

Introduction to Artificial Neural Networks
and Deep Learning
A Practical Guide with Applications in Python

Sebastian Raschka

This book is for sale at http://leanpub.com/ann-and-deeplearning

This version was published on 2017-07-23

This is a Leanpub book. Leanpub empowers authors and publishers with the Lean
Publishing process. Lean Publishing is the act of publishing an in-progress ebook using
lightweight tools and many iterations to get reader feedback, pivot until you have the right
book and build traction once you do.

© 2016 - 2017 Sebastian Raschka

http://leanpub.com/ann-and-deeplearning
http://leanpub.com/
http://leanpub.com/manifesto

CONTENTS

Contents

Website . i

Acknowledgments . ii

Appendix G - TensorFlow Basics . 1
TensorFlow in a Nutshell . 1
Installation . 3
Computation Graphs . 3
Variables . 5
Placeholder Variables . 8
Saving and Restoring Models . 9
Naming TensorFlow Objects . 13
CPU and GPU . 17
Control Flow . 18
TensorBoard . 21

DRAFT

Website
Please visit the GitHub repository1 to download code examples used in this book.

If you like the content, please consider supporting the work by buying a copy of the book on
Leanpub2.

I would appreciate hearing your opinion and feedback about the book! Also, if you have
any questions about the contents, please don’t hesitate to get in touch with me via mail@
sebastianraschka.com or join the mailing list3.

Happy learning!

Sebastian Raschka
1https://github.com/rasbt/deep-learning-book
2https://leanpub.com/ann-and-deeplearning
3https://groups.google.com/forum/#!forum/ann-and-dl-book

https://github.com/rasbt/deep-learning-book
https://leanpub.com/ann-and-deeplearning
mailto:mail@sebastianraschka.com
mailto:mail@sebastianraschka.com
https://groups.google.com/forum/#!forum/ann-and-dl-book
https://github.com/rasbt/deep-learning-book
https://leanpub.com/ann-and-deeplearning
https://groups.google.com/forum/#!forum/ann-and-dl-book

Acknowledgments
I would like to give my special thanks to the readers, who provided feedback, caught various
typos and errors, and offered suggestions for clarifying my writing.

• Appendix A: Artem Sobolev, Ryan Sun
• Appendix B: Brett Miller, Ryan Sun
• Appendix D: Marcel Blattner, Ignacio Campabadal, Ryan Sun
• Appendix F: Guillermo Moncecchi, Ged Ridgway, Ryan Sun, Patric Hindenberger
• Appendix H: Brett Miller, Ryan Sun

Appendix G - TensorFlow Basics
This appendix offers a brief overview of TensorFlow, an open-source library for numerical
computation and deep learning. This section is intended for readers who want to gain a basic
overview of this library before progressing through the hands-on sections that are concluding
the main chapters.

The majority of hands-on sections in this book focus on TensorFlow and its Python API,
assuming that you have TensorFlow >=1.2 installed if you are planning to execute the code
sections shown in this book.

In addition to glancing over this appendix, I recommend the following resources from
TensorFlow’s official documentation for a more in-depth coverage on using TensorFlow:

• Download and setup instructions4

• Python API documentation5

• Tutorials6

• TensorBoard, an optional tool for visualizing learning7

TensorFlow in a Nutshell

At its core, TensorFlow is a library for efficient multidimensional array operations with a
focus on deep learning. Developed by the Google Brain Team, TensorFlow was open-sourced
on November 9th, 2015. And augmented by its convenient Python API layer, TensorFlow has
gained much popularity and wide-spread adoption in industry as well as academia.

TensorFlow shares some similarities with NumPy, such as providing data structures and com-
putations based on multidimensional arrays. What makes TensorFlow particularly suitable
for deep learning, though, are its primitives for defining functions on tensors, the ability of
parallelizing tensor operations, and convenience tools such as automatic differentiation.

4https://www.tensorflow.org/get_started/os_setup
5https://www.tensorflow.org/api_docs/python/
6https://www.tensorflow.org/tutorials/
7https://www.tensorflow.org/how_tos/summaries_and_tensorboard/

https://www.tensorflow.org/get_started/os_setup
https://www.tensorflow.org/api_docs/python/
https://www.tensorflow.org/tutorials/
https://www.tensorflow.org/how_tos/summaries_and_tensorboard/
https://www.tensorflow.org/get_started/os_setup
https://www.tensorflow.org/api_docs/python/
https://www.tensorflow.org/tutorials/
https://www.tensorflow.org/how_tos/summaries_and_tensorboard/

Appendix G - TensorFlow Basics 2

While TensorFlow can be run entirely on a CPU or multiple CPUs, one of the core strength
of this library is its support of GPUs (Graphical Processing Units) that are very efficient
at performing highly parallelized numerical computations. In addition, TensorFlow also
supports distributed systems as well as mobile computing platforms, including Android and
Apple’s iOS.

But what is a tensor? In simplifying terms, we can think of tensors as multidimensional
arrays of numbers, as a generalization of scalars, vectors, and matrices.

1. Scalar: R
2. Vector: Rn

3. Matrix: Rn × Rm

4. 3-Tensor: Rn × Rm × Rp

5. …

When we describe tensors, we refer to its “dimensions” as the rank (or order) of a tensor,
which is not to be confused with the dimensions of a matrix. For instance, anm×nmatrix,
wherem is the number of rows and n is the number of columns, would be a special case of
a rank-2 tensor. A visual explanation of tensors and their ranks is given is the figure below.

Tensors

DRAFT

Appendix G - TensorFlow Basics 3

Installation

Code conventions in this book follow the Python 3.x syntax, and while the code examples
should be backward compatible to Python 2.7, I highly recommend the use of Python >=3.5.

Once you have your Python Environment set up (Appendix - Python Setup), the most
convenient ways for installing TensorFlow are via pip or conda – the latter only applies if you
have the Anaconda/Miniconda Python distribution installed, which I prefer and recommend.

Since TensorFlow is under active development, I recommend you to consult the official
“Download and Setup8” documentation for detailed installation instructions to install Ten-
sorFlow on you operating system, macOS, Linux, or Windows.

Computation Graphs

In contrast to other tools such as NumPy, the numerical computations in TensorFlow can
be categorized into two steps: a construction step and an execution step. Consequently, the
typical workflow in TensorFlow can be summarized as follows:

• Build a computational graph
• Start a new session to evaluate the graph

– Initialize variables
– Execute the operations in the compiled graph

Note that the computation graph has no numerical values before we initialize and evaluate it.
To see how this looks like in practice, let us set up a new graph for computing the column sums
of a matrix, which we define as a constant tensor (reduce_sum is the TensorFlow equivalent
of NumPy’s sum function).

In [1]:

8https://www.tensorflow.org/get_started/os_setup

DRAFT

https://www.tensorflow.org/get_started/os_setup
https://www.tensorflow.org/get_started/os_setup

Appendix G - TensorFlow Basics 4

1 import tensorflow as tf

2

3 g = tf.Graph()

4 with g.as_default() as g:

5 tf_x = tf.constant([[1., 2.],

6 [3., 4.],

7 [5., 6.]], dtype=tf.float32)

8 col_sum = tf.reduce_sum(tf_x, axis=0)

9

10 print('tf_x:\n', tf_x)

11 print('\ncol_sum:\n', col_sum)

Out [1]:

1 tf_x:

2 Tensor("Const:0", shape=(3, 2), dtype=float32)

3

4 col_sum:

5 Tensor("Sum:0", shape=(2,), dtype=float32)

As we can see from the output above, the operations in the graph are represented as Tensor
objects that require an explicit evaluation before the tf_xmatrix is populated with numerical
values and its column sum gets computed.

Now, we pass the graph that we created earlier to a new, active session, where the graph gets
compiled and evaluated:

In [2]:

1 with tf.Session(graph=g) as sess:

2 mat, csum = sess.run([tf_x, col_sum])

3

4 print('mat:\n', mat)

5 print('\ncsum:\n', csum)

Out [2]:

DRAFT

Appendix G - TensorFlow Basics 5

1 mat:

2 [[1. 2.]

3 [3. 4.]

4 [5. 6.]]

5

6 csum:

7 [9. 12.]

Note that if we are only interested in the result of a particular operation, we don’t need
to run its dependencies – TensorFlow will automatically take care of that. For instance, we
can directly fetch the numerical values of col_sum_times_2 in the active session without
explicitly passing col_sum to sess.run(...) as the following example illustrates:

In [3]:

1 g = tf.Graph()

2 with g.as_default() as g:

3 tf_x = tf.constant([[1., 2.],

4 [3., 4.],

5 [5., 6.]], dtype=tf.float32)

6 col_sum = tf.reduce_sum(tf_x, axis=0)

7 col_sum_times_2 = col_sum * 2

8

9

10 with tf.Session(graph=g) as sess:

11 csum_2 = sess.run(col_sum_times_2)

12

13 print('csum_2:\n', csum_2)

Out [3]:

1 csum_2:

2 [array([18., 24.], dtype=float32)]

Variables

Variables are constructs in TensorFlow that allows us to store and update parameters
of our models in the current session during training. To define a “variable” tensor, we
use TensorFlow’s Variable() constructor, which looks similar to the use of constant

DRAFT

Appendix G - TensorFlow Basics 6

that we used to create a matrix previously. However, to execute a computational graph
that contains variables, we must initialize all variables in the active session first (using
tf.global_variables_initializer()), as illustrated in the example below.

In [1]:

1 import tensorflow as tf

2

3 g = tf.Graph()

4 with g.as_default() as g:

5 tf_x = tf.Variable([[1., 2.],

6 [3., 4.],

7 [5., 6.]], dtype=tf.float32)

8 x = tf.constant(1., dtype=tf.float32)

9

10 # add a constant to the matrix:

11 tf_x = tf_x + x

12

13 with tf.Session(graph=g) as sess:

14 sess.run(tf.global_variables_initializer())

15 result = sess.run(tf_x)

16

17 print(result)

Out [1]:

1 [[2. 3.]

2 [4. 5.]

3 [6. 7.]]

Now, let us do an experiment and evaluate the same graph twice:

In [2]:

1 with tf.Session(graph=g) as sess:

2 sess.run(tf.global_variables_initializer())

3 result = sess.run(tf_x)

4 result = sess.run(tf_x)

Out [2]:

DRAFT

Appendix G - TensorFlow Basics 7

1 [[2. 3.]

2 [4. 5.]

3 [6. 7.]]

Aswe can see, the result of running the computation twice did not affect the numerical values
fetched from the graph. To update or to assign new values to a variable, we use TensorFlow’s
assign operation. The function syntax of assign is assign(ref, val, ...), where ‘ref’ is
updated by assigning ‘value’ to it:

In [3]:

1 g = tf.Graph()

2 with g.as_default() as g:

3 tf_x = tf.Variable([[1., 2.],

4 [3., 4.],

5 [5., 6.]], dtype=tf.float32)

6 x = tf.constant(1., dtype=tf.float32)

7

8 update_tf_x = tf.assign(tf_x, tf_x + x)

9

10

11 with tf.Session(graph=g) as sess:

12 sess.run(tf.global_variables_initializer())

13 result = sess.run(update_tf_x)

14 result = sess.run(update_tf_x)

15

16 print(result)

Out [3]:

1 [[3. 4.]

2 [5. 6.]

3 [7. 8.]]

As we can see, the contents of the variable tf_x were successfully updated twice now; in the
active session we

• initialized the variable tf_x
• added a constant scalar 1. to tf_x matrix via assign

DRAFT

Appendix G - TensorFlow Basics 8

• added a constant scalar 1. to the previously updated tf_x matrix via assign

Although the example above is kept simple for illustrative purposes, variables are an
important concept in TensorFlow, and we will see throughout the chapters, they are not only
useful for updating model parameters but also for saving and loading variables for reuse.

Placeholder Variables

Another important concept in TensorFlow is the use of placeholder variables, which allow
us to feed the computational graph with numerical values in an active session at runtime.

In the following example, we will define a computational graph that performs a simple
matrix multiplication operation. First, we define a placeholder variable that can hold 3x2-
dimensional matrices. And after initializing the placeholder variable in the active session, we
will use a dictionary, feed_dict we feed a NumPy array to the graph, which then evaluates
the matrix multiplication operation.

In [1]:

1 import tensorflow as tf

2 import numpy as np

3

4 g = tf.Graph()

5 with g.as_default() as g:

6 tf_x = tf.placeholder(dtype=tf.float32,

7 shape=(3, 2))

8

9 output = tf.matmul(tf_x, tf.transpose(tf_x))

10

11

12 with tf.Session(graph=g) as sess:

13 sess.run(tf.global_variables_initializer())

14 np_ary = np.array([[3., 4.],

15 [5., 6.],

16 [7., 8.]])

17 feed_dict = {tf_x: np_ary}

18 print(sess.run(output,

19 feed_dict=feed_dict))

Out [1]:

DRAFT

Appendix G - TensorFlow Basics 9

1 [[25. 39. 53.]

2 [39. 61. 83.]

3 [53. 83. 113.]]

Throughout the main chapters, we will make heavy use of placeholder variables, which allow
us to pass our datasets to various learning algorithms in the computational graphs.

Saving and Restoring Models

Training deep neural networks requires a lot of computations and computational resources,
and in practice, it would be infeasible to retrain our model each time we start a new
TensorFlow session before we can use it to make predictions. In this section, we will go
over the basics of saving and re-using the results of our TensorFlow models.

The most convenient way to store the main components of our model is to use TensorFlows
Saver class (tf.train.Saver()). To see how it works, let us reuse the simple example from
the Variables section, where we added a constant 1. to all elements in a 3x2 matrix:

In [2]:

1 g = tf.Graph()

2 with g.as_default() as g:

3

4 tf_x = tf.Variable([[1., 2.],

5 [3., 4.],

6 [5., 6.]], dtype=tf.float32)

7 x = tf.constant(1., dtype=tf.float32)

8

9 update_tf_x = tf.assign(tf_x, tf_x + x)

10

11 # initialize a Saver, which gets all variables

12 # within this computation graph context

13 saver = tf.train.Saver()

Now, after we initialized the graph above, let us execute its operations in a new session:

In [3]:

DRAFT

Appendix G - TensorFlow Basics 10

1 with tf.Session(graph=g) as sess:

2 sess.run(tf.global_variables_initializer())

3 result = sess.run(update_tf_x)

4

5 # save the model

6 saver.save(sess, save_path='./my-model.ckpt')

Notice the saver.save call above, which saves all variables in the graph to “checkpoint” files
bearing the prefix my-model.ckpt in our local directory ('./'). Since we didn’t specify which
variables we wanted to save when we instantiated a tf.train.Saver(), it saved all variables
in the graph by default – here, we only have one variable, tf_x. Alternatively, if we are only
interested in keeping particular variables, we can specify this by feeding tf.train.Saver()

a dictionary or list of these variables upon instantiation. For example, if our graph contained
more than one variable, but we were only interested in saving tf_x, we could instantiate a
saver object as tf.train.Saver([tf_x]).

After we executed the previous code example, we should find the three my-model.ckpt files
(in binary format) in our local directory:

• my-model.ckpt.data-00000-of-00001

• my-model.ckpt.index

• my-model.ckpt.meta

The file my-model.ckpt.data-00000-of-00001 saves our main variable values, the .index

file keeps track of the data structures, and the .meta file describes the structure of our
computational graph that we executed.

Note that in our simple example above, we just saved our variable one single time. However,
in real-world applications, we typically train models over multiple iterations or epochs, and
it is useful to create intermediate checkpoint files during training so that we can pick up
where we left off in case we need to interrupt our session or encounter unforeseen technical
difficulties. For instance, by using the global_step parameter, we could save our results after
each 10th iteration by making the following modification to our code:

In [4]:

DRAFT

Appendix G - TensorFlow Basics 11

1 g = tf.Graph()

2 with g.as_default() as g:

3

4 tf_x = tf.Variable([[1., 2.],

5 [3., 4.],

6 [5., 6.]], dtype=tf.float32)

7 x = tf.constant(1., dtype=tf.float32)

8

9 update_tf_x = tf.assign(tf_x, tf_x + x)

10

11 # initialize a Saver, which gets all variables

12 # within this computation graph context

13 saver = tf.train.Saver()

14

15 with tf.Session(graph=g) as sess:

16 sess.run(tf.global_variables_initializer())

17

18 for epoch in range(100):

19 result = sess.run(update_tf_x)

20 if not epoch % 10:

21 saver.save(sess,

22 save_path='./my-model-multiple_ckpts.ckpt',

23 global_step=epoch)

After we executed this code we find five my-model.ckpt files in our local directory:

• my-model.ckpt-50 {.data-00000-of-00001, .ckpt.index, .ckpt.meta}

• my-model.ckpt-60 {.data-00000-of-00001, .ckpt.index, .ckpt.meta}

• my-model.ckpt-70 {.data-00000-of-00001, .ckpt.index, .ckpt.meta}

• my-model.ckpt-80 {.data-00000-of-00001, .ckpt.index, .ckpt.meta}

• my-model.ckpt-90 {.data-00000-of-00001, .ckpt.index, .ckpt.meta}

Although we saved our variables ten times, the saver only keeps the five most recent
checkpoints by default to save storage space. However, if we want to keep more than five
recent checkpoint files, we can provide an optional argument max_to_keep=n when we
initialize the saver, where n is an integer specifying the number of themost recent checkpoint
files we want to keep.

Now that we learned how to save TensorFlow Variables, let us see howwe can restore them.
Assuming that we started a fresh computational session, we need to specify the graph first.
Then, we can use the saver’s restore method to restore our variables as shown below:

DRAFT

Appendix G - TensorFlow Basics 12

In [5]:

1 g = tf.Graph()

2 with g.as_default() as g:

3

4 tf_x = tf.Variable([[1., 2.],

5 [3., 4.],

6 [5., 6.]], dtype=tf.float32)

7 x = tf.constant(1., dtype=tf.float32)

8

9 update_tf_x = tf.assign(tf_x, tf_x + x)

10

11 # initialize a Saver, which gets all variables

12 # within this computation graph context

13 saver = tf.train.Saver()

14

15 with tf.Session(graph=g) as sess:

16 saver.restore(sess, save_path='./my-model.ckpt')

17 result = sess.run(update_tf_x)

18 print(result)

Out [5]:

1 [[3. 4.]

2 [5. 6.]

3 [7. 8.]]

Notice that the returned values of the tf_x Variable are now increased by a constant of two,
compared to the values in the computational graph. The reason is that we ran the graph one
time before we saved the variable,

1 with tf.Session(graph=g) as sess:

2 sess.run(tf.global_variables_initializer())

3 result = sess.run(update_tf_x)

4

5 # save the model

6 saver.save(sess, save_path='./my-model.ckpt')

and we ran it a second time when after we restored the session.

DRAFT

Appendix G - TensorFlow Basics 13

Similar to the example above, we can reload one of our checkpoint files by providing the
desired checkpoint suffix (here: -90, which is the index of our last checkpoint):

In [6]:

1 with tf.Session(graph=g) as sess:

2 saver.restore(sess, save_path='./my-model-multiple_ckpts.ckpt-90')

3 result = sess.run(update_tf_x)

4 print(result)

Out [6]:

1 [[93. 94.]

2 [95. 96.]

3 [97. 98.]]

In this section, we merely covered the basics of saving and restoring TensorFlow models. If
you want to learn more, please take a look at the official API documentation9 of TensorFlow’s
Saver class.

Naming TensorFlow Objects

When we create new TensorFlow objects like Variables, we can provide an optional
argument for their name parameter – for example:

1 tf_x = tf.Variable([[1., 2.],

2 [3., 4.],

3 [5., 6.]],

4 name='tf_x_0',

5 dtype=tf.float32)

Assigning names to Variables explicitly is not a requirement, but I personally recommend
making it a habit when building (more) complex models. Let us walk through a scenario to
illustrate the importance of naming variables, taking the simple example from the previous
section and add new variable tf_y to the graph:

In [1]:
9https://www.tensorflow.org/api_docs/python/tf/train/Saver

DRAFT

https://www.tensorflow.org/api_docs/python/tf/train/Saver
https://www.tensorflow.org/api_docs/python/tf/train/Saver

Appendix G - TensorFlow Basics 14

1 import tensorflow as tf

2

3 g = tf.Graph()

4 with g.as_default() as g:

5

6 tf_x = tf.Variable([[1., 2.],

7 [3., 4.],

8 [5., 6.]], dtype=tf.float32)

9

10 tf_y = tf.Variable([[7., 8.],

11 [9., 10.],

12 [11., 12.]], dtype=tf.float32)

13

14 x = tf.constant(1., dtype=tf.float32)

15 update_tf_x = tf.assign(tf_x, tf_x + x)

16 saver = tf.train.Saver()

17

18 with tf.Session(graph=g) as sess:

19 sess.run(tf.global_variables_initializer())

20 result = sess.run(update_tf_x)

21

22 saver.save(sess, save_path='./my-model.ckpt')

The variable tf_y does not do anything in the code example above; we added it for illustrative
purposes, as we will see in a moment. Now, let us assume we started a new computational
session and loaded our saved my-model into the following computational graph:

In [2]:

1 g = tf.Graph()

2 with g.as_default() as g:

3

4 tf_y = tf.Variable([[7., 8.],

5 [9., 10.],

6 [11., 12.]], dtype=tf.float32)

7

8 tf_x = tf.Variable([[1., 2.],

9 [3., 4.],

10 [5., 6.]], dtype=tf.float32)

11

12 x = tf.constant(1., dtype=tf.float32)

13 update_tf_x = tf.assign(tf_x, tf_x + x)

DRAFT

Appendix G - TensorFlow Basics 15

14 saver = tf.train.Saver()

15

16 with tf.Session(graph=g) as sess:

17 saver.restore(sess, save_path='./my-model.ckpt')

18 result = sess.run(update_tf_x)

19 print(result)

What results do you expect after running the code snippet above?

Out [2]:

1 [[8. 9.]

2 [10. 11.]

3 [12. 13.]]

Unless you paid close attention on how we initialized the graph above, this result above
surely was not the one you expected. What happened? Intuitively, we expected our session
to print

1 [[3. 4.]

2 [5. 6.]

3 [7. 8.]]

The explanation behind this unexpected result is that we reversed the order of tf_y and
tf_x in the graph above. TensorFlow applies a default naming scheme to all operations in
the computational graph, unless we use do it explicitly via the name parameter – or in other
words, we confused TensorFlow by reversing the order of two similar objects, tf_y and tf_x.

To circumvent this problem, we could give our variables specific names – for example, 'tf_-
x_0' and 'tf_y_0':

In [3]:

DRAFT

Appendix G - TensorFlow Basics 16

1 g = tf.Graph()

2 with g.as_default() as g:

3

4 tf_x = tf.Variable([[1., 2.],

5 [3., 4.],

6 [5., 6.]],

7 name='tf_x_0',

8 dtype=tf.float32)

9

10 tf_y = tf.Variable([[7., 8.],

11 [9., 10.,

12]],

13 name='tf_y_0',

14 dtype=tf.float32)

15

16 x = tf.constant(1., dtype=tf.float32)

17 update_tf_x = tf.assign(tf_x, tf_x + x)

18 saver = tf.train.Saver()

19

20 with tf.Session(graph=g) as sess:

21 sess.run(tf.global_variables_initializer())

22 result = sess.run(update_tf_x)

23

24 saver.save(sess, save_path='./my-model.ckpt')

Then, even if we flip the order of these variables in a new computational graph, TensorFlow
knows which values to use for each variable when loading our model – assuming we provide
the corresponding variable names:

In [4]:

1 g = tf.Graph()

2 with g.as_default() as g:

3

4 tf_y = tf.Variable([[7., 8.],

5 [9., 10.,

6]],

7 name='tf_y_0',

8 dtype=tf.float32)

9

10 tf_x = tf.Variable([[1., 2.],

11 [3., 4.],

DRAFT

Appendix G - TensorFlow Basics 17

12 [5., 6.]],

13 name='tf_x_0',

14 dtype=tf.float32)

15

16 x = tf.constant(1., dtype=tf.float32)

17 update_tf_x = tf.assign(tf_x, tf_x + x)

18 saver = tf.train.Saver()

19

20 with tf.Session(graph=g) as sess:

21 saver.restore(sess, save_path='./my-model.ckpt')

22 result = sess.run(update_tf_x)

23 print(result)

Out [4]:

1 [[3. 4.]

2 [5. 6.]

3 [7. 8.]]

CPU and GPU

Please note that all code examples in this book, and all TensorFlow operations in general,
can be executed on a CPU. If you have a GPU version of TensorFlow installed, TensorFlow
will automatically execute those operations that have GPU support on GPUs and use your
machine’s CPU, otherwise. However, if you wish to define your computing device manually,
for instance, if you have the GPU version installed but want to use the main CPU for
prototyping, we can run an active section on a specific device using the with context as
follows

1 with tf.Session() as sess:

2 with tf.device("/gpu:1"):

where

• “/cpu:0”: The CPU of your machine.
• “/gpu:0”: The GPU of your machine, if you have one.
• “/gpu:1”: The second GPU of your machine, etc.
• etc.

You can get a list of all available devices on your machine via

DRAFT

Appendix G - TensorFlow Basics 18

1 from tensorflow.python.client import device_lib

2

3 device_lib.list_local_devices()

For more information on using GPUs in TensorFlow, please refer to the GPU documentation
at https://www.tensorflow.org/how_tos/using_gpu/.

Another good way to check whether your current TensorFlow session runs on a
GPU is to execute

>>> import tensorflow as tf

>>> tf.test.gpu_device_name()

In your current Python session. If a GPU is available to TensorFlow, it will return
a non-empty string; for example, '/gpu:0'. Otherwise, if nowGPU can be found,
the function will return an empty string.

Control Flow

It is important to discuss TensorFlow’s control flow mechanics, the way it handles control
statements such as if/else and while-loops. Control flow in TensorFlow is not a complicated
topic, but it can be quite unintuitive at first and a common pitfall for beginners – especially,
in the context of how control flow in Python is handled.

To explain control flow in TensorFlow in a practical manner, let us consider a simple example
first. The following graph is meant to add the value 1.0 to a placeholder variable x if
addition=True and subtract 1.0 from x otherwise:

In [1]:

DRAFT

Appendix G - TensorFlow Basics 19

1 import tensorflow as tf

2

3 addition = True

4

5 g = tf.Graph()

6 with g.as_default() as g:

7 x = tf.placeholder(dtype=tf.float32, shape=None)

8 if addition:

9 y = x + 1.

10 else:

11 y = x - 1.

Now, let us create a new session and execute the graph by feeding a 1.0 to the placeholder. If
everything works as expected, the session should return the value 2.0 since addition=True
and 1.0 + 1.0 = 2.0:

In [2]:

1 with tf.Session(graph=g) as sess:

2 result = sess.run(y, feed_dict={x: 1.})

3

4 print('Result:\n', result)

Out [2]:

1 Result:

2 2.0

It appears that the session did return the same value that it returned when addition was
set to True. Why did this happen? The explanation for this is that the if/else statements in
the previous code only apply to the graph construction step. Or in other words, we created
a graph by visiting the code contained under the if statement, and since TensorFlow graphs
are static, we have no way of running the code under the else statement – except for setting
addition=False and creating a new graph.

However, we do not have to create a new graph each time we want to include control
statements – TensorFlow implements a variety of helper functions that help with control
flow inside a graph. For instance, to accomplish the little exercise of conditionally adding or
subtracting a one from the placeholder variable x, we could use tf.cond as follows:

In [3]:

DRAFT

Appendix G - TensorFlow Basics 20

1 addition = True

2

3 g = tf.Graph()

4 with g.as_default() as g:

5 addition = tf.placeholder(dtype=tf.bool, shape=None)

6 x = tf.placeholder(dtype=tf.float32, shape=None)

7

8 y = tf.cond(addition,

9 true_fn=lambda: tf.add(x, 1.),

10 false_fn=lambda: tf.subtract(x, 1.))

The basic use of tf.cond for conditional execution comes with three important arguments:
a condition to check (here, if addition is True or False), a function that gets executed if
the condition is True (true_fn) and a function that gets executed if the condition is False
(false_fn), respectively.

Next, let us repeat the little exercise from earlier and see if toggling the addition value
between True and False affects the conditional execution that is now part of the graph:

In [4]:

1 with tf.Session(graph=g) as sess:

2 result = sess.run(y, feed_dict={addition:True,

3 x: 1.})

4

5 print('Result:\n', result)

Out [4]:

1 Result:

2 2.0

In [5]:

DRAFT

Appendix G - TensorFlow Basics 21

1 with tf.Session(graph=g) as sess:

2 result = sess.run(y, feed_dict={addition:False,

3 x: 1.})

4

5 print('Result:\n', result)

Out [5]:

1 Result:

2 0.0

Finally, we get the expected results

• “1.0 + 1.0 = 2.0” if addition=True
• “1.0 - 1.0 = 0.0” if addition=False

While this section provides you with the most important concept behind control flow in
Python versus TensorFlow, there are many control statements (and logical operators) that
we have not covered. Since the use of other control statements is analogous to tf.cond, I
recommend you to visit TensorFlow’s API documentation10, which provides an overview of
all the different operators for control flow and links to useful examples.

TensorBoard

TensorBoard is one of the coolest features of TensorFlow, which provides us with a suite
of tools to visualize our computational graphs and operations before and during runtime.
Especially, when we are implementing large neural networks, our graphs can be quite com-
plicated, and TensorBoard is only useful to visually track the training cost and performance of
our network, but it can also be used as an additional tool for debugging our implementation.
In this section, we will go over the basic concepts of TensorBoard, but make sure you also
check out the official documentation11 for more details.

To visualize a computational graph via TensorBoard, let us create a simple graph with two
Variables, the tensors tf_x and tf_y with shape [2, 3]. The first operation is to add these
two tensors together. Second, we transpose tf_x and multiply it with tf_y:

In [1]:
10https://www.tensorflow.org/api_guides/python/control_flow_ops
11https://www.tensorflow.org/how_tos/summaries_and_tensorboard/

DRAFT

https://www.tensorflow.org/api_guides/python/control_flow_ops
https://www.tensorflow.org/how_tos/summaries_and_tensorboard/
https://www.tensorflow.org/api_guides/python/control_flow_ops
https://www.tensorflow.org/how_tos/summaries_and_tensorboard/

Appendix G - TensorFlow Basics 22

1 import tensorflow as tf

2

3 g = tf.Graph()

4 with g.as_default() as g:

5

6

7 tf_x = tf.Variable([[1., 2.],

8 [3., 4.],

9 [5., 6.]],

10 name='tf_x_0',

11 dtype=tf.float32)

12

13 tf_y = tf.Variable([[7., 8.],

14 [9., 10.],

15 [11., 12.]],

16 name='tf_y_0',

17 dtype=tf.float32)

18

19 output = tf_x + tf_y

20 output = tf.matmul(tf.transpose(tf_x), output)

If we want to visualize the graph via TensorBoard, we need to instantiate a new FileWriter

object in our session, which we provide with a logdir and the graph itself. The FileWriter
object will then write a protobuf12 file to the logdir path that we can load into TensorBoard:

In [2]:

1 with tf.Session(graph=g) as sess:

2 sess.run(tf.global_variables_initializer())

3

4 # create FileWrite object that writes the logs

5 file_writer = tf.summary.FileWriter(logdir='logs/1', graph=g)

6 result = sess.run(output)

7 print(result)

Out [2]:

12https://developers.google.com/protocol-buffers/docs/overview

DRAFT

https://developers.google.com/protocol-buffers/docs/overview
https://developers.google.com/protocol-buffers/docs/overview

Appendix G - TensorFlow Basics 23

1 [[124. 142.]

2 [160. 184.]]

If you installed TensorFlow via pip, the tensorboard command should be available from
your command line terminal. So, after running the preceding code examples for defining the
grap and running the session, you just need to execute the command tensorboard --logdir

logs/1. You should then see an output similar to the following:

1 Desktop Sebastian{$$} tensorboard --logdir logs/1

2 Starting TensorBoard b'41' on port 6006

3 (You can navigate to http://xxx.xxx.x.xx:6006)

Copy and paste the http address from the terminal and open it in your favorite web browser
to open the TensorBoard window. Then, click on the Graph tab at the top, to visualize the
computational graph as shown in the figure below:

TensorBoard

In our TensorBoard window, we can now see a visual summary of our computational graph
(as shown in the screenshot above). The dark-shaded nodes labeled as tf_x_0 and tf_y_0 are
the two variables we initializes, and following the connective lines, we can track the flow
of operations. We can see the graph edges that are connecting tf_x_0 and tf_y_0 to an add

node, with is the addition we defined in the graph, followed by the multiplication with the
transpose of and the result of add.

DRAFT

Appendix G - TensorFlow Basics 24

Next, we are introducing the concept of name_scopes, which lets us organize different parts
in our graph. In the following code example, we are going to take the initial code snippets
and add with tf.name_scope(...) contexts as follows:

In [3]:

1 g = tf.Graph()

2 with g.as_default() as g:

3

4 tf_x = tf.Variable([[1., 2.],

5 [3., 4.],

6 [5., 6.]],

7 name='tf_x_0',

8 dtype=tf.float32)

9

10 tf_y = tf.Variable([[7., 8.],

11 [9., 10.],

12 [11., 12.]],

13 name='tf_y_0',

14 dtype=tf.float32)

15

16 # add custom name scope

17 with tf.name_scope('addition'):

18 output = tf_x + tf_y

19

20 # add custom name scope

21 with tf.name_scope('matrix_multiplication'):

22 output = tf.matmul(tf.transpose(tf_x), output)

23

24 with tf.Session(graph=g) as sess:

25 sess.run(tf.global_variables_initializer())

26 file_writer = tf.summary.FileWriter(logdir='logs/2', graph=g)

27 result = sess.run(output)

28 print(result)

Out [3]:

1 [[124. 142.]

2 [160. 184.]]

After executing the code example above, quit your previous TensorBoard session by pressing
CTRL+C in the command line terminal and launch a newTensorBoard session via tensorboard

DRAFT

Appendix G - TensorFlow Basics 25

--logdir logs/2. After you refreshed your browser window, you should see the following
graph:

TensorBoard

Comparing this visualization to our initial one, we can see that our operations have been
grouped into our custom name scopes. If we double-click on one of these name scope
summary nodes, we can expand it and inspect the individual operations in more details as
shown for the matrix_multiplication name scope in the screenshot below:

DRAFT

Appendix G - TensorFlow Basics 26

TensorBoard

So far, we have only been looking at the computational graph itself. However, TensorBoard
implements many more useful features. In the following example, we will make use of the
“Scalar” and “Histogram” tabs. The “Scalar” tab in TensorBoard allows us to track scalar
values over time, and the “Histogram” tab is useful for displaying the distribution of value in
our tensor Variables (for instance, the model parameters during training). For simplicity,
let us take our previous code snippet and modify it to demonstrate the capabilities of
TensorBoard:

In [4]:

1 g = tf.Graph()

2 with g.as_default() as g:

3

4 some_value = tf.placeholder(dtype=tf.int32,

5 shape=None,

6 name='some_value')

7

8 tf_x = tf.Variable([[1., 2.],

9 [3., 4.],

10 [5., 6.]],

11 name='tf_x_0',

12 dtype=tf.float32)

13

14 tf_y = tf.Variable([[7., 8.],

DRAFT

Appendix G - TensorFlow Basics 27

15 [9., 10.],

16 [11., 12.]],

17 name='tf_y_0',

18 dtype=tf.float32)

19

20 with tf.name_scope('addition'):

21 output = tf_x + tf_y

22

23 with tf.name_scope('matrix_multiplication'):

24 output = tf.matmul(tf.transpose(tf_x), output)

25

26 with tf.name_scope('update_tensor_x'):

27 tf_const = tf.constant(2., shape=None, name='some_const')

28 update_tf_x = tf.assign(tf_x, tf_x * tf_const)

29

30 # create summaries

31 tf.summary.scalar(name='some_value', tensor=some_value)

32 tf.summary.histogram(name='tf_x_values', values=tf_x)

33

34 # merge all summaries into a single operation

35 merged_summary = tf.summary.merge_all()

Notice that we added an additional placeholder to the graph which later receives a scalar
value from the session. We also added a new operation that updates our tf_x tensor by
multiplying it with a constant 2.:

1 with tf.name_scope('update_tensor_x'):

2 tf_const = tf.constant(2., shape=None, name='some_const')

3 update_tf_x = tf.assign(tf_x, tf_x * tf_const)

Finally, we added the lines

1 # create summaries

2 tf.summary.scalar(name='some_value', tensor=some_value)

3 tf.summary.histogram(name='tf_x_values', values=tf_x)

at the end of our graph. These will create the “summaries” of the values we want to display
in TensorBoard later. The last line of our graph is

DRAFT

Appendix G - TensorFlow Basics 28

1 merged_summary = tf.summary.merge_all()

which summarizes all the tf.summary calls to one single operation, so that we only have
to fetch one variable from the graph when we execute the session. When we executed the
session, we simply fetched this merged summary from merged_summary as follows:

1 result, summary = sess.run([update_tf_x, merged_summary],

2 feed_dict={some_value: i})

Next, let us add a for-loop to our session that runs the graph five times, and feeds the counter
of the range iterator to the some_value placeholder variable:

In [5]:

1 with tf.Session(graph=g) as sess:

2

3 sess.run(tf.global_variables_initializer())

4

5 # create FileWrite object that writes the logs

6 file_writer = tf.summary.FileWriter(logdir='logs/3', graph=g)

7

8 for i in range(5):

9 # fetch the summary from the graph

10 result, summary = sess.run([update_tf_x, merged_summary],

11 feed_dict={some_value: i})

12 # write the summary to the log

13 file_writer.add_summary(summary=summary, global_step=i)

14 file_writer.flush()

The two lines at the end of the preceding code snippet,

1 file_writer.add_summary(summary=summary, global_step=i)

2 file_writer.flush()

will write the summary data to our log file and the flush method updates TensorBoard.
Executing flush explicitely is usually not necessary in real-world applications, but since
the computations in our graph are so simple and “cheap” to execute, TensorBoard may
not fetch the updates in real time. To visualize the results, quit your previous TensorBoard
session (via CTRL+C) and execute tensorboard --logdir logs/3 from the command line.

DRAFT

Appendix G - TensorFlow Basics 29

In the TensorBoard window under the tab “Scalar,” you should now see an entry called
“some_value_1,” which refers to our placeholder in the graph that we called some_value.
Since we just fed it the iteration index of our for-loop, we expect to see a linear graph with
the iteration index on the x- and y-axis:

TensorBoard

Keep in mind that this is just a simple demonstration of how tf.summary.scalar works. For
instance, more useful applications include the tracking of the training loss and the predictive
performance of a model on training and validation sets throughout the different training
rounds or epochs.

Next, let us go to the “Distributions” tab:

TensorBoard

The “Distributions” graph above shows us the distribution of values in tf_x for each step in

DRAFT

Appendix G - TensorFlow Basics 30

the for-loop. Since we doubled the value in the tensor after each for-loop iteration, we the
distribution graph grows wider over time.

Finally, let us head over to the “Histograms” tab, which provides us with an individual
histogram for each for-loop step that we can scroll through. Below, I selected the 3rd for-
loop step that highlights the histogram of values in tf_x during this step:

TensorBoard

Since TensorBoard is such a highly visual tool with graph and data exploration in mind, I
highly recommend you to take it for a test drive and explore it interactively. Also, the are
several features that we haven’t covered in this simple introduction to TensorBoard, so be
sure to check out the official documentation13 for more information.

13https://www.tensorflow.org/how_tos/summaries_and_tensorboard/

DRAFT

https://www.tensorflow.org/how_tos/summaries_and_tensorboard/
https://www.tensorflow.org/how_tos/summaries_and_tensorboard/

	Table of Contents
	Website
	Acknowledgments
	Appendix G - TensorFlow Basics
	TensorFlow in a Nutshell
	Installation
	Computation Graphs
	Variables
	Placeholder Variables
	Saving and Restoring Models
	Naming TensorFlow Objects
	CPU and GPU
	Control Flow
	TensorBoard

