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Applications of Nearest Neighbor Methods
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ORIGINAL ARTICLE

Automated web usage data mining W) coore
and recommendation system using

K-Nearest Neighbor (KNN)
classification method

D.A. Adeniyi, Z. Wei, Y. Yongquan *

The major problem of many on-line web sites is the presentation of many choices to the
client at a time; this usually results to strenuous and time consuming task in finding the
right product or information on the site. In this work, we present a study of automatic web
usage data mining and recommendation system based on current user behavior through
his/her click stream data on the newly developed Really Simple Syndication (RSS) reader
website, in order to provide relevant information to the individual without explicitly asking
for it. The K-Nearest-Neighbor (KNN) classification method has been trained to be used
on-line and in Real-Time to identify clients/visitors click stream data, matching it to a
particular user group and recommend a tailored browsing option that meet the need of the
specific user at a particular time. [...]
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Distance Metric Learning for Large Margin

Nearest Neighbor Classification

Weinberger, Kilian Q., John Blitzer, and
Lawrence K. Saul. "Distance metric
learning for large margin nearest
neighbor classification." Advances in
Neural Information Processing

Kilian Q. Weinberger, John Blitzer and Lawrence K. Saul
Department of Computer and Information Science, University of Pennsylvania

Levine Hall, 3330 Walnut Street, Philadelphia, PA 19104
{kilianw, blitzer, lsaul}@cis.upenn.edu
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We show how to learn a Mahanalobis distance metric for k-
nearest neighbor (kNN) classification by semidefinite
programming. The metric is trained with the goal that the k-
nearest neighbors always belong to the same class while
examples from different classes are separated by a large
margin. On seven data sets of varying size and difficulty, we
find that metrics trained in this way lead to significant
improvements in kNN classification —for example, achieving a
test error rate of 1.3% on the MNIST handwritten digits.
As in support vector machines (SVMs), the learning problem
reduces to a convex optimization based on the hinge loss.
Unlike learning in SVMs, however, our framework requires no
modification or extension for problems in multiway (as
opposed to bi- nary) classification.
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Journal of Cleaner Production 249 (2020) 119409

Journal of Cleaner Production

journal homepage: www.elsevier.com/locate/jclepro

Contents lists available at ScienceDirect

Remaining useful life estimation of lithium-ion cells based on k- R
nearest neighbor regression with differential evolution optimization =L

Yapeng Zhou ¢, Miaohua Huang **, Michael Pecht "

2 Hubei Key Laboratory of Advanced Technology for Automotive Components, Wuhan University of Technology, Wuhan, 430070, PR China
b Center for Advanced Life Cycle Engineering, University of Maryland, College Park, MD, 20742, USA
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different jellyroll configurations. All the cells have a LiCoO; cathode
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4. Start the charge/discharge cycling with the Bits Pro software.

5. Terminate the cycling when the SOH reaches 80%.

Note that there is an interval of 5 min between each
discharee. The capacitv was calculated bv integratine the

STAT 451: Intro to ML

charg
dis

cl

e
h.

and
arge

Remaining useful life estimation is of great importance to
customers who use battery-powered products. This paper develops
a remaining useful life estimation model based on k-nearest
neighbor regression by incorporating data from all the cells in a
battery pack. A differential evolution technique is employed to
optimize the parameters in the estimation model. In this approach,
remaining useful life 1s estimated from a weighted average of the
useful life of several nearest cells that share a similar degradation

trend to the cell whose remaining useful life needs to be estimated.

The developed method obtains a remaining useful life estimation
result with average error of 9 cycles, and the best estimation only
has an error of 2 cycles. [...]
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Article
Machine Learning to Identify Flexibility Signatures
of Class A GPCR Inhibition

Joseph Bemister-Buffington 1, Alex J. Wolf !, Sebastian Raschka 1-?*(% and Leslie A. Kuhn 1-3*

We show that machine learning can pinpoint features distinguishing inactive

H3.1 (yellow) can be from active states in proteins, in particular identifying key ligand binding site

flexible in active flexibility transitions in GPCRs that are triggered by biologically active ligands.
structures, whereas it is H5.1 (yellow) tends to be . . . . . . .
ECL1 region (yellow 100 0 e on (fed)in  Largest rgie segiom (red) [...] However, considering the flexible versus rigid state identified by graph-
Soatold ke |rgast g Inactive structures I Inactive stuctires, theoretic ProFlex rigidity analysis for each helix and loop segment with the
a8 (hinging st t the s ligand removed, followed by feature selection and
flexible in active structures structures k-nearest neighbor classification, was sufficient to identify four segments

surrounding the ligand binding site whose flexibility/rigidity accurately predicts
whether a GPCR is in an active or inactive state ...
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Joe Bemister-Buffington, Alex J. Wolf, Sebastian Raschka, and Leslie A. Kuhn (2020)
Machine Learning to Identify Flexibility Signatures of Class A GPCR Inhibition
Biomolecules 2020, 10, 454.
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1-Nearest Neighbor



1-Nearest Neighbor

Task: predict the target / label of a new data point
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1-Nearest Neighbor

Task: predict the target / label of a new data point
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How? Look at most "similar" data point in training set
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1-Nearest Neighbor Training Step

xylihe (19| =n)

How do we "train" the 1-NN model?
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1-Nearest Neighbor Training Step

xylihe (19| =n)

To train the 1-NN model, we simply "remember" the
training dataset
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1-Nearest Neighbor Prediction Step
given: (xIlyYe @ (|D|=n)
(x19, 229)

Predict: f(X[Q])

_ closest_point := None
Algorithm:

‘ uery point
closest_distance := oo query p

e fori=1,...,n: /

o current_distance := d(x!?, x/¢)
o if current distance < closest distance:

» closest_distance := current_distance
» closest_point := x!
e return f(closest_point)
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Commonly used: Euclidean Distance (L2)

m
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Nearest Neighbor Decision Boundary
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Decision Boundary Between (a) and (b)

How does it look like?
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Decision Boundary Between (a) and (c)

How does it look like?
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Decision Boundary Between (a) and (c)
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Decision Boundary of 1-NN
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Decision Boundary of 1-NN
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Which Point is Closest to (?) ?
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Depends on the Distance Measure!

Euclidean
distance=1

Manhattan
distance=1
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Some Common Continuous Distance Measures

Euclidean
Manhattan
m p D
: B [a] «[O]\ — la] _ ,.[D]
Minkowski: d(x!, x!"!) = [2( Y —x ) ]
]:

Mahalanobis

Cosine similarity
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Some Discrete Distance Measures

' ' : a5y — N | clal _ 100 where
Hamming distance: dx!“,x!) z} el — % € (0.1}
i
Jaccard/Tanimoto similarity:
- |ANB]| B |ANB]|
J(4,B) = |AUB|  |A|+|B|-|ANB|
2|ANB|

Dice: DA, B) = TPV
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Feature Scaling

Euclidean
distance=1

Euclidean
distance=1

10
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k-Nearest Neighbors
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Sebastian Raschka STAT 451: Intro to ML Lecture 2: Nearest Neighbors 29



kNN for Classification

@k — {(X[l],f<X[1])>, R <X[k]9f<X[k])>}

D, C D

k
h(xlay = 5(y. fix!!
(X'") = arg max } ZZZI, (3, /(X))

yell,...,.t} *

o(a, b) = {(1)’

h(x!) = mode({f(x[”), ...,f(x[k]) })

If a = b,
ifa#0b.
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KNN for Regression

g}Zk — {(X[l],f(X[l])>, AR <X[k]’f<x[k])>}

k

h(X[t]) — %Zf(x[i])

=1

P, C D
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Big-O

f(n) Name

1 Constant

logn Logarithmic

n Linear

nlogn Log Linear

n? Quadratic

no Cubic

n° Higher-level polynomial
2" Exponential
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Big-O

f(n) Name

1 Const.ant | 1400 -
logn Logarithmic — 0(1)
n Linear O(log n)
nlogn Log Linear 1200 ~ o(n)
n2 Quadratic o(n 1og n) /
n’ Cubic 1000 - R 9
n° Higher-level polynomial O(n~™2)
2" Exponential go0{ — 0O(n73)
g Oo(27™n)
600 A
400 -
200 -
0 - e
2 4 6 8 10
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Big-O Example 1

f(x) = 14x% — 10x + 25

OC )

35



Big-O Example 2

fx) = 2x + 8)log,(x +9)

OC )



Big-O Example 2

fx) = 2x + 8)log,(x +9)

Why don't we have to distinguish between different logarithms?
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Big-O Example 3

A=1[[l, 2, 3],
[2, 3, 4]]

B = [[5, 81,
[6, 91,
[7, 107]]

def matrixmultiply (A, B):

C = [[0 for row in range(len(A))]
for col in range(len(B[0]))]

for row a in range(len(A)):
for col b in range(len(B[0])):
for col a in range(len(A[0])):
Cl[row a][col b] += \
Alrow a][col a] * B[col a][col Db]
return C

matrixmultiply (A, B)

Out[1l6]:

[[38, 56], [56, 83]]

O(
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Big O of kNN
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Improving Computational Performance
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Naive Nearest Neighbor Search

Variant A

Dy = {} OC )

while ‘Dk‘ < k:

® closest_distance := o0
o fort=1,....n, Vié& Dy:

— current_distance := d(x!¥, x!4])
— if current_distance < closest_distance:
* closest_distance := current_distance

* closest_point := x 1]

e add closest_point to Dy
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Naive Nearest Neighbor Search

Variant B

Dy =D OC )

while ‘Dk| > k:

e largest distance := 0
o fori=1,....n Vi €& Dy:

— current_distance := d(x[¥, x!9))
— if current_distance > largest_distance:

* largest_distance := current_distance

* farthest_point := x|l

e remove farthest_point from D;
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Naive Nearest Neighbor Search

Using a priority queue O( )
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Improving Computational Performance

Data Structures
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Improving Computational Performance

Dimensionality Reduction
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Improving Computational Performance

Editing / "Pruning"”
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Improving Computational Performance

Editing / "Pruning"”
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Improving Computational Performance

Prototypes
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Improving Predictive Performance
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Hyperparameters
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Hyperparameters

e \/alue of k
e Scaling of the feature axes
e Distance measure

* \Weighting of the distance measure
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ke {1,3,7}

-2 -1 0 1 2
petal length [cm]
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Feature-Weighting via Euclidean Distance

m

2
[a] <[Pl — la] _ [D]
d (x'“,x )—\ WJ-()CJ. X )
j=1

As a dot product:

dx'4 x!Phy =4/¢'e

dw(x[“], x%l) = \/ c' We,
W = RWLXWL — diag(Wl, W2, c ooy Wm)
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Distance-weighted kNN

h(x") = arg max Zw[l]a(] Ax)

jell,..., p}
|

witl = S ——
d(X[l], X[t])2

Small constant to avoid zero division
or set h(x) = f(x)
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KNN in Python

DEMO
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