
Sebastian Raschka STAT 451: Intro to ML Lecture 2: Nearest Neighbors

Nearest Neighbor Methods

Lecture 02

1

STAT 451: Intro to Machine Learning, Fall 2020

Sebastian Raschka

http://stat.wisc.edu/~sraschka/teaching/stat451-fs2020/

http://pages.stat.wisc.edu/~sraschka/teaching/stat451-fs2020/
http://pages.stat.wisc.edu/~sraschka/teaching/stat451-fs2020/

Sebastian Raschka STAT 451: Intro to ML Lecture 2: Nearest Neighbors 2

1. Intro to nearest neighbor models

2. Nearest neighbor decision boundary

3. K-nearest neighbors

4. Big-O & k-nearest neighbors runtime complexity

5. Improving k-nearest neighbors: modifications
and hyperparameters

6. K-nearest neighbors in Python

Lecture 2 (Nearest Neighbors)
Topics

Sebastian Raschka STAT 451: Intro to ML Lecture 2: Nearest Neighbors
3

Applications of Nearest Neighbor Methods

Sebastian Raschka STAT 451: Intro to ML Lecture 2: Nearest Neighbors 4

The major problem of many on-line web sites is the presentation of many choices to the
client at a time; this usually results to strenuous and time consuming task in finding the
right product or information on the site. In this work, we present a study of automatic web
usage data mining and recommendation system based on current user behavior through
his/her click stream data on the newly developed Really Simple Syndication (RSS) reader
website, in order to provide relevant information to the individual without explicitly asking
for it. The K-Nearest-Neighbor (KNN) classification method has been trained to be used
on-line and in Real-Time to identify clients/visitors click stream data, matching it to a
particular user group and recommend a tailored browsing option that meet the need of the
specific user at a particular time. [...]

Sebastian Raschka STAT 451: Intro to ML Lecture 2: Nearest Neighbors 5

Distance Metric Learning for Large Margin

Nearest Neighbor Classification

Kilian Q. Weinberger, John Blitzer and Lawrence K. Saul

Department of Computer and Information Science, University of Pennsylvania
Levine Hall, 3330 Walnut Street, Philadelphia, PA 19104
{kilianw, blitzer, lsaul}@cis.upenn.edu

Abstract

We show how to learn a Mahanalobis distance metric for k-nearest neigh-
bor (kNN) classification by semidefinite programming. The metric is
trained with the goal that the k-nearest neighbors always belong to the
same class while examples from different classes are separated by a large
margin. On seven data sets of varying size and difficulty, we find that
metrics trained in this way lead to significant improvements in kNN
classification—for example, achieving a test error rate of 1.3% on the
MNIST handwritten digits. As in support vector machines (SVMs), the
learning problem reduces to a convex optimization based on the hinge
loss. Unlike learning in SVMs, however, our framework requires no
modification or extension for problems in multiway (as opposed to bi-
nary) classification.

1 Introduction

The k-nearest neighbors (kNN) rule [3] is one of the oldest and simplest methods for pattern
classification. Nevertheless, it often yields competitive results, and in certain domains,
when cleverly combined with prior knowledge, it has significantly advanced the state-of-
the-art [1, 14]. The kNN rule classifies each unlabeled example by the majority label among
its k-nearest neighbors in the training set. Its performance thus depends crucially on the
distance metric used to identify nearest neighbors.

In the absence of prior knowledge, most kNN classifiers use simple Euclidean distances
to measure the dissimilarities between examples represented as vector inputs. Euclidean
distance metrics, however, do not capitalize on any statistical regularities in the data that
might be estimated from a large training set of labeled examples.

Ideally, the distance metric for kNN classification should be adapted to the particular
problem being solved. It can hardly be optimal, for example, to use the same dis-
tance metric for face recognition as for gender identification, even if in both tasks, dis-
tances are computed between the same fixed-size images. In fact, as shown by many re-
searchers [2, 6, 7, 8, 12, 13], kNN classification can be significantly improved by learning
a distance metric from labeled examples. Even a simple (global) linear transformation of
input features has been shown to yield much better kNN classifiers [7, 12]. Our work builds
in a novel direction on the success of these previous approaches.

Among 3 nearest neighbors

before but not after training:

Test Image:

Among 3 nearest neighbors

after but not before training:

Figure 3: Images from the AT&T face recognition data base. Top row: an image correctly
recognized by kNN classification (k = 3) with Mahalanobis distances, but not with Eu-
clidean distances. Middle row: correct match among the k=3 nearest neighbors according
to Mahalanobis distance, but not Euclidean distance. Bottom row: incorrect match among
the k=3 nearest neighbors according to Euclidean distance, but not Mahalanobis distance.

Spoken letter recognition

The Isolet data set from UCI Machine Learning Repository has 6238 examples and 26
classes corresponding to letters of the alphabet. We reduced the input dimensionality (orig-
inally at 617) by projecting the data onto its leading 172 principal components—enough
to account for 95% of its total variance. On this data set, Dietterich and Bakiri report test
error rates of 4.2% using nonlinear backpropagation networks with 26 output units (one per
class) and 3.3% using nonlinear backpropagation networks with a 30-bit error correcting
code [5]. LMNN with energy-based classification obtains a test error rate of 3.7%.

Text categorization

The 20-newsgroups data set consists of posted articles from 20 newsgroups, with roughly
1000 articles per newsgroup. We used the 18828-version of the data set5 which has cross-
postings removed and some headers stripped out. We tokenized the newsgroups using the
rainbow package [10]. Each article was initially represented by the weighted word-counts
of the 20,000 most common words. We then reduced the dimensionality by projecting the
data onto its leading 200 principal components. The results in Fig. 2 were obtained by av-
eraging over 10 runs with 70/30 splits for training and test data. Our best result for LMMN
on this data set at 13.0% test error rate improved significantly on kNN classification using
Euclidean distances. LMNN also performed comparably to our best multiclass SVM [4],
which obtained a 12.4% test error rate using a linear kernel and 20000 dimensional inputs.

Handwritten digit recognition

The MNIST data set of handwritten digits6 has been extensively benchmarked [9]. We
deskewed the original 28⇥28 grayscale images, then reduced their dimensionality by re-
taining only the first 164 principal components (enough to capture 95% of the data’s overall
variance). Energy-based LMNN classification yielded a test error rate at 1.3%, cutting the
baseline kNN error rate by over one-third. Other comparable benchmarks [9] (not exploit-
ing additional prior knowledge) include multilayer neural nets at 1.6% and SVMs at 1.2%.
Fig. 4 shows some digits whose nearest neighbor changed as a result of learning, from a
mismatch using Euclidean distance to a match using Mahanalobis distance.

4 Related Work

Many researchers have attempted to learn distance metrics from labeled examples. We
briefly review some recent methods, pointing out similarities and differences with our work.

5Available at http://people.csail.mit.edu/jrennie/20Newsgroups/
6Available at http://yann.lecun.com/exdb/mnist/

Test Image:

Nearest neighbor

before training:

Nearest neighbor

after training:

Figure 4: Top row: Examples of MNIST images whose nearest neighbor changes dur-
ing training. Middle row: nearest neighbor after training, using the Mahalanobis distance
metric. Bottom row: nearest neighbor before training, using the Euclidean distance metric.

Xing et al [17] used semidefinite programming to learn a Mahalanobis distance metric
for clustering. Their algorithm aims to minimize the sum of squared distances between
similarly labeled inputs, while maintaining a lower bound on the sum of distances between
differently labeled inputs. Our work has a similar basis in semidefinite programming, but
differs in its focus on local neighborhoods for kNN classification.

Shalev-Shwartz et al [12] proposed an online learning algorithm for learning a Mahalanobis
distance metric. The metric is trained with the goal that all similarly labeled inputs have
small pairwise distances (bounded from above), while all differently labeled inputs have
large pairwise distances (bounded from below). A margin is defined by the difference of
these thresholds and induced by a hinge loss function. Our work has a similar basis in its
appeal to margins and hinge loss functions, but again differs in its focus on local neigh-
borhoods for kNN classification. In particular, we do not seek to minimize the distance
between all similarly labeled inputs, only those that are specified as neighbors.

Goldberger et al [7] proposed neighborhood component analysis (NCA), a distance metric
learning algorithm especially designed to improve kNN classification. The algorithm min-
imizes the probability of error under stochastic neighborhood assignments using gradient
descent. Our work shares essentially the same goals as NCA, but differs in its construction
of a convex objective function.

Chopra et al [2] recently proposed a framework for similarity metric learning in which
the metrics are parameterized by pairs of identical convolutional neural nets. Their cost
function penalizes large distances between similarly labeled inputs and small distances
between differently labeled inputs, with penalties that incorporate the idea of a margin.
Our work is based on a similar cost function, but our metric is parameterized by a linear
transformation instead of a convolutional neural net. In this way, we obtain an instance of
semidefinite programming.

Relevant component analysis (RCA) constructs a Mahalanobis distance metric from a
weighted sum of in-class covariance matrices [13]. It is similar to PCA and linear discrim-
inant analysis (but different from our approach) in its reliance on second-order statistics.

Hastie and Tibshirani [?] and Domeniconi et al [6] consider schemes for locally adaptive
distance metrics that vary throughout the input space. The latter work appeals to the goal
of margin maximization but otherwise differs substantially from our approach. In partic-
ular, Domeniconi et al [6] suggest to use the decision boundaries of SVMs to induce a
locally adaptive distance metric for kNN classification. By contrast, our approach (though
similarly named) does not involve the training of SVMs.

5 Discussion

In this paper, we have shown how to learn Mahalanobis distance metrics for kNN clas-
sification by semidefinite programming. Our framework makes no assumptions about the
structure or distribution of the data and scales naturally to large number of classes. Ongoing

We show how to learn a Mahanalobis distance metric for k-
nearest neighbor (kNN) classification by semidefinite
programming. The metric is trained with the goal that the k-
nearest neighbors always belong to the same class while
examples from different classes are separated by a large
margin. On seven data sets of varying size and difficulty, we
find that metrics trained in this way lead to significant
improvements in kNN classification—for example, achieving a
test error rate of 1.3% on the MNIST handwritten digits.
As in support vector machines (SVMs), the learning problem
reduces to a convex optimization based on the hinge loss.
Unlike learning in SVMs, however, our framework requires no
modification or extension for problems in multiway (as
opposed to bi- nary) classification.

Weinberger, Kilian Q., John Blitzer, and
Lawrence K. Saul. "Distance metric
learning for large margin nearest
neighbor classification." Advances in
Neural Information Processing
Systems. 2006.

Sebastian Raschka STAT 451: Intro to ML Lecture 2: Nearest Neighbors 6

Remaining useful life estimation of lithium-ion cells based on k-
nearest neighbor regression with differential evolution optimization

Yapeng Zhou a, Miaohua Huang a, *, Michael Pecht b

a Hubei Key Laboratory of Advanced Technology for Automotive Components, Wuhan University of Technology, Wuhan, 430070, PR China
b Center for Advanced Life Cycle Engineering, University of Maryland, College Park, MD, 20742, USA

a r t i c l e i n f o

Article history:
Received 24 June 2019
Received in revised form
9 November 2019
Accepted 20 November 2019
Available online 22 November 2019

Handling editor: Bin Chen

Keywords:
Lithium-ion cell
Remaining useful life
K-nearest neighbor regression
Differential evolution

a b s t r a c t

Remaining useful life estimation is of great importance to customers who use battery-powered products.
This paper develops a remaining useful life estimation model based on k-nearest neighbor regression by
incorporating data from all the cells in a battery pack. A differential evolution technique is employed to
optimize the parameters in the estimation model. In this approach, remaining useful life is estimated
from aweighted average of the useful life of several nearest cells that share a similar degradation trend to
the cell whose remaining useful life needs to be estimated. The developed method obtains a remaining
useful life estimation result with average error of 9 cycles, and the best estimation only has an error of 2
cycles. All of these estimations are done within 10 ms. Increasing the number of tested cells and nearest
cells improves the estimation accuracy. The developed method reduces the estimation average error by
83.14% and 89.79% compared to particle filter and support vector regression, respectively. Therefore,
estimation results and comparison validate the effectiveness of the developed method for remaining
useful life estimation of lithium-ion cells.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

Electric vehicles (EVs) are promising because they are environ-
mentally friendly and inexpensive to operate. Lithium-ion batteries
have become the most popular power source for EVs owing to their
high energy density, high power density, low self-discharge rate,
long cycle-life, and no memory effect (Lu et al., 2013; Panchal et al.,
2018). However, some irreversible reactions occur during charging/
discharging, such as lithium deposition, electrolyte decomposition,
and active material loss (Song et al., 2017). The capacity of lithium-
ion batteries accordingly degrades with use. Therefore, the battery
management system (BMS), which is responsible for monitoring
battery state of health (SOH) and estimating battery remaining
useful life (RUL), has become one of the most important parts of
EVs. SOH quantifies a battery’s physical health condition compared
with that of a fresh battery and is usually calculated by a battery’s
capacity or impedance (Li et al., 2017). In this paper, we define the
battery’s SOH as the ratio of the present capacity to the rated ca-
pacity. RUL is related to the SOH and is generally defined as the
number of charge/discharge cycles left until the battery reaches its

end of life (EOL) (Ungurean et al., 2017). Accurate RUL prediction
and SOH diagnosis can provide the battery performance variance
during EVs’ whole service life and can also improve battery man-
agement techniques to prolong battery life. For EV applications, EOL
is the cycle when the battery SOH drops to 80% (Li et al., 2017). After
the SOH drops below 80%, the battery’s capacity and power both
tend to drop much faster, causing unreliable performance. The
forthcoming battery failure could result in degraded capability,
unavailable operation, downtime, and even a catastrophic incident.
Therefore, RUL estimation is vital for scheduling battery replace-
ment to ensure the safety of the drivers and also leaving enough
time to arrange the second application of the used battery for en-
ergy storage.

Successful RUL estimation is difficult to achieve because it must
take into account current health status, history data, failure
mechanisms, and failure propagation (Zhang and Lee, 2011).
However, there has been plenty of research focused on lithium-ion
battery RUL estimation. Generally, RUL estimation methods can be
divided into model-based and data-driven (Khelif et al., 2017).

The model-based method employs a mathematical description
of the battery’s degradation process to estimate the RUL (Liao and
K€ottig, 2016). Micea et al. (2011) presented a second-order poly-
nomial that uses the cycle number as the input to predict RUL.* Corresponding author.

E-mail address: mh_huang@163.com (M. Huang).

Contents lists available at ScienceDirect

Journal of Cleaner Production

journal homepage: www.elsevier .com/locate/ jc lepro

https://doi.org/10.1016/j.jclepro.2019.119409
0959-6526/© 2019 Elsevier Ltd. All rights reserved.

Journal of Cleaner Production 249 (2020) 119409

data into the computer. The current measuring range of ARBIN
BT2000 is ±10 A, with an accuracy of ±5 mA. The temperature
control range of the Yamato DVS402C thermal chamber is 5e260 !C
with an accuracy of ±1 !C.

Two cell groups have the same chemistry components but

different jellyroll configurations. All the cells have a LiCoO2 cathode
and graphite anode, and the electrolyte material contains LiPF6, EC,
and DEC, and the rated voltage is 3.7 V. The cathode and anode
layers of groups A and B are wrapped around orthogonal rotation
center. Cells were charged with constant current and constant
voltage protocol and discharged with constant current to 2.7 V
under 24 !C. The detailed specifications and charge/discharge
method of these cells are shown in Table 1. As shown in Table 1, cells
of group Bwere dischargedwith constant current of 0.5C, and a rate
of x C is a current equal of multiplying x and the rated capacity.
Groups A and B are used to validate the feasibility and online
applicability of this method, respectively.

The detailed experiment procedure is as follows:

1. Program the charge/discharge with Bits Pro software on
computer.

2. Connect the cells to the circuit, and put them into the thermal
chamber.

3. Turn on the thermal chamber and set the temperature at 24 !C,
and rest 1 h.

4. Start the charge/discharge cycling with the Bits Pro software.
5. Terminate the cycling when the SOH reaches 80%.

Note that there is an interval of 5 min between each charge and
discharge. The capacity was calculated by integrating the discharge
current with time, and then the SOH can be obtained.

Fig. 3 shows the SOH degradation with the charge/discharge
cycle. The EOL of a cell occurs when its SOH reaches 80%. Different C
rates cause different cell life and cells discharged with the same C
rate usually have similar degradation trajectories. That’s why cell

Fig. 1. Flowchart of parameter optimization and RUL estimation.

Fig. 2. Cell test bench.

Y. Zhou et al. / Journal of Cleaner Production 249 (2020) 1194094

Remaining useful life estimation is of great importance to
customers who use battery-powered products. This paper develops
a remaining useful life estimation model based on k-nearest
neighbor regression by incorporating data from all the cells in a
battery pack. A differential evolution technique is employed to
optimize the parameters in the estimation model. In this approach,
remaining useful life is estimated from a weighted average of the
useful life of several nearest cells that share a similar degradation
trend to the cell whose remaining useful life needs to be estimated.
The developed method obtains a remaining useful life estimation
result with average error of 9 cycles, and the best estimation only
has an error of 2 cycles. [...]

Sebastian Raschka STAT 451: Intro to ML Lecture 2: Nearest Neighbors 7

Joe Bemister-Buffington, Alex J. Wolf, Sebastian Raschka, and Leslie A. Kuhn (2020) 
Machine Learning to Identify Flexibility Signatures of Class A GPCR Inhibition 
Biomolecules 2020, 10, 454.

biomolecules

Article

Machine Learning to Identify Flexibility Signatures

of Class A GPCR Inhibition

Joseph Bemister-Bu�ngton
1
, Alex J. Wolf

1
, Sebastian Raschka

1,2,
* and Leslie A. Kuhn

1,3,
*

1 Protein Structural Analysis and Design Lab, Department of Biochemistry and Molecular Biology, Michigan
State University, 603 Wilson Road, East Lansing, MI 48824-1319, USA; jbemister34@gmail.com (J.B.-B.);
wolf.alex9@gmail.com (A.J.W.)

2 Department of Statistics, University of Wisconsin-Madison, Medical Science Center, 1300 University Avenue,
Madison, WI 53706, USA

3 Department of Computer Science and Engineering, Michigan State University, 603 Wilson Road,
East Lansing, MI 48824-1319, USA

* Correspondence: sraschka@wisc.edu (S.R.); kuhnl@msu.edu (L.A.K.)

Received: 21 February 2020; Accepted: 11 March 2020; Published: 14 March 2020
!"#!$%&'(!
!"#$%&'

Abstract: We show that machine learning can pinpoint features distinguishing inactive from active
states in proteins, in particular identifying key ligand binding site flexibility transitions in GPCRs that
are triggered by biologically active ligands. Our analysis was performed on the helical segments and
loops in 18 inactive and 9 active class A G protein-coupled receptors (GPCRs). These three-dimensional
(3D) structures were determined in complex with ligands. However, considering the flexible versus
rigid state identified by graph-theoretic ProFlex rigidity analysis for each helix and loop segment with
the ligand removed, followed by feature selection and k-nearest neighbor classification, was su�cient
to identify four segments surrounding the ligand binding site whose flexibility/rigidity accurately
predicts whether a GPCR is in an active or inactive state. GPCRs bound to inhibitors were similar
in their pattern of flexible versus rigid regions, whereas agonist-bound GPCRs were more flexible
and diverse. This new ligand-proximal flexibility signature of GPCR activity was identified without
knowledge of the ligand binding mode or previously defined switch regions, while being adjacent
to the known transmission switch. Following this proof of concept, the ProFlex flexibility analysis
coupled with pattern recognition and activity classification may be useful for predicting whether
newly designed ligands behave as activators or inhibitors in protein families in general, based on the
pattern of flexibility they induce in the protein.

Keywords: GPCR activity determinants; flexibility analysis; coupled residues; allostery; ProFlex;
MLxtend; feature selection; pattern classification

1. Introduction

Recognizing the features of small, drug-like ligand molecules and protein structures that synergize
to create an active protein state (binding to an agonist ligand) versus an inactive protein state (binding
an inhibitory ligand) is essential to design drugs with predictable e↵ects on the protein and organism.
Much drug discovery research has focused on mimicking small molecule ligands of known activity
(when available), either by incorporating very similar chemical groups that lead to cost-e↵ective
synthesis and favorable bioavailability and toxicity profiles, or by mimicking the three-dimensional
volumes and chemical surface features of such molecules [1–3]. It is not uncommon for such molecules
to bind the protein with moderate to high a�nity, but not always with the activating or inhibitory
e↵ect that is sought. In this work, we focus on the other side of the interface, seeking a general method
that can learn from a series of active and inactive structures in a protein family to identify the shared

Biomolecules 2020, 10, 454; doi:10.3390/biom10030454 www.mdpi.com/journal/biomolecules

Biomolecules 2020, 10, 454 16 of 22

The only highly correlated features were H2.1s and H2.2s; in structures where the N-terminal segment
of helix 2 is separately rigid (in the H2.1s state), the central segment of helix also tends to be separately
rigid (H2.2s), with a correlation coe�cient of 0.78. Seventy percent of the H2.1s and H2.2s occurrences
are in active GPCRs. All other feature pairs in Figure 8 have absolute correlation values less than 0.45.
Thus, most predictive features behave fairly independently of each other, while together being good
predictors of an active or inactive GPCR state.

Figure 7. The four GPCR regions whose flexibility allows the most discrimination between active
and inactive structures are highlighted in yellow; the remainder of the largest rigid region in human
�2-adrenergic receptor (PDB entry 2RH1) appears in red, with two separately rigid regions in green
and light blue ribbons (based on the data in Figure 2). The H2.2, ECL1, H3.1, and H5.1 segments
colocalize around the ligand site, which in this case hosts the blood pressure-reducing beta-blocker,
carazolol. The extracellular side of the GPCR is at the top. Trends in flexibility/rigidity of these four
regions between active and inactive structures across all 27 GPCRs are annotated.

We show that machine learning can pinpoint features distinguishing inactive
from active states in proteins, in particular identifying key ligand binding site
flexibility transitions in GPCRs that are triggered by biologically active ligands.
[...] However, considering the flexible versus rigid state identified by graph-
theoretic ProFlex rigidity analysis for each helix and loop segment with the
ligand removed, followed by feature selection and
k-nearest neighbor classification, was sufficient to identify four segments
surrounding the ligand binding site whose flexibility/rigidity accurately predicts
whether a GPCR is in an active or inactive state ...

Biomolecules 2020, 10, 454 6 of 22

2.2. Defining Regions in GPCR Structures for Machine Learning

While ProFlex groups atoms that are flexible (or rigid) according to the natural partitioning of
degrees of freedom in the protein chain following constraint-counting of covalent and non-covalent
interactions in the bond network, machine learning with feature selection requires features that
are consistently defined across the analyzed proteins. A natural feature representation, given the
goal of identifying flexibility motifs in the protein associated with active or inactive states, is to
segment the GPCR structures into small regions (Figure 1), and report the degree of flexibility in each
region following ProFlex assessment. Accordingly, the extracellular (ECL) and intracellular (ICL)
loops and canonical transmembrane helices (H1-H7) and C-terminal intracellular helix (H8) were
numbered sequentially from the N-terminus to C-terminus, and then tabulated for each of the 27 protein
structures. Each transmembrane helix was further segmented into three parts: the segment closest to
the extracellular surface (e.g., H1.1 for helix 1), the most membrane-buried segment (H1.2), and the
segment closest to the intracellular surface of the membrane (H1.3). This tripartite segmentation for
transmembrane helices is based on prior observations that the extracellular, interior, and intracellular
segments of transmembrane segments have di↵erent amino acid sequence attributes, and therefore
it can be advantageous for structural predictions to consider the regions separately [19,20]. Figure 1
shows the resulting 29 segments considered in each GPCR structure (H1.1, H1.2, H1.3, ICL1, etc.) along
with activity switch regions that have been characterized in class A GPCRs (the ionic lock, transmission
switch, and tyrosine toggle; reviewed in [14]). The first extracellular loop in the GPCRs, preceding H1,
was not included in the analysis. Its length and structure vary enormously across GPCRs, and this
loop is often removed or altered in protein constructs prior to crystallization or fails to yield reliable
atomic coordinates due to high mobility.

Figure 1. Class A GPCR architecture, partitioned into segments for machine learning analysis.
Extracellular loops are labeled ECL1, ECL2, and ECL3 from N-terminus to C-terminus, and the
intracellular loops are labeled ICL1, ICL2, and ICL3. Each transmembrane helix is divided into three
segments, extracellular, interior, and intracellular, and indexed first by the helix number, e.g., H1,
and then by the segment of helix from N-terminus to C-terminus. For instance, H1.2 is the second
(interior) segment of helix 1. Helix 8, which is intracellular and shorter, was divided into two segments.
Previously characterized activity switch regions and their key amino acid residues in GPCRs—the ionic
lock, transmission switch, and tyrosine toggle—are also annotated [14]. The residues shown are those
found in human CXCR4 (PDB entry 3ODU).

Sebastian Raschka STAT 451: Intro to ML Lecture 2: Nearest Neighbors
8

1-Nearest Neighbor

Sebastian Raschka STAT 451: Intro to ML Lecture 2: Nearest Neighbors

1-Nearest Neighbor

9

B

A

B

C

B

D

? ?

a

b

c

Euclidean
distance=1 Manhattan

distance=1

?a

c

b
?a

c

b

Euclidean
distance=1

Euclidean
distance=1

? ?

Task: predict the target / label of a new data point

Sebastian Raschka STAT 451: Intro to ML Lecture 2: Nearest Neighbors

B

A

B

C

B

D

? ?

a

b

c

Euclidean
distance=1 Manhattan

distance=1

?a

c

b
?a

c

b

Euclidean
distance=1

Euclidean
distance=1

? ?

1-Nearest Neighbor

10

Task: predict the target / label of a new data point

How? Look at most "similar" data point in training set

Sebastian Raschka STAT 451: Intro to ML Lecture 2: Nearest Neighbors

⟨x[i], y[i]⟩ ∈ 𝒟 (|𝒟 | = n)

1-Nearest Neighbor Training Step

11

How do we "train" the 1-NN model?

Sebastian Raschka STAT 451: Intro to ML Lecture 2: Nearest Neighbors

⟨x[i], y[i]⟩ ∈ 𝒟 (|𝒟 | = n)

1-Nearest Neighbor Training Step

12

To train the 1-NN model, we simply "remember" the
training dataset

Sebastian Raschka STAT 451: Intro to ML Lecture 2: Nearest Neighbors

closest_point := None

closest_distance :=

for :

current_distance :=

if current_distance < closest_distance:

closest_distance := current_distance
closest_point :=

return closest_point

closest_point is the label of

1-Nearest Neighbor Prediction Step

13

query point

⟨x[i], y[i]⟩ ∈ 𝒟 (|𝒟 | = n)Given:

f(x[q])Predict:

⟨x[q], ???⟩

Algorithm:

Sebastian Raschka STAT 451: Intro to ML Lecture 2: Nearest Neighbors

d(x[a], x[b]) =
m

∑
j=1

(x[a]
j − x[b]

j)
2

Commonly used: Euclidean Distance (L2)

14

Sebastian Raschka STAT 451: Intro to ML Lecture 2: Nearest Neighbors 15

1. Intro to nearest neighbor models

2. Nearest neighbor decision boundary

3. K-nearest neighbors

4. Big-O & k-nearest neighbors runtime complexity

5. Improving k-nearest neighbors: modifications
and hyperparameters

6. K-nearest neighbors in Python

Lecture 2 (Nearest Neighbors)
Topics

Sebastian Raschka STAT 451: Intro to ML Lecture 2: Nearest Neighbors

Nearest Neighbor Decision Boundary

16

Sebastian Raschka STAT 451: Intro to ML Lecture 2: Nearest Neighbors

Decision Boundary Between (a) and (b)

17

a

b

a c

c

d

How does it look like?

Sebastian Raschka STAT 451: Intro to ML Lecture 2: Nearest Neighbors

a

b

a c

c

d

Decision Boundary Between (a) and (c)

18

How does it look like?

Sebastian Raschka STAT 451: Intro to ML Lecture 2: Nearest Neighbors

Decision Boundary Between (a) and (c)

19

a

b

a c

c

d

Sebastian Raschka STAT 451: Intro to ML Lecture 2: Nearest Neighbors

Decision Boundary of 1-NN

20

? ?

a

b

c

Euclidean
distance=1 Manhattan

distance=1

?a

c

b
?a

c

b

Euclidean
distance=1

Euclidean
distance=1

? ?

a

b

a c

c

d

Sebastian Raschka STAT 451: Intro to ML Lecture 2: Nearest Neighbors

B

A

B

C

B

D

? ?

a

b

c

Euclidean
distance=1 Manhattan

distance=1

?a

c

b
?a

c

b

Euclidean
distance=1

Euclidean
distance=1

? ?

Decision Boundary of 1-NN

21

Sebastian Raschka STAT 451: Intro to ML Lecture 2: Nearest Neighbors

Which Point is Closest to ?

22

? ?

B

A

B

C

B

D

? ?

a

b

c

Euclidean
distance=1 Manhattan

distance=1

?a

c

b
?a

c

b

Euclidean
distance=1

Euclidean
distance=1

Sebastian Raschka STAT 451: Intro to ML Lecture 2: Nearest Neighbors

Depends on the Distance Measure!

23

? ?

B

A

B

C

B

D

? ?

a

b

c

Euclidean
distance=1 Manhattan

distance=1

?a

c

b
?a

c

b

Euclidean
distance=1

Euclidean
distance=1

Sebastian Raschka STAT 451: Intro to ML Lecture 2: Nearest Neighbors

Some Common Continuous Distance Measures

24

d(x[a], x[b]) = [
m

∑
j=1

(x[a]
j − x[b]

j)
p

]
1
p

Mahalanobis

Cosine similarity

...

Minkowski:

Euclidean

Manhattan

Sebastian Raschka STAT 451: Intro to ML Lecture 2: Nearest Neighbors

Some Discrete Distance Measures

25

d(x[a], x[b]) =
m

∑
j=1

x[a]
j − x[b]

j

Jaccard/Tanimoto similarity:

Hamming distance:

J(A, B) = |A ∩ B |
|A ∪ B |

= |A ∩ B |
|A | + |B | − |A ∩ B |

D(A, B) = 2 |A ∩ B |
|A | + |B |

Dice:

...

where
xj ∈ {0,1}

Sebastian Raschka STAT 451: Intro to ML Lecture 2: Nearest Neighbors

Feature Scaling

26

? ?

B

A

B

C

B

D

? ?

a

b

c

Euclidean
distance=1 Manhattan

distance=1

?a

c

b
?a

c

b

Euclidean
distance=1

Euclidean
distance=1

Sebastian Raschka STAT 451: Intro to ML Lecture 2: Nearest Neighbors 27

1. Intro to nearest neighbor models

2. Nearest neighbor decision boundary

3. K-nearest neighbors

4. Big-O & k-nearest neighbors runtime complexity

5. Improving k-nearest neighbors: modifications
and hyperparameters

6. K-nearest neighbors in Python

Lecture 2 (Nearest Neighbors)
Topics

Sebastian Raschka STAT 451: Intro to ML Lecture 2: Nearest Neighbors

k-Nearest Neighbors

28

Sebastian Raschka STAT 451: Intro to ML Lecture 2: Nearest Neighbors 29

Majority vote:
Purality vote:

Majority vote:
Purality vote:

None

y:

y:
A

B

Majority vote:

Plurality Vote:

Majority vote:

Plurality Vote:

Sebastian Raschka STAT 451: Intro to ML Lecture 2: Nearest Neighbors

kNN for Classification

30

𝒟k = {⟨x[1], f(x[1])⟩, …, ⟨x[k], f(x[k])⟩}

h(x[q]) = arg max
y∈{1,...,t}

k

∑
i=1

δ(y, f(x[i]))

δ(a, b) = {1, if a = b,
0, if a ≠ b .

h(x[t]) = mode({f(x[1]), …, f(x[k])})

𝒟k ⊆ 𝒟

Sebastian Raschka STAT 451: Intro to ML Lecture 2: Nearest Neighbors

h(x[t]) =
1
k

k

∑
i=1

f(x[i])

kNN for Regression

31

𝒟k = {⟨x[1], f(x[1])⟩, …, ⟨x[k], f(x[k])⟩} 𝒟k ⊆ 𝒟

Sebastian Raschka STAT 451: Intro to ML Lecture 2: Nearest Neighbors 32

1. Intro to nearest neighbor models

2. Nearest neighbor decision boundary

3. K-nearest neighbors

4. Big-O & k-nearest neighbors runtime
complexity

5. Improving k-nearest neighbors: modifications
and hyperparameters

6. K-nearest neighbors in Python

Lecture 2 (Nearest Neighbors)
Topics

Sebastian Raschka STAT 451: Intro to ML Lecture 2: Nearest Neighbors

Big-O

33

Sebastian Raschka STAT479 FS18. L01: Intro to Machine Learning Page 10

1.7 Computational Complexity and the Big-O Notation

The Big-O notation is used in both mathematics and computer science to study the asymp-
totic behavior of functions, i.e., the asymptotic upper bounds. In the context of algorithms
in computer science, it is most commonly use to measure the time complexity or runtime
of an algorithm for the worst case scenario. (Often, it is also used to measure memory
requirements.)

Since Big-O and complexity field of research in computer science, we will not go into too
much detail in this course. However, you should at leat be familar with the basic concepts,
since it is import for the study of machine learning algorithms.

f(n) Name

1 Constant
log n Logarithmic
n Linear
n log n Log Linear
n
2 Quadratic

n
3 Cubic

n
c Higher-level polynomial

2n Exponential

Figure 6: An illustration of the growth rates of common functions.

Note that in “Big O” analysis, we only consider the most dominant term, as the other terms
and constants become insignificant asymptotically. For example, consider the function

f(x) = 14x210x+ 25.

Sebastian Raschka STAT 451: Intro to ML Lecture 2: Nearest Neighbors

Big-O

34

Sebastian Raschka STAT479 FS18. L01: Intro to Machine Learning Page 10

1.7 Computational Complexity and the Big-O Notation

The Big-O notation is used in both mathematics and computer science to study the asymp-
totic behavior of functions, i.e., the asymptotic upper bounds. In the context of algorithms
in computer science, it is most commonly use to measure the time complexity or runtime
of an algorithm for the worst case scenario. (Often, it is also used to measure memory
requirements.)

Since Big-O and complexity field of research in computer science, we will not go into too
much detail in this course. However, you should at leat be familar with the basic concepts,
since it is import for the study of machine learning algorithms.

f(n) Name

1 Constant
log n Logarithmic
n Linear
n log n Log Linear
n
2 Quadratic

n
3 Cubic

n
c Higher-level polynomial

2n Exponential

Figure 6: An illustration of the growth rates of common functions.

Note that in “Big O” analysis, we only consider the most dominant term, as the other terms
and constants become insignificant asymptotically. For example, consider the function

f(x) = 14x210x+ 25.

Sebastian Raschka STAT 451: Intro to ML Lecture 2: Nearest Neighbors

Big-O Example 1

35

f(x) = 14x2 − 10x + 25

 𝒪()

Sebastian Raschka STAT 451: Intro to ML Lecture 2: Nearest Neighbors

Big-O Example 2

36

f(x) = (2x + 8)log2(x + 9)

 𝒪()

Sebastian Raschka STAT 451: Intro to ML Lecture 2: Nearest Neighbors

Big-O Example 2

37

f(x) = (2x + 8)log2(x + 9)

Why don't we have to distinguish between different logarithms?

Sebastian Raschka STAT 451: Intro to ML Lecture 2: Nearest Neighbors

Big-O Example 3

38

In [16]:

In [17]:

In []:

Out[16]:

[[38, 56], [56, 83]]

Out[17]:

array([[38, 56],
 [56, 83]])

A = [[1, 2, 3],
 [2, 3, 4]]

B = [[5, 8],
 [6, 9],
 [7, 10]]

def matrixmultiply (A, B):

 C = [[0 for row in range(len(A))]
 for col in range(len(B[0]))]

 for row_a in range(len(A)):
 for col_b in range(len(B[0])):
 for col_a in range(len(A[0])):
 C[row_a][col_b] += \
 A[row_a][col_a] * B[col_a][col_b]
 return C

matrixmultiply(A, B)

np.dot(np.array(A), np.array(B))

𝒪()

Sebastian Raschka STAT 451: Intro to ML Lecture 2: Nearest Neighbors

Big O of kNN

39

Sebastian Raschka STAT 451: Intro to ML Lecture 2: Nearest Neighbors

Improving Computational Performance

40

Sebastian Raschka STAT 451: Intro to ML Lecture 2: Nearest Neighbors

Naive Nearest Neighbor Search

41

Sebastian Raschka STAT479 FS18. L01: Intro to Machine Learning Page 10

Result:

[[38, 56],
[56, 83]]

Due to the three nested for -loops, the runtime complexity of this function is O(n3).

2.6.1 Big O of kNN

For the brute-force neighbor search of the kNN algorithm, we have a time complexity of
O(n⇥m), where n is the number of training examples and m is the number of dimensions in
the training set. For simplicity, assuming n � m, the complexity of the brute-force nearest
neighbor search is O(n). In the next section, we will briefly go over a few strategies to
improve the runtime of the kNN model.

2.7 Improving Computational Performance

2.7.1 Naive kNN Algorithm in Pseudocode

Below are two naive approaches (Variant A and Variant B) for finding the k nearest neighbors
of a query point x[q].

Variant A

Dk := {}

while |Dk| < k:

• closest distance := 1

• for i = 1, ..., n, 8i /2 Dk:

– current distance := d(x[i]
,x[q])

– if current distance < closest distance:

⇤ closest distance := current distance

⇤ closest point := x[i]

• add closest point to Dk

Variant B

Dk := D

while |Dk| > k:

• largest distance := 0

• for i = 1, ..., n 8i 2 Dk:

– current distance := d(x[i]
,x[q])

– if current distance > largest distance:

⇤ largest distance := current distance

⇤ farthest point := x[i]

𝒪()

Sebastian Raschka STAT 451: Intro to ML Lecture 2: Nearest Neighbors

Naive Nearest Neighbor Search

42

Sebastian Raschka STAT479 FS18. L01: Intro to Machine Learning Page 10

Result:

[[38, 56],
[56, 83]]

Due to the three nested for -loops, the runtime complexity of this function is O(n3).

2.6.1 Big O of kNN

For the brute-force neighbor search of the kNN algorithm, we have a time complexity of
O(n⇥m), where n is the number of training examples and m is the number of dimensions in
the training set. For simplicity, assuming n � m, the complexity of the brute-force nearest
neighbor search is O(n). In the next section, we will briefly go over a few strategies to
improve the runtime of the kNN model.

2.7 Improving Computational Performance

2.7.1 Naive kNN Algorithm in Pseudocode

Below are two naive approaches (Variant A and Variant B) for finding the k nearest neighbors
of a query point x[q].

Variant A

Dk := {}

while |Dk| < k:

• closest distance := 1

• for i = 1, ..., n, 8i /2 Dk:

– current distance := d(x[i]
,x[q])

– if current distance < closest distance:

⇤ closest distance := current distance

⇤ closest point := x[i]

• add closest point to Dk

Variant B

Dk := D

while |Dk| > k:

• largest distance := 0

• for i = 1, ..., n 8i 2 Dk:

– current distance := d(x[i]
,x[q])

– if current distance > largest distance:

⇤ largest distance := current distance

⇤ farthest point := x[i]

Sebastian Raschka STAT479 FS18. L01: Intro to Machine Learning Page 11

• remove farthest point from Dk

Using a Priority Queue

Both Variant A and Variant B are expensive algorithms, O(k ⇥ n) and O((n � k) ⇥ n),
respectively . However, with a simple trick, we can improve the nearest neighbor search to
O(n log(k)). For instance, we could implement a priority queue using a heap data structure
8.

We initialize the heap with the k arbitrary points from the training dataset based on their
distances to the query point. Then, as we iterate through the dataset to find the first
nearest neighbor of the query point, at each step, we make a comparison with the points
and distances in the heap. If the point with the largest stored distance in the heap is
farther away from the query point that the current point under consideration, we remove
the farthest point from the heap and insert the current point. Once we finished one iteration
over the training dataset, we now have a set of the k nearest neighbors.

2.7.2 Data Structures

Di↵erent data structures have been developed to improve the computational performance
of kNN during prediction. In particular, the idea is to be smarter about identifying the k
nearest neighbors. Instead of comparing each training example in the training set to a given
query point, approaches have been developed to partition the search space most e�ciently.

The details of these data structures are beyond the scope of this lecture since they require
some background in computer science and data structures, but interested students are en-
couraged to read the literature referenced in this section.

Bucketing

The simplest approach is “bucketing”9. Here, we divide the search space into identical,
similarly-sized cells (or buckets), that resemble a grid (picture a 2D grid 2-dimensional
hyperspace or plane).

KD-Tree

A KD-Tree10, which stands for k -dimensional search tree, is a generalization of binary
search trees. KD-Trees data structures have a time complexity of O(log(n)) on average (but
O(n) in the worst case) or better and work well in relatively low dimensions. KD-Trees
also partition the search space perpendicular to the feature axes in a Cartesian coordinate
system. However, with a large number of features, KD-Trees become increasingly ine�cient,
and alternative data structures, such as Ball-Trees, should be considered.11

Ball-Tree

In contrast to the KD-Tree approach, the Ball-Tree12 partitioning algorithms are based on
the construction of hyperspheres instead of cubes. While Ball-Tree algorithms are generally
more expensive to run than KD-Trees, the algorithms address some of the shortcomings of
KD-Tree and are more e�cient in higher dimensions.

8
A heap is a special case of a binary search tree with a structure that makes lookups more e�cient.

You are not expected to now how heaps work in the exam, but you are encouraged to learn more about

this data structure. A good overview is provided on Wikipedia with links to primary sources: https:

//en.wikipedia.org/wiki/Heap %28data structure%29
9rivest1974optimality.

10bentley1975multidimensional.
11
Note that software implementations such as the ighborsClassifier in the Scikit-learn library has a

”method=’auto’” default setting that chooses the most appropriate data structure automatically.
12omohundro1989five.

𝒪()

Sebastian Raschka STAT 451: Intro to ML Lecture 2: Nearest Neighbors

Naive Nearest Neighbor Search

43

O(____)Using a priority queue

Sebastian Raschka STAT 451: Intro to ML Lecture 2: Nearest Neighbors 44

1. Intro to nearest neighbor models

2. Nearest neighbor decision boundary

3. K-nearest neighbors

4. Big-O & k-nearest neighbors runtime complexity

5. Improving k-nearest neighbors: modifications
and hyperparameters

6. K-nearest neighbors in Python

Lecture 2 (Nearest Neighbors)
Topics

Sebastian Raschka STAT 451: Intro to ML Lecture 2: Nearest Neighbors

Improving Computational Performance

45

Data Structures

Sebastian Raschka STAT 451: Intro to ML Lecture 2: Nearest Neighbors

Improving Computational Performance

46

Dimensionality Reduction

Sebastian Raschka STAT 451: Intro to ML Lecture 2: Nearest Neighbors

Improving Computational Performance

47

Editing / "Pruning"

Sebastian Raschka STAT 451: Intro to ML Lecture 2: Nearest Neighbors

Improving Computational Performance

48

Editing / "Pruning"

Sebastian Raschka STAT479 FS18. L01: Intro to Machine Learning Page 12

Note that these data structures or space partitioning algorithms come each with their own
set of hyperparameters (e.g., the leaf size, or settings related to the leaf size). Detailed
discussions of the di↵erent data structures for e�cient data structures are beyond the scope
of this class.

2.7.3 Dimensionality Reduction

Next, to help reduce the e↵ect of the curse of dimensionality, dimensionality reduction strate-
gies are also useful for speeding up the nearest neighbor search by making the computation
of the pair-wise distances “cheaper.” There are two approaches to dimensionality reduction:

• Feature Selection (e.g., Sequential Forward Selection)

• Feature Extraction (e.g., Principal Component Analysis)

We will cover both feature selection and feature extraction as separate topics later in this
course.

2.7.4 Faster Distance Metric/Heuristic

kNN is compatible with any pairwise distance metric. However, the choice of the distance
metric a↵ects the runtime performance of the algorithm. For instance, computing the Maha-
lanobis distance is much more expensive than calculating the more straightforward Euclidean
distance.

2.7.5 “Pruning”

There are di↵erent kinds of “pruning” approaches that we could use to speed up the kNN
algorithm. For example, editing and prototype selection.

Editing

In edited kNN, we permanently remove data points that do not a↵ect the decision boundary.
For example, consider a single data point (aka “outlier”) surrounded by many data points
from a di↵erent class. If we perform a kNN prediction, this single data point will not
influence the class label prediction in plurality voting; hence, we can safely remove it.

Figure 7: Illustration of kNN editing, where we can remove points from the training set that do

not influence the predictions. For example, consider a 3-NN model. On the left, the two points

enclosed in dashed lines would not a↵ect the decision boundary as “outliers.” Similarly, points of

the “right” class that are very far away from the decision boundary, as shown in the right subpanel,

do not influence the decision boundary and hence could be removed for e�ciency concerning data

storage or the number of distance computations.

Sebastian Raschka STAT 451: Intro to ML Lecture 2: Nearest Neighbors

Improving Computational Performance

49

Prototypes

Sebastian Raschka STAT 451: Intro to ML Lecture 2: Nearest Neighbors

Improving Predictive Performance

50

Sebastian Raschka STAT 451: Intro to ML Lecture 2: Nearest Neighbors

Hyperparameters

51

Sebastian Raschka STAT 451: Intro to ML Lecture 2: Nearest Neighbors

Hyperparameters

52

• Value of k

• Scaling of the feature axes

• Distance measure

• Weighting of the distance measure

Sebastian Raschka STAT 451: Intro to ML Lecture 2: Nearest Neighbors 53

k ∈ {1,3,7}

k = _

k = _

k = _

Sebastian Raschka STAT 451: Intro to ML Lecture 2: Nearest Neighbors

Feature-Weighting via Euclidean Distance

54

dw(x[a], x[b]) =
m

∑
j=1

wj(x[a]
j − x[b]

j)
2

c = x[a] − x[b], (c, x[a], x[b] ∈ ℝm)

d(x[a], x[b]) = c⊤c

dw(x[a], x[b]) = c⊤Wc,
W ∈ ℝm×m = diag(w1, w2, . . . , wm)

As a dot product:

Sebastian Raschka STAT 451: Intro to ML Lecture 2: Nearest Neighbors

Distance-weighted kNN

55

h(x[t]) = arg max
j∈{1,...,p}

k

∑
i=1

w[i]δ(j, f(x[i]))

w[i] =
1

d(x[i], x[t])2

Small constant to avoid zero division

or set h(x) = f(x)

Sebastian Raschka STAT 451: Intro to ML Lecture 2: Nearest Neighbors 56

1. Intro to nearest neighbor models

2. Nearest neighbor decision boundary

3. K-nearest neighbors

4. Big-O & k-nearest neighbors runtime complexity

5. Improving k-nearest neighbors: modifications
and hyperparameters

6. K-nearest neighbors in Python

Lecture 2 (Nearest Neighbors)
Topics

Sebastian Raschka STAT 451: Intro to ML Lecture 2: Nearest Neighbors

kNN in Python

57

DEMO

