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Part 1: Introduction

e LO1 - Course overview, introduction to machine learning

e LO2 - Introduction to Supervised Learning and k-Nearest Neighbors Classifiers
Part 2: Computational foundations

e LO3 - Using Python
e L04 - Introduction to Python’s scientific computing stack

e LO5 - Data preprocessing and machine learning with scikit-learn
Part 3: Tree-based methods

e LO6 - Decision trees

Where we are in
th i S C 0 u rS e Part 4: Model evaluation

e Midterm exam

LO8 - Model evaluation 1 — overfitting

LO9 - Model evaluation 2 — confidence intervals

L10 - Model evaluation 3 — cross-validation and model selection

L11 - Model evaluation 4 — algorithm selection

L12 - Model evaluation 5 — evaluation and performance metrics
Part 5: Dimensionality reduction and unsupervised learning

e L13 - Feature selection
e L14 - Feature extraction

e L15 - Clustering

Dart £+ Rauvacian laarninm
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Model Eval Lectures

Sebastian Raschka

Overview

Bias and Variance
Overfitting and Underfittino
Basics
Holdout method
Confidence Intervals
Repeated holdout
Resampling methods
Empirical confidence intervals
Hyperparameter tuning
Cross-Validation Model selection
Algorithm Selection
Statistical Tests

Evaluation Metrics
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8.1 Overfitting and Underfitting
8.2 Intro to Bias-Variance Decomposition
8.3 Bias-Variance Decomposition of the Squared Error

8.4 Relationship between Bias-Variance Decomposition and
Overfitting and Underfitting

8.5 Bias-Variance Decomposition of the 0/1 Loss

8.6 Other Forms of Bias
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Overfitting and Underfitting



Overfitting and Underfitting

Generalization Performance

Want a model to "generalize” well to data

(Want "high generalization accuracy" or "low generalization error")



Overfitting and Underfitting

Assumptions

* |.I.d. assumption: training and test examples are independent
and identically distributed (drawn from the same joint
probability distribution, P(X, y) )

* For some random model that has not been fitted to the training

set,
we expect the training error is the test error

* The training error or accuracy provides
an imistically biased estimate of the generalization

performance
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Overfitting and Underfitting
Model Capacity

e Underfitting: both the training and test error are

e Qverfitting: gap between training and test error
(where test error is larger)

* |Large hypothesis space being searched by a learning algorithm

-> high tendency to fit




Overfitting and Underfitting
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"[...] model has high bias/variance”
-- What does that mean?



Google Scholar

Articles

Any time

Since 2020
Since 2019
Since 2016
Custom range...

Sort by relevance
Sort by date

v include patents
v include citations

&4 Create alert

Sebastian Raschka

"model has high bias" n

About 70 results (0.20 sec)

Evaluation of regression models: Model assessment, model selection and
generalization error
F Emmert-Streib, M Dehmer - Machine learning and knowledge extraction, 2019 - mdpi.com

When performing a regression or classification analysis, one needs to specify a statistical model.
This model should avoid the overfitting and underfitting of data, and achieve a low generalization
error that characterizes its prediction performance. In order to identify such a model ...

Y Y9 Cited by 14 Related articles All 3 versions 9

poF] A Comparative Simulation Study of ARIMA and Fuzzy Time Series Model for

Forecasting Time Series Data
HA Haji, K Sadik, AM Soleh - 2018 - academia.edu

... 8=0.9 for both oe 2 = 3 and oe 2 = 5, which is to be expected. But for Yu model has high bias
for that condition.The relationship between the bias and other forecasting accuracy measures
is roughly linear for all methods. Furthermore, The largest bias foroe2=5is ...

Y 99 Related articles All 4 versions 99

[poF] Prediction of Yelp Review Star Rating using Sentiment Analysis
C Li, J Zhang - 2014 - ¢s229.stanford.edu

... Final Report Figure 4: Ablative Analysis for 5-star Classification. As we can see, removing features
may lead to higher mean square error, which supported our hypothesis that the resulted model
has high bias and needs more features. 5.2 Recommendation Model ...

v Y9 Citedby5 Related articles 99

[poF] Automatic recognition of handwritten digits using multi-layer sigmoid neural
network
SK Katungunya, X Ding... - International Journal of ..., 2016 - pdfs.semanticscholar.org

... regularization parameter (A). Regularization add a penalty term that depends on
the characteristics of the parameters. If a model has high bias, decreasing the effect
of regularization can lead to better results. A high variance ...

¢ Y9 Citedby1 Related articles 9

poF] Overfitting vs. underfitting: A complete example

W Koehrsen - Towards Data Science, 2018 - pstu.ac.bd

... model depends very little on the training data because it barely pays any attention to the points!
Instead, the model has high bias, which means it makes a strong assumption Under t 1 degree
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Google Scholar

Articles

Any time

Since 2020
Since 2019
Since 2016
Custom range...

Sort by relevance
Sort by date

v include patents
+/ include citations

&4 Create alert

Sebastian Raschka

"model has high variance" n

About 113 results (0.20 sec)

Evaluation of regression models: Model assessment, model selection and
generalization error
F Emmert-Streib, M Dehmer - Machine learning and knowledge extraction, 2019 - mdpi.com

When performing a regression or classification analysis, one needs to specify a statistical model.
This model should avoid the overfitting and underfitting of data, and achieve a low generalization
error that characterizes its prediction performance. In order to identify such a model ...

¢ 99 Citedby 14 Related articles All 3 versions 9

HTML] Bias-variance decomposition of errors in data-driven land cover change
modeling
J Gao, AC Burnicki, JE Burt - Landscape Ecology, 2016 - Springer

... AdaBoosting is expected to noticeably reduce modeling error only if the base model has high
variance; if the base model performs poorly, boosting may transform it into a worse model (Breiman
1996; Domingos 2000). Results. Interpreting error component maps ...

Y¢ 99 Citedby2 Related articles All 6 versions

A Novel Accurate and Fast Converging Deep Learning-Based Model for Electrical
Energy Consumption Forecasting in a Smart Grid
G Hafeez, KS Alimgeer, Z Wadud, Z Shafiq... - Energies, 2020 - mdpi.com

Energy consumption forecasting is of prime importance for the restructured environment of energy
management in the electricity market. Accurate energy consumption forecasting is essential for
efficient energy management in the smart grid (SG); however, the energy consumption ...

Y Y9 Citedby2 Related articles All 6 versions 99

poF] Model-based motion planning
B Burns, O Brock - Computer Science Department Faculty ..., 2004 - scholarworks.umass.edu

... random. Cohn et al. [10] note that hill-climbing may also be used to find “x, but we
have not found this to be necessary. The result is a sampling strategy that only
queries sample points at which the model has high variance. A ...

Y¢ 99 Citedby 11 Related articles All 11 versions

Signalling and the pricing of new issues
M Grinblatt, CY Hwang - The Journal of Finance, 1989 - Wiley Online Library

... Nanda (1988), 2 In Nanda's model, firms with high mean returns also have low variances.
Since this model has high-variance low-mean firms issuing debt, high-mean firms are
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8.1 Overfitting and Underfitting

8.2 Intro to Bias-Variance Decomposition

8.3 Bias-Variance Decomposition of the Squared Error

8.4 Relationship between Bias-Variance Decomposition and
Overfitting and Underfitting

8.5 Bias-Variance Decomposition of the 0/1 Loss

8.6 Other Forms of Bias
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"[...] model has high bias/variance”
-- What does that mean?



Bias-Variance Decomposition
and Bias-Variance Trade-off

(and how it related to overfitting and underfitting)
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Bias-Variance Decomposition

* Decomposition of the loss into bias and variance help us
understand learning algorithms, concepts are related to
underfitting and overfitting

 Helps explain why ensemble methods (last lecture) might
perform better than single models
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Bias-Variance Intuition

Low Variance High Variance
(Precise) (Not Precise)

Low Bias
(Accurate)

High Bias
(Not Accurate)
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200 -

150 -

50 -

Bias-Variance Intuition

true (in practice unknown) data generating function f(x)

—15

—10 —5 0 5 10
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250 - memm target f(x)
® target + noise

200 -

150 -

f(x)

100 -

50 A
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Bias-Variance Intuition

250 A

200 A

150 ~

f(x)

100 A

50 A

target f(x)

target + noise

Sebastian Raschka

10

true function f(x)

] o
200 - .- ® possible trainset 1
A A possible train set 2
A B possible train set 3
150 A o
A
100 - —
[ |
m . ®e
50 T -
® [ |
T, ®in
(] ! E . n
0 A N
-15 -10 -5 0 5 10
X
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Bias-Variance Intuition

true function f(x)

. . . . .
200 - o —— h_1(x) (fit on train set 1)
h_2(x) (fit on train set 2) linear regression models
® — h_3(x) (fit on train set 3)
150 - ® trainsetl

100 -

50 -

—15 —10 -5 0 5 10
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Bias-Variance Intuition

true function f(x)
Bm © . .
200 - O —— h_1(x) (fit on train set 1) | |
h_2(x) (fit on train set 2) linear regression models
® —— h _3(x) (fit on train set 3)
150 - ® trainsetl
100 - _ .
High bias
H o O
50 - ®
h
O -
—15 —10 -5 0 5 10

(There are points where the bias is zero ... )
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Bias-Variance Intuition

200 -

150 -

100 -

50 A

(here, | fit an unpruned decision tree)

A

true function f(x)
— h(X)
® ftrainsetl

High Variance Why?

—15

—10 —5
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Bias-Variance Intuition

suppose we have multiple training sets

o true function f(x)
200 —& —— h_1(x) (fit on train set 1)
h_2(x) (fit on train set 2)
10— —— h_3(x) (fit on train set 3)
150 - @ . .
High variance
100 -
e |
50 -
O -
—15 —10 -5 0 5 10
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Bias-Variance Intuition

What happens if we take the average?

Does this remind you of something?

o true function f(x)
00d =1 —— h_1(x) (fit on train set 1)
—— h_2(x) (fit on train set 2)
10— —— h_3(x) (fit on train set 3)
150 - : :
-1. High variance
100 A |
50 -
O - i
D
X
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Bias-Variance Intuition

true function f(x) true function f(x)
oo ® . .
200 - —— average 200 - —— h_1(x) (fit on train set 1)
_1_,—\ h_2(x) (fit on train set 2)
® —— h_3(x) (fit on train set 3)
150 A [ 150 - L —— average
100 A 100 A

50 A 50 A

—-15 —10 -5 0 5 10 —-15 —10 -5 0 5 10
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Terminology

Point estimator & of some parameter @

(could also be a function, e.g., the hypothesis is

an estimator of some target function)
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Terminology

Point estimator & of some parameter @

(could also be a function, e.g., the hypothesis is

an estimator of some target function)

Bias = E[0] — 0

28



Terminology

General Definition

Bias[0] = E[0] — 0

Var[0] = E[6] — (E[6))?

Var[é] = F

(E10] - 0

29



Terminology

Bias[d] = E[0] — 6 Var[f] =

Intuition

P\

E |(E[0] - 072

(we ignore noise in this
lecture for simplicity)

/l/OI.S'C

\/waowt CC_

|

Taggh
3
C‘a)

(B 'ag
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Terminology

Bias[d] = E[0] — 6 Var[] = E |(E10] - )*

Bias Is the difference

between the average
estimator from different

training samples and the true
Val_ue' : (we ignore noise in this
(The expectation Is over the lecture for simplicity)

training sets.) |
e /UOl.S'e

Voonaunce 7&‘6”&
(9)
[

(Dt'ag

Sebastian Raschka STAT 451: Intro to ML Lecture 8: Model Evaluation 1

31



Terminology

Bias[d] = E[0] — € Var[0] = E |(E[0] — 6)
Bias is the difference _ _
between the average The variance provides an

estimator from different estimate of how much the
training samples and the true estimate varies as we vary
value. the training data (e.g., by

(The expectation is over the resampling).

training sets.) |
7~ /VOI.S'e

Voonaunce 7&‘6”&
(9)
[

(Dl'ag
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Bias-Variance Decomposition

Loss = Bias + Variance

33



8.1 Overfitting and Underfitting

8.2 Intro to Bias-Variance Decomposition

8.3 Bias-Variance Decomposition of the Squared Error

8.4 Relationship between Bias-Variance Decomposition and
Overfitting and Underfitting

8.5 Bias-Variance Decomposition of the 0/1 Loss

8.6 Other Forms of Bias
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Terminology

Bias[d] = E[0] — 6 Var[f] =

Intuition

P\

E |(E[0] - 072

(we ignore noise in this
lecture for simplicity)

/l/OI.S'C

\/waowt CC_

|

Taggh
3
C‘a)
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Bias-Variance Decomposition

Loss = Bias + Variance

36



Bias-Variance of the Squared Error
Bias[d] = E[0] — 0

Var[0] = E[6%] — (E[0])> "ML Notation" for

Var[d] = E [(E[é] - é)2] Squared Error Loss

y =f(x) target

/5\7 = f(X) = h(x) prediction

for simplicity, we ignore

the noise term S=((- y)z squared error

(Next slides: the expectation is over the training data, i.e, the
average estimator from different training samples)
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Bias-Variance of the Squared Error

y =f(x) target
"ML Notation" for

Squared Error Loss j\’ =f(x) — h(x) prediction

S = (y — $)? squared error

S=(-9)7
(v — 9% = (y — E[F] + E[$] — 9)*

= (y — EB])* + (E[P] — 9)* — 2(y — EFD(E] — 9)

<>

<>
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Bias-Variance of the Squared Error

S=(@-9)
(y — 9" = (y — E[$] + E[] — $)*
= (y — EPD* + (E[] = 9)* + 2(y — EBD(ED] — )

E[S]=E |(y - )]
E|y-97 = -EBD*+E [(E[D] -9

— Bias? + Var
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Bias-Variance of the Squared Error

S=(@-9)
(y — 9" = (y — E[$] + E[] — $)*

= (y — E[JD° + (E[5] = §)" + 2(y — E[FD(EF] - 3)

E[S]=E|(y -9

E|y-97 = -EBD*+E [(E[D] -9

— Bias2 + Var Bias[0] = E[0] — 0
Var[§
Var:é:

= E[0*

— (E[6])?

=Ekﬂ@—@q
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Bias-Variance of the Squared Error
S=(y-J9)
(v =9 = (v - E[5] + E[5] - §)° K
= (y — E[3])* + (E[J] - ?)2[— 2(y — E[YD(ELY] — ?ﬂ

41



Bias-Variance of the Squared Error
S=(y-J9)
(v =9 = (v - E[5] + E[5] - §)° K
= (y — E[3])* + (E[J] - ?)2[— 2(y — E[YD(ELY] — ?ﬂ

E[2(y — ESD(EL] - §)] = 2E[(y — EFDELS] - 5)
= 2(y - E[SDEI(E]
= 2(y - E[D(E]

V=)
DCELETY]] — E[Y])
=2(y — E|
= ()

| <> <> S

> > S

D(ELY] = ELy])
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from mlxtend.evaluate import bias_variance_decomp

from mlxtend.evaluate import bias_variance_decomp
from sklearn.tree import DecisionTreeRegressor

from mixtend.data import boston_housing_data

from sklearn.model_selection import train_test_split

X, y = boston_housing_data()

X_train, X_test, y_train, y_test = train_test_split(X, v,
test_size=0.3,
random_state=123,
shuffle=True)

tree = DecisionTreeRegressor(random_state=123)
avg_expected_loss, avg_bias, avg_var = bilas_variance_decomp(
tree, X_train, y_train, X_test, y_test,
loss="mse",
random_seed=123)

print( 'Average expected loss: %.3f' % avg_expected_loss)
print( 'Average bias: %.3f' % avg_bias)
print( 'Average variance: %.3f' % avg_var)

Average expected loss: 31.917
Average bias: 13.814
Average variance: 18.102

Sebastian Raschka STAT 451: Intro to ML
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http://rasbt.github.io/mlxtend/user_guide/evaluate/bias_variance_decomp/
http://rasbt.github.io/mlxtend/user_guide/evaluate/bias_variance_decomp/
http://rasbt.github.io/mlxtend/user_guide/evaluate/bias_variance_decomp/

from mlxtend.evaluate import bias_variance_decomp

from sklearn.ensemble import BaggingRegressor

tree = DecisionTreeRegressor(random_state=123)

bag = BaggingRegressor(base_estimator=tree,
n_estimators=100,
random_state=123)

avg_expected_loss, avg_bias, avg_var = bilas_variance_decomp(
bag, X_train, y_train, X_test, y_test,
loss="mse"',
random_seed=123)

print( 'Average expected loss: %.3f' % avg_expected_loss)
print('Average bias: %.3f' % avg_bias)
print( 'Average variance: %.3f' % avg_var)

Average expected loss: 18.593
Average bias: 15.354
Average variance: 3.239

http://rasbt.github.io/mixtend/user guide/evaluate/bias variance decomp/
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Source code:
https://github.com/rasbt/mixtend/blob/master/mixtend/evaluate/bias variance decomp.py

rng = np.random.RandomState(random_seed)
all_pred = np.zeros((num_rounds, y_test.shapel[0]), dtype=np.int)
for i in range(num_rounds):
X_boot, y_boot = _draw_bootstrap_sample(rng, X_train, y_train) Bi A A
ias[0] = E[O] — O
if estimator.__class__.__name__ == 'Sequential’:
estimator.fit(X boot, y boot) % N2 N1\2
s Var[0] = E[6°] — (E[0])
pred = estimator.predict(X_test).reshape(1l, -1)
else: A A A
Var[@] = E |(E[6] — 0)?
pred = estimator.fit(X_boot, y_boot).predict(X_test)
all_pred[i] = pred
avg_expected_loss = np.apply_along_axis(

E[S] = E|(y = $)*

((x — y_test)**2).mean(),

axis=1, — Bia,s2 + Var

arr=all_pred).mean()

main_predictions = np.mean(all_pred, axis=0)
avg_bias = np.sum((main_predictions - y_test)**2) / y_test.size

avg_var = np.sum((main_predictions — all_pred)**x2) / all_pred.size
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8.1 Overfitting and Underfitting
8.2 Intro to Bias-Variance Decomposition
8.3 Bias-Variance Decomposition of the Squared Error

8.4 Relationship between Bias-Variance Decomposition and
Overfitting and Underfitting

8.5 Bias-Variance Decomposition of the 0/1 Loss

8.6 Other Forms of Bias

Sebastian Raschka STAT 451: Intro to ML Lecture 8: Model Evaluation 1

46



Now, how is this related to
overfitting and underfitting?



-

T /
Tcauan
e ﬂm\rv

G‘QM.Q/W (/\\802}(\“@(/1 225> U

Sebastian Raschka

C&F)QOL\‘,‘(]/

STAT 451: Intro to ML Lecture 8: Model Evaluation 1

48



Gﬂmugﬁjﬂ'\em 2O\

|/oianse-
CD\ra(\nmbHV‘ &-

/ Y (Cases \
T h - é'_P [VIC\(.O..‘O‘&/) !
(-C(/\W\\ALV \/ / @ (S
€ Oy - ——\7 - -

Sebastian Raschka

STAT 451: Intro to ML

>

Lecture 8: Model Evaluation 1

49



8.1 Overfitting and Underfitting
8.2 Intro to Bias-Variance Decomposition
8.3 Bias-Variance Decomposition of the Squared Error

8.4 Relationship between Bias-Variance Decomposition and
Overfitting and Underfitting

8.5 Bias-Variance Decomposition of the 0/1 Loss

8.6 Other Forms of Bias
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How can we think of the bias-
variance decomposition in the
context of the classification error

(0/1 loss)?



Domingos, P. (2000). A unified bias-variance decomposition.
In Proceedings of 17th International Conference on Machine Learning (pp. 231-238).

"several authors have proposed bias-variance decompositions related
to zero-one loss (Kong & Dietterich, 1995; Breiman, 1996b; Kohavi &
Wolpert, 1996; Tibshirani, 1996; Friedman, 1997). However, each of
these decompositions has significant shortcomings."

o2



Bias-Variance Decomposition of 0-1 Loss

Dietterich, T. G., & Kong, E. B. (1995). Machine learning bias, statistical bias, and statistical variance
of decision tree algorithms. Technical report, Department of Computer Science, Oregon State

University.

Domingos, P. (2000). A unified bias-variance decomposition. In Proceedings of
17th International Conference on Machine Learning (pp. 231-238).

Squared Loss Generalized Loss
(y =) L(y, )
E[(y - $)°] E[L(y, )]
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Bias-Variance Decomposition of 0-1 Loss

Dietterich, T. G., & Kong, E. B. (1995). Machine learning bias, statistical bias, and statistical variance
of decision tree algorithms. Technical report, Department of Computer Science, Oregon State

University.

Domingos, P. (2000). A unified bias-variance decomposition. In Proceedings of
17th International Conference on Machine Learning (pp. 231-238).

Squared Loss Generalized Loss
(y =) L(y, )
E[(y - $)°] E[L(y, )]

E[(y =971 = (y — E[3))* + E[(E[5] — $)]
Bias? + Variance
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Bias-Variance Decomposition of 0-1 Loss

Dietterich, T. G., & Kong, E. B. (1995). Machine learning bias, statistical bias, and statistical variance
of decision tree algorithms. Technical report, Department of Computer Science, Oregon State

University.

Domingos, P. (2000). A unified bias-variance decomposition. In Proceedings of
17th International Conference on Machine Learning (pp. 231-238).

Squared Loss Generalized Loss
(y =) L(y, )
E[(y - $)°] E[L(y, )]

E[(y =971 = (y — E[3))* + E[(E[5] — $)]
Bias? + Variance

Bias2: (y — E[9])? L(y, E[y])

Variance:  E[(E[$] — )] E[L(y, E[y])]
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Define "Main Prediction"

Dietterich, T. G., & Kong, E. B. (1995). Machine learning bias, statistical bias, and statistical variance
of decision tree algorithms. Technical report, Department of Computer Science, Oregon State

University.

Domingos, P. (2000). A unified bias-variance decomposition. In Proceedings of
17th International Conference on Machine Learning (pp. 231-238).

The main prediction is the prediction that minimizes the average loss

$ =argmin E[L($,5")
yl

For squared loss -> Mean

For 0-1 loss -> Mode
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Bias-Variance Decomposition of 0-1 Loss

Dietterich, T. G., & Kong, E. B. (1995). Machine learning bias, statistical bias, and statistical variance
of decision tree algorithms. Technical report, Department of Computer Science, Oregon State

University.

Domingos, P. (2000). A unified bias-variance decomposition. In Proceedings of
17th International Conference on Machine Learning (pp. 231-238).

Squared Loss 0-1 Loss
(y —9)° L(y, )
E[(y -] E[L(y, 9]

E[(y =971 = (y — E[3))* + E[(E[5] — $)]
Bias? + Variance

Main prediction -> Mean Main prediction -> Mode

Bias2: (y - E[3]) L(y! E[y])

Variance:  E[(E[$] — )] E[L(y, E[y])]
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Bias-Variance Decomposition of 0-1 Loss

Dietterich, T. G., & Kong, E. B. (1995). Machine learning bias, statistical bias, and statistical variance
of decision tree algorithms. Technical report, Department of Computer Science, Oregon State

University.

Domingos, P. (2000). A unified bias-variance decomposition. In Proceedings of
17th International Conference on Machine Learning (pp. 231-238).

Squared Loss 0-1 Loss
E[(y — )] E[L(y,))]
P(y #9)
Main prediction -> Mode

Main prediction -> Mean
Bias2: (y — E[]) L(y|E[y])

Bias = {1 ity #5 _
0 otherwise

Variance:  E[(E[J] — $)°] E[L(y, E[y])]
Variance = P(5 # )
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Bias-Variance Decomposition of 0-1 Loss

Dietterich, T. G., & Kong, E. B. (1995). Machine learning bias, statistical bias, and statistical variance
of decision tree algorithms. Technical report, Department of Computer Science, Oregon State

University.

Domingos, P. (2000). A unified bias-variance decomposition. In Proceedings of
17th International Conference on Machine Learning (pp. 231-238).

0-1 Loss Loss = Bias + Variance = P($ # )

Lify #3
0 otherwise

Bias =

Loss = Variance = P(y # y)

Variance = P(3 # )
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Bias-Variance Decomposition of 0-1 Loss

Dietterich, T. G., & Kong, E. B. (1995). Machine learning bias, statistical bias, and statistical variance
of decision tree algorithms. Technical report, Department of Computer Science, Oregon State

University.

Domingos, P. (2000). A unified bias-variance decomposition. In Proceedings of
17th International Conference on Machine Learning (pp. 231-238).

0-1 Loss Loss = P(y # y)
Bias :@f Y 7 j}>
0 otherwise

Loss =P #y)=1-PP=y)=1-PO #3)
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Bias-Variance Decomposition of 0-1 Loss

Dietterich, T. G., & Kong, E. B. (1995). Machine learning bias, statistical bias, and statistical variance
of decision tree algorithms. Technical report, Department of Computer Science, Oregon State

University.

Domingos, P. (2000). A unified bias-variance decomposition. In Proceedings of
17th International Conference on Machine Learning (pp. 231-238).

0-1 Loss Loss = P( # y)
Bias :@f X # j}D
0 oth ise

Loss =P #y)=1-PP=y)=1-P3 #3)
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Bias-Variance Decomposition of 0-1 Loss

Dietterich, T. G., & Kong, E. B. (1995). Machine learning bias, statistical bias, and statistical variance
of decision tree algorithms. Technical report, Department of Computer Science, Oregon State

University.

Domingos, P. (2000). A unified bias-variance decomposition. In Proceedings of
17th International Conference on Machine Learning (pp. 231-238).

0-1 Loss Loss = P( # y)
Bias :@f X # j}D
0 oth ise

Loss =P #y)=1-PP=y)=1-P3 #3)

Loss = Bias - Variance
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Bias-Variance Decomposition of 0-1 Loss

Dietterich, T. G., & Kong, E. B. (1995). Machine learning bias, statistical bias, and statistical variance
of decision tree algorithms. Technical report, Department of Computer Science, Oregon State

University.

Domingos, P. (2000). A unified bias-variance decomposition. In Proceedings of
17th International Conference on Machine Learning (pp. 231-238).

0-1 Loss Loss = P(y # y)

Bias :@f X # yD
0 oth ise

Variance can improve loss!!
Why is that so?

Loss =P #y)=1-PP=y)=1-P3 #3)

Loss = Bias - Variance
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Recommended Reading Resources
for Bias-Decomposition

Dietterich, T. G., & Kong, E. B. (1995). Machine learning bias, statistical bias, and statistical variance
of decision tree algorithms. Technical report, Department of Computer Science, Oregon State

University.
0-1 loss

Domingos, P. (2000). A unified bias-variance decomposition. In Proceedings of
17th International Conference on Machine Learning (pp. 231-238).

iIncludes noise
and more general: Loss = Bias + ¢ Variance

or more precisely ¢, N(x) + B(x) + ¢,V(x)

where, e.g., ¢, =c¢, =1 for squared loss
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from mixtend.evaluate import bias_variance_decomp
from sklearn.tree import DecisionTreeClassifier

from mixtend.data import iris_data

from sklearn.model_selection import train_test_split

X, y = iris_data()

X_train, X_test, y_train, y_test = train_test_split(X, v,
test_size=0.3,
random_state=123,
shuffle=True,
stratify=y)

tree = DecisionTreeClassifier(random state=123)

avg_expected_loss, avg_bias, avg_var = bilas_variance_decomp(
tree, X_train, y_train, X_test, y_test,
loss="'0-1_loss',
random_seed=123)

print( 'Average expected loss: %.3f' % avg_expected_lo0ss)
print('Average bias: %.3f' % avg_bias)
print('Average variance: %.3f' % avg_var)

Average expected loss: 0.062
Average bias: 0.022
Average variance: 0.040
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from sklearn.ensemble import BaggingClassifier

tree = DecisionTreeClassifier(random_state=123)

bag = BaggingClassifier(base_estimator=tree,
n_estimators=100,
random_state=123)

avg_expected_loss, avg_bias, avg_var = bilas_variance_decomp(
bag, X_train, y_train, X_test, y_test,
loss='0-1_loss"',
random_seed=123)

print('Average expected loss: %.3f' % avg_expected_loss)
print('Average bias: %.3f' % avg_bias)
print('Average variance: %.3f' % avg_var)

Average expected loss: 0.048
Average bias: 0.022
Average variance: 0.026

Sebastian Raschka STAT 451: Intro to ML
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https://github.com/rasbt/mixtend/
blob/master/mlixtend/evaluate/
bias variance decomp.py

all_pred = np.zeros((num_rounds, y_test.shape[0]), dtype=np.int)

for 1 in range(num_rounds):
X_boot, y_boot = _draw_bootstrap_sample(rng, X_train, y_train)
if estimator.__class__._ name__ == 'Sequential':
estimator.fit(X_boot, y_boot)
pred = estimator.predict(X_test).reshape(l, -1)
else:
pred = estimator.fit(X_boot, y_boot).predict(X_test)
all_pred[i] = pred

if loss == '@-1_loss":
main_predictions = np.apply_along_axis(lambda x:
np.argmax(np.bincount(x)),
axis=0,
arr=all_pred)

avg_expected_loss = np.apply_along_axis(lambda x:
(x !'= y_test).mean(),
axis=1l,
arr=all_pred).mean()

avg_bias = np.sum(main_predictions != y_test) / y_test.size

var = np.zeros(pred.shape)

for pred in all_pred:
var += (pred !'= main_predictions).astype(np.int)
var /= num_rounds

avg_var = var.sum()/y_test.shape[0]

else:
avg_expected_loss = np.apply_along_axis(
lambda x:
((x = y_test)*x2).mean(),
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8.1 Overfitting and Underfitting
8.2 Intro to Bias-Variance Decomposition
8.3 Bias-Variance Decomposition of the Squared Error

8.4 Relationship between Bias-Variance Decomposition and
Overfitting and Underfitting

8.5 Bias-Variance Decomposition of the 0/1 Loss

8.6 Other Forms of Bias
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Other "Biases"



Statistical Bias vs "Machine Learning Bias"

"Machine learning bias"” sometimes also
called "inductive bias”

e.g., decision tree algorithms consider small trees before they
consider large trees

(if training data can be classified by small tree, large trees are not
considered)
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Hypothesis Space  (FromLecture

Entire hypothesis space

e.g,. decision tree + KNN

Hypothesis space

a particular learning
algorithm category
has access to

e.g,. decision tree

Hypothesis space
a particular learning
algorithm can sample

e.g,. ID3

Sebastian Raschka

Particular hypothesis
(i.e., a model/classifier)
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Dietterich, T. G., & Kong, E. B. (1995). Machine learning bias, statistical bias, and statistical variance of decision tree
algorithms. Technical report, Department of Computer Science, Oregon State University.

Table 1: Relationship between ML bias and statistical bias and variance

ML Bias Statistical
Absolute Relative  Bias  Variance
appropriate  too strong high low
appropriate ok low low
appropriate too weak  low high
inappropriate  too strong high low
inappropriate ok high moderate
inappropriate  too weak  high high

bias can be characterized as appropriate or inappropriate. The hypothesis space of an
inappropriate absolute bias does not contain any good approximations to the target function.
An appropriate bias does contain good approximations.

A relative bias can be described as being too strong or too weak. A bias that is too
strong is one that, though it may not rule out good approximations to the target function,
prefers other, poorer hypotheses instead. A bias that is too weak does not focus the learn-
ing algorithm on the appropriate hypotheses but instead allows it to consider too many
hypotheses.
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Bias-Variance Simulation of C 4.5

Dietterich, T. G., & Kong, E. B. (1995). Machine learning bias, statistical bias, and statistical variance of decision tree
algorithms. Technical report, Department of Computer Science, Oregon State University.

simulation on 200 training sets with 200 examples each (0-1 labels)
e 200 hypotheses

test set: 22,801 examples (1 data point for each grid point)
mean error rate is 536 errors (out of the 22,801 test examples)

e 297 as a result of bias
e 239 as a result of variance

° o 3 +
[ o+
14 g o, E o + 14 +
° ; + 4+ + +

o o ;
o o 4
12 ° [ 1 12
@ ° o/ * + +

(remember that trees use a
"staircase" to approximate
diagonal boundaries)

Figure 1: A two-class problem with 200 training ex-  Figure 2: Bias errors of C4.5 on the problem from
amples. Figure 1.
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Bias-Variance Simulation of C 4.5

Dietterich, T. G., & Kong, E. B. (1995). Machine learning bias, statistical bias, and statistical variance of decision tree
algorithms. Technical report, Department of Computer Science, Oregon State University.

, 1 , — — errors due to bias: O
14 § 1 : .
g errors due to variance: 17
12 .
Class | Class 2 Class 4 Class 5
10 '
. ML Bias Statistical
2 : J Absolute Relative Bias Varnance
appropriate too strong  high low
(, Claas ~ (appropriate oK ow — Tow
apprs v]nrl.'lh' LOO \\"‘.'ll\ l"\\' lll';]l
- Class 3 4 inappropriate  too strong  high low
Inappropriate ok high moderate
> Class 4 Inappropriate too weak high high
() o 4 - S e S —— o
0 2 4 6 8 10 12 14
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"Fairness" Bias

"The term bias is often used to refer to demographic
disparities in algorithmic systems that are objectionable for
societal reasons. ”

Barocas, S., Hardt, M., & Narayanan, A. Fairness and Machine Learning.
https://fairmlbook.org/introduction.html
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G-COTS predictions on CelebA (before applying SAN)

Predicted

Male Female

Male 0.548 0.016

» P(wrong | male) = 0.028
Female | 0.013 0.424 = P(wrong | female) = 0.029 &

Actual

nght Skin Predicted
color Male Female

i 0.389 0.013 = P(wrong | male) = 0.032 —
Female | 0.008 0.579 * P(wrong | female) = 0.014

Actual

If dark skin is associated with a male gender attribute, we expect a
high prediction error if someone is

Vahid Mirjalili, Sebastian Raschka, Anoop Namboodiri, and Arun Ross (2018) Semi-adversarial Networks: Convolutional Autoencoders for
Imparting Privacy to Face Images. Proc. of 11th IAPR International Conference on Biometrics
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Vahid Mirjalili, Sebastian Raschka, and Arun Ross (2018) Gender Privacy: An Ensemble of Semi Adversarial Networks for Confounding
Arbitrary Gender Classifiers. 9th IEEE International Conference on Biometrics: Theory, Applications, and Systems (BTAS 2018)

Vahid Mirjalili, Sebastian Raschka, and Arun Ross (2019)

FlowSAN: Privacy-enhancing Semi-Adversarial Networks to Confound Arbitrary Face-based Gender Classifiers
IEEE Access 2019, 10.1109/ACCESS.2019.2924619

Vahid Mirjalili, Sebastian Raschka, and Arun Ross (2020)

PrivacyNet: Semi-Adversarial Networks for Multi-attribute Face Privacy
IEEE Transactions in Image Processing. Vol. 29, pp. 9400-9412, 2020

Original dataset before oversamplmg

After random oversamplmg k

.BW'@III..

Figure 4: Face prototypes computed for each group of at- B E1  CelebA-
tribute labels. The abbreviations at the bottom of each im- i
age refer to the prototype attribute-classes, where Y=young,

O=o0ld, M=male, F=female, W=white, B=black. [san-1| [san-2| [san-3] [san-a] [san-s]

groups. For each group, we generate a prototype image, - oo
which is the average of all face images from the training E2 random
dataset that belong to that group. Hence, given eight distinct =
categories or groups, eight different prototypes are com- v

[san-1| [san-2| [san-3] [san-4| |san-s|

puted. Next, an opposite-attribute prototype is defined by

flinnine one of the hinarv attribute labhels of an innmt 1im-

_white-subjects
/" subset (blue)
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Wenzhi Cao, Vahid Mirjalili, and Sebastian Raschka (2020) Rank-consistent Ordinal Regression for Neural Networks

https://arxiv.org/abs/1901.07884 (to appear in Pattern Recognition Letters)

Table 1. Age prediction errors on the test sets. All models are based on the ResNet-34 architecture.

Method Random MORPH-2 AFAD CACD
Seed MAE RMSE MAE RMSE MAE RMSE
0 3.26 162 3.58 5.01 5.74 8.20
1 3.36 477 3.58 5.01 5.68 8.09
D 2 3.39 4.84 3.62 5.06 5.53 7.92
AVG = SD | 3342007 | 474011 | 3.60=002 | 503003 | 5.65 011 | 8.07 £ 0.14
0 2.87 4.08 3.56 4.80 5.36 7.61
OR-CNN 1 2.81 3.97 3.48 4.68 5.40 778
(Niu et al., 2016) 2 2.82 3.87 3.50 478 5.37 7.70
AVG = SD | 283003 [ 397011 | 351004 | 475006 | 5.38 £ 0.02 | 7.70 £ 0.09
0 2.66 3.69 3.42 4.65 55 741
CORAL-CNN 1 2.64 3.64 3.51 476 5.5 7.50
(ours) 2 2.62 3.62 3.48 4.73 5.24 7.52
AVG = SD | 2.64 002 | 3.65=0.04 | 3.470.05 | 4.71 = 0.06 | 5.25  0.01 | 7.48 = 0.06
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