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Appendix F

Introduction to NumPy

This appendix offers a quick tour of the NumPy1 library for working with
multi-dimensional arrays in Python [Oliphant, 2006, Walt et al., 2011].
NumPy (short for Numerical Python) was created by Travis Oliphant in
2005, by merging Numarray into Numeric. Since then, the open source
NumPy library has evolved into an essential library for scientific comput-
ing in Python and has become a building block of many other scientific li-
braries, such as SciPy, Scikit-learn, Pandas, and others. What makes NumPy
so particularly attractive to the scientific community is that it provides
a convenient Python interface for working with multi-dimensional array
data structures efficiently; the NumPy array data structure is also called
ndarray, which is short for n-dimensional array.

In addition to being mostly implemented in C and using Python as
"glue language," the main reason why NumPy is so efficient for numer-
ical computations is that NumPy arrays use contiguous blocks of mem-
ory that can be efficiently cached by the CPU. In contrast, Python lists are
arrays of pointers to objects in random locations in memory, which can-
not be easily cached and come with a more expensive memory-look-up.
However, the computational efficiency and low-memory footprint come at
a cost: NumPy arrays have a fixed size and are homogenous, which means
that all elements must have the same type. Homogenous ndarray objects
have the advantage that NumPy can carry out operations using efficient C
loops and avoid expensive type checks and other overheads of the Python
API. While adding and removing elements from the end of a Python list is
very efficient, altering the size of a NumPy array is very expensive since
it requires creating a new array and carrying over the contents of the old

1http://www.numpy.org
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array that we want to expand or shrink.
Besides being more efficient for numerical computations than native

Python code, NumPy can also be more elegant and readable due to vector-
ized operations and broadcasting, which are features that we will explore
in this appendix. While this appendix should be sufficient for following
the code examples in this book if you are new to NumPy, there are many
advanced NumPy topics that are beyond the scope of this book. If you are
interested in a more in-depth coverage of NumPy, I selected a few resources
that could be useful to you:

• Rougier, N.P., 2016. From Python to Numpy2

• Oliphant, T.E., 2015. A Guide to NumPy: 2nd Edition3 . USA: Travis
Oliphant, independent publishing.

• Varoquaux, G., Gouillart, E., Vahtras, O., Haenel, V., Rougier, N.P.,
Gommers, R., Pedregosa, F., Jędrzejewski-Szmek, Z., Virtanen, P., Combelles,
C. and Pinte, D., 2015. SciPy Lecture Notes4

• The official NumPy documentation5

F.1 N-dimensional Arrays

NumPy is built around ndarrays6 objects, which are high-performance
multi-dimensional array data structures. Intuitively, we can think of a one-
dimensional NumPy array as a data structure to represent a vector of ele-
ments – you may think of it as a fixed-size Python list where all elements
share the same type. Similarly, we can think of a two-dimensional array as
a data structure to represent a matrix or a Python list of lists. While NumPy
arrays can have up to 32 dimensions, if it was compiled without alterations
to the source code, we will only focus on lower-dimensional arrays for the
purpose of illustration in this introduction.

Now, let us get started with NumPy by calling the array function to
create a two-dimensional NumPy array, consisting of two rows and three
columns, from a list of lists:

2http://www.labri.fr/perso/nrougier/from-python-to-numpy/
3https://archive.org/details/NumPyBook
4http://www.scipy-lectures.org/intro/numpy/index.html
5https://docs.scipy.org/doc/numpy/reference/index.html
6https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray .html

http://www.labri.fr/perso/nrougier/from-python-to-numpy/
https://archive.org/details/NumPyBook
http://www.scipy-lectures.org/intro/numpy/index.html
https://docs.scipy.org/doc/numpy/reference/index.html
http://www.labri.fr/perso/nrougier/from-python-to-numpy/
https://archive.org/details/NumPyBook
http://www.scipy-lectures.org/intro/numpy/index.html
https://docs.scipy.org/doc/numpy/reference/index.html
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray .html
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1 >>> import numpy as np
2 >>> lst = [[1, 2, 3],
3 ... [4, 5, 6]]
4 >>> ary1d = np.array(lst)
5 >>> ary1d
6 array([[1, 2, 3],
7 [4, 5, 6]])

Figure F.1: Illustration of a 2-dimensional NumPy array.

By default, NumPy infers the type of the array upon construction. Since
we passed Python integers to the array, the ndarray object ary1d should
be of type int64 on a 64-bit machine, which we can confirm by accessing
the dtype attribute:

1 >>> ary1d.dtype
2 dtype('int64')

If we want to construct NumPy arrays of different types, we can pass an
argument to the dtype parameter of the array function; for example,
dtype=np.int32 to create 32-bit arrays. For a full list of supported data
types, please refer to the official NumPy documentation7. Once an array
has been constructed, we can downcast or recast its type via the astype
method as shown in the following example:

7https://docs.scipy.org/doc/numpy/user/basics.types.html

https://docs.scipy.org/doc/numpy/user/basics.types.html
https://docs.scipy.org/doc/numpy/user/basics.types.html
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1 >>> float32_ary = ary1d.astype(np.float32)
2 >>> float32_ary
3 array([[ 1., 2., 3.],
4 [ 4., 5., 6.]], dtype=float32)

1 >>> float32_ary.dtype
2 dtype('float32')

In the following sections we will cover many more aspects of NumPy
arrays; however, to conclude this basic introduction to the ndarray ob-
ject, let us take a look at some of its handy attributes. For instance, the
itemsize attribute returns the size of a single array element in bytes:

1 >>> ary2d = np.array([[1, 2, 3],
2 ... [4, 5, 6]], dtype='int64')
3 >>> ary2d.itemsize
4 8

The code snippet above returned 8, which means that each element in the
array (remember that ndarrays are homogeneous) takes up 8 bytes in
memory. This result makes sense since the array ary2d has type int64
(64-bit integer), which we determined earlier, and 8 bits equals 1 byte.
(Note that ’int64’ is just a shorthand for np.int64.)

To return the number of elements in an array, we can use the size
attribute, as shown below:

1 >>> ary2d.size
2 6

And the number of dimensions of an array (intuitively, you may think
of dimensions as the rank of a tensor) can be obtained via the ndim attribute:

1 >>> ary2d.ndim
2 2

If we are interested in the number of elements along each array dimen-
sion (in the context of NumPy arrays, we may also refer to them as axes),
we can access the shape attribute as shown below:

1 >>> ary2d.shape
2 (2, 3)
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The shape is always a tuple; in the code example above, the two-
dimensional ary object has two rows and three columns, (2, 3), if we
think of it as a matrix representation. Similarly, the shape of the one-
dimensional array only contains a single value:

1 >>> np.array([1, 2, 3]).shape
2 (3,)

Instead of passing lists or tuples to the array function, we can also
provide a single float or integer, which will construct a zero-dimensional
array (for instance, a representation of a scalar):

1 >>> scalar = np.array(5)
2 >>> scalar
3 array(5)

1 >>> scalar.ndim
2 0

1 >>> scalar.shape
2 ()

F.2 Array Construction Routines

In the previous section, we used the array function to construct NumPy
arrays from Python objects that are sequences or nested sequences – lists,
tuples, nested lists, iterables, and so forth. While array is often our go-
to function for creating ndarray objects, NumPy implements a variety of
functions for constructing arrays that may come in handy in different con-
texts. In this section, we will take a quick peek at those that we use most
commonly – you can find a more comprehensive list in the official docu-
mentation8.

The array function works with most iterables in Python, including
lists, tuples, and range objects; however, array does not support gen-
erator expressions. If we want parse generators directly, however, we can
use the fromiter function as demonstrated below:

1 >>> def generator():
2 ... for i in range(10):

8https://docs.scipy.org/doc/numpy/reference/routines.array-creation.html

https://docs.scipy.org/doc/numpy/reference/routines.array-creation.html
https://docs.scipy.org/doc/numpy/reference/routines.array-creation.html
https://docs.scipy.org/doc/numpy/reference/routines.array-creation.html
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3 ... if i % 2:
4 ... yield i
5 >>> gen = generator()
6 >>> np.fromiter(gen, dtype=int)
7 array([1, 3, 5, 7, 9])

1 >>> # using 'comprehensions' the following
2 >>> # generator expression is equivalent to
3 >>> # the \code{generator} above
4 >>> generator_expression = (i for i in range(10) if i % 2)
5 >>> np.fromiter(generator_expression, dtype=int)
6 array([1, 3, 5, 7, 9])

Next, we will take at two functions that let us create ndarrays of con-
sisting of either ones and zeros by only specifying the elements along each
axes (here: three rows and three columns):

1 >>> np.ones((3, 3))
2 array([[ 1., 1., 1.],
3 [ 1., 1., 1.],
4 [ 1., 1., 1.]])

1 >>> np.zeros((3, 3))
2 array([[ 0., 0., 0.],
3 [ 0., 0., 0.],
4 [ 0., 0., 0.]])

Creating arrays of ones or zeros can also be useful as placeholder arrays,
in cases where we do not want to use the initial values for computations
but want to fill it with other values right away. If we do not need the initial
values (for instance, ’0.’ or ’1.’), there is also numpy.empty, which
follows the same syntax as numpy.ones and np.zeros. However, instead
of filling the array with a particular value, the empty function creates the
array with non-sensical values from memory. We can think of zeros as a
function that creates the array via empty and then sets all its values to 0.
– in practice, a difference in speed is not noticeable, though.

NumPy also comes with functions to create identity matrices and di-
agonal matrices as ndarrays that can be useful in the context of linear
algebra – a topic that we will explore later in this appendix.

1 >>> np.eye(3)
2 array([[ 1., 0., 0.],
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3 [ 0., 1., 0.],
4 [ 0., 0., 1.]])

1 >>> np.diag((3, 3, 3))
2 array([[3, 0, 0],
3 [0, 3, 0],
4 [0, 0, 3]])

Lastly, I want to mention two very useful functions for creating se-
quences of numbers within a specified range, namely, arange and linspace.
NumPy’s arange function follows the same syntax as Python’s range ob-
jects: If two arguments are provided, the first argument represents the start
value and the second value defines the stop value of a half-open interval:

1 >>> np.arange(4., 10.)
2 array([ 4., 5., 6., 7., 8., 9.])

Notice that arange also performs type inference similar to the array func-
tion. If we only provide a single function argument, the range object treats
this number as the endpoint of the interval and starts at 0:

1 >>> np.arange(5)
2 array([0, 1, 2, 3, 4])

Similar to Python’s range, a third argument can be provided to define the
step (the default step size is 1). For example, we can obtain an array of all
uneven values between one and ten as follows:

1 >>> np.arange(1., 11., 2)
2 array([ 1., 3., 5., 7., 9.])

The linspace function is especially useful if we want to create a par-
ticular number of evenly spaced values in a specified half-open interval:

1 >>> np.linspace(0., 1., num=5)
2 array([ 0. , 0.25, 0.5 , 0.75, 1. ])

F.3 Array Indexing

In this section, we will go over the basics of retrieving NumPy array ele-
ments via different indexing methods. Simple NumPy indexing and slicing



DRAFT

APPENDIX F. INTRODUCTION TO NUMPY 11

works similar to Python lists, which we will demonstrate in the following
code snippet, where we retrieve the first element of a one-dimensional ar-
ray:

1 >>> ary = np.array([1, 2, 3])
2 >>> ary[0]
3 1

Also, the same Python semantics apply to slicing operations. The following
example shows how to fetch the first two elements in ary:

1 >>> ary[:2] # equivalent to ary[0:2]
2 array([1, 2])

If we work with arrays that have more than one dimension or axis, we
separate our indexing or slicing operations by commas as shown in the
series of examples below:

1 >>> ary = np.array([[1, 2, 3],
2 ... [4, 5, 6]])
3 >>> ary[0, 0] # upper left
4 1

1 >>> ary[-1, -1] # lower right
2 6

1 >>> ary[0, 1] # first row, second column
2 2

Figure F.2: NumPy array indexing.
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1 >>> ary[0] # entire first row
2 array([1, 2, 3])

1 >>> ary[:, 0] # entire first column
2 array([1, 4])

1 >>> ary[:, :2] # first two columns
2 array([[1, 2],
3 [4, 5]])

1 >>> ary[0, 0]
2 1

F.4 Array Math and Universal Functions

In the previous sections, you learned how to create NumPy arrays and how
to access different elements in an array. It is about time to cover one of the
core features of NumPy that makes working with ndarray so efficient and
convenient: vectorization. While we typically use for-loops if we want to
perform arithmetic operations on sequence-like objects, NumPy provides
vectorized wrappers for performing element-wise operations implicitly via
so-called ufuncs – short for universal functions.

As of this writing, there are more than 60 ufuncs available in NumPy;
ufuncs are implemented in compiled C code and very fast and efficient
compared to vanilla Python. In this section, we will take a look at the most
commonly used ufuncs, and I recommend you to check out the official doc-
umentation 9 for a complete list.

To provide an example of a simple ufunc for element-wise addition,
consider the following example, where we add a scalar (here: 1) to each
element in a nested Python list:

1 >>> lst = [[1, 2, 3], [4, 5, 6]]
2 >>> for row_idx, row_val in enumerate(lst):
3 ... for col_idx, col_val in enumerate(row_val):
4 ... lst[row_idx][col_idx] += 1
5 >>> lst
6 [[2, 3, 4], [5, 6, 7]]

9https://docs.scipy.org/doc/numpy/reference/ufuncs.html#available-ufuncs

https://docs.scipy.org/doc/numpy/reference/ufuncs.html#available-ufuncs
https://docs.scipy.org/doc/numpy/reference/ufuncs.html#available-ufuncs
https://docs.scipy.org/doc/numpy/reference/ufuncs.html#available-ufuncs
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This for-loop approach is very verbose, and we could achieve the same goal
more elegantly using list comprehensions:

1 >>> lst = [[1, 2, 3], [4, 5, 6]]
2 >>> [[cell + 1 for cell in row] for row in lst]
3 [[2, 3, 4], [5, 6, 7]]

We can accomplish the same using NumPy’s ufunc for element-wise scalar
addition as shown below:

1 >>> ary = np.array([[1, 2, 3], [4, 5, 6]])
2 >>> ary = np.add(ary, 1)
3 >>> ary
4 array([[2, 3, 4],
5 [5, 6, 7]])

The ufuncs for basic arithmetic operations are add, subtract, divide,
multiply, and exp (exponential). However, NumPy uses operator over-
loading so that we can use mathematical operators (+, -, /, *, and **)
directly:

1 >>> ary + 1
2 array([[3, 4, 5],
3 [6, 7, 8]])

1 >>> ary**2
2 array([[ 4, 9, 16],
3 [25, 36, 49]])

In the previous code snippets, we have seen examples of binary ufuncs,
which are ufuncs that perform computations between two input arguments.
In addition, NumPy implements several useful unary ufuncs that perform
computations on a single array; examples are log (natural logarithm), log10
(base-10 logarithm), and sqrt (square root).

Often, we want to compute the sum or product of array element along
a given axis. For this purpose, we can use a ufunc’s reduce operation. By
default, reduce applies an operation along the first axis (axis=0). In the
case of a two-dimensional array, we can think of the first axis as the rows
of a matrix. Thus, adding up elements along rows yields the column sums
of that matrix as shown in the following code snippet:
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1 >>> ary = np.array([[1, 2, 3],
2 ... [4, 5, 6]])
3 >>> np.add.reduce(ary) # column sums
4 array([5, 7, 9])

To compute the row sums of the array above, we can specify axis=1:

1 >>> np.add.reduce(ary, axis=1) # row sums
2 array([ 6, 15])

While it can be more intuitive to use reduce as a more general op-
eration, NumPy also provides shorthands for specific operations such as
product and sum. For example, sum(axis=0) is equivalent to add.reduce:

1 >>> ary.sum(axis=0) # column sums
2 array([5, 7, 9])

Figure F.3: The NumPy sum operation.

Note that np.sum(ary, ...) and ary.sum(...) are equivalent oper-
ations. As a word of caution, keep in mind that product and sum both
compute the product or sum of the entire array if we do not specify an axis:

1 >>> ary.sum()
2 21

Other useful unary ufuncs are:

• mean (computes arithmetic average)
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• std (computes the standard deviation)

• var (computes variance)

• np.sort (sorts an array)

• np.argsort (returns indices that would sort an array)

• np.min (returns the minimum value of an array)

• np.max (returns the maximum value of an array)

• np.argmin (returns the index of the minimum value)

• np.argmax (returns the index of the maximum value)

• array_equal (checks if two arrays have the same shape and ele-
ments)

F.5 Broadcasting

A topic we glanced over in the previous section is broadcasting. Broadcast-
ing allows us to perform vectorized operations between two arrays even if
their dimensions do not match by creating implicit multidimensional grids.
You already learned about ufuncs in the previous section where we per-
formed element-wise addition between a scalar and a multidimensional
array, which is just one example of broadcasting.

Figure F.4: An illustration of broadcasting showing the addition of a single
number to every element in an array.

Naturally, we can also perform element-wise operations between arrays
of equal dimensions:
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1 >>> ary1 = np.array([1, 2, 3])
2 >>> ary2 = np.array([4, 5, 6])
3 >>> ary1 + ary2
4 array([5, 7, 9])

In contrast to what we are used from linear algebra, we can also add ar-
rays of different shapes. In the example above, we will add a one-dimensional
to a two-dimensional array, where NumPy creates an implicit multidimen-
sional grid from the one-dimensional array ary1:

1 >>> ary3 = np.array([[4, 5, 6],
2 ... [7, 8, 9]])
3 >>> ary3 + ary1 # similarly, ary1 + ary3
4 array([[ 5, 7, 9],
5 [ 8, 10, 12]])

Figure F.5: An illustration of broadcasting showing the addition of a 1D to
a 2D NumPy array.

Keep in mind though that the number of elements along the explicit axes
and the implicit grid have to match so that NumPy can perform a sensical
operation. For instance, the following example should raise a ValueError,
because NumPy attempts to add the elements from the first axis of the left
array (2 elements) to the first axis of the right array (3 elements):

1 >>> try:
2 ... ary3 + np.array([1, 2])
3 >>> except ValueError as e:
4 ... print('ValueError:', e)
5 ValueError: operands could not be broadcast
6 together with shapes (2,3) (2,)
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So, if we want to add the 2-element array to the columns in ary3, the 2-
element array must have two elements along its first axis as well:

1 >>> ary3 + np.array([[1], [2]])
2 array([[ 5, 6, 7],
3 [ 9, 10, 11]])

1 >>> np.array([[1], [2]]) + ary3
2 array([[ 5, 6, 7],
3 [ 9, 10, 11]])

F.6 Advanced Indexing – Memory Views and Copies

In the previous sections, we have used basic indexing and slicing routines.
It is important to note that basic integer-based indexing and slicing create
so-called views of NumPy arrays in memory. In other words, via a view, we
are accessing the same array but just "view" it differently.

Working with views can be highly desirable since it avoids making un-
necessary copies of arrays to save memory resources. To illustrate the con-
cept of memory views, let us walk through a simple example where we
access the first row in an array, assign it to a variable, and modify that vari-
able:

1 >>> ary = np.array([[1, 2, 3],
2 ... [4, 5, 6]])
3 >>> first_row = ary[0]
4 >>> first_row += 99
5 >>> ary
6 array([[100, 101, 102],
7 [ 4, 5, 6]])

As we can see in the example above, changing the value of first_row
also affected the original array. The reason for this is that ary[0] created
a view of the first row in ary, and its elements were then incremented by
99. The same concept applies to slicing operations:

1 >>> ary = np.array([[1, 2, 3],
2 ... [4, 5, 6]])
3 >>> first_row = ary[:1]
4 >>> first_row += 99
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5 >>> ary
6 array([[100, 101, 102],
7 [ 4, 5, 6]])

1 >>> ary = np.array([[1, 2, 3],
2 ... [4, 5, 6]])
3 >>> center_col = ary[:, 1]
4 >>> center_col += 99
5 >>> ary
6 array([[ 1, 101, 3],
7 [ 4, 104, 6]])

If we are working with NumPy arrays, it is always important to be
aware that slicing creates views – sometimes it is desirable since it can
speed up our code and save computational resources by avoiding to cre-
ate unnecessary copies in memory. However, in certain scenarios we want
force a copy of an array; we can do this via the copy method as shown
below:

1 >>> second_row = ary[1].copy()
2 >>> second_row += 99
3 >>> ary
4 array([[ 1, 101, 3],
5 [ 4, 104, 6]])

One way to check if two arrays might share memory is to use the NumPy’s
may_share_memory function. However, be aware that it is a heuristic
that can return false negatives or false positives in rare cases. The next
code snippet shows an example of may_share_memory applied to a view
(first_row) and copy (second_row) of the array elements from ary:

1 >>> ary = np.array([[1, 2, 3],
2 ... [4, 5, 6]])
3 >>> first_row = ary[:1]
4 >>> first_row += 99
5 >>> ary
6 array([[100, 101, 102],
7 [ 4, 5, 6]])

1 >>> np.may_share_memory(first_row, ary)
2 True
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1 >>> second_row = ary[1].copy()
2 >>> second_row += 99
3 >>> ary
4 array([[100, 101, 102],
5 [ 4, 5, 6]])

1 >>> np.may_share_memory(second_row, ary)
2 False

In addition to basic single-integer indexing and slicing operations, NumPy
supports advanced indexing routines called fancy indexing. Via fancy in-
dexing, we can use tuple or list objects of non-contiguous integer indices
to return desired array elements. Since fancy indexing can be performed
with non-contiguous sequences, it cannot return a view – a contiguous slice
from memory. Thus, fancy indexing always returns a copy of an array – it
is important to keep that in mind. The following code snippets show some
fancy indexing examples:

1 >>> ary = np.array([[1, 2, 3],
2 ... [4, 5, 6]])
3 >>> ary[:, [0, 2]] # first and and last column
4 array([[1, 3],
5 [4, 6]])

1 >>> this_is_a_copy = ary[:, [0, 2]]
2 >>> this_is_a_copy += 99
3 >>> ary
4 array([[1, 2, 3],
5 [4, 5, 6]])

1 >>> ary[:, [2, 0]] # last and and first column
2 array([[3, 1],
3 [6, 4]])

Finally, we can also use Boolean masks for indexing – that is, arrays of
True and False values. Consider the following example, where we return
all values in the array that are greater than 3:

1 >>> ary = np.array([[1, 2, 3],
2 ... [4, 5, 6]])
3 >>> greater3_mask = ary > 3
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4 >>> greater3_mask
5 array([[False, False, False],
6 [ True, True, True]], dtype=bool)

Using a mask, we can select elements given our desired criteria:

1 >>> ary[greater3_mask]
2 array([4, 5, 6])

We can also chain different selection criteria using the logical and op-
erator "&" or the logical or operator "|." The example below demonstrates
how we can select array elements that are greater than 3 and divisible by 2:

1 >>> ary[(ary > 3) & (ary % 2 == 0)]
2 array([4, 6])

Note that indexing using Boolean arrays (i.e., masks) is also considered
"fancy indexing" and thus always returns a copy of the array and not view.

F.7 Comparison Operators and Mask

In the previous section, we already briefly introduced the concept of Boolean
masks in NumPy. Boolean masks are bool-type arrays (storing True and
False values) that have the same shape as a certain target array. For exam-
ple, consider the following 4-element array in the next code snippet. Using
comparison operators (such as <, >, <=, and >=), we can create a Boolean
mask of that array which consists of True and False elements depending
on whether a condition is met in the target array (here: ary):

1 >>> ary = np.array([1, 2, 3, 4])
2 >>> mask = ary > 2
3 >>> mask
4 array([False, False, True, True], dtype=bool)

One we created such a Boolean mask, we can use it to select certain
entries from the target array – those entries that match the condition upon
which the mask was created:

1 >>> ary[mask]
2 >>> array([3, 4])
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Beyond the selection of elements from an array, Boolean masks can also
come in handy when we want to count how many elements in an array
meet a certain condition:

1 >>> mask
2 array([False, False, True, True], dtype=bool)
3 >>> mask.sum()
4 2

If we are interested in the index positions of array elements that meet
a certain condition, we can use the nonzero() method on a mask, as fol-
lows:

1 >>> mask.nonzero()
2 (array([2, 3]),)

Note that selecting index elements in the way suggested above is a two-step
process of creating a mask and then applying the non-zero method:

1 >>> (ary > 2).nonzero()
2 (array([2, 3]),)

An alternative approach to the index selection by a condition is using the
np.where method:

1 >>> np.where(ary > 2)
2 (array([2, 3]),)

1 >>> np.where(ary > 2, 1, 0)
2 array([0, 0, 1, 1])

Notice that we use the np.where function with three arguments:
np.where(condition, x, y),
which is interpreted as
If condition is True, yield x, otherwise yield y.
Or more concretely, what we have done in the previous example is to assign
1 to all elements greater than 2, and 0 to all other elements. Of course, this
can also be achieved by using Boolean masks "manually:"

1 >>> ary = np.array([1, 2, 3, 4])
2 >>> mask = ary > 2
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3 >>> ary[mask] = 1
4 >>> ary[~mask] = 0
5 >>> ary
6 array([0, 0, 1, 1])

The ~ operator in the example above is one of the logical operators in
NumPy:

• A: & or np.bitwise_and

• Or: | or np.bitwise_or

• Xor: ^ or np.bitwise_xor

• Not: ~ or np.bitwise_not

Logical operators allow us to chain an arbitrary number of conditions
to create even more "complex" Boolean masks. For example, using the "Or"
operator, we can select all elements that are greater than 3 or smaller than
2 as follows:

1 >>> ary = np.array([1, 2, 3, 4])
2 >>> (ary > 3) | (ary < 2)
3 array([ True, False, False, True], dtype=bool)

And, for example, to negate the condition, we can use the ~ operator:

1 >>> ~((ary > 3) | (ary < 2))
2 array([False, True, True, False], dtype=bool)

F.8 Random Number Generators

In machine learning and deep learning, we often have to generate arrays of
random numbers – for example, the initial values of our model parameters
before optimization. NumPy has a random subpackage to create random
numbers and samples from a variety of distributions conveniently. Again, I
encourage you to browse through the more comprehensive numpy.random
documentation10 for a more comprehensive list of functions for random
sampling. To provide a brief overview of the pseudo-random number gen-
erators that we will use most commonly, let’s start with drawing a random
sample from a uniform distribution:

10https://docs.scipy.org/doc/numpy/reference/routines.random.html

https://docs.scipy.org/doc/numpy/reference/routines.random.html
https://docs.scipy.org/doc/numpy/reference/routines.random.html
https://docs.scipy.org/doc/numpy/reference/routines.random.html


DRAFT

APPENDIX F. INTRODUCTION TO NUMPY 23

1 >>> np.random.seed(123)
2 >>> np.random.rand(3)
3 array([ 0.69646919, 0.28613933, 0.22685145])

In the code snippet above, we first seeded NumPy’s random number
generator. Then, we drew three random samples from a uniform distribu-
tion via random.rand in the half-open interval [0, 1). I highly recommend
the seeding step in practical applications as well as in research projects,
since it ensures that our results are reproducible. If we run our code se-
quentially – for example, if we execute a Python script – it should be suffi-
cient to seed the random number generator only once at the beginning to
enforce reproducible outcomes between different runs. However, it is of-
ten useful to create separate RandomState objects for various parts of our
code, so that we can test methods of functions reliably in unit tests.

Working with multiple, separate RandomState objects can also be use-
ful if we run our code in non-sequential order; for example, if we are ex-
perimenting with our code in interactive sessions or Jupyter Notebook en-
vironments. The example below shows how we can use a RandomState
object to create the same results that we obtained via np.random.rand in
the previous code snippet:

1 >>> rng1 = np.random.RandomState(seed=123)
2 >>> rng1.rand(3)
3 array([ 0.69646919, 0.28613933, 0.22685145])

Another useful function that we will often use in practice is randn,
which returns a random sample of floats from a standard normal distribu-
tion N(µ, σ2), where the mean, (µ) is zero and unit variance (σ = 1). The
example below creates a two-dimensional array of such z-scores:

1 >>> rng2 = np.random.RandomState(seed=123)
2 >>> z_scores = rng2.randn(100, 2)

NumPy’s random functions rand and randn take an arbitrary number
of integer arguments, where each integer argument specifies the number
of elements along a given axis – the z_scores array should now refer to
an array of 100 rows and two columns. Let us now visualize (Figure F.6)
how our random sample looks like using Matplotlib11 [Barrett et al., 2005,
Hunter, 2007]:

11https://matplotlib.org

https://matplotlib.org
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1 >>> import matplotlib.pyplot as plt
2 >>> plt.scatter(z_scores[:, 0], z_scores[:, 1])
3 >>> plt.show()

Figure F.6: 100 random data points samples from a standard-normal distri-
bution via np.random.randn.

If we want to draw a random sample from a non-standard normal dis-
tribution, we can simply add a scalar value to the array elements to shift
the mean of the sample, and we can multiply the sample by a scalar to
change its standard deviation. The following code snippet will change the
properties of our random sample as if it has been drawn from a normal
distribution N(5, 4):

1 >>> rng3 = np.random.RandomState(seed=123)
2 >>> scores = 2. * rng3.randn(100, 2) + 5.
3 >>> plt.scatter(scores[:, 0], scores[:, 1])
4 >>> plt.show()
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Figure F.7: 100 random data points generated via np.random.rand.

Note that in the example above, we multiplied the z-scores by a stan-
dard deviation of 2 – the standard deviation of a sample is the square root
of the variance σ2. Also, notice that all elements in the array were updated
when we multiplied it by a scalar or added a scalar. In the next section, we
will discuss NumPy’s capabilities regarding such element-wise operations
in more detail.

F.9 Reshaping Arrays

In practice, we often run into situations where existing arrays do not have
the right shape to perform certain computations. As you might remember
from the beginning of this appendix, the size of NumPy arrays is fixed.
Fortunately, this does not mean that we have to create new arrays and
copy values from the old array to the new one if we want arrays of dif-
ferent shapes – the size is fixed, but the shape is not. NumPy provides a
reshape method that allow us to obtain a view of an array with a differ-
ent shape. For example, we can reshape a one-dimensional array into a
two-dimensional one using reshape as follows:
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1 >>> ary1d = np.array([1, 2, 3, 4, 5, 6])
2 >>> ary2d_view = ary1d.reshape(2, 3)
3 >>> ary2d_view
4 array([[1, 2, 3],
5 [4, 5, 6]])

1 >>> np.may_share_memory(ary2d_view, ary1d)
2 True

While we need to specify the desired elements along each axis, we need
to make sure that the reshaped array has the same number of elements as
the original one. However, we do not need to specify the number elements
in each axis; NumPy is smart enough to figure out how many elements to
put along an axis if only one axis is unspecified (by using the placeholder
-1):

1 >>> ary1d.reshape(2, -1)
2 array([[1, 2, 3],
3 [4, 5, 6]])

1 >>> ary1d.reshape(-1, 2)
2 array([[1, 2],
3 [3, 4],
4 [5, 6]])

We can, of course, also use reshape to flatten an array:

1 >>> ary2d = np.array([[1, 2, 3],
2 ... [4, 5, 6]])
3 >>> ary2d.reshape(-1)
4 array([1, 2, 3, 4, 5, 6])

Note that NumPy also has a shorthand for that called ravel:

1 >>> ary2d.ravel()
2 array([1, 2, 3, 4, 5, 6])

A function related to ravel is flatten. In contrast to ravel, flatten
returns a copy, though:

1 >>> np.may_share_memory(ary2d.flatten(), ary2d)
2 False
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1 >>> np.may_share_memory(ary2d.ravel(), ary2d)
2 True

Sometimes, we are interested in merging different arrays. Unfortu-
nately, there is no efficient way to do this without creating a new array,
since NumPy arrays have a fixed size. While combining arrays should be
avoided if possible – for reasons of computational efficiency – it is some-
times necessary. To combine two or more array objects, we can use NumPy’s
concatenate function as shown in the following examples:

1 >>> ary = np.array([1, 2, 3])
2 >>> # stack along the first axis
3 >>> np.concatenate((ary, ary))
4 array([1, 2, 3, 1, 2, 3])

1 >>> ary = np.array([[1, 2, 3]])
2 >>> # stack along the first axis (here: rows)
3 >>> np.concatenate((ary, ary), axis=0)
4 array([[1, 2, 3],
5 [1, 2, 3]])

1 >>> # stack along the second axis (here: column)
2 >>> np.concatenate((ary, ary), axis=1)
3 array([[1, 2, 3, 1, 2, 3]])

F.10 Linear Algebra with NumPy Arrays

Most of the operations in machine learning and deep learning are based on
concepts from linear algebra. In this section, we will take a look how to
perform basic linear algebra operations using NumPy arrays.

Infobox F.10.1 Numpy Matrix Objects

I want to mention that there is also a special matrixa type in NumPy.
NumPy matrix objects are analogous to NumPy arrays but are re-
stricted to two dimensions. Also, matrices define certain operations
differently than arrays; for instance, the * operator performs matrix
multiplication instead of element-wise multiplication. However, NumPy
matrix is less popular in the science community compared to the
more general array data structure. Since we are also going to work
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with arrays that have more than two dimensions (for example, when
we are working with convolutional neural networks), we will not use
NumPy matrix data structures in this book.

ahttps://docs.scipy.org/doc/numpy/reference/generated/numpy.matrix.html

Intuitively, we can think of one-dimensional NumPy arrays as data
structures that represent row vectors:

1 >>> row_vector = np.array([1, 2, 3])
2 >>> row_vector
3 array([1, 2, 3])

Similarly, we can use two-dimensional arrays to create column vectors:

1 >>> column_vector = np.array([[1, 2, 3]]).reshape(-1, 1)
2 >>> column_vector
3 array([[1],
4 [2],
5 [3]])

Instead of reshaping a one-dimensional array into a two-dimensional one,
we can simply add a new axis as shown below:

1 >>> row_vector[:, np.newaxis]
2 array([[1],
3 [2],
4 [3]])

Note that in this context, np.newaxis behaves like None:

1 >>> row_vector[:, None]
2 array([[1],
3 [2],
4 [3]])

All three approaches listed above, using reshape(-1, 1), np.newaxis,
or None yield the same results – all three approaches create views not
copies of the row_vector array.

As we remember from the Linear Algebra appendix, we can think of
a vector as a 1 × n-dimensional matrix (row vector) or n × 1-dimensional
matrix (column vector). Then, to perform matrix multiplication between

https://docs.scipy.org/doc/numpy/reference/generated/numpy.matrix
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matrices, we learned that number of columns of the left matrix must match
the number of rows of the matrix to the right. In NumPy, we can perform
matrix multiplication via the matmul function:

1 >>> matrix = np.array([[1, 2, 3],
2 ... [4, 5, 6]])

1 >>> np.matmul(matrix, column_vector)
2 array([[14],
3 [32]])

Figure F.8: PLACEHOLDER

However, if we are working with matrices and vectors, NumPy can
be quite forgiving if the dimensions of matrices and one-dimensional ar-
rays do not match exactly – thanks to broadcasting. The following example
yields the same result as the matrix-column vector multiplication, except
that it returns a one-dimensional array instead of a two-dimensional one:

1 >>> np.matmul(matrix, row_vector)
2 array([14, 32])

Similarly, we can compute the dot-product between two vectors (here: the
vector norm)
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1 >>> np.matmul(row_vector, row_vector)
2 14

NumPy has a special dot function that behaves similar to matmul on
pairs of one- or two-dimensional arrays – its underlying implementation
is different though, and one or the other can be slightly faster on specific
machines and versions of BLAS 12:

1 >>> np.dot(row_vector, row_vector)
2 14

1 >>> np.dot(matrix, row_vector)
2 array([14, 32])

1 >>> np.dot(matrix, column_vector)
2 array([[14],
3 [32]])

Similar to the examples above we can use matmul or dot to multiply
two matrices (here: two-dimensional arrays). In this context, NumPy ar-
rays have a handy transpose method (Figure F.9) to transpose matrices
if necessary:

1 >>> matrix = np.array([[1, 2, 3],
2 ... [4, 5, 6]])
3 >>> matrix.transpose()
4 array([[1, 4],
5 [2, 5],
6 [3, 6]])

12https://en.wikipedia.org/wiki/Basic_Linear_Algebra_Subprograms

https://en.wikipedia.org/wiki/Basic_Linear_Algebra_Subprograms
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Figure F.9: Illustration of NumPy’s transpose method.

1 >>> np.matmul(matrix, matrix.transpose())
2 array([[14, 32],
3 [32, 77]])

While transpose can be annoyingly verbose for implementing linear
algebra operations – think of PEP8’s 13 80 character per line recommendation
– NumPy has a shorthand for that, T:

1 >>> matrix.T
2 array([[1, 4],
3 [2, 5],
4 [3, 6]])

13https://www.python.org/dev/peps/pep-0008/

https://www.python.org/dev/peps/pep-0008/
https://www.python.org/dev/peps/pep-0008/
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Figure F.10: Multiplication of a matrix with its transpose.

While this section demonstrates some of the basic linear algebra opera-
tions carried out on NumPy arrays that we use in practice, you can find an
additional function in the documentation of NumPy’s submodule for lin-
ear algebra: numpy.linalg14. If you want to perform a particular linear
algebra routine that is not implemented in NumPy, it is also worth con-
sulting the scipy.linalg documentation 15 – SciPy [Jones et al., 2018] is
a library for scientific computing built on top of NumPy.

F.11 Set Operations

Appendix B: Algebra Basics introduced the basics behind set theory, which
are visually summarized in Figure F.11, and NumPy implements several
functions that allow us to work with sets efficiently so that we are not re-
stricted to Python’s built-in functions (and converting back and forth be-
tween Python sets and NumPy arrays).

14https://docs.scipy.org/doc/numpy/reference/routines.linalg.html
15https://docs.scipy.org/doc/scipy/reference/linalg.html

https://docs.scipy.org/doc/numpy/reference/routines.linalg.html
https://docs.scipy.org/doc/scipy/reference/linalg.html
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Figure F.11: Common set operations.

Remember that a set is essentially a collection of unique elements. Given
an array, we can generate such a "set" using the np.unique function:

1 >>> ary = np.array([1, 1, 2, 3, 1, 5])
2 >>> ary_set = np.unique(ary)
3 >>> ary_set
4 >>> array([1, 2, 3, 5])

However, we have to keep in mind that unlike Python sets, the output
of np.unique is a regular NumPy array, not specialized data structure
that does not allow for duplicate entries. The set operations for example,
set union (np.union1d), set difference (np.setdiff1d), or set intersec-
tion (np.intersect1d) would return the same results whether array ele-
ments are unique or not. However, setting their optional assume_unique
argument can speed up the computation.

1 >>> ary1 = np.array([1, 2, 3])
2 >>> ary2 = np.array([3, 4, 5, 6])
3 >>> np.intersect1d(ary1, ary2, assume_unique=True)
4 array([3])
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1 >>> np.setdiff1d(ary1, ary2, assume_unique=True)
2 array([1, 2])

1 >>> np.union1d(ary1, ary2) # does not have assume_unique
2 array([1, 2, 3, 4, 5, 6])

Note that NumPy does not have a function for the symmetric set difference,
but it can be readily computed by composition:

1 >>> np.union1d(np.setdiff1d(ary1, ary2,
2 ... assume_unique=True),
3 ... np.setdiff1d(ary2, ary1,
4 ... assume_unique=True))
5 array([1, 2, 4, 5, 6])

For a complete list of set operations in NumPy, please see the official Set
Routines16 documentation.

F.12 Serializing NumPy Arrays

In the context of computer science, serialization is a term that refers to stor-
ing data or objects in a different format that can be used for reconstruction
later. For example, in Python, we can use the pickle library to write Python
objects as bytecode (or binary code) to a local drive. NumPy offers a data
storage format (NPy17) that is especially well-suited (compared to regular
pickle files) for storing array data. There are three different functions that
can be used for this purpose:

• np.save

• np.savez

• np.savez_compressed

Starting with np.save, this function saves a single array to a so-called
.npy file:

1 >>> ary1 = np.array([1, 2, 3])
2 >>> np.save('ary-data.npy', ary1)
3 >>> np.load('ary-data.npy')
4 array([1, 2, 3])

16https://docs.scipy.org/doc/numpy/reference/routines.set.html
17https://docs.scipy.org/doc/numpy/neps/npy-format.html

https://docs.scipy.org/doc/numpy/reference/routines.set.html
https://docs.scipy.org/doc/numpy/reference/routines.set.html
https://docs.scipy.org/doc/numpy/neps/npy-format.html
https://docs.scipy.org/doc/numpy/reference/routines.set.html
https://docs.scipy.org/doc/numpy/neps/npy-format.html
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Suffice it to say, the the np.load a universal function for loading data that
has been serialized via NumPy back into the current Python session.

The np.savez is slightly more powerful than the np.save function as
it generates an archive consisting of 1 or more .npy files and thus allows
us to save multiple arrays at once.

1 np.savez('ary-data.npz', ary1, ary2)

However, note that if the np.load function will wrap the arrays as a
NpzFile object from which the individual arrays can be accessed via keys
like values in a Python dictionary:

1 >>> d = np.load('ary-data.npz')
2 >>> d.keys()
3 ['arr_0', 'arr_1']

1 >>> d['arr_0']
2 array([1, 2, 3])

As demonstrated above, the arrays are numerated in ascending order with
an arr_ prefix (’arr_0’, ’arr_1’, etc.). To use a custom naming con-
vention, we can simply provide keyword arguments:

1 >>> kwargs = {'ary1':ary1, 'ary2':ary2}
2 >>> np.savez('ary-data.npz',
3 **kwargs)

1 >>> np.load('ary-data.npz')
2 >>> d = np.load('ary-data.npz')
3 >>> d['ary1']
4 array([1, 2, 3])

F.13 Conclusion

We have covered a lot of material in this appendix. If you are new to
NumPy, its functionality can be quite overwhelming at first. Good news
is that we do not need to master all the different concepts at once before we
can get started using NumPy in our applications. In my opinion, the most
useful yet most difficult concepts are NumPy’s broadcasting rules and to
distinguish between views and copies of arrays. However, with some ex-
perimentation, you can quickly get the hang of it and be able to write ele-
gant and efficient NumPy code.
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