. Also, it provides information about the model’s
stability – how the model, produced by a learning algorithm, changes with different training
set splits. Figure 6 shall illustrate how repeated holdout validation may look like for different

Sebastian Raschka STAT451 FS20. L09: Model Eval. 2 – Resampling Page 14

training-test split using the Iris dataset to fit to 3-nearest neighbors classifiers.

50/50 Train-Test Split
Avg. Acc. 0.95

90/10 Train-Test Split
Avg. Acc. 0.96

Figure 6: Repeated holdout validation with 3-nearest neighbor classifiers fit to the Iris dataset.

The left subplot in Figure 6 was generated by performing 50 stratified training/test splits
with 75 samples in the test and training set each; a 3-nearest neighbors model was fit to the
training set and evaluated on the test set in each repetition. The average accuracy of these
50 50/50 splits was 95%. The same procedure was used to produce the right subplot in
Figure 6. Here, the test sets consisted of only 15 samples each due to the 90/10 splits, and
the average accuracy over these 50 splits was 96%. Figure 6 demonstrates two of the points
that were previously discussed. First, we see that the variance of our estimate increases as
the size of the test set decreases. Second, we see a small increase in the pessimistic bias
when we decrease the size of the training set – we withhold more training data in the 50/50
split, which may be the reason why the average performance over the 50 splits is slightly
lower compared to the 90/10 splits.

The next section introduces an alternative method for evaluating a model’s performance;
the next section will go over different flavors of the bootstrap method that are commonly
used to infer the uncertainty of a performance estimate.

9.8 The Bootstrap Method and Empirical Confidence Intervals

The previous examples of Monte Carlo Cross-Validation may have convinced us that re-
peated holdout validation could provide us with a more robust estimate of a model’s per-
formance on random test sets compared to an evaluation based on a single train/test split
via holdout validation (Section 9.3). In addition, the repeated holdout may give us an idea
about the stability of our model. This section explores an alternative approach to model
evaluation and for estimating uncertainty using the bootstrap method.

Let us assume that we would like to compute a confidence interval around a performance
estimate to judge its certainty – or uncertainty. How can we achieve this if our sample
has been drawn from an unknown distribution? Maybe we could use the sample mean as a
point estimate of the population mean, but how would we compute the variance or confidence
intervals around the mean if its distribution is unknown? Sure, we could collect multiple,
independent samples; this is a luxury we often do not have in real world applications,
though. Now, the idea behind the bootstrap is to generate ”new samples” by sampling from
an empirical distribution. As a side note, the term ”bootstrap” likely originated from the
phrase ”to pull oneself up by one’s bootstraps:”

Circa 1900, to pull (oneself) up by (one’s) bootstraps was used figuratively of
an impossible task (Among the ”practical questions” at the end of chapter one

Sebastian Raschka STAT451 FS20. L09: Model Eval. 2 – Resampling Page 15

of Steele’s ”Popular Physics” schoolbook (1888) is ”Why can not a man lift
himself by pulling up on his boot-straps?”. By 1916 its meaning expanded to
include ”better oneself by rigorous, unaided effort.” The meaning ”fixed sequence
of instructions to load the operating system of a computer” (1953) is from the
notion of the first-loaded program pulling itself, and the rest, up by the bootstrap.

[Source: Online Etymology Dictionary7]

The bootstrap method is a resampling technique for estimating a sampling distribution, and
in the context of this lecture, we are particularly interested in estimating the uncertainty
of a performance estimate – the prediction accuracy or error. The bootstrap method was
introduced by Bradley Efron in 19798. About 15 years later, Bradley Efron and Robert
Tibshirani even devoted a whole book to the bootstrap method, ”An Introduction to the
Bootstrap”9, which is a highly recommended read for everyone who is interested in more
details on this topic. In brief, the idea of the bootstrap method is to generate new data from
a population by repeated sampling from the original dataset with replacement – in contrast,
the repeated holdout method can be understood as sampling without replacement. Walking
through it step by step, the bootstrap method works like this:

1. We are given a dataset of size n.

2. For b bootstrap rounds:

We draw one single instance from this dataset and assign it to the jth bootstrap
sample. We repeat this step until our bootstrap sample has size n – the size of the
original dataset. Each time, we draw samples from the same original dataset such that
certain examples may appear more than once in a bootstrap sample and some not at
all.

3. We fit a model to each of the b bootstrap samples and compute the resubstitution
accuracy.

4. We compute the model accuracy as the average over the b accuracy estimates (Equation
20):

ACCboot =
1

b

b∑
j=1

1

n

n∑
i=1

(
1− L

(
ŷ[i], y[i]

))
. (20)

Originally, the bootstrap method aimed to determine the statistical properties of an estima-
tor when the underlying distribution was unknown and additional samples are not available.
So, in order to exploit this method for the evaluation of predictive models, such as hypotheses
for classification and regression, we may prefer a slightly different approach to bootstrapping
using the so-called Leave-One-Out Bootstrap (LOOB) technique. Here, we use out-of-bag
samples as test sets for evaluation instead of evaluating the model on the training data.
Out-of-bag samples are the unique sets of instances that are not used for model fitting as
shown in Figure 7.

Figure 7 illustrates how three random bootstrap samples drawn from an exemplary ten-
sample dataset (x1, x2, ..., x10) and how the out-of-bag sample might look like. In practice,
Bradley Efron and Robert Tibshirani recommend drawing 50 to 200 bootstrap samples as
being sufficient for producing reliable estimates10.

7https://www.etymonline.com/word/bootstrap
8Bradley Efron. “Bootstrap methods: another look at the jackknife”. In: Breakthroughs in Statistics.

Springer, 1992, pp. 569–593.
9Bradley Efron and Robert J Tibshirani. An introduction to the bootstrap. CRC press, 1994.

10Efron and Tibshirani, An introduction to the bootstrap.

Sebastian Raschka STAT451 FS20. L09: Model Eval. 2 – Resampling Page 16

x1

x1

x1

x1 x1x1

x2 x3 x4 x5 x6 x7 x8 x9 x10

x2

x2

x2

x2 x8x8 x10x7x3

x6 x9

x3 x8 x10x7x2x2 x9x6x6 x4x4x5

x10 x8x7x5 x4x3

x4x5x6x8 x9

Training Sets Test Sets

Bootstrap 1

Bootstrap 2

Bootstrap 3

Original Dataset

Figure 7: Illustration of training and test data splits in the Leave-One-Out Bootstrap (LOOB).

Taking a step back, let us assume that a sample that has been drawn from a normal distri-
bution. Using basic concepts from statistics, we use the sample mean x̄ as a point estimate
of the population mean µ:

x̄ =
1

n

n∑
i=1

x[i]. (21)

Similarly, the variance σ2 is estimated as follows:

VAR =
1

n− 1

n∑
i=1

(x[i] − x̄)2. (22)

Consequently, the standard error (SE) is computed as the standard deviation’s estimate
(SD ≈ σ) divided by the square root of the sample size:

SE =
SD√
n
. (23)

Using the standard error we can then compute a 95% confidence interval of the mean ac-
cording to

x̄± z × σ√
n
, (24)

such that

x̄± t× SE, (25)

with z = 1.96 for the 95 % confidence interval. Since SD is the standard deviation of the
population (σ) estimated from the sample, we have to consult a t-table to look up the actual
value of t, which depends on the size of the sample – or the degrees of freedom to be precise.
For instance, given a sample with n = 100, we find that t95 = 1.984.

Similarly, we can compute the 95% confidence interval of the bootstrap estimate starting
with the mean accuracy,

Sebastian Raschka STAT451 FS20. L09: Model Eval. 2 – Resampling Page 17

ACCboot =
1

b

b∑
i=1

ACCi, (26)

and use it to compute the standard error

SEboot =

√√√√ 1

b− 1

b∑
i=1

(ACCi −ACCboot)2. (27)

Here, ACCi is the value of the statistic (the estimate of ACC) calculated on the ith bootstrap
replicate. And the standard deviation of the values ACC1,ACC1, ...,ACCb is the estimate
of the standard error of ACC11.

Finally, we can then compute the confidence interval around the mean estimate as

ACCboot ± t× SEboot. (28)

Although the approach outlined above seems intuitive, what can we do if our samples do
not follow a normal distribution? A more robust, yet computationally straight-forward
approach is the percentile method as described by B. Efron12. Here, we pick the lower and
upper confidence bounds as follows:

• ACClower = α1th percentile of the ACCboot distribution

• ACCupper = α2th percentile of the ACCboot distribution,

where α1 = α and α2 = 1 − α, and α is the degree of confidence for computing the 100 ×
(1 − 2 × α) confidence interval. For instance, to compute a 95% confidence interval, we
pick α = 0.025 to obtain the the 2.5th and 97.5th percentiles of the b bootstrap samples
distribution as our upper and lower confidence bounds.

In practice, if the data is indeed (roughly) following a normal distribution, the ”standard”
confidence interval and percentile method typically agree as illustrated in the Figure 8.

� �

Figure 8: Comparison of the standard and percentile method for computing confidence intervals
from leave-one-out bootstrap samples. Subpanel A evaluates 3-nearest neighbors models on Iris,
and sublpanel B shows the results of softmax regression models on MNIST.

11Efron and Tibshirani, An introduction to the bootstrap.
12Bradley Efron. “Nonparametric standard errors and confidence intervals”. In: Canadian Journal of

Statistics 9.2 (1981), pp. 139–158.

Sebastian Raschka STAT451 FS20. L09: Model Eval. 2 – Resampling Page 18

In 1983, Bradley Efron described the .632 Estimate, a further improvement to address the
pessimistic bias of the bootstrap cross-validation approach described above13. The pes-
simistic bias in the ”classic” bootstrap method can be attributed to the fact that the boot-
strap samples only contain approximately 63.2% of the unique examples from the original
dataset. For instance, we can compute the probability that a given example from a dataset
of size n is not drawn as a bootstrap sample as follows:

P (not chosen) =

(
1− 1

n

)n
, (29)

which is asymptotically equivalent to 1
e ≈ 0.368 as n→∞.

Vice versa, we can then compute the probability that a sample is chosen as

P (chosen) = 1−
(

1− 1

n

)n
≈ 0.632 (30)

for reasonably large datasets, so that we select approximately 0.632 × n unique examples
as bootstrap training sets and reserve 0.382 × n out-of-bag examples for testing in each
iteration, which is illustrated in Figure 9.

Figure 9: Probability of including an example from the dataset in a bootstrap sample for different
dataset sizes n.

Now, to address the bias that is due to this the sampling with replacement, Bradley Efron
proposed the .632 Estimate mentioned earlier, which is computed via the following equation:

ACCboot =
1

b

b∑
i=1

(
0.632 ·ACCh,i + 0.368 ·ACCr,i

)
, (31)

where ACCr,i is the resubstitution accuracy, and ACCh,i is the accuracy on the out-of-
bag sample. Now, while the .632 Boostrap attempts to address the pessimistic bias of the
estimate, an optimistic bias may occur with models that tend to overfit so that Bradley

13Bradley Efron. “Estimating the error rate of a prediction rule: improvement on cross-validation”. In:
Journal of the American Statistical Association 78.382 (1983), pp. 316–331.

Sebastian Raschka STAT451 FS20. L09: Model Eval. 2 – Resampling Page 19

Efron and Robert Tibshirani proposed The .632+ Bootstrap Method14. Instead of using a
fixed weight ω = 0.632 in

ACCboot =
1

b

b∑
i=1

(
ω ·ACCh,i + (1− ω) ·ACCr,i

)
, (32)

we compute the weight ω as

ω =
0.632

1− 0.368×R
, (33)

where R is the relative overfitting rate:

R =
(−1)× (ACCh,i −ACCr,i)

γ − (1−ACCh,i)
. (34)

(Since we are plugging ω into Equation 32 for computing ACCboot that we defined above,
ACCh,i and ACCr,i still refer to the resubstitution and out-of-bag accuracy estimates in the
ith bootstrap round, respectively.)

Further, we need to determine the no-information rate γ in order to compute R. For
instance, we can compute γ by fitting a model to a dataset that contains all possible combi-
nations between samples x′[i] and target class labels y[i] – we pretend that the observations
and class labels are independent:

γ =
1

n2

n∑
i=1

n∑
i′=1

L(yi, f(xi′)). (35)

Alternatively, we can estimate the no-information rate γ as follows:

γ =

K∑
k=1

pk(1− qk), (36)

where pk is the proportion of class k examples observed in the dataset, and qk is the pro-
portion of class k examples that the classifier predicts in the dataset.

9.9 Conclusions

This lecture continued the discussion around biases and variances in evaluating machine
learning models in more detail. Further, it introduced the repeated hold-out method that
may provide us with some further insights into a model’s stability. Then, we looked at the
bootstrap method; a technique borrowed from the field of statistics. We explored different
flavors of this bootstrap method that help us estimate the uncertainty of our performance
estimates. After covering the basics of model evaluation in this and the previous section,
the next lecture introduces hyperparameter tuning and model selection.

14Bradley Efron and Robert Tibshirani. “Improvements on cross-validation: the .632+ bootstrap
method”. In: Journal of the American Statistical Association 92.438 (1997), pp. 548–560.

	Model Evaluation 2: Confidence Intervals and Resampling Techniques
	Introduction: Essential Model Evaluation Terms and Techniques
	Performance Estimation: Generalization Performance Vs. Model Selection
	Assumptions and Terminology

	Resubstitution Validation and the Holdout Method
	Stratification

	Holdout Validation
	Pessimistic Bias

	Confidence Intervals via Normal Approximation
	Overview of the Next Sections on Resampling
	Resampling
	Repeated Holdout Validation
	The Bootstrap Method and Empirical Confidence Intervals
	Conclusions

