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7.1 Ensemble Methods -- Intro and Overview 

7.2 Majority Voting


7.3 Bagging


7.4 Boosting


7.5 Gradient Boosting


7.6 Random Forests


7.7 Stacking
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Sebastian Raschka, Leslie A. Kuhn, Anne M. Scott, and Weiming Li (2018) Computational Drug Discovery and Design: Automated Inference of 
Chemical Group Discriminants of Biological Activity from Virtual Screening Data. Springer. ISBN: 978-1-4939-7755-0
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http://www.isir.upmc.fr/files/2015ACTI3549.pdf

http://www.isir.upmc.fr/files/2015ACTI3549.pdf
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"The purpose of this work is to develop a learning-based method to generate patient-specific synthetic 
CT (sCT) from a routine anatomical MRI for use in MRI-only radiotherapy treatment planning. An auto-
context model with patch-based anatomical features was integrated into a classification random forest to 
generate and improve semantic information. The semantic information along with anatomical features 
was then used to train a series of regression random forests based on the auto-context model."

Lei, Yang, Joseph Harms, Tonghe Wang, Sibo Tian, 
Jun Zhou, Hui-Kuo Shu, Jim Zhong et al. "MRI-based 
synthetic CT generation using semantic random forest 
with iterative refinement." Physics in Medicine & 
Biology 64, no. 8 (2019): 085001.
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"More recently, gradient boosting machines (GBMs) have become a Swiss army knife in many 
a Kaggler’s toolbelt" [1]

Motivations

[1] Sebastian Raschka, Joshua Patterson, and Corey Nolet (2020) 
Machine Learning in Python: Main Developments and Technology Trends in Data Science, Machine Learning, and Artificial Intelligence  
Information 2020, 11, 4

Most widely used non-DL machine learning models
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https://towardsdatascience.com/https-medium-com-vishalmorde-xgboost-
algorithm-long-she-may-rein-edd9f99be63d

https://towardsdatascience.com/https-medium-com-vishalmorde-xgboost-algorithm-long-she-may-rein-edd9f99be63d
https://towardsdatascience.com/https-medium-com-vishalmorde-xgboost-algorithm-long-she-may-rein-edd9f99be63d
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Lecture Overview

Ensemble Methods

Majority Voting

Bagging

Boosting

Random Forests

Stacking
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7.1 Ensemble Methods -- Intro and Overview


7.2 Majority Voting 

7.3 Bagging


7.4 Boosting


7.5 Gradient Boosting


7.6 Random Forests
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Majority Voting

11
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Unanimity

Majority

Plurality
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hi(x) = ̂yi

Training set

h1 h2 hn. . .

y1 y2 yn. . .

Voting

yf

N
ew

 data

Classification 
models

Predictions

Final prediction

where

Majority Voting Classifier

13

̂yf = mode{h1(x), h2(x), . . . hn(x)}
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• assume n independent classifiers with a base error 
rate 

• here, independent means that the errors are 

uncorrelated

• assume a binary classification task

• assume the error rate is better than random guessing 

(i.e., lower than 0.5 for binary classification)


∀ϵi ∈ {ϵ1, ϵ2, . . . , ϵn}, ϵi < 0.5

ϵ

Why Majority Vote?

14
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• assume n independent classifiers with a base error rate 

• here, independent means that the errors are uncorrelated

• assume a binary classification task

• assume the error rate is better than random guessing (i.e., 

lower than 0.5 for binary classification)


∀ϵi ∈ {ϵ1, ϵ2, . . . , ϵn}, ϵi < 0.5

ϵ

k > ⌈n/2⌉

Why Majority Vote?

P(k) = (n
k)ϵk(1 − ϵ)n−k

The probability that we make a wrong prediction via the 
ensemble if k classifiers predict the same class label

(Probability mass func. of a binomial distr.)

15
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k > ⌈n/2⌉

Why Majority Vote?

P(k) = (n
k)ϵk(1 − ϵ)n−k

The probability that we make a wrong 
prediction via the ensemble if k classifiers 
predict the same class label

Ensemble error:

ϵens =
n

∑
k

(n
k)ϵk(1 − ϵ)n−k

ϵens =
11

∑
k=6

(11
k )0.25k(1 − 0.25)11−k = 0.034

16

(cumulative prob. distribution)
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ϵens =
n

∑
k

(n
k)ϵk(1 − ϵ)n−k
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"Soft" Voting

18

̂y = arg max
j

n

∑
i=1

wipi,j

wi optional weighting parameter, default 
wi = 1/n, ∀wi ∈ {w1, . . . , wn}

pi,j
predicted class membership 
probability of the ith classifier for 
class label j

:

:
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"Soft" Voting

19

̂y = arg max
j

n

∑
i=1

wipi,j

Binary classification example

j ∈ {0,1} hi(i ∈ {1,2,3})

h1(x) → [0.9,0.1]
h2(x) → [0.8,0.2]
h3(x) → [0.4,0.6]
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"Soft" Voting

20

̂y = arg max
j

n

∑
i=1

wipi,j

Binary classification example

j ∈ {0,1} hi(i ∈ {1,2,3})

h1(x) → [0.9,0.1]
h2(x) → [0.8,0.2]
h3(x) → [0.4,0.6]

p( j = 0 |x) = 0.2 ⋅ 0.9 + 0.2 ⋅ 0.8 + 0.6 ⋅ 0.4 = 0.58

p( j = 1 |x) = 0.2 ⋅ 0.1 + 0.2 ⋅ 0.2 + 0.6 ⋅ 0.6 = 0.42

̂y = arg max
j {p( j = 0 |x), p( j = 1 |x)}
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Code

More examples:

http://rasbt.github.io/mlxtend/user_guide/classifier/EnsembleVoteClassifier/

http://rasbt.github.io/mlxtend/user_guide/classifier/EnsembleVoteClassifier/
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Code

More examples:

http://rasbt.github.io/mlxtend/user_guide/classifier/EnsembleVoteClassifier/

Now also available as: 
sklearn.ensemble.VotingClassifier

see https://scikit-learn.org/stable/
modules/generated/
sklearn.ensemble.VotingClassifier.html

http://rasbt.github.io/mlxtend/user_guide/classifier/EnsembleVoteClassifier/
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.VotingClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.VotingClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.VotingClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.VotingClassifier.html
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Overview

Ensemble Methods

Majority Voting

Bagging

Boosting

Random Forests

Stacking
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7.1 Ensemble Methods -- Intro and Overview


7.2 Majority Voting


7.3 Bagging 

7.4 Boosting


7.5 Gradient Boosting


7.6 Random Forests


7.7 Stacking
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Bagging 

25

(Bootstrap Aggregating)

Breiman, L. (1996). Bagging predictors. Machine learning, 24(2), 123-140.
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Algorithm 1 Bagging

1: Let n be the number of bootstrap samples
2:

3: for i=1 to n do
4: Draw bootstrap sample of size m, Di

5: Train base classifier hi on Di

6: ŷ = mode{h1(x), ..., hn(x)}

1

Bagging 

26

(Bootstrap Aggregating)
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x1

x1

x1

x1 x1x1

x2 x3 x4 x5 x6 x7 x8 x9 x10

x2

x2

x2

x2 x8x8 x10x7x3

x6 x9

x3 x8 x10x7x2x2 x9x6x6 x4x4x5

x10 x8x7x5 x4x3

x4x5x6x8 x9

Training Sets Test Sets

Bootstrap 1

Bootstrap 2

Bootstrap 3

Original Dataset

Bootstrap Sampling

27
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P(not chosen) = (1 −
1
m )

m

,

1
e

≈ 0.368, m → ∞ .

Bootstrap Sampling

28
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P(not chosen) = (1 −
1
m )

m

,

1
e

≈ 0.368, m → ∞ .

P(chosen) = 1 − (1 −
1
m )

m

≈ 0.632
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Training
example
indices

Bagging
round 1

Bagging
round 2 …

1 2 7 …

2 2 3 …

3 1 2 …

4 3 1 …

5 7 1 …

6 2 7 …

7 4 7 …

h1 h2 hn

Bootstrap Sampling

30
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h1 h2 hn. . .

y1 y2 yn. . .

Voting

yf

N
ew

 data

Classification 
models

Predictions

Final prediction

. . .T2

Training set

TnT1
T2

Bootstrap 
samples

hi(x) = ̂yiwhere

̂yf = mode{h1(x), h2(x), . . . hn(x)}

Bagging Classifier

31
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Bias-Variance 
Decomposition

Loss = Bias + Variance + Noise

(more technical details in next lecture on model evaluation)
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Low Variance
(Precise)

High Variance
(Not Precise)
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Bias-Variance Intuition
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Bias and Variance Example 

where f(x) is some true (target) function
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where f(x) is some true (target) function


the blue dots are a training dataset;

here, I added some random Gaussian noise

Bias and Variance Example 
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where f(x) is some true (target) function


the blue dots are a training dataset;

here, I added some random Gaussian noise


here, suppose I fit a simple linear model  (linear regression)

or a decision tree stump

High Bias

Bias and Variance Example 
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where f(x) is some true (target) function


the blue dots are a training dataset;

here, I added some random Gaussian noise


here, suppose I fit an unpruned decision tree

High Variance

Why?

Bias and Variance Example 
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where f(x) is some true (target) function


suppose we have multiple training sets

Bias and Variance Example 
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High Variance

Bias and Variance Example 
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So, why does bagging work/what does it do?
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Clarifications 1
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Clarifications 2
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Code
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Overview

Ensemble Methods

Majority Voting

Bagging

Boosting

Random Forests

Stacking
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7.1 Ensemble Methods -- Intro and Overview


7.2 Majority Voting


7.3 Bagging


7.4 Boosting 

7.5 Gradient Boosting


7.6 Random Forests


7.7 Stacking
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Boosting

50
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Adaptive Boosting

51

Gradient Boosting

e.g., AdaBoost

e.g., LightGBM, XGBoost, scikit-learn's GradientBoostingClassifier

Freund, Y., & Schapire, R. E. (1997). A decision-theoretic generalization of on-line learning and an application to boosting. 
Journal of computer and system sciences, 55(1), 119-139.

Friedman, J. H. (2001). Greedy function approximation: a gradient boosting machine. Annals of statistics, 1189-1232.

Chen, T., & Guestrin, C. (2016). XGBoost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD 
International Conference on Knowledge Discovery and Data Mining (pp. 785-794). ACM.
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Adaptive Boosting

52

Gradient Boosting
e.g., LightGBM, XGBoost, scikit-learn's GradientBoostingClassifier

Freund, Y., & Schapire, R. E. (1997). A decision-theoretic generalization of on-line learning and an application to boosting. 
Journal of computer and system sciences, 55(1), 119-139.

Friedman, J. H. (2001). Greedy function approximation: a gradient boosting machine. Annals of statistics, 1189-1232.

Chen, T., & Guestrin, C. (2016). Xgboost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD 
International conference on knowledge discovery and data mining (pp. 785-794). ACM.

Differ mainly in terms of how 

• weights are updated

• classifiers are combined

e.g., AdaBoost
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General Boosting

53

Training Sample

Weighted 
Training Sample

Weighted 
Training Sample

h1(x)

h2(x)

hm(x)

hm(x) = sign(
m

∑
j=1

wj hj(x))
hm(x) = arg max

i (
m

∑
j=1

wj 1[hj(x) = i])
for h(x) ∈ {−1,1}

or h(x) = i, i ∈ {1,...,n}for
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General Boosting

54

‣ Initialize a weight vector with uniform weights


‣ Loop:

‣Apply weak learner* to weighted training 

examples (instead of orig. training set, 
may draw bootstrap samples with weighted 
probability) 

‣ Increase weight for misclassified examples 

‣ (Weighted) majority voting on trained classifiers

* a learner slightly better than random guessing
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Algorithm 1 AdaBoost

1: Initialize k: the number of AdaBoost rounds
2: Initialize D: the training dataset, D = {〈x[1], y[1]〉, ...,x[n], y[n]〉}
3: Initialize w1(i) = 1/n, i = 1, ..., n, w1 ∈ Rn

4:

5: for r=1 to k do
6: For all i : wr(i) := wr(i)/

!
i wr(i) [normalize weights]

7: hr := FitWeakLearner(D,wr)
8: !r :=

!
i wr(i) 1(hr(i) ∕= yi) [compute error]

9: if !r > 1/2 then stop
10: αr := 1

2 log[(1− !r)/!r] [small if error is large and vice versa]

11: wr+1(i) := wr(i)×
"

e−αr if hr(x
[i]) = y[i]

eαr if hr(x
[i]) ∕= y[i]

12: Predict: hens(x) = argmaxj
!k

r αr1[hr(x) = j]
13:

1

AdaBoost

55
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Algorithm 1 AdaBoost

1: Initialize k: the number of AdaBoost rounds
2: Initialize D: the training dataset, D = {〈x[1], y[1]〉, ...,x[n], y[n]〉}
3: Initialize w1(i) = 1/n, i = 1, ..., n, w1 ∈ Rn

4:

5: for r=1 to k do
6: For all i : wr(i) := wr(i)/

!
i wr(i) [normalize weights]

7: hr := FitWeakLearner(D,wr)
8: !r :=

!
i wr(i) 1(hr(i) ∕= yi) [compute error]

9: if !r > 1/2 then stop
10: αr := 1

2 log[(1− !r)/!r] [small if error is large and vice versa]

11: wr+1(i) := wr(i)×
"

e−αr if hr(x
[i]) = y[i]

eαr if hr(x
[i]) ∕= y[i]

12: Predict: hens(x) = argmaxj
!k

r αr1[hr(x) = j]
13:

1

AdaBoost

56

Assumes binary classification problem

0/1 loss 1 (hr(i) ≠ yi) = {0 if hr(i) = yi

1 if hr(i) ≠ yi
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Algorithm 1 AdaBoost

1: Initialize k: the number of AdaBoost rounds
2: Initialize D: the training dataset, D = {〈x[1], y[1]〉, ...,x[n], y[n]〉}
3: Initialize w1(i) = 1/n, i = 1, ..., n, w1 ∈ Rn

4:

5: for r=1 to k do
6: For all i : wr(i) := wr(i)/

!
i wr(i) [normalize weights]

7: hr := FitWeakLearner(D,wr)
8: !r :=

!
i wr(i) 1(hr(i) ∕= yi) [compute error]

9: if !r > 1/2 then stop
10: αr := 1

2 log[(1− !r)/!r] [small if error is large and vice versa]

11: wr+1(i) := wr(i)×
"

e−αr if hr(x
[i]) = y[i]

eαr if hr(x
[i]) ∕= y[i]

12: Predict: hens(x) = argmaxj
!k

r αr1[hr(x) = j]
13:

1

AdaBoost

57

Estimator weight

Sample weight
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Decision Tree Stumps

Weak classifier, here: decision tree stump for binary 
classification problem with labels -1, 1

h(x) = s(1(xk ≥ t))
where 




 (  is the number of features)

s(x) ∈ {−1,1}
k ∈ {1,...,K} K
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x1

x1 x1

x1

x2x2

x2x2

2

43

1
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x1

x1 x1

x1

x2x2

x2x2

2

43
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x1

x1 x1

x1

x2x2

x2x2

2
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1
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x1

x1 x1

x1

x2x2

x2x2

2
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Freund, Y., & Schapire, R. E. (1997). A decision-theoretic generalization of on-line learning 
and an application to boosting. Journal of computer and system sciences, 55(1), 119-139. 
Journal of Computer and System Sciences 55(1), 119–139 (1997)


https://pdf.sciencedirectassets.com/272574/1-s2.0-S0022000000X00384/1-s2.0-
S002200009791504X/main.pdf


--------------------------


Explaining AdaBoost

Robert E. Schapire


http://rob.schapire.net/papers/explaining-adaboost.pdf

AdaBoost resources

https://pdf.sciencedirectassets.com/272574/1-s2.0-S0022000000X00384/1-s2.0-S002200009791504X/main.pdf
https://pdf.sciencedirectassets.com/272574/1-s2.0-S0022000000X00384/1-s2.0-S002200009791504X/main.pdf
http://rob.schapire.net/papers/explaining-adaboost.pdf
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https://www.intlpress.com/site/pub/pages/journals/items/sii/content/vols/0002/0003/a008/

Stagewise Additive Modeling using a Multi-class Exponential loss function (SAMME)


https://www.intlpress.com/site/pub/pages/journals/items/sii/content/vols/0002/0003/a008/
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Code 1
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Code 2
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Code 3
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Overview

Ensemble Methods

Majority Voting

Bagging

Boosting

Random Forests

Stacking
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7.1 Ensemble Methods -- Intro and Overview


7.2 Majority Voting


7.3 Bagging


7.4 Boosting


7.5 Gradient Boosting 

7.6 Random Forests


7.7 Stacking
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Gradient boosting is somewhat similar to AdaBoost:

• trees are fit sequentially to improve error of previous 

trees

• boost weak learners to a strong learner

The way how the trees are fit sequentially differs in

AdaBoost and Gradient Boosting, though ...

Friedman, J. H. (1999). "Greedy Function Approximation: A Gradient Boosting Machine".

https://statweb.stanford.edu/~jhf/ftp/trebst.pdf
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• Step 1: Construct a base tree (just the root node)


• Step 2: Build next tree based on errors of the 
previous tree


• Step 3: Combine tree from step 1 with trees from 
step 2. Go back to step 2.
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• Step 1: Construct a base tree (just the root node)


̂y1 =
1
n

n

∑
i=1

y(i) = 0.5875

x1# Rooms x2=City x3=Age y=Price
5 Boston 30 1.5
10 Madison 20 0.5
6 Lansing 20 0.25
5 Waunakee 10 0.1

In million US Dollars
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• Step 2: Build next tree based on errors of the 
previous tree

First, compute (pseudo) residuals: r1 = y1 − ̂y1

x1# 
Rooms

x2=City x3=Age y=Price r1=Res
5 Boston 30 1.5 1.5 - 0.5875 = 0.9125
10 Madison 20 0.5 0.5 - 0.5875 = -0.0875
6 Lansing 20 0.25 0.25 - 0.5875 = -0.3375
5 Waunake

e
10 0.1 0.1 - 0.5875 = -0.4875

In million US Dollars
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• Step 2: Build next tree based on errors of the 
previous tree

Then, create a tree based on  to fit the residualsx1, . . . , xm
x1# 

Rooms
x2=City x3=Age y=Price r1=Residual

5 Boston 30 1.5 1.5 - 0.5875 = 0.9125
10 Madison 20 0.5 0.5 - 0.5875 = -0.0875
6 Lansing 20 0.25 0.25 - 0.5875 = -0.3375
5 Waunake

e
10 0.1 0.1 - 0.5875 = -0.4875

Age >= 30

# Rooms >= 10
YesNo

-0.0875

0.9125

-0.3375

-0.4875-0.4125
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x1# 
Rooms

x2=City x3=Age y=Price r=Res
5 Boston 30 1.5 1.5 - 0.5875 = 0.9125
10 Madison 20 0.5 0.5 - 0.5875 = -0.0875
6 Lansing 20 0.25 0.25 - 0.5875 = -0.3375
5 Waunake

e
10 0.1 0.1 - 0.5875 = -0.4875

Age >= 30

# Rooms >= 10
YesNo

-0.0875

0.9125

-0.3375

-0.4875-0.4125

• Step 3: Combine tree from step 1 with trees from step 2

̂y1 =
1
n

n

∑
i=1

y(i) = 0.5875 +



Sebastian Raschka                              STAT 451: Intro to ML                        Lecture 7: Ensemble Methods

Gradient Boosting -- Conceptual Overview 
--> A Regression-based Example

78

x1# 
Rooms

x2=City x3=Age y=Price r=Res
5 Boston 30 1.5 1.5 - 0.5875 = 0.9125
10 Madison 20 0.5 0.5 - 0.5875 = -0.0875
6 Lansing 20 0.25 0.25 - 0.5875 = -0.3375
5 Waunakee 10 0.1 0.1 - 0.5875 = -0.4875

Age >= 30

# Rooms >= 10
YesNo

-0.0875

0.9125

-0.3375

-0.4875-0.4125

• Step 3: Combine tree from step 1 with trees from step 2

̂y1 =
1
n

n

∑
i=1

y(i) = 0.5875 +

E.g.,

predict  
Lansing

0.5875 + α × (−0.4125)
where  learning rate between 0 and 1 (if , low bias but high variance)α α = 1

E.g.,

predict  
Lansing
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Step 0: Input data {⟨x(i), y(i)⟩}n
i=1

Differentiable Loss function L(y(i), h(x(i)))

Step 1: Initialize model h0(x) = argmin
̂y

n

∑
i=1

L(y(i), ̂y)

Step 2: for t = 1 to T
A. Compute pseudo residual ri,t = − [∂L(y(i), h(x(i)))

∂h(x(i)) ]
h(x)=ht−1(x)

for i = 1 to n
B. Fit tree to  values, and create 
terminal nodes  for 

ri,t
Rj,t j = 1,...,Jt... 
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Step 2: for t = 1 to T
A. Compute pseudo residual ri,t = − [∂L(y(i), h(x(i)))

∂h(x(i)) ]
h(x)=ht−1(x)

for i = 1 to n
B. Fit tree to  values, and create 
terminal nodes  for 

ri,t
Rj,t j = 1,...,Jt

C. for , computej = 1,...,Jt
̂yj,t = argmin

̂y ∑
x(i)∈Ri, j

L(y(i), ht−1(x(i)) + ̂y)

D. Update ht(x) = ht−1(x) + α
Jt

∑
j=1

̂yj,t 𝕀(x ∈ Rj,t)
Step 3: Return ht(x)
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Step 0: Input data {⟨x(i), y(i)⟩}n
i=1

Differentiable Loss function L(y(i), h(x(i)))
E.g., Sum-squared error in regression

SSE′ =
1
2 (y(i) − h(x(i)))2

∂
∂h(x(i))

1
2 (y(i) − h(x(i)))2

[chain rule]

= 2 ×
1
2 (y(i) − h(x(i))) × (0 − 1) = − (y(i) − h(x(i)))

[neg. residual]
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Step 1: Initialize model h0(x) = argmin
̂y

n

∑
i=1

L(y(i), ̂y)

pred. target

turns out to be the average (in regression)

1
n

n

∑
i=1

y(i)
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Step 2: for t = 1 to T
A. Compute pseudo residual ri,t = − [∂L(y(i), h(x(i)))

∂h(x(i)) ]
h(x)=ht−1(x)

for i = 1 to n

Loop to make T trees (e.g., T=100)

pseudo residual of the t-th tree 
and i-th example

Derivative of the loss function
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Step 2: for t = 1 to T
A. Compute pseudo residual ri,t = − [∂L(y(i), h(x(i)))

∂h(x(i)) ]
h(x)=ht−1(x)

for i = 1 to n

Loop to make T trees (e.g., T=100)

pseudo residual of the t-th tree 
and i-th example

Derivative of the loss function

B. Fit tree to  values, and create 
terminal nodes  for 

ri,t
Rj,t j = 1,...,Jt

Use features in dataset to fit tree

Age >= 30

# Rooms >= 10
YesNo

-0.0875

0.9125

-0.3375

-0.4875-0.4125

R1,t

R2,t

R3,t
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Step 2: for t = 1 to T
A. Compute pseudo residual ri,t = − [∂L(y(i), h(x(i)))

∂h(x(i)) ]
h(x)=ht−1(x)

for i = 1 to n
B. Fit tree to  values, and create 
terminal nodes  for 

ri,t
Rj,t j = 1,...,Jt

C. for , computej = 1,...,Jt
̂yj,t = argmin

̂y ∑
x(i)∈Ri, j

L(y(i), ht−1(x(i)) + ̂y)
Compute the 

residual for each 
leaf node

Only consider 
examples at that 

leaf node
Like step 1 but 
add previous 

prediction
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Step 2: for t = 1 to T
A. Compute pseudo residual ri,t = − [∂L(y(i), h(x(i)))

∂h(x(i)) ]
h(x)=ht−1(x)

for i = 1 to n
B. Fit tree to  values, and create 
terminal nodes  for 

ri,t
Rj,t j = 1,...,Jt

C. for , computej = 1,...,Jt
̂yj,t = argmin

̂y ∑
x(i)∈Ri, j

L(y(i), ht−1(x(i)) + ̂y)

D. Update ht(x) = ht−1(x) + α
Jt

∑
j=1

̂yj,t 𝕀(x ∈ Rj,t)
learning rate 

between 0 and 1 
(usually 0.1)

Summation just in case 
examples end up in 

multiple nodes
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For prediction, combine all T trees, e.g.,

h0(x) = argmin
̂y

n

∑
i=1

L(y(i), ̂y)

+α ̂yj,t=1

+α ̂yj,T

...

= argmin
̂y ∑

x(i)∈Ri,j

L(y(i), h(t=1)−1(x(i)) + ̂y)

= argmin
̂y ∑

x(i)∈Ri,j

L(y(i), hT−1(x(i)) + ̂y)
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For prediction, combine all T trees, e.g.,

h0(x) = argmin
̂y

n

∑
i=1

L(y(i), ̂y)

+α ̂yj,t=1

+α ̂yj,T

...
The idea is that we decrease the 

pseudo residuals by a small amount 
at each step
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XGBoost

Chen, T., & Guestrin, C. (2016, August). Xgboost: A scalable tree boosting system. In 
Proceedings of the 22nd acm sigkdd international conference on knowledge 
discovery and data mining (pp. 785-794). ACM.
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Table 1: Comparison of major tree boosting systems.

System
exact
greedy

approximate
global

approximate
local

out-of-core
sparsity
aware

parallel

XGBoost yes yes yes yes yes yes
pGBRT no no yes no no yes
Spark MLLib no yes no no partially yes
H2O no yes no no partially yes
scikit-learn yes no no no no no
R GBM yes no no no partially no

shows that choosing 216 examples per block balances the
cache property and parallelization.

4.3 Blocks for Out-of-core Computation
One goal of our system is to fully utilize a machine’s re-

sources to achieve scalable learning. Besides processors and
memory, it is important to utilize disk space to handle data
that does not fit into main memory. To enable out-of-core
computation, we divide the data into multiple blocks and
store each block on disk. During computation, it is impor-
tant to use an independent thread to pre-fetch the block into
a main memory bu↵er, so computation can happen in con-
currence with disk reading. However, this does not entirely
solve the problem since the disk reading takes most of the
computation time. It is important to reduce the overhead
and increase the throughput of disk IO. We mainly use two
techniques to improve the out-of-core computation.
Block Compression The first technique we use is block
compression. The block is compressed by columns, and de-
compressed on the fly by an independent thread when load-
ing into main memory. This helps to trade some of the
computation in decompression with the disk reading cost.
We use a general purpose compression algorithm for com-
pressing the features values. For the row index, we substract
the row index by the begining index of the block and use a
16bit integer to store each o↵set. This requires 216 examples
per block, which is confirmed to be a good setting. In most
of the dataset we tested, we achieve roughly a 26% to 29%
compression ratio.
Block Sharding The second technique is to shard the data
onto multiple disks in an alternative manner. A pre-fetcher
thread is assigned to each disk and fetches the data into an
in-memory bu↵er. The training thread then alternatively
reads the data from each bu↵er. This helps to increase the
throughput of disk reading when multiple disks are available.

5. RELATED WORKS
Our system implements gradient boosting [10], which per-

forms additive optimization in functional space. Gradient
tree boosting has been successfully used in classification [12],
learning to rank [5], structured prediction [8] as well as other
fields. XGBoost incorporates a regularized model to prevent
overfitting. This this resembles previous work on regularized
greedy forest [25], but simplifies the objective and algorithm
for parallelization. Column sampling is a simple but e↵ective
technique borrowed from RandomForest [4]. While sparsity-
aware learning is essential in other types of models such as
linear models [9], few works on tree learning have considered
this topic in a principled way. The algorithm proposed in
this paper is the first unified approach to handle all kinds of
sparsity patterns.

There are several existing works on parallelizing tree learn-
ing [22, 19]. Most of these algorithms fall into the approxi-
mate framework described in this paper. Notably, it is also
possible to partition data by columns [23] and apply the ex-
act greedy algorithm. This is also supported in our frame-
work, and the techniques such as cache-aware pre-fecthing
can be used to benefit this type of algorithm. While most
existing works focus on the algorithmic aspect of paralleliza-
tion, our work improves in two unexplored system direction-
s: out-of-core computation and cache-aware learning. This
gives us insights on how the system and the algorithm can
be jointly optimized and provides an end-to-end system that
can handle large scale problems with very limited computing
resources. We also summarize the comparison between our
system and existing opensource implementations in Table 1.

Quantile summary (without weights) is a classical prob-
lem in the database community [14, 24]. However, the ap-
proximate tree boosting algorithm reveals a more general
problem – finding quantiles on weighted data. To the best
of our knowledge, the weighted quantile sketch proposed in
this paper is the first method to solve this problem. The
weighted quantile summary is also not specific to the tree
learning and can benefit other applications in data science
and machine learning in the future.

6. END TO END EVALUATIONS

6.1 System Implementation
We implemented XGBoost as an open source package6.

The package is portable and reusable. It supports various
weighted classification and rank objective functions, as well
as user defined objective function. It is available in popular
languages such as python, R, Julia and integrates naturally
with language native data science pipelines such as scikit-
learn. The distributed version is built on top of the rabit
library7 for allreduce. The portability of XGBoost makes it
available in many ecosystems, instead of only being tied to
a specific platform. The distributed XGBoost runs natively
on Hadoop, MPI Sun Grid engine. Recently, we also enable
distributed XGBoost on jvm bigdata stacks such as Flink
and Spark. The distributed version has also been integrated
into cloud platform Tianchi8 of Alibaba. We believe that
there will be more integrations in the future.

6.2 Dataset and Setup
We used four datasets in our experiments. A summary of

these datasets is given in Table 2. In some of the experi-

6https://github.com/dmlc/xgboost
7https://github.com/dmlc/rabit
8https://tianchi.aliyun.com
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Table 2: Dataset used in the Experiments.
Dataset n m Task
Allstate 10 M 4227 Insurance claim classification
Higgs Boson 10 M 28 Event classification
Yahoo LTRC 473K 700 Learning to Rank
Criteo 1.7 B 67 Click through rate prediction

ments, we use a randomly selected subset of the data either
due to slow baselines or to demonstrate the performance of
the algorithm with varying dataset size. We use a su�x to
denote the size in these cases. For example Allstate-10K
means a subset of the Allstate dataset with 10K instances.

The first dataset we use is the Allstate insurance claim
dataset9. The task is to predict the likelihood and cost of
an insurance claim given di↵erent risk factors. In the exper-
iment, we simplified the task to only predict the likelihood
of an insurance claim. This dataset is used to evaluate the
impact of sparsity-aware algorithm in Sec. 3.4. Most of the
sparse features in this data come from one-hot encoding. We
randomly select 10M instances as training set and use the
rest as evaluation set.

The second dataset is the Higgs boson dataset10 from high
energy physics. The data was produced using Monte Carlo
simulations of physics events. It contains 21 kinematic prop-
erties measured by the particle detectors in the accelerator.
It also contains seven additional derived physics quantities
of the particles. The task is to classify whether an event
corresponds to the Higgs boson. We randomly select 10M
instances as training set and use the rest as evaluation set.

The third dataset is the Yahoo! learning to rank challenge
dataset [6], which is one of the most commonly used bench-
marks in learning to rank algorithms. The dataset contains
20K web search queries, with each query corresponding to a
list of around 22 documents. The task is to rank the docu-
ments according to relevance of the query. We use the o�cial
train test split in our experiment.

The last dataset is the criteo terabyte click log dataset11.
We use this dataset to evaluate the scaling property of the
system in the out-of-core and the distributed settings. The
data contains 13 integer features and 26 ID features of user,
item and advertiser information. Since a tree based model
is better at handling continuous features, we preprocess the
data by calculating the statistics of average CTR and count
of ID features on the first ten days, replacing the ID fea-
tures by the corresponding count statistics during the next
ten days for training. The training set after preprocessing
contains 1.7 billion instances with 67 features (13 integer, 26
average CTR statistics and 26 counts). The entire dataset
is more than one terabyte in LibSVM format.

We use the first three datasets for the single machine par-
allel setting, and the last dataset for the distributed and
out-of-core settings. All the single machine experiments are
conducted on a Dell PowerEdge R420 with two eight-core
Intel Xeon (E5-2470) (2.3GHz) and 64GB of memory. If not
specified, all the experiments are run using all the available
cores in the machine. The machine settings of the distribut-
ed and the out-of-core experiments will be described in the

9https://www.kaggle.com/c/ClaimPredictionChallenge
10https://archive.ics.uci.edu/ml/datasets/HIGGS
11http://labs.criteo.com/downloads/download-terabyte-
click-logs/

Table 3: Comparison of Exact Greedy Methods with
500 trees on Higgs-1M data.
Method Time per Tree (sec) Test AUC
XGBoost 0.6841 0.8304
XGBoost (colsample=0.5) 0.6401 0.8245
scikit-learn 28.51 0.8302
R.gbm 1.032 0.6224

Figure 10: Comparison between XGBoost and pG-
BRT on Yahoo LTRC dataset.

Table 4: Comparison of Learning to Rank with 500
trees on Yahoo! LTRC Dataset
Method Time per Tree (sec) NDCG@10
XGBoost 0.826 0.7892
XGBoost (colsample=0.5) 0.506 0.7913
pGBRT [22] 2.576 0.7915

corresponding section. In all the experiments, we boost trees
with a common setting of maximum depth equals 8, shrink-
age equals 0.1 and no column subsampling unless explicitly
specified. We can find similar results when we use other
settings of maximum depth.

6.3 Classification
In this section, we evaluate the performance of XGBoost

on a single machine using the exact greedy algorithm on
Higgs-1M data, by comparing it against two other common-
ly used exact greedy tree boosting implementations. Since
scikit-learn only handles non-sparse input, we choose the
dense Higgs dataset for a fair comparison. We use the 1M
subset to make scikit-learn finish running in reasonable time.
Among the methods in comparison, R’s GBM uses a greedy
approach that only expands one branch of a tree, which
makes it faster but can result in lower accuracy, while both
scikit-learn and XGBoost learn a full tree. The results are
shown in Table 3. Both XGBoost and scikit-learn give bet-
ter performance than R’s GBM, while XGBoost runs more
than 10x faster than scikit-learn. In this experiment, we al-
so find column subsamples gives slightly worse performance
than using all the features. This could due to the fact that
there are few important features in this dataset and we can
benefit from greedily select from all the features.

6.4 Learning to Rank
We next evaluate the performance of XGBoost on the

learning to rank problem. We compare against pGBRT [22],
the best previously pubished system on this task. XGBoost
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Chen, T., & Guestrin, C. (2016, August). XGBoost: A scalable tree boosting system. In Proceedings of 
the 22nd International Conference on Knowledge Discovery and Data Mining (pp. 785-794). ACM.

XGBoost
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XGBoost
Summary and Main Points:

▪ scalable implementation of gradient boosting

▪ Improvements include: regularized loss, sparsity-aware algorithm, 

weighted quantile sketch for approximate tree learning, caching of 
access patterns, data compression, sharding


▪ Decision trees based on CART

▪ Regularization term for penalizing model (tree) complexity

▪ Uses second order approximation for optimizing the objective

▪ Options for column-based and row-based subsampling

▪ Single-machine version of XGBoost supports the exact greedy 

algorithm

Chen, T., & Guestrin, C. (2016, August). XGBoost: A scalable tree boosting system. In Proceedings of 
the 22nd International Conference on Knowledge Discovery and Data Mining (pp. 785-794). ACM.
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https://lightgbm.readthedocs.io/en/latest/Experiments.html

https://lightgbm.readthedocs.io/en/latest/Experiments.html
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https://bangdasun.github.io/2019/03/21/38-practical-comparison-xgboost-lightgbm/

https://bangdasun.github.io/2019/03/21/38-practical-comparison-xgboost-lightgbm/
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From https://github.com/Microsoft/LightGBM:

• Faster training speed and higher efficiency

• Lower memory usage

• Better accuracy

• Support of parallel and GPU learning

• Capable of handling large-scale data

More GBM Implementations

Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., ... & Liu, T. Y. (2017). Lightgbm: A highly efficient gradient boosting decision tree. In Advances in Neural Information 
Processing Systems (pp. 3146-3154).

https://scikit-learn.org/stable/whats_new.html#version-0-21-0

LightGBM, Light Gradient Boosting Machine

https://github.com/Microsoft/LightGBM
https://scikit-learn.org/stable/whats_new.html#version-0-21-0
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Code 1
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Code 2
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Code 3
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Code 4
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7.1 Ensemble Methods -- Intro and Overview


7.2 Majority Voting


7.3 Bagging


7.4 Boosting


7.5 Gradient Boosting


7.6 Random Forests 

7.7 Stacking
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Overview

Ensemble Methods

Majority Voting

Bagging

Boosting

Random Forests

Stacking
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Random Forests
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Random Forests 

= Bagging w. trees + random feature subsets

102
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h1 h2 hn. . .

y1 y2 yn. . .

Voting

yf

N
ew

 data

Classification 
models

Predictions

Final prediction

. . .T2

Training set

TnT1
T2

Bootstrap 
samples

hi(x) = ̂yiwhere

̂yf = mode{h1(x), h2(x), . . . hn(x)}

Bagging Classifier

103
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Random Feature Subsets
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Tin Kam Ho used the “random subspace method,” where each tree got a random 
subset of features.


“Our method relies on an autonomous, pseudo-random procedure to select a small 
number of dimensions from a given feature space …”


• Ho, Tin Kam. “The random subspace method for constructing decision forests.” 
IEEE transactions on pattern analysis and machine intelligence 20.8 (1998): 
832-844.

“Trademark” random forest: 

“… random forest with random features is formed by selecting at random, at 
each node, a small group of input variables to split on.” 

• Breiman, Leo. “Random Forests” Machine learning 45.1 (2001): 5-32.

Random Feature Subset for each Tree or Node?
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Tin Kam Ho used the “random subspace method,” where each tree got a random 
subset of features.


“Our method relies on an autonomous, pseudo-random procedure to select a small 
number of dimensions from a given feature space …”


• Ho, Tin Kam. “The random subspace method for constructing decision forests.” 
IEEE transactions on pattern analysis and machine intelligence 20.8 (1998): 
832-844.

“Trademark” random forest: 

“… random forest with random features is formed by selecting at random, at 
each node, a small group of input variables to split on.” 

• Breiman, Leo. “Random Forests” Machine learning 45.1 (2001): 5-32.

Random Feature Subset for each Tree or Node?

num features = log2 m + 1

where m is the 
number of input 
features
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x

Voting in classification; 
averaging in regression
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In contrast to the original publication  
[Breiman, “Random Forests”, Machine Learning, 45(1), 5-32, 2001]  
the scikit-learn implementation combines classifiers by 
averaging their probabilistic prediction, instead of letting each 
classifier vote for a single class.

"Soft Voting"
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"Soft" Voting

109

̂y = arg max
j

n

∑
i=1

wipi,j

wi optional weighting parameter, default 
wi = 1/n, ∀wi ∈ {w1, . . . , wn}

pi,j
predicted class membership 
probability of the ith classifier for 
class label j

:

:
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"Soft" Voting

110

̂y = arg max
j

n

∑
i=1

wipi,j

Binary classification example

j ∈ {0,1} hi(i ∈ {1,2,3})

h1(x) → [0.9,0.1]
h2(x) → [0.8,0.2]
h3(x) → [0.4,0.6]

p( j = 0 |x) = 0.2 ⋅ 0.9 + 0.2 ⋅ 0.8 + 0.6 ⋅ 0.4 = 0.58

p( j = 1 |x) = 0.2 ⋅ 0.1 + 0.2 ⋅ 0.2 + 0.6 ⋅ 0.6 = 0.42

̂y = arg max
j {p( j = 0 |x), p( j = 1 |x)}
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Will discuss Random Forests 
and feature importance in 
Feature Selection lecture

111
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PE ≤
ρ̄ ⋅ (1 − s2)

s2

(Loose) Upper Bound for the Generalization Error
Breiman, “Random Forests”, Machine Learning, 45(1), 5-32, 2001

ρ̄ : Average correlation among trees

: "Strength" of the ensembles
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Extremely Randomized Trees (ExtraTrees)

ExtraTrees algorithm adds one more random component

Random Forest random components:


1) _____________


2) _____________

3) _____________

Geurts, P., Ernst, D., & Wehenkel, L. (2006). Extremely randomized trees. Machine learning, 63(1), 3-42.
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Code
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Overview

Ensemble Methods

Majority Voting

Bagging

Boosting

Random Forests

Stacking
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7.1 Ensemble Methods -- Intro and Overview


7.2 Majority Voting


7.3 Bagging


7.4 Boosting


7.5 Gradient Boosting


7.6 Random Forests


7.7 Stacking
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Overview

Ensemble Methods

Majority Voting

Bagging

Boosting

Random Forests

Stacking
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Stacking

118
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Tang, J., S. Alelyani, and H. Liu. "Data Classification: Algorithms and Applications." Data Mining and 
Knowledge Discovery Series, CRC Press (2015): pp. 498-500.

Wolpert, David H. "Stacked generalization." Neural networks 5.2 (1992): 241-259.

Stacking Algorithm

119
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Stacking Algorithm

120

Training set

h1 h2 hn. . .

y1 y2 yn. . .

Meta-Classifier

yf

New
 data

Classification 
models

Predictions

Final prediction
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Stacking Algorithm

121

Training set

h1 h2 hn. . .

y1 y2 yn. . .

Meta-Classifier

yf

New
 data

Classification 
models

Predictions

Final prediction

What is the problem with this stacking procedure?
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1 2 3 4 5 6 7 8 109

1 2 3 4 5 6 7 8 109

1 2 3 4 5 6 7 8 109

1 2 3 4 5 6 7 8 109

1 2 3 4 5 6 7 8 109

...

1 2 3 4 5 6 7 8 109

1 2 3 4 5 6 7 8 109 Holdout Method

2-Fold Cross-Validation

Repeated Holdout

Training Evaluation

Cross-Validation
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1st

2nd

3rd

4th

5th

K 
Ite

ra
tio

ns
 (K

-F
ol

ds
)

Validation  
Fold

Training  
Fold

Learning  
Algorithm

 Hyperparameter  
Values

Model

Training Fold Data

Training Fold Labels
Prediction

Performance
Model

Validation  
Fold Data

Validation  
Fold Labels

Performance

Performance

Performance

Performance

Performance

1

2

3

4

5

Performance  
1 
5 ∑

5

i =1
Performance i=

A

B C

k-fold Cross-Validation
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Stacking Algorithm with Cross-Validation

124

Wolpert, David H. "Stacked generalization." Neural networks 5.2 (1992): 241-259.

Tang, J., S. Alelyani, and H. Liu. "Data Classification: Algorithms and Applications." Data Mining and 
Knowledge Discovery Series, CRC Press (2015): pp. 498-500.
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Stacking Algorithm with Cross-Validation

125

Training set

h1 h2 hn. . .

y1 y2 yn. . .

Meta-Classifier

yf

Base Classifiers

Level-1 predictions
in k-th iteration

Final prediction

Training folds Validation fold

Re
pe

at
 k

tim
es

All level-1 predictions

Train
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Code 1 
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Code 2 
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Code 3 
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Code 4 
New in version 0.22.
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Code 5 

New in version 0.22.
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Code 6 
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The End

Ensemble Methods

Majority Voting

Bagging

Boosting

Random Forests

Stacking


