Lecture 02

Nearest Neighbor Methods

STAT 451: Intro to Machine Learning, Fall 2020
Sebastian Raschka
http://stat.wisc.edu/~sraschka/teaching/stat451-fs2020/

http://pages.stat.wisc.edu/~sraschka/teaching/stat451-fs2020/
http://pages.stat.wisc.edu/~sraschka/teaching/stat451-fs2020/

Lecture 2 (Nearest Neighbors)
Topics

1. Intro to nearest neighbor models

2. Nearest neighbor decision boundary

3. K-nearest neighbors

4. Big-O & k-nearest neighbors runtime complexity

5. Improving k-nearest neighbors: modifications
and hyperparameters

6. K-nearest neighbors in Python

Sebastian Raschka STAT 451: Intro to ML Lecture 2: Nearest Neighbors 2

Applications of Nearest Neighbor Methods

Appbed Computng and Informatics (2016) 12, 90108

Saudi Computer Society, King Saud University

Applied Computing and Informatics I _

(hitp://computer.org sa)
www_ ksu edu.sa
www.sciencedirect.com -

ORIGINAL ARTICLE

Automated web usage data mining W) coore
and recommendation system using

K-Nearest Neighbor (KNN)
classification method

D.A. Adeniyi, Z. Wei, Y. Yongquan *

The major problem of many on-line web sites is the presentation of many choices to the
client at a time; this usually results to strenuous and time consuming task in finding the
right product or information on the site. In this work, we present a study of automatic web
usage data mining and recommendation system based on current user behavior through
his/her click stream data on the newly developed Really Simple Syndication (RSS) reader
website, in order to provide relevant information to the individual without explicitly asking
for it. The K-Nearest-Neighbor (KNN) classification method has been trained to be used
on-line and in Real-Time to identify clients/visitors click stream data, matching it to a
particular user group and recommend a tailored browsing option that meet the need of the
specific user at a particular time. [...]

Sebastian Raschka STAT 451: Intro to ML Lecture 2: Nearest Neighbors

Distance Metric Learning for Large Margin

Nearest Neighbor Classification

Weinberger, Kilian Q., John Blitzer, and
Lawrence K. Saul. "Distance metric
learning for large margin nearest
neighbor classification." Advances in
Neural Information Processing

Kilian Q. Weinberger, John Blitzer and Lawrence K. Saul
Department of Computer and Information Science, University of Pennsylvania

Levine Hall, 3330 Walnut Street, Philadelphia, PA 19104
{kilianw, blitzer, lsaul}@cis.upenn.edu

Test Image:

CIEIBISLEIONS
HELNEEES

Among 3 nearest neighbors
after but not before training:

Among 3 nearest neighbors
before but not after training:

i

Systems. 2000.

We show how to learn a Mahanalobis distance metric for k-
nearest neighbor (kNN) classification by semidefinite
programming. The metric is trained with the goal that the k-
nearest neighbors always belong to the same class while
examples from different classes are separated by a large
margin. On seven data sets of varying size and difficulty, we
find that metrics trained in this way lead to significant
improvements in kNN classification —for example, achieving a
test error rate of 1.3% on the MNIST handwritten digits.
As in support vector machines (SVMs), the learning problem
reduces to a convex optimization based on the hinge loss.
Unlike learning in SVMs, however, our framework requires no
modification or extension for problems in multiway (as
opposed to bi- nary) classification.

Test Image:
Nearest neighbor

after training:

>

NEE
EEE
& @ &
£ [£
SEE
NEE
=g g
=EEE
L B o
~Jo<fou

8
[

e

Nearest neighbor
before training:

NE N
NN

H

(o

0

Journal of Cleaner Production 249 (2020) 119409

Journal of Cleaner Production

journal homepage: www.elsevier.com/locate/jclepro

Contents lists available at ScienceDirect

Remaining useful life estimation of lithium-ion cells based on k- R
nearest neighbor regression with differential evolution optimization =L

Yapeng Zhou ¢, Miaohua Huang **, Michael Pecht "

2 Hubei Key Laboratory of Advanced Technology for Automotive Components, Wuhan University of Technology, Wuhan, 430070, PR China
b Center for Advanced Life Cycle Engineering, University of Maryland, College Park, MD, 20742, USA

ells
cells
n
i=i+l
e
cel

?— 0

=G+1 Yes Weight of every
te carest cell
> i=1; get

Sebastian Raschka

Distance between
il

nearesf

Useful life

different jellyroll configurations. All the cells have a LiCoO; cathode
and graphite anode, and the electrolyte materi.

and rest 1 h.

erial contains LiPF, EC,

4. Start the charge/discharge cycling with the Bits Pro software.

5. Terminate the cycling when the SOH reaches 80%.

Note that there is an interval of 5 min between each
discharee. The capacitv was calculated bv integratine the

STAT 451: Intro to ML

charg
dis

cl

e
h.

and
arge

Remaining useful life estimation is of great importance to
customers who use battery-powered products. This paper develops
a remaining useful life estimation model based on k-nearest
neighbor regression by incorporating data from all the cells in a
battery pack. A differential evolution technique is employed to
optimize the parameters in the estimation model. In this approach,
remaining useful life 1s estimated from a weighted average of the
useful life of several nearest cells that share a similar degradation

trend to the cell whose remaining useful life needs to be estimated.

The developed method obtains a remaining useful life estimation
result with average error of 9 cycles, and the best estimation only
has an error of 2 cycles. [...]

Lecture 2: Nearest Neighbors

6

CO ®

Lo _ o /
el biomolecules @\Py

Article
Machine Learning to Identify Flexibility Signatures
of Class A GPCR Inhibition

Joseph Bemister-Buffington 1, Alex J. Wolf !, Sebastian Raschka 1-?*(% and Leslie A. Kuhn 1-3*

We show that machine learning can pinpoint features distinguishing inactive

H3.1 (yellow) can be from active states in proteins, in particular identifying key ligand binding site

flexible in active flexibility transitions in GPCRs that are triggered by biologically active ligands.
structures, whereas it is H5.1 (yellow) tends to be
ECL1 region (yellow 100 0 e on (fed)in Largest rgie segiom (red) [...] However, considering the flexible versus rigid state identified by graph-
Soatold ke |rgast g Inactive structures I Inactive stuctires, theoretic ProFlex rigidity analysis for each helix and loop segment with the
a8 (hinging st t the s ligand removed, followed by feature selection and
flexible in active structures structures k-nearest neighbor classification, was sufficient to identify four segments

surrounding the ligand binding site whose flexibility/rigidity accurately predicts
whether a GPCR is in an active or inactive state ...

_ N-terminus ¢,
H2.2 region (yellow) tends &

to be a section of helix
hinged to the end of the
helix 2 (H2.3) in active
structures, while it tends to

ECL1

be mutually rigid with the || ||
scaffold-like largest rigid H1.1 H2.3 4
region of the GPCR (red) in
inactive structures Hi.2][H2.2 |4 H3.2
™ - : I
= % 5 a H13 | | H21 | | @9 |
Py - Y ' N— Tyrosine toggle
NN ~—" ‘ - C-terminus
{ .1 H8.2
4 Y\ IcL1 IcL2 IcL3

Joe Bemister-Buffington, Alex J. Wolf, Sebastian Raschka, and Leslie A. Kuhn (2020)
Machine Learning to Identify Flexibility Signatures of Class A GPCR Inhibition
Biomolecules 2020, 10, 454.

Sebastian Raschka STAT 451: Intro to ML Lecture 2: Nearest Neighbors 14

1-Nearest Neighbor

1-Nearest Neighbor

Task: predict the target / label of a new data point

5

X ®
2 o
®
1 o
0 :
0 1 2 3 4 5

1-Nearest Neighbor

Task: predict the target / label of a new data point

5

¢ X
o 2
o
o 1
. 0
1 2 3 4 5

m classO
A class1

4 N\
/ @ \A
/
\ /
\"/
] 2

How? Look at most "similar" data point in training set

10

1-Nearest Neighbor Training Step

xylihe (19| =n)

How do we "train" the 1-NN model?

11

1-Nearest Neighbor Training Step

xylihe (19| =n)

To train the 1-NN model, we simply "remember" the
training dataset

12

1-Nearest Neighbor Prediction Step
given: (xIlyYe @ (|D|=n)
(x19, 229)

Predict: f(X[Q])

_ closest_point := None
Algorithm:

‘ uery point
closest_distance := oo query p

e fori=1,...,n: /

o current_distance := d(x!?, x/¢)
o if current distance < closest distance:

» closest_distance := current_distance
» closest_point := x!
e return f(closest_point)

Sebastian Raschka STAT 451: Intro to ML Lecture 2: Nearest Neighbors 13

Commonly used: Euclidean Distance (L2)

m

2
d(x19), xIP1y = (el xj[b]>

VA

14

Lecture 2 (Nearest Neighbors)
Topics

1. Intro to nearest neighbor models

2. Nearest neighbor decision boundary

3. K-nearest neighbors

4. Big-O & k-nearest neighbors runtime complexity

5. Improving k-nearest neighbors: modifications
and hyperparameters

6. K-nearest neighbors in Python

Sebastian Raschka STAT 451: Intro to ML Lecture 2: Nearest Neighbors 15

Nearest Neighbor Decision Boundary

16

Decision Boundary Between (a) and (b)

How does it look like?

17

Decision Boundary Between (a) and (c)

How does it look like?

18

Decision Boundary Between (a) and (c)

19

Decision Boundary of 1-NN

20

Decision Boundary of 1-NN

21

Which Point is Closest to (?) ?

a
N
X ®
2 Co
@
o
1 O b
0 !
0 1 2 3 4 5

22

Depends on the Distance Measure!

Euclidean
distance=1

Manhattan
distance=1

4_
O
3_
@\
X
2 Co
1 O
0 .
0 1 2

23

Some Common Continuous Distance Measures

Euclidean
Manhattan
m p D
: B [a] «[O]\ — la] _ ,.[D]
Minkowski: d(x!, x!"!) = [2(Y —x)]
]:

Mahalanobis

Cosine similarity

24

Some Discrete Distance Measures

' ' : a5y — N | clal _ 100 where
Hamming distance: dx!“,x!) z} el — % € (0.1}
i
Jaccard/Tanimoto similarity:
- |ANB]| B |ANB]|
J(4,B) = |AUB| |A|+|B|-|ANB|
2|ANB|

Dice: DA, B) = TPV

25

Feature Scaling

Euclidean
distance=1

Euclidean
distance=1

10

Lecture 2 (Nearest Neighbors)
Topics

1. Intro to nearest neighbor models

2. Nearest neighbor decision boundary

3. K-nearest neighbors

4. Big-O & k-nearest neighbors runtime complexity

5. Improving k-nearest neighbors: modifications
and hyperparameters

6. K-nearest neighbors in Python

Sebastian Raschka STAT 451: Intro to ML Lecture 2: Nearest Neighbors 27

k-Nearest Neighbors

Mx 2
A I % o
2 3% A
s
o ‘/A’"}\ A R
00 O O A,':'A Predict
o oA T
+ ot g
o
+
o .+
X1

Sebastian Raschka STAT 451: Intro to ML Lecture 2: Nearest Neighbors 28

A

v 000

Majority vote:
Plurality Vote:

B
vy OO O

Majority vote: None
Plurality Vote: €»

L B A 2

Sebastian Raschka STAT 451: Intro to ML Lecture 2: Nearest Neighbors 29

kNN for Classification

@k — {(X[l],f<X[1])>, R <X[k]9f<X[k])>}

D, C D

k
h(xlay = 5(y. fix!!
(X'") = arg max } ZZZI, (3, /(X))

yell,...,.t} *

o(a, b) = {(1)’

h(x!) = mode({f(x[”), ...,f(x[k]) })

If a = b,
ifa#0b.

30

KNN for Regression

g}Zk — {(X[l],f(X[l])>, AR <X[k]’f<x[k])>}

k

h(X[t]) — %Zf(x[i])

=1

P, C D

31

Lecture 2 (Nearest Neighbors)
Topics

1. Intro to nearest neighbor models
2. Nearest neighbor decision boundary
3. K-nearest neighbors

4. Big-O & k-nearest neighbors runtime
complexity

5. Improving k-nearest neighbors: modifications
and hyperparameters

6. K-nearest neighbors in Python

Sebastian Raschka STAT 451: Intro to ML Lecture 2: Nearest Neighbors 32

Big-O

f(n) Name

1 Constant

logn Logarithmic

n Linear

nlogn Log Linear

n? Quadratic

no Cubic

n° Higher-level polynomial
2" Exponential

33

Big-O

f(n) Name

1 Const.ant | 1400 -
logn Logarithmic — 0(1)
n Linear O(log n)
nlogn Log Linear 1200 ~ o(n)
n2 Quadratic o(n 1og n) /
n’ Cubic 1000 - R 9
n° Higher-level polynomial O(n~™2)
2" Exponential go0{ — 0O(n73)
g Oo(27™n)
600 A
400 -
200 -
0 - e
2 4 6 8 10

Sebastian Raschka STAT 451: Intro to ML Lecture 2: Nearest Neighbors 34

Big-O Example 1

f(x) = 14x% — 10x + 25

OC)

35

Big-O Example 2

fx) = 2x + 8)log,(x +9)

OC)

Big-O Example 2

fx) = 2x + 8)log,(x +9)

Why don't we have to distinguish between different logarithms?

37

Big-O Example 3

A=1[[l, 2, 3],
[2, 3, 4]]

B = [[5, 81,
[6, 91,
[7, 107]]

def matrixmultiply (A, B):

C = [[0 for row in range(len(A))]
for col in range(len(B[0]))]

for row a in range(len(A)):
for col b in range(len(B[0])):
for col a in range(len(A[0])):
Cl[row a][col b] += \
Alrow a][col a] * B[col a][col Db]
return C

matrixmultiply (A, B)

Out[1l6]:

[[38, 56], [56, 83]]

O(

38

Big O of kNN

39

Improving Computational Performance

40

Naive Nearest Neighbor Search

Variant A

Dy = {} OC)

while ‘Dk‘ < k:

® closest_distance := o0
o fort=1,....n, Vié& Dy:

— current_distance := d(x!¥, x!4])
— if current_distance < closest_distance:
* closest_distance := current_distance

* closest_point := x 1]

e add closest_point to Dy

41

Naive Nearest Neighbor Search

Variant B

Dy =D OC)

while ‘Dk| > k:

e largest distance := 0
o fori=1,....n Vi €& Dy:

— current_distance := d(x[¥, x!9))
— if current_distance > largest_distance:

* largest_distance := current_distance

* farthest_point := x|l

e remove farthest_point from D;

42

Naive Nearest Neighbor Search

Using a priority queue O()

43

Lecture 2 (Nearest Neighbors)
Topics

1. Intro to nearest neighbor models

2. Nearest neighbor decision boundary

3. K-nearest neighbors

4. Big-O & k-nearest neighbors runtime complexity

5. Improving k-nearest neighbors: modifications
and hyperparameters

6. K-nearest neighbors in Python

Sebastian Raschka STAT 451: Intro to ML Lecture 2: Nearest Neighbors 44

Improving Computational Performance

Data Structures

45

Improving Computational Performance

Dimensionality Reduction

46

Improving Computational Performance

Editing / "Pruning"”

47

Improving Computational Performance

Editing / "Pruning"”

Sebastian Raschka STAT 451: Intro to ML Lecture 2: Nearest Neighbors 48

Improving Computational Performance

Prototypes

49

Improving Predictive Performance

50

Hyperparameters

51

Hyperparameters

e \/alue of k
e Scaling of the feature axes
e Distance measure

* \Weighting of the distance measure

52

ke {1,3,7}

-2 -1 0 1 2
petal length [cm]

Sebastian Raschka STAT 451: Intro to ML Lecture 2: Nearest Neighbors 53

Feature-Weighting via Euclidean Distance

m

2
[a] <[Pl — la] _ [D]
d (x'“,x)—\ WJ-()CJ. X)
j=1

As a dot product:

dx'4 x!Phy =4/¢'e

dw(x[“], x%l) = \/ c' We,
W = RWLXWL — diag(Wl, W2, c ooy Wm)

54

Distance-weighted kNN

h(x") = arg max Zw[l]a(] Ax)

jell,..., p}
|

witl = S ——
d(X[l], X[t])2

Small constant to avoid zero division
or set h(x) = f(x)

55

Lecture 2 (Nearest Neighbors)
Topics

1. Intro to nearest neighbor models

2. Nearest neighbor decision boundary

3. K-nearest neighbors

4. Big-O & k-nearest neighbors runtime complexity

5. Improving k-nearest neighbors: modifications
and hyperparameters

6. K-nearest neighbors in Python

Sebastian Raschka STAT 451: Intro to ML Lecture 2: Nearest Neighbors 56

KNN in Python

DEMO

57

