
Chapter 2

[19]

Only a few years later, Frank Rosenblatt published the first concept of the perceptron
learning rule based on the MCP neuron model (F. Rosenblatt, The Perceptron, a
Perceiving and Recognizing Automaton. Cornell Aeronautical Laboratory, 1957). With

his perceptron rule, Rosenblatt proposed an algorithm that would automatically

learn the optimal weight coefficients that are then multiplied with the input features
in order to make the decision of whether a neuron fires or not. In the context of
supervised learning and classification, such an algorithm could then be used to
predict if a sample belonged to one class or the other.

More formally, we can pose this problem as a binary classification task where we
refer to our two classes as 1 (positive class) and -1 (negative class) for simplicity. We

can then define an activation function ()zφ that takes a linear combination of certain

input values x and a corresponding weight vector w , where z is the so-called net

input (1 1 m mz w x w x= + +…):

1 1

,

m m

w x

w x

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

! !w = x =

Now, if the activation of a particular sample
()ix , that is, the output of ()zφ , is

greater than a defined threshold θ , we predict class 1 and class -1, otherwise. In the

perceptron algorithm, the activation function ()φ ⋅ is a simple unit step function, which

is sometimes also called the Heaviside step function:

() 1
1
if z

z
otherwise

θ
φ

≥⎧
= ⎨−⎩

net input z

Training Machine Learning Algorithms for Classification

[22]

Where η is the learning rate (a constant between 0.0 and 1.0), ()iy is the true class
label of the i th training sample, and ()ˆ iy is the predicted class label. It is important to
note that all weights in the weight vector are being updated simultaneously, which
means that we don't recompute the ()ˆ iy before all of the weights jw∆ were updated.
Concretely, for a 2D dataset, we would write the update as follows:

() ()()0
i iw y outputη∆ = −

() ()() ()

1 1

ii iw y output xη∆ = −

() ()() ()

2 2

ii iw y output xη∆ = −

Before we implement the perceptron rule in Python, let us make a simple thought
experiment to illustrate how beautifully simple this learning rule really is. In the
two scenarios where the perceptron predicts the class label correctly, the weights
remain unchanged:

() ()
1 1 0

i

j jw xη∆ = − − − =

() ()
1 1 0

i

j jw xη∆ = − =

However, in the case of a wrong prediction, the weights are being pushed towards
the direction of the positive or negative target class, respectively:

() () () ()
1 1 2

i i

j j jw x xη η∆ = − − =

() () () ()
1 1 2

i i

j j jw x xη η∆ = − − = −

To get a better intuition for the multiplicative factor
()i

jx , let us go through another
simple example, where:

() ()ˆ1, 1, 1
i i

jy y η= + = − =

Please note that the learning rate η (eta)
only has an effect on the classification
outcome if the weights are initialized to
non-zero values. If all the weights
are initialized to 0, only the scale of the
weight vector, not the direction. To have
the learning rate influence the
classification outcome, the weights need
to be initialized to non-zero values. The
respective lines in the code that need to
be changed to accomplish that are
highlighted on below:

 def __init__(self, eta=0.01, n_iter=50, random_seed=1):
 ...
 self.random_seed = random_seed

 def fit(self, X, y):
 ...
 self.w_ = np.zeros(1 + X.shape[1])
 rgen = np.random.RandomState(self.random_seed)
 self.w_ = rgen.normal(loc=0.0, scale=0.01, size=1 + X.shape[1])

Chapter 2

[23]

Let's assume that
()

0.5
i

jx = , and we misclassify this sample as -1. In this case, we

would increase the corresponding weight by 1 so that the activation
() ()i i

j jx w× will be
more positive the next time we encounter this sample and thus will be more likely to
be above the threshold of the unit step function to classify the sample as +1:

() () ()1 1 0.5 2 0.5 1
i

jw∆ = − − = =

The weight update is proportional to the value of
()i

jx . For example, if we have

another sample
()

2
i

jx = that is incorrectly classified as -1, we'd push the decision
boundary by an even larger extent to classify this sample correctly the next time:

() ()1 1 2 2 2 4jw∆ = − − = =

It is important to note that the convergence of the perceptron is only guaranteed if
the two classes are linearly separable and the learning rate is sufficiently small. If the
two classes can't be separated by a linear decision boundary, we can set a maximum
number of passes over the training dataset (epochs) and/or a threshold for the
number of tolerated misclassifications—the perceptron would never stop updating
the weights otherwise:

Downloading the example code
You can download the example code files from your account at
http://www.packtpub.com for all the Packt Publishing books
you have purchased. If you purchased this book elsewhere, you
can visit http://www.packtpub.com/support and register to
have the files e-mailed directly to you.

j

net input

Chapter 2

[27]

After the weights have been initialized, the fit method loops over all individual
samples in the training set and updates the weights according to the perceptron
learning rule that we discussed in the previous section. The class labels are predicted
by the predict method, which is also called in the fit method to predict the class
label for the weight update, but predict can also be used to predict the class labels
of new data after we have fitted our model. Furthermore, we also collect the number
of misclassifications during each epoch in the list self.errors_ so that we can
later analyze how well our perceptron performed during the training. The np.dot
function that is used in the net_input method simply calculates the vector dot
product Tw x .

Instead of using NumPy to calculate the vector dot product
between two arrays a and b via a.dot(b) or np.dot(a, b),
we could also perform the calculation in pure Python via
sum([i*j for i,j in zip(a, b)]. However, the advantage of
using NumPy over classic Python for-loop structures is that its arithmetic
operations are vectorized. Vectorization means that an elemental
arithmetic operation is automatically applied to all elements in an array.
By formulating our arithmetic operations as a sequence of instructions
on an array rather than performing a set of operations for each element
one at a time, we can make better use of our modern CPU architectures
with Single Instruction, Multiple Data (SIMD) support. Furthermore,
NumPy uses highly optimized linear algebra libraries, such as Basic
Linear Algebra Subprograms (BLAS) and Linear Algebra Package
(LAPACK) that have been written in C or Fortran. Lastly, NumPy also
allows us to write our code in a more compact and intuitive way using
the basics of linear algebra, such as vector and matrix dot products.

Training a perceptron model on the Iris
dataset
To test our perceptron implementation, we will load the two flower classes Setosa
and Versicolor from the Iris dataset. Although, the perceptron rule is not restricted to
two dimensions, we will only consider the two features sepal length and petal length
for visualization purposes. Also, we only chose the two flower classes Setosa and
Versicolor for practical reasons. However, the perceptron algorithm can be extended
to multi-class classification—for example, through the One-vs.-All technique.

)

Chapter 2

[29]

>>> y = np.where(y == 'Iris-setosa', -1, 1)

>>> X = df.iloc[0:100, [0, 2]].values

>>> plt.scatter(X[:50, 0], X[:50, 1],

... color='red', marker='o', label='setosa')

>>> plt.scatter(X[50:100, 0], X[50:100, 1],

... color='blue', marker='x', label='versicolor')

>>> plt.xlabel('sepal length')

>>> plt.ylabel('petal length')

>>> plt.legend(loc='upper left')

>>> plt.show()

After executing the preceding code example we should now see the
following scatterplot:

Now it's time to train our perceptron algorithm on the Iris data subset that we just
extracted. Also, we will plot the misclassification error for each epoch to check
if the algorithm converged and found a decision boundary that separates the two Iris
flower classes:

>>> ppn = Perceptron(eta=0.1, n_iter=10)

>>> ppn.fit(X, y)

>>> plt.plot(range(1, len(ppn.errors_) + 1), ppn.errors_,

‘sepal length [cm]’

‘petal length [cm]’

7UDLQLQJ�0DFKLQH�/HDUQLQJ�$OJRULWKPV�IRU�&ODVVLÀFDWLRQ

[30]

... marker='o')

>>> plt.xlabel('Epochs')

>>> plt.ylabel('Number of misclassifications')

>>> plt.show()

$IWHU�H[HFXWLQJ�WKH�SUHFHGLQJ�FRGH��ZH�VKRXOG�VHH�WKH�SORW�RI�WKH�PLVFODVVLÀFDWLRQ�
errors versus the number of epochs, as shown next:

As we can see in the preceding plot, our perceptron already converged after the
sixth epoch and should now be able to classify the training samples perfectly. Let
us implement a small convenience function to visualize the decision boundaries
for 2D datasets:

from matplotlib.colors import ListedColormap

def plot_decision_regions(X, y, classifier, resolution=0.02):

 # setup marker generator and color map

 markers = ('s', 'x', 'o', '^', 'v')

 colors = ('red', 'blue', 'lightgreen', 'gray', 'cyan')

updates

updates

Note: Although “misclassifications” isn’t technically wrong in this context (referring to the number
of misclassified samples while updating), it could be easily confused with the number of
misclassifications on the training set (after the perceptron model was fit). So, the label
“number of updates” (vs. “number of misclassifications”) is hopefully less ambiguous.

Chapter 2

[31]

 cmap = ListedColormap(colors[:len(np.unique(y))])

 # plot the decision surface

 x1_min, x1_max = X[:, 0].min() - 1, X[:, 0].max() + 1

 x2_min, x2_max = X[:, 1].min() - 1, X[:, 1].max() + 1

 xx1, xx2 = np.meshgrid(np.arange(x1_min, x1_max, resolution),

 np.arange(x2_min, x2_max, resolution))

 Z = classifier.predict(np.array([xx1.ravel(), xx2.ravel()]).T)

 Z = Z.reshape(xx1.shape)

 plt.contourf(xx1, xx2, Z, alpha=0.4, cmap=cmap)

 plt.xlim(xx1.min(), xx1.max())

 plt.ylim(xx2.min(), xx2.max())

 # plot class samples

 for idx, cl in enumerate(np.unique(y)):

 plt.scatter(x=X[y == cl, 0], y=X[y == cl, 1],

 alpha=0.8, c=cmap(idx),

 marker=markers[idx], label=cl)

First, we define a number of colors and markers and create a color map from
the list of colors via ListedColormap. Then, we determine the minimum and
maximum values for the two features and use those feature vectors to create a pair
of grid arrays xx1 and xx2 via the NumPy meshgrid function. Since we trained
our perceptron classifier on two feature dimensions, we need to flatten the grid
arrays and create a matrix that has the same number of columns as the Iris training
subset so that we can use the predict method to predict the class labels Z of the
corresponding grid points. After reshaping the predicted class labels Z into a grid
with the same dimensions as xx1 and xx2, we can now draw a contour plot via
matplotlib's contourf function that maps the different decision regions to different
colors for each predicted class in the grid array:

>>> plot_decision_regions(X, y, classifier=ppn)

>>> plt.xlabel('sepal length [cm]')

>>> plt.ylabel('petal length [cm]')

>>> plt.legend(loc='upper left')

>>> plt.show()

The `plt.scatter` function in the `plot_decision_regions`
plot may raise errors if you have matplotlib <= 1.5.0
installed if you use this function to plot more than
four classes as a reader pointed out: "[...] if there are
four items to be displayed as the RGBA tuple
is mis-interpreted as a list of colours".

```python
plt.scatter(x=X[y == cl, 0], y=X[y == cl, 1],
            alpha=0.8, c=cmap(idx),
            marker=markers[idx], label=cl)
```

To address this problem in older matplotlib versions,
you can replace `c=cmap(idx)` by `c=colors[idx]`.

A Tour of Machine Learning Classifiers Using Scikit-learn

[68]

Consequently, decreasing the value of the inverse regularization parameter C means
that we are increasing the regularization strength, which we can visualize by plotting
the L2 regularization path for the two weight coefficients:

>>> weights, params = [], []
>>> for c in np.arange(-5, 5):
... lr = LogisticRegression(C=10**c, random_state=0)
... lr.fit(X_train_std, y_train)
... weights.append(lr.coef_[1])
... params.append(10**c)
>>> weights = np.array(weights)
>>> plt.plot(params, weights[:, 0],
... label='petal length')
>>> plt.plot(params, weights[:, 1], linestyle='--',
... label='petal width')
>>> plt.ylabel('weight coefficient')
>>> plt.xlabel('C')
>>> plt.legend(loc='upper left')
>>> plt.xscale('log')
>>> plt.show()

By executing the preceding code, we fitted ten logistic regression models with
different values for the inverse-regularization parameter C. For the purposes of
illustration, we only collected the weight coefficients of the class 2 vs. all classifier.
Remember that we are using the OvR technique for multiclass classification.

As we can see in the resulting plot, the weight coefficients shrink if we decrease the
parameter C, that is, if we increase the regularization strength:

Since the class labels in scikit-
learn’s iris are {0, 1, 2},
this should be “the ‘2nd’ class in the
dataset (sorted in ascending order),
which refers to
class label 1”

$�7RXU�RI�0DFKLQH�/HDUQLQJ�&ODVVLÀHUV�8VLQJ�6FLNLW�OHDUQ

[����]

The positive-values slack variable is simply added to the linear constraints:

() () ()1 1i i iT if yξ≥ − =w x

() () ()1 1i i iT if yξ≤ − + = −w x

So the new objective to be minimized (subject to the preceding constraints) becomes:

()21
2

i

i
C ξ⎛ ⎞+ ⎜ ⎟
⎝ ⎠
∑w

Using the variable C��ZH�FDQ�WKHQ�FRQWURO�WKH�SHQDOW\�IRU�PLVFODVVLÀFDWLRQ��/DUJH�
values of C correspond to large error penalties whereas we are less strict about
PLVFODVVLÀFDWLRQ�HUURUV�LI�ZH�FKRRVH�VPDOOHU�YDOXHV�IRU�C. We can then we use the
parameter C to control the width of the margin and therefore tune the bias-variance
WUDGH�RII�DV�LOOXVWUDWHG�LQ�WKH�IROORZLQJ�ÀJXUH�

This concept is related to regularization, which we discussed previously in the
context of regularized regression where increasing the value of C increases the bias
and lowers the variance of the model.

It	should	be:	“increasing	the	value	of	lambda	increases	the	bias	…”	(lambda	instead	
of	C)	or	“decreasing	the	value	of	C	increases	the	bias”
It	should	be:	“increasing	the	value	of	lambda	increases	the	bias	…”	(lambda	instead	
of	C)	or	“decreasing	the	value	of	C	increases	the	bias”
It	should	be:	“increasing	the	value	of	lambda	increases	the	bias	…”	(lambda	instead	
of	C)	or	“decreasing	the	value	of	C	increases	the	bias”
It	should	be:	“increasing	the	value	of	lambda	increases	the	bias	…”	(lambda	instead	
of	C)	or	“decreasing	the	value	of	C	increases	the	bias”

A Tour of Machine Learning Classifiers Using Scikit-learn

[78]

Now that we defined the big picture behind the kernel trick, let's see if we can train
a kernel SVM that is able to draw a nonlinear decision boundary that separates the
XOR data well. Here, we simply use the SVC class from scikit-learn that we imported
earlier and replace the parameter kernel='linear' with kernel='rbf':

>>> svm = SVC(kernel='rbf', random_state=0, gamma=0.10, C=10.0)
>>> svm.fit(X_xor, y_xor)
>>> plot_decision_regions(X_xor, y_xor, classifier=svm)
>>> plt.legend(loc='upper left')
>>> plt.show()

As we can see in the resulting plot, the kernel SVM separates the XOR data
relatively well:

The γ parameter, which we set to gamma=0.1, can be understood as a cut-off
parameter for the Gaussian sphere. If we increase the value for γ , we increase the
influence or reach of the training samples, which leads to a softer decision boundary.
To get a better intuition for γ , let's apply RBF kernel SVM to our Iris flower dataset:

>>> svm = SVC(kernel='rbf', random_state=0, gamma=0.2, C=1.0)
>>> svm.fit(X_train_std, y_train)
>>> plot_decision_regions(X_combined_std,

tighter, bumpier or more pointed

Chapter 3

[83]

Here, ()|p i t is the proportion of the samples that belongs to class i for a particular
node t. The entropy is therefore 0 if all samples at a node belong to the same class,
and the entropy is maximal if we have a uniform class distribution. For example, in
a binary class setting, the entropy is 0 if ()1| 1p i t= = or ()0 | 0p i t= = . If the classes are
distributed uniformly with ()1| 0.5p i t= = and ()0 | 0.5p i t= = , the entropy is 1. Therefore,
we can say that the entropy criterion attempts to maximize the mutual information
in the tree.

Intuitively, the Gini impurity can be understood as a criterion to minimize the
probability of misclassification:

() () ()() ()2

1 1
| 1 | 1 |

c c

G
i i

I t p i t p i t p i t
= =

= − = −∑ ∑

Similar to entropy, the Gini impurity is maximal if the classes are perfectly mixed,
for example, in a binary class setting (2c =):

2

1
1 0.5 0.5

c

i=
− =∑

However, in practice both the Gini impurity and entropy typically yield very similar
results and it is often not worth spending much time on evaluating trees using
different impurity criteria rather than experimenting with different pruning cut-offs.

Another impurity measure is the classification error:

(){ }1 max |EI p i t= −

I	(t)=G

I	(t)=E

I	(t)=G

I	(t)=E

I	(t)=G

I	(t)=E

I	(t)=G

I	(t)=E

Building Good Training Sets – Data Preprocessing

[�����]

Applied to the standardized Wine data, the L1 regularized logistic regression would
yield the following sparse solution:

>>> lr = LogisticRegression(penalty='l1', C=0.1)
>>> lr.fit(X_train_std, y_train)
>>> print('Training accuracy:', lr.score(X_train_std, y_train))
Training accuracy: 0.983870967742
>>> print('Test accuracy:', lr.score(X_test_std, y_test))
Test accuracy: 0.981481481481

Both training�DQG�WHVW�DFFXUDFLHV��ERWK����SHUFHQW��GR�QRW�LQGLFDWH�DQ\�RYHUÀWWLQJ�
of our model. When we access the intercept terms via the lr.intercept_ attribute,
we can see that the array returns three values:

>>> lr.intercept_
array([-0.38379237, -0.1580855 , -0.70047966])

6LQFH�ZH�WKH�ÀW�WKH�LogisticRegression object on a multiclass dataset, it uses the
One-vs-Rest (OvR) approach�E\�GHIDXOW�ZKHUH�WKH�ÀUVW�LQWHUFHSW�EHORQJV�WR�WKH�
PRGHO�WKDW�ÀWV�FODVV���YHUVXV�FODVV���DQG����WKH�VHFRQG�YDOXH�LV�WKH�LQWHUFHSW�RI�WKH�
PRGHO�WKDW�ÀWV�FODVV���YHUVXV�FODVV���DQG����DQG�WKH�WKLUG�YDOXH�LV�WKH�LQWHUFHSW�RI�WKH�
PRGHO�WKDW�ÀWV�FODVV���YHUVXV�FODVV���DQG����UHVSHFWLYHO\�

>>> lr.coef_
array([[0.280, 0.000, 0.000, -0.0282, 0.000,
 0.000, 0.710, 0.000, 0.000, 0.000,
 0.000, 0.000, 1.236],
 [-0.644, -0.0688 , -0.0572, 0.000, 0.000,
 0.000, 0.000, 0.000, 0.000, -0.927,
 0.060, 0.000, -0.371],
 [0.000, 0.061, 0.000, 0.000, 0.000,
 0.000, -0.637, 0.000, 0.000, 0.499,
 -0.358, -0.570, 0.000
]])

The weight array that we accessed via the lr.coef_ attribute contains three rows of
ZHLJKW�FRHIÀFLHQWV��RQH�ZHLJKW�YHFWRU�IRU�HDFK�FODVV��(DFK�URZ�FRQVLVWV�RI����ZHLJKWV�
where each weight is multiplied by the respective feature in the 13-dimensional
Wine dataset to calculate the net input:

1 1 0

m T
m m j jj

z w x w x x w
=

= + + = =∑! w x

To	include	the	bias	unit,	the	“1”s	should
be	changed	to	a	0	(like	in	chapter	2).	However,	please	note	that
scikit	learn	stores	the	bias	and	the	weights
separately;	so,	it’s	maybe	better	to	write

z	=	w_{1}x_{1}	+	…	w_{m}x_{m}	+	b	=	\sum^{m}_j=1	x_{j}w_{j}	+	b	=	w^{T}	x	+	b

To	include	the	bias	unit,	the	“1”s	should
be	changed	to	a	0	(like	in	chapter	2).	However,	please	note	that
scikit	learn	stores	the	bias	and	the	weights
separately;	so,	it’s	maybe	better	to	write

z	=	w_{1}x_{1}	+	…	w_{m}x_{m}	+	b	=	\sum^{m}_j=1	x_{j}w_{j}	+	b	=	w^{T}	x	+	b

To	include	the	bias	unit,	the	“1”s	should
be	changed	to	a	0	(like	in	chapter	2).	However,	please	note	that
scikit	learn	stores	the	bias	and	the	weights
separately;	so,	it’s	maybe	better	to	write

z	=	w_{1}x_{1}	+	…	w_{m}x_{m}	+	b	=	\sum^{m}_j=1	x_{j}w_{j}	+	b	=	w^{T}	x	+	b

To	include	the	bias	unit,	the	“1”s	should
be	changed	to	a	0	(like	in	chapter	2).	However,	please	note	that
scikit	learn	stores	the	bias	and	the	weights
separately;	so,	it’s	maybe	better	to	write

z	=	w_{1}x_{1}	+	…	w_{m}x_{m}	+	b	=	\sum^{m}_j=1	x_{j}w_{j}	+	b	=	w^{T}	x	+	b

To	include	the	bias	unit,	the	“1”s	should
be	changed	to	a	0	(like	in	chapter	2).	However,	please	note	that
scikit	learn	stores	the	bias	and	the	weights
separately;	so,	it’s	maybe	better	to	write

z	=	w_{1}x_{1}	+	…	w_{m}x_{m}	+	b	=	\sum^{m}_j=1	x_{j}w_{j}	+	b	=	w^{T}	x	+	b

To	include	the	bias	unit,	the	“1”s	should
be	changed	to	a	0	(like	in	chapter	2).	However,	please	note	that
scikit	learn	stores	the	bias	and	the	weights
separately;	so,	it’s	maybe	better	to	write

z	=	w_{1}x_{1}	+	…	w_{m}x_{m}	+	b	=	\sum^{m}_j=1	x_{j}w_{j}	+	b	=	w^{T}	x	+	b

To	include	the	bias	unit,	the	“1”s	should
be	changed	to	a	0	(like	in	chapter	2).	However,	please	note	that
scikit	learn	stores	the	bias	and	the	weights
separately;	so,	it’s	maybe	better	to	write

z	=	w_{1}x_{1}	+	…	w_{m}x_{m}	+	b	=	\sum^{m}_j=1	x_{j}w_{j}	+	b	=	w^{T}	x	+	b

To	include	the	bias	unit,	the	“1”s	should
be	changed	to	a	0	(like	in	chapter	2).	However,	please	note	that
scikit	learn	stores	the	bias	and	the	weights
separately;	so,	it’s	maybe	better	to	write

z	=	w_{1}x_{1}	+	…	w_{m}x_{m}	+	b	=	\sum^{m}_j=1	x_{j}w_{j}	+	b	=	w^{T}	x	+	b

Building Good Training Sets – Data Preprocessing

[122]

>>> plt.ylabel('Accuracy')
>>> plt.xlabel('Number of features')
>>> plt.grid()
>>> plt.show()

As we can see in the following plot, the accuracy of the KNN classifier improved on
the validation dataset as we reduced the number of features, which is likely due to a
decrease of the curse of dimensionality that we discussed in the context of the KNN
algorithm in Chapter 3, A Tour of Machine Learning Classifiers Using Scikit-learn. Also,
we can see in the following plot that the classifier achieved 100 percent accuracy for
k={5, 6, 7, 8, 9, 10}:

To satisfy our own curiosity, let's see what those five features are that yielded such a
good performance on the validation dataset:

>>> k5 = list(sbs.subsets_[8])
>>> print(df_wine.columns[1:][k5])
Index(['Alcohol', 'Malic acid', 'Alcalinity of ash', 'Hue',
'Proline'], dtype='object')

Using the preceding code, we obtained the column indices of the 5-feature subset
from the 9th position in the sbs.subsets_ attribute and returned the corresponding
feature names from the column-index of the pandas Wine DataFrame.

include “11” in the list

Chapter 5

[133]

Although the explained variance plot reminds us of the feature importance that we
computed in Chapter 4, Building Good Training Sets – Data Preprocessing, via random
forests, we shall remind ourselves that PCA is an unsupervised method, which
means that information about the class labels is ignored. Whereas a random forest
uses the class membership information to compute the node impurities, variance
measures the spread of values along a feature axis.

Feature transformation
After we have successfully decomposed the covariance matrix into eigenpairs,
let's now proceed with the last three steps to transform the Wine dataset onto
the new principal component axes. In this section, we will sort the eigenpairs
by descending order of the eigenvalues, construct a projection matrix from the
selected eigenvectors, and use the projection matrix to transform the data onto
the lower-dimensional subspace.

We start by sorting the eigenpairs by decreasing order of the eigenvalues:

>>> eigen_pairs =[(np.abs(eigen_vals[i]),eigen_vecs[:,i])
... for i inrange(len(eigen_vals))]
>>> eigen_pairs.sort(reverse=True)

Next, we collect the two eigenvectors that correspond to the two largest values to
capture about 60 percent of the variance in this dataset. Note that we only chose two
eigenvectors for the purpose of illustration, since we are going to plot the data via
a two-dimensional scatter plot later in this subsection. In practice, the number of
principal components has to be determined from a trade-off between computational
HIÀFLHQF\�DQG�WKH�SHUIRUPDQFH�RI�WKH�FODVVLÀHU�

>>> w= np.hstack((eigen_pairs[0][1][:, np.newaxis],
... eigen_pairs[1][1][:, np.newaxis]))
>>> print('Matrix W:\n',w)
Matrix W:
[[0.14669811 0.50417079]
[-0.24224554 0.24216889]
[-0.02993442 0.28698484]
[-0.25519002 -0.06468718]
[0.12079772 0.22995385]
[0.38934455 0.09363991]
[0.42326486 0.01088622]
[-0.30634956 0.01870216]
[0.30572219 0.03040352]
[-0.09869191 0.54527081]

 Note: I added the `key=lambda
k: k[0]` in the sort call above
 just like I used it further below
in the LDA section.
 This is to avoid problems if
there are ties in the eigenvalue
 arrays (i.e., the sorting
algorithm will only regard the
 first element of the tuples, now).

eigen_pairs.sort(key=lambda k: k[0], reverse=True)

 Note: I added the `key=lambda
k: k[0]` in the sort call above
 just like I used it further below
in the LDA section.
 This is to avoid problems if
there are ties in the eigenvalue
 arrays (i.e., the sorting
algorithm will only regard the
 first element of the tuples, now).

eigen_pairs.sort(key=lambda k: k[0], reverse=True)

 Note: I added the `key=lambda
k: k[0]` in the sort call above
 just like I used it further below
in the LDA section.
 This is to avoid problems if
there are ties in the eigenvalue
 arrays (i.e., the sorting
algorithm will only regard the
 first element of the tuples, now).

eigen_pairs.sort(key=lambda k: k[0], reverse=True)

 Note: I added the `key=lambda
k: k[0]` in the sort call above
 just like I used it further below
in the LDA section.
 This is to avoid problems if
there are ties in the eigenvalue
 arrays (i.e., the sorting
algorithm will only regard the
 first element of the tuples, now).

eigen_pairs.sort(key=lambda k: k[0], reverse=True)

 Note: I added the `key=lambda
k: k[0]` in the sort call above
 just like I used it further below
in the LDA section.
 This is to avoid problems if
there are ties in the eigenvalue
 arrays (i.e., the sorting
algorithm will only regard the
 first element of the tuples, now).

eigen_pairs.sort(key=lambda k: k[0], reverse=True)

 Note: I added the `key=lambda
k: k[0]` in the sort call above
 just like I used it further below
in the LDA section.
 This is to avoid problems if
there are ties in the eigenvalue
 arrays (i.e., the sorting
algorithm will only regard the
 first element of the tuples, now).

eigen_pairs.sort(key=lambda k: k[0], reverse=True)

 Note: I added the `key=lambda
k: k[0]` in the sort call above
 just like I used it further below
in the LDA section.
 This is to avoid problems if
there are ties in the eigenvalue
 arrays (i.e., the sorting
algorithm will only regard the
 first element of the tuples, now).

eigen_pairs.sort(key=lambda k: k[0], reverse=True)

 Note: I added the `key=lambda
k: k[0]` in the sort call above
 just like I used it further below
in the LDA section.
 This is to avoid problems if
there are ties in the eigenvalue
 arrays (i.e., the sorting
algorithm will only regard the
 first element of the tuples, now).

eigen_pairs.sort(key=lambda k: k[0], reverse=True)

 Note: I added the `key=lambda
k: k[0]` in the sort call above
 just like I used it further below
in the LDA section.
 This is to avoid problems if
there are ties in the eigenvalue
 arrays (i.e., the sorting
algorithm will only regard the
 first element of the tuples, now).

eigen_pairs.sort(key=lambda k: k[0], reverse=True)

 Note: I added the `key=lambda
k: k[0]` in the sort call above
 just like I used it further below
in the LDA section.
 This is to avoid problems if
there are ties in the eigenvalue
 arrays (i.e., the sorting
algorithm will only regard the
 first element of the tuples, now).

eigen_pairs.sort(key=lambda k: k[0], reverse=True)

 Note: I added the `key=lambda
k: k[0]` in the sort call above
 just like I used it further below
in the LDA section.
 This is to avoid problems if
there are ties in the eigenvalue
 arrays (i.e., the sorting
algorithm will only regard the
 first element of the tuples, now).

eigen_pairs.sort(key=lambda k: k[0], reverse=True)

 Note: I added the `key=lambda
k: k[0]` in the sort call above
 just like I used it further below
in the LDA section.
 This is to avoid problems if
there are ties in the eigenvalue
 arrays (i.e., the sorting
algorithm will only regard the
 first element of the tuples, now).

eigen_pairs.sort(key=lambda k: k[0], reverse=True)

 Note: I added the `key=lambda
k: k[0]` in the sort call above
 just like I used it further below
in the LDA section.
 This is to avoid problems if
there are ties in the eigenvalue
 arrays (i.e., the sorting
algorithm will only regard the
 first element of the tuples, now).

eigen_pairs.sort(key=lambda k: k[0], reverse=True)

 Note: I added the `key=lambda
k: k[0]` in the sort call above
 just like I used it further below
in the LDA section.
 This is to avoid problems if
there are ties in the eigenvalue
 arrays (i.e., the sorting
algorithm will only regard the
 first element of the tuples, now).

eigen_pairs.sort(key=lambda k: k[0], reverse=True)

 Note: I added the `key=lambda
k: k[0]` in the sort call above
 just like I used it further below
in the LDA section.
 This is to avoid problems if
there are ties in the eigenvalue
 arrays (i.e., the sorting
algorithm will only regard the
 first element of the tuples, now).

eigen_pairs.sort(key=lambda k: k[0], reverse=True)

 Note: I added the `key=lambda
k: k[0]` in the sort call above
 just like I used it further below
in the LDA section.
 This is to avoid problems if
there are ties in the eigenvalue
 arrays (i.e., the sorting
algorithm will only regard the
 first element of the tuples, now).

eigen_pairs.sort(key=lambda k: k[0], reverse=True)

missing whtespace between “in” and “range”

Compressing Data via Dimensionality Reduction

[�����]

4. Compute the eigenvectors and corresponding eigenvalues of the
matrix 1

w B
−S S .

5. Choose the k eigenvectors that correspond to the k largest eigenvalues to
construct a d k× -dimensional transformation matrix W ; the eigenvectors are
the columns of this matrix.

6. Project the samples onto the new feature subspace using the transformation
matrix W .

The assumptions that we make when we are using LDA are that the
features are normally distributed and independent of each other.
Also, the LDA algorithm assumes that the covariance matrices for the
individual classes are identical. However, even if we violate those
assumptions to a certain extent, LDA may still work reasonably well in
GLPHQVLRQDOLW\�UHGXFWLRQ�DQG�FODVVLÀFDWLRQ�WDVNV��5��2��'XGD��3��(��+DUW��
and D. G. Stork. 3DWWHUQ�&ODVVLÀFDWLRQ���QG��(GLWLRQ��1HZ�<RUN��������

Computing the scatter matrices
Since we have already standardized the features of the Wine dataset in the PCA
VHFWLRQ�DW�WKH�EHJLQQLQJ�RI�WKLV�FKDSWHU��ZH�FDQ�VNLS�WKH�ÀUVW�VWHS�DQG�SURFHHG�ZLWK�
the calculation of the mean vectors, which we will use to construct the within-class
scatter matrix and between-class scatter matrix, respectively. Each mean vector im
stores the mean feature value mµ with respect to the samples of class i :

1

i

c

i m
Din ∈

= ∑
x

m x

This results in three mean vectors:

{ }

,

,

,

 1, 2, 3

i alcohol

i malic acid
i

i proline

i

µ
µ

µ

⎡ ⎤
⎢ ⎥
⎢ ⎥= ∈⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

!m

T

Note	the	“T”	for	“transpose”	above.	Although,	NumPy	would	handle	this	case,	it	would	
be	mathematically	wrong	to	subtract	a	column	vector	(m_i)	from	row	vectors	(samples).	
I	remember	that	I	displayed	the	mean	vectors	as	a	column	vector	for	visual	purposes	
since	the	row-vector	representation	looked	a	bit	ugly.	Somehow,	the	superscript	“T”	
must	have	gone	missing	during	the	layout	stage.tor	in	the	later	sections	

T

Note	the	“T”	for	“transpose”	above.	Although,	NumPy	would	handle	this	case,	it	would	
be	mathematically	wrong	to	subtract	a	column	vector	(m_i)	from	row	vectors	(samples).	
I	remember	that	I	displayed	the	mean	vectors	as	a	column	vector	for	visual	purposes	
since	the	row-vector	representation	looked	a	bit	ugly.	Somehow,	the	superscript	“T”	
must	have	gone	missing	during	the	layout	stage.tor	in	the	later	sections	

T

Note	the	“T”	for	“transpose”	above.	Although,	NumPy	would	handle	this	case,	it	would	
be	mathematically	wrong	to	subtract	a	column	vector	(m_i)	from	row	vectors	(samples).	
I	remember	that	I	displayed	the	mean	vectors	as	a	column	vector	for	visual	purposes	
since	the	row-vector	representation	looked	a	bit	ugly.	Somehow,	the	superscript	“T”	
must	have	gone	missing	during	the	layout	stage.tor	in	the	later	sections	

T

Note	the	“T”	for	“transpose”	above.	Although,	NumPy	would	handle	this	case,	it	would	
be	mathematically	wrong	to	subtract	a	column	vector	(m_i)	from	row	vectors	(samples).	
I	remember	that	I	displayed	the	mean	vectors	as	a	column	vector	for	visual	purposes	
since	the	row-vector	representation	looked	a	bit	ugly.	Somehow,	the	superscript	“T”	
must	have	gone	missing	during	the	layout	stage.tor	in	the	later	sections	

T

Note	the	“T”	for	“transpose”	above.	Although,	NumPy	would	handle	this	case,	it	would	
be	mathematically	wrong	to	subtract	a	column	vector	(m_i)	from	row	vectors	(samples).	
I	remember	that	I	displayed	the	mean	vectors	as	a	column	vector	for	visual	purposes	
since	the	row-vector	representation	looked	a	bit	ugly.	Somehow,	the	superscript	“T”	
must	have	gone	missing	during	the	layout	stage.tor	in	the	later	sections	

T

Note	the	“T”	for	“transpose”	above.	Although,	NumPy	would	handle	this	case,	it	would	
be	mathematically	wrong	to	subtract	a	column	vector	(m_i)	from	row	vectors	(samples).	
I	remember	that	I	displayed	the	mean	vectors	as	a	column	vector	for	visual	purposes	
since	the	row-vector	representation	looked	a	bit	ugly.	Somehow,	the	superscript	“T”	
must	have	gone	missing	during	the	layout	stage.tor	in	the	later	sections	

T

Note	the	“T”	for	“transpose”	above.	Although,	NumPy	would	handle	this	case,	it	would	
be	mathematically	wrong	to	subtract	a	column	vector	(m_i)	from	row	vectors	(samples).	
I	remember	that	I	displayed	the	mean	vectors	as	a	column	vector	for	visual	purposes	
since	the	row-vector	representation	looked	a	bit	ugly.	Somehow,	the	superscript	“T”	
must	have	gone	missing	during	the	layout	stage.tor	in	the	later	sections	

T

Note	the	“T”	for	“transpose”	above.	Although,	NumPy	would	handle	this	case,	it	would	
be	mathematically	wrong	to	subtract	a	column	vector	(m_i)	from	row	vectors	(samples).	
I	remember	that	I	displayed	the	mean	vectors	as	a	column	vector	for	visual	purposes	
since	the	row-vector	representation	looked	a	bit	ugly.	Somehow,	the	superscript	“T”	
must	have	gone	missing	during	the	layout	stage.tor	in	the	later	sections	

T

Note	the	“T”	for	“transpose”	above.	Although,	NumPy	would	handle	this	case,	it	would	
be	mathematically	wrong	to	subtract	a	column	vector	(m_i)	from	row	vectors	(samples).	
I	remember	that	I	displayed	the	mean	vectors	as	a	column	vector	for	visual	purposes	
since	the	row-vector	representation	looked	a	bit	ugly.	Somehow,	the	superscript	“T”	
must	have	gone	missing	during	the	layout	stage.tor	in	the	later	sections	

T

Note	the	“T”	for	“transpose”	above.	Although,	NumPy	would	handle	this	case,	it	would	
be	mathematically	wrong	to	subtract	a	column	vector	(m_i)	from	row	vectors	(samples).	
I	remember	that	I	displayed	the	mean	vectors	as	a	column	vector	for	visual	purposes	
since	the	row-vector	representation	looked	a	bit	ugly.	Somehow,	the	superscript	“T”	
must	have	gone	missing	during	the	layout	stage.tor	in	the	later	sections	

T

Note	the	“T”	for	“transpose”	above.	Although,	NumPy	would	handle	this	case,	it	would	
be	mathematically	wrong	to	subtract	a	column	vector	(m_i)	from	row	vectors	(samples).	
I	remember	that	I	displayed	the	mean	vectors	as	a	column	vector	for	visual	purposes	
since	the	row-vector	representation	looked	a	bit	ugly.	Somehow,	the	superscript	“T”	
must	have	gone	missing	during	the	layout	stage.tor	in	the	later	sections	

T

Note	the	“T”	for	“transpose”	above.	Although,	NumPy	would	handle	this	case,	it	would	
be	mathematically	wrong	to	subtract	a	column	vector	(m_i)	from	row	vectors	(samples).	
I	remember	that	I	displayed	the	mean	vectors	as	a	column	vector	for	visual	purposes	
since	the	row-vector	representation	looked	a	bit	ugly.	Somehow,	the	superscript	“T”	
must	have	gone	missing	during	the	layout	stage.tor	in	the	later	sections	

T

Note	the	“T”	for	“transpose”	above.	Although,	NumPy	would	handle	this	case,	it	would	
be	mathematically	wrong	to	subtract	a	column	vector	(m_i)	from	row	vectors	(samples).	
I	remember	that	I	displayed	the	mean	vectors	as	a	column	vector	for	visual	purposes	
since	the	row-vector	representation	looked	a	bit	ugly.	Somehow,	the	superscript	“T”	
must	have	gone	missing	during	the	layout	stage.tor	in	the	later	sections	

T

Note	the	“T”	for	“transpose”	above.	Although,	NumPy	would	handle	this	case,	it	would	
be	mathematically	wrong	to	subtract	a	column	vector	(m_i)	from	row	vectors	(samples).	
I	remember	that	I	displayed	the	mean	vectors	as	a	column	vector	for	visual	purposes	
since	the	row-vector	representation	looked	a	bit	ugly.	Somehow,	the	superscript	“T”	
must	have	gone	missing	during	the	layout	stage.tor	in	the	later	sections	

T

Note	the	“T”	for	“transpose”	above.	Although,	NumPy	would	handle	this	case,	it	would	
be	mathematically	wrong	to	subtract	a	column	vector	(m_i)	from	row	vectors	(samples).	
I	remember	that	I	displayed	the	mean	vectors	as	a	column	vector	for	visual	purposes	
since	the	row-vector	representation	looked	a	bit	ugly.	Somehow,	the	superscript	“T”	
must	have	gone	missing	during	the	layout	stage.tor	in	the	later	sections	

T

Note	the	“T”	for	“transpose”	above.	Although,	NumPy	would	handle	this	case,	it	would	
be	mathematically	wrong	to	subtract	a	column	vector	(m_i)	from	row	vectors	(samples).	
I	remember	that	I	displayed	the	mean	vectors	as	a	column	vector	for	visual	purposes	
since	the	row-vector	representation	looked	a	bit	ugly.	Somehow,	the	superscript	“T”	
must	have	gone	missing	during	the	layout	stage.tor	in	the	later	sections	

T

Note	the	“T”	for	“transpose”	above.	Although,	NumPy	would	handle	this	case,	it	would	
be	mathematically	wrong	to	subtract	a	column	vector	(m_i)	from	row	vectors	(samples).	
I	remember	that	I	displayed	the	mean	vectors	as	a	column	vector	for	visual	purposes	
since	the	row-vector	representation	looked	a	bit	ugly.	Somehow,	the	superscript	“T”	
must	have	gone	missing	during	the	layout	stage.tor	in	the	later	sections	

T

Note	the	“T”	for	“transpose”	above.	Although,	NumPy	would	handle	this	case,	it	would	
be	mathematically	wrong	to	subtract	a	column	vector	(m_i)	from	row	vectors	(samples).	
I	remember	that	I	displayed	the	mean	vectors	as	a	column	vector	for	visual	purposes	
since	the	row-vector	representation	looked	a	bit	ugly.	Somehow,	the	superscript	“T”	
must	have	gone	missing	during	the	layout	stage.tor	in	the	later	sections	

T

Note	the	“T”	for	“transpose”	above.	Although,	NumPy	would	handle	this	case,	it	would	
be	mathematically	wrong	to	subtract	a	column	vector	(m_i)	from	row	vectors	(samples).	
I	remember	that	I	displayed	the	mean	vectors	as	a	column	vector	for	visual	purposes	
since	the	row-vector	representation	looked	a	bit	ugly.	Somehow,	the	superscript	“T”	
must	have	gone	missing	during	the	layout	stage.tor	in	the	later	sections	

T

Note	the	“T”	for	“transpose”	above.	Although,	NumPy	would	handle	this	case,	it	would	
be	mathematically	wrong	to	subtract	a	column	vector	(m_i)	from	row	vectors	(samples).	
I	remember	that	I	displayed	the	mean	vectors	as	a	column	vector	for	visual	purposes	
since	the	row-vector	representation	looked	a	bit	ugly.	Somehow,	the	superscript	“T”	
must	have	gone	missing	during	the	layout	stage.tor	in	the	later	sections	

T

Note	the	“T”	for	“transpose”	above.	Although,	NumPy	would	handle	this	case,	it	would	
be	mathematically	wrong	to	subtract	a	column	vector	(m_i)	from	row	vectors	(samples).	
I	remember	that	I	displayed	the	mean	vectors	as	a	column	vector	for	visual	purposes	
since	the	row-vector	representation	looked	a	bit	ugly.	Somehow,	the	superscript	“T”	
must	have	gone	missing	during	the	layout	stage.tor	in	the	later	sections	

T

Note	the	“T”	for	“transpose”	above.	Although,	NumPy	would	handle	this	case,	it	would	
be	mathematically	wrong	to	subtract	a	column	vector	(m_i)	from	row	vectors	(samples).	
I	remember	that	I	displayed	the	mean	vectors	as	a	column	vector	for	visual	purposes	
since	the	row-vector	representation	looked	a	bit	ugly.	Somehow,	the	superscript	“T”	
must	have	gone	missing	during	the	layout	stage.tor	in	the	later	sections	

T

Note	the	“T”	for	“transpose”	above.	Although,	NumPy	would	handle	this	case,	it	would	
be	mathematically	wrong	to	subtract	a	column	vector	(m_i)	from	row	vectors	(samples).	
I	remember	that	I	displayed	the	mean	vectors	as	a	column	vector	for	visual	purposes	
since	the	row-vector	representation	looked	a	bit	ugly.	Somehow,	the	superscript	“T”	
must	have	gone	missing	during	the	layout	stage.tor	in	the	later	sections	

T

Note	the	“T”	for	“transpose”	above.	Although,	NumPy	would	handle	this	case,	it	would	
be	mathematically	wrong	to	subtract	a	column	vector	(m_i)	from	row	vectors	(samples).	
I	remember	that	I	displayed	the	mean	vectors	as	a	column	vector	for	visual	purposes	
since	the	row-vector	representation	looked	a	bit	ugly.	Somehow,	the	superscript	“T”	
must	have	gone	missing	during	the	layout	stage.tor	in	the	later	sections	

T

Note	the	“T”	for	“transpose”	above.	Although,	NumPy	would	handle	this	case,	it	would	
be	mathematically	wrong	to	subtract	a	column	vector	(m_i)	from	row	vectors	(samples).	
I	remember	that	I	displayed	the	mean	vectors	as	a	column	vector	for	visual	purposes	
since	the	row-vector	representation	looked	a	bit	ugly.	Somehow,	the	superscript	“T”	
must	have	gone	missing	during	the	layout	stage.tor	in	the	later	sections	

T

Note	the	“T”	for	“transpose”	above.	Although,	NumPy	would	handle	this	case,	it	would	
be	mathematically	wrong	to	subtract	a	column	vector	(m_i)	from	row	vectors	(samples).	
I	remember	that	I	displayed	the	mean	vectors	as	a	column	vector	for	visual	purposes	
since	the	row-vector	representation	looked	a	bit	ugly.	Somehow,	the	superscript	“T”	
must	have	gone	missing	during	the	layout	stage.tor	in	the	later	sections	

T

Note	the	“T”	for	“transpose”	above.	Although,	NumPy	would	handle	this	case,	it	would	
be	mathematically	wrong	to	subtract	a	column	vector	(m_i)	from	row	vectors	(samples).	
I	remember	that	I	displayed	the	mean	vectors	as	a	column	vector	for	visual	purposes	
since	the	row-vector	representation	looked	a	bit	ugly.	Somehow,	the	superscript	“T”	
must	have	gone	missing	during	the	layout	stage.tor	in	the	later	sections	

T

Note	the	“T”	for	“transpose”	above.	Although,	NumPy	would	handle	this	case,	it	would	
be	mathematically	wrong	to	subtract	a	column	vector	(m_i)	from	row	vectors	(samples).	
I	remember	that	I	displayed	the	mean	vectors	as	a	column	vector	for	visual	purposes	
since	the	row-vector	representation	looked	a	bit	ugly.	Somehow,	the	superscript	“T”	
must	have	gone	missing	during	the	layout	stage.tor	in	the	later	sections	

T

Note	the	“T”	for	“transpose”	above.	Although,	NumPy	would	handle	this	case,	it	would	
be	mathematically	wrong	to	subtract	a	column	vector	(m_i)	from	row	vectors	(samples).	
I	remember	that	I	displayed	the	mean	vectors	as	a	column	vector	for	visual	purposes	
since	the	row-vector	representation	looked	a	bit	ugly.	Somehow,	the	superscript	“T”	
must	have	gone	missing	during	the	layout	stage.tor	in	the	later	sections	

T

Note	the	“T”	for	“transpose”	above.	Although,	NumPy	would	handle	this	case,	it	would	
be	mathematically	wrong	to	subtract	a	column	vector	(m_i)	from	row	vectors	(samples).	
I	remember	that	I	displayed	the	mean	vectors	as	a	column	vector	for	visual	purposes	
since	the	row-vector	representation	looked	a	bit	ugly.	Somehow,	the	superscript	“T”	
must	have	gone	missing	during	the	layout	stage.tor	in	the	later	sections	

T

Note	the	“T”	for	“transpose”	above.	Although,	NumPy	would	handle	this	case,	it	would	
be	mathematically	wrong	to	subtract	a	column	vector	(m_i)	from	row	vectors	(samples).	
I	remember	that	I	displayed	the	mean	vectors	as	a	column	vector	for	visual	purposes	
since	the	row-vector	representation	looked	a	bit	ugly.	Somehow,	the	superscript	“T”	
must	have	gone	missing	during	the	layout	stage.tor	in	the	later	sections	

T

Note	the	“T”	for	“transpose”	above.	Although,	NumPy	would	handle	this	case,	it	would	
be	mathematically	wrong	to	subtract	a	column	vector	(m_i)	from	row	vectors	(samples).	
I	remember	that	I	displayed	the	mean	vectors	as	a	column	vector	for	visual	purposes	
since	the	row-vector	representation	looked	a	bit	ugly.	Somehow,	the	superscript	“T”	
must	have	gone	missing	during	the	layout	stage.tor	in	the	later	sections	

Compressing Data via Dimensionality Reduction

[�����]

The assumption that we are making when we are computing the scatter matrices
is that the class labels in the training set are uniformly distributed. However, if
we print the number of class labels, we see that this assumption is violated:

>>> print('Class label distribution: %s'
... % np.bincount(y_train)[1:])
Class label distribution: [40 49 35]

Thus, we want to scale the individual scatter matrices iS before we sum them up
as scatter matrix wS . When we divide the scatter matrices by the number of class
samples iN , we can see that computing the scatter matrix is in fact the same as
computing the covariance matrix i∑ . The covariance matrix is a normalized
version of the scatter matrix:

()()1 1

i

c
T

i W i i
Di iN N ∈

∑ = = − −∑
x

S x m x m

>>> d = 13 # number of features
>>> S_W = np.zeros((d, d))
>>> for label,mv in zip(range(1, 4), mean_vecs):
... class_scatter = np.cov(X_train_std[y_train==label].T)
... S_W += class_scatter
>>> print('Scaled within-class scatter matrix: %sx%s'
... % (S_W.shape[0], S_W.shape[1]))
Scaled within-class scatter matrix: 13x13

After we have computed the scaled within-class scatter matrix (or covariance
matrix), we can move on to the next step and compute the between-class scatter
matrix BS :

()()
1

T
i i i

i
N

=

= − −∑
c

BS m m m m

Here, m is the overall mean that is computed, including samples from all classes.

>>> mean_overall = np.mean(X_train_std, axis=0)
>>> d = 13 # number of features
>>> S_B = np.zeros((d, d))
>>> for i,mean_vec in enumerate(mean_vecs):
... n = X_train[y_train==i+1, :].shape[0]
... mean_vec = mean_vec.reshape(d, 1)
... mean_overall = mean_overall.reshape(d, 1)
 S_B += n * (mean_vec - mean_overall).dot(

The	three	dots	must	have	gone	lost	during	the	layout;	the	S_B	should	be	within	the	for-loop
of	course!	

...	

The	three	dots	must	have	gone	lost	during	the	layout;	the	S_B	should	be	within	the	for-loop
of	course!	

...	

The	three	dots	must	have	gone	lost	during	the	layout;	the	S_B	should	be	within	the	for-loop
of	course!	

...	

The	three	dots	must	have	gone	lost	during	the	layout;	the	S_B	should	be	within	the	for-loop
of	course!	

...	

The	three	dots	must	have	gone	lost	during	the	layout;	the	S_B	should	be	within	the	for-loop
of	course!	

...	

The	three	dots	must	have	gone	lost	during	the	layout;	the	S_B	should	be	within	the	for-loop
of	course!	

...	

The	three	dots	must	have	gone	lost	during	the	layout;	the	S_B	should	be	within	the	for-loop
of	course!	

...	

The	three	dots	must	have	gone	lost	during	the	layout;	the	S_B	should	be	within	the	for-loop
of	course!	

...	

The	three	dots	must	have	gone	lost	during	the	layout;	the	S_B	should	be	within	the	for-loop
of	course!	

...	

The	three	dots	must	have	gone	lost	during	the	layout;	the	S_B	should	be	within	the	for-loop
of	course!	

...	

The	three	dots	must	have	gone	lost	during	the	layout;	the	S_B	should	be	within	the	for-loop
of	course!	

...	

The	three	dots	must	have	gone	lost	during	the	layout;	the	S_B	should	be	within	the	for-loop
of	course!	

...	

The	three	dots	must	have	gone	lost	during	the	layout;	the	S_B	should	be	within	the	for-loop
of	course!	

...	

The	three	dots	must	have	gone	lost	during	the	layout;	the	S_B	should	be	within	the	for-loop
of	course!	

...	

The	three	dots	must	have	gone	lost	during	the	layout;	the	S_B	should	be	within	the	for-loop
of	course!	

...	

The	three	dots	must	have	gone	lost	during	the	layout;	the	S_B	should	be	within	the	for-loop
of	course!	

...	

The	three	dots	must	have	gone	lost	during	the	layout;	the	S_B	should	be	within	the	for-loop
of	course!	

...	

The	three	dots	must	have	gone	lost	during	the	layout;	the	S_B	should	be	within	the	for-loop
of	course!	

...	

The	three	dots	must	have	gone	lost	during	the	layout;	the	S_B	should	be	within	the	for-loop
of	course!	

...	

The	three	dots	must	have	gone	lost	during	the	layout;	the	S_B	should	be	within	the	for-loop
of	course!	

...	

The	three	dots	must	have	gone	lost	during	the	layout;	the	S_B	should	be	within	the	for-loop
of	course!	

...	

The	three	dots	must	have	gone	lost	during	the	layout;	the	S_B	should	be	within	the	for-loop
of	course!	

...	

The	three	dots	must	have	gone	lost	during	the	layout;	the	S_B	should	be	within	the	for-loop
of	course!	

...	

The	three	dots	must	have	gone	lost	during	the	layout;	the	S_B	should	be	within	the	for-loop
of	course!	

...	

The	three	dots	must	have	gone	lost	during	the	layout;	the	S_B	should	be	within	the	for-loop
of	course!	

...	

The	three	dots	must	have	gone	lost	during	the	layout;	the	S_B	should	be	within	the	for-loop
of	course!	

...	

The	three	dots	must	have	gone	lost	during	the	layout;	the	S_B	should	be	within	the	for-loop
of	course!	

...	

The	three	dots	must	have	gone	lost	during	the	layout;	the	S_B	should	be	within	the	for-loop
of	course!	

...	

The	three	dots	must	have	gone	lost	during	the	layout;	the	S_B	should	be	within	the	for-loop
of	course!	

...	

The	three	dots	must	have	gone	lost	during	the	layout;	the	S_B	should	be	within	the	for-loop
of	course!	

...	

The	three	dots	must	have	gone	lost	during	the	layout;	the	S_B	should	be	within	the	for-loop
of	course!	

...	

The	three	dots	must	have	gone	lost	during	the	layout;	the	S_B	should	be	within	the	for-loop
of	course!	

...	

The	three	dots	must	have	gone	lost	during	the	layout;	the	S_B	should	be	within	the	for-loop
of	course!	

...	

The	three	dots	must	have	gone	lost	during	the	layout;	the	S_B	should	be	within	the	for-loop
of	course!	

...	

The	three	dots	must	have	gone	lost	during	the	layout;	the	S_B	should	be	within	the	for-loop
of	course!	

...	

The	three	dots	must	have	gone	lost	during	the	layout;	the	S_B	should	be	within	the	for-loop
of	course!	

...	

The	three	dots	must	have	gone	lost	during	the	layout;	the	S_B	should	be	within	the	for-loop
of	course!	

...	

The	three	dots	must	have	gone	lost	during	the	layout;	the	S_B	should	be	within	the	for-loop
of	course!	

...	

The	three	dots	must	have	gone	lost	during	the	layout;	the	S_B	should	be	within	the	for-loop
of	course!	

...	

The	three	dots	must	have	gone	lost	during	the	layout;	the	S_B	should	be	within	the	for-loop
of	course!	

...	

The	three	dots	must	have	gone	lost	during	the	layout;	the	S_B	should	be	within	the	for-loop
of	course!	

...	

The	three	dots	must	have	gone	lost	during	the	layout;	the	S_B	should	be	within	the	for-loop
of	course!	

...	

The	three	dots	must	have	gone	lost	during	the	layout;	the	S_B	should	be	within	the	for-loop
of	course!	

...	

The	three	dots	must	have	gone	lost	during	the	layout;	the	S_B	should	be	within	the	for-loop
of	course!	

...	

The	three	dots	must	have	gone	lost	during	the	layout;	the	S_B	should	be	within	the	for-loop
of	course!	

...	

The	three	dots	must	have	gone	lost	during	the	layout;	the	S_B	should	be	within	the	for-loop
of	course!	

...	

The	three	dots	must	have	gone	lost	during	the	layout;	the	S_B	should	be	within	the	for-loop
of	course!	

...	

The	three	dots	must	have	gone	lost	during	the	layout;	the	S_B	should	be	within	the	for-loop
of	course!	

...	

The	three	dots	must	have	gone	lost	during	the	layout;	the	S_B	should	be	within	the	for-loop
of	course!	

...	

The	three	dots	must	have	gone	lost	during	the	layout;	the	S_B	should	be	within	the	for-loop
of	course!	

...	

The	three	dots	must	have	gone	lost	during	the	layout;	the	S_B	should	be	within	the	for-loop
of	course!	

...	

The	three	dots	must	have	gone	lost	during	the	layout;	the	S_B	should	be	within	the	for-loop
of	course!	

...	

The	three	dots	must	have	gone	lost	during	the	layout;	the	S_B	should	be	within	the	for-loop
of	course!	

...	

The	three	dots	must	have	gone	lost	during	the	layout;	the	S_B	should	be	within	the	for-loop
of	course!	

...	

The	three	dots	must	have	gone	lost	during	the	layout;	the	S_B	should	be	within	the	for-loop
of	course!	

...	

The	three	dots	must	have	gone	lost	during	the	layout;	the	S_B	should	be	within	the	for-loop
of	course!	

...	

The	three	dots	must	have	gone	lost	during	the	layout;	the	S_B	should	be	within	the	for-loop
of	course!	

...	

The	three	dots	must	have	gone	lost	during	the	layout;	the	S_B	should	be	within	the	for-loop
of	course!	

...	

The	three	dots	must	have	gone	lost	during	the	layout;	the	S_B	should	be	within	the	for-loop
of	course!	

...	

The	three	dots	must	have	gone	lost	during	the	layout;	the	S_B	should	be	within	the	for-loop
of	course!	

...	

The	three	dots	must	have	gone	lost	during	the	layout;	the	S_B	should	be	within	the	for-loop
of	course!	

...	

The	three	dots	must	have	gone	lost	during	the	layout;	the	S_B	should	be	within	the	for-loop
of	course!	

...	

The	three	dots	must	have	gone	lost	during	the	layout;	the	S_B	should	be	within	the	for-loop
of	course!	

...	

The	three	dots	must	have	gone	lost	during	the	layout;	the	S_B	should	be	within	the	for-loop
of	course!	

...	

Chapter 5

[145]

Let's now stack the two most discriminative eigenvector columns to create the
transformation matrix W :

>>> w = np.hstack((eigen_pairs[0][1][:, np.newaxis].real,
... eigen_pairs[1][1][:, np.newaxis].real))
>>> print('Matrix W:\n', w)
Matrix W:
[[0.0662 -0.3797]
[-0.0386 -0.2206]
[0.0217 -0.3816]
[-0.184 0.3018]
[0.0034 0.0141]
[-0.2326 0.0234]
[0.7747 0.1869]
[0.0811 0.0696]
[-0.0875 0.1796]
[-0.185 -0.284]
[0.066 0.2349]
[0.3805 0.073]
[0.3285 -0.5971]]

Projecting samples onto the new feature
space
Using the transformation matrix W that we created in the previous subsection,
we can now transform the training data set by multiplying the matrices:

′ =X XW

>>> X_train_lda = X_train_std.dot(w)
>>> colors = ['r', 'b', 'g']
>>> markers = ['s', 'x', 'o']
>>> for l, c, m in zip(np.unique(y_train), colors, markers):
... plt.scatter(X_train_lda[y_train==l, 0]*(-1)
... X_train_lda[y_train==l, 1]*(-1)
... c=c, label=l, marker=m)
>>> plt.xlabel('LD 1')
>>> plt.ylabel('LD 2')
>>> plt.legend(loc='lower right')
>>> plt.show()

,

Note the missing comma

Chapter 5

[�����]

/RRNLQJ�DW�WKH�UHVXOWLQJ�SORW��ZH�VHH�WKDW�WKH�ORJLVWLF�UHJUHVVLRQ�PRGHO�PLVFODVVLÀHV�
one of the samples from class 2:

By lowering the regularization strength, we could probably shift the decision
boundaries so that the logistic regression models classify all samples in the training
dataset correctly. However, let's take a look at the results on the test set:

>>> X_test_lda = lda.transform(X_test_std)
>>> plot_decision_regions(X_test_lda, y_test, classifier=lr)
>>> plt.xlabel('LD 1')
>>> plt.ylabel('LD 2')
>>> plt.legend(loc='lower left')
>>> plt.show()

$V�ZH�FDQ�VHH�LQ�WKH�UHVXOWLQJ�SORW��WKH�ORJLVWLF�UHJUHVVLRQ�FODVVLÀHU�LV�DEOH�WR�JHW�D�
perfect accuracy score for classifying the samples in the test dataset by only using a
two-dimensional feature subspace instead of the original 13 Wine features:

For some reason,
these 2 images got
flipped during
layouting

Compressing Data via Dimensionality Reduction

[150]

Note that the preceding equation refers to the covariance between two features;

now, let's write the general equation to calculate the covariance matrix ∑ :

() ()

1

1
n

T

in =

=∑ ∑ i ix x

Bernhard Scholkopf generalized this approach (B. Scholkopf, A. Smola, and
K.-R. Muller. Kernel Principal Component Analysis. pages 583–588, 1997) so that we
can replace the dot products between samples in the original feature space by the
nonlinear feature combinations via φ :

()() ()

1
()1 T

n

in
φ φ

=

=∑ ∑ i ix x

To obtain the eigenvectors—the principal components—from this covariance matrix,
we have to solve the following equation:

λΣ =v v

()() ()()
1

1
T

i

i
n

i

n
φ φ λ

=

⇒ =∑ x x v v

()() ()() () ()()
1 1

1 1 i i
n nT i i

i i
v
n n

φ φ φ
λ = =

⇒ = =∑ ∑x x v a x

Here, λ and v are the eigenvalues and eigenvectors of the covariance matrix , and
a can be obtained by extracting the eigenvectors of the kernel (similarity) matrix K
as we will see in the following paragraphs.

The derivation of the kernel matrix is as follows:

First, let's write the covariance matrix as in matrix notation, where ()Xφ is an
n k× -dimensional matrix:

()() ()() () ()
1

1 1
n T T

in n
φ φ φ φ

=

= =∑ ∑ i ix x X X

Sebastian Raschka

Chapter 5

[151]

Now, we can write the eigenvector equation as follows:

() ()() ()
1

1 n
T

i
v a
n

φ λφ
=

= =∑ i ix X a

Since λΣ =v v , we get:

() () () ()1 T T T

n
φ φ φ λφ=X X X a X a

Multiplying it by ()φ X on both sides yields the following result:

() () () () () ()1 T T T

n
φ φ φ φ λφ φ=X X X X a X X a

() ()1 T

n
φ φ λ⇒ =X X a a

1
n

λ⇒ =Ka a

Here, K is the similarity (kernel) matrix:

() ()Tφ φ=K X X

As we recall from the SVM section in Chapter 3, A Tour of Machine Learning Classifiers
Using Scikit-learn, we use the kernel trick to avoid calculating the pairwise dot
products of the samples x under φ explicitly by using a kernel function K so that
we don't need to calculate the eigenvectors explicitly:

() ()() ()() ()(),
Ti j i jk φ φ=x x x x

In other words, what we obtain after kernel PCA are the samples already projected
onto the respective components rather than constructing a transformation matrix as
in the standard PCA approach. Basically, the kernel function (or simply kernel) can
be understood as a function that calculates a dot product between two vectors—a
measure of similarity.

Sebastian Raschka

Sebastian Raschka

Chapter 7

[�����]

To predict a class label via a simple majority or plurality voting, we combine the
SUHGLFWHG�FODVV�ODEHOV�RI�HDFK�LQGLYLGXDO�FODVVLÀHU� jC and select the class label ŷ that
received the most votes:

() () (){ }1 2ˆ , , , my mode C C C= …x x x

)RU�H[DPSOH��LQ�D�ELQDU\�FODVVLÀFDWLRQ�WDVN�ZKHUH� 1 1class = − and 2 1class = + , we can
write the majority vote prediction as follows:

() () ()1 0
1

m
ji

j
j

if C
C sig n C

otherwise
⎧ ≥⎡ ⎤ ⎪= = ⎨⎢ ⎥
−⎪⎣ ⎦ ⎩

∑∑
x

x x

To illustrate ZK\�HQVHPEOH�PHWKRGV�FDQ�ZRUN�EHWWHU�WKDQ�LQGLYLGXDO�FODVVLÀHUV�
alone, let's apply the simple concepts of combinatorics. For the following example,
we make the assumption that all n�EDVH�FODVVLÀHUV�IRU�D�ELQDU\�FODVVLÀFDWLRQ�WDVN�KDYH�
an equal error rate ε ��)XUWKHUPRUH��ZH�DVVXPH�WKDW�WKH�FODVVLÀHUV�DUH�LQGHSHQGHQW�
and the error rates are not correlated. Under those assumptions, we can simply
H[SUHVV�WKH�HUURU�SUREDELOLW\�RI�DQ�HQVHPEOH�RI�EDVH�FODVVLÀHUV�DV�D�SUREDELOLW\�
mass function of a binomial distribution:

() ()1
n

n kk
ensemble

k

n
P y k

k
ε ε ε−≥ = − =∑

Here, nk �LV�WKH�ELQRPLDO�FRHIÀFLHQW�n choose k. In other words, we compute the
probability that the prediction of the ensemble is wrong. Now let's take a look
DW�D�PRUH�FRQFUHWH�H[DPSOH�RI����EDVH�FODVVLÀHUV�� 11n =) with an error rate of
0.25 (0.25ε =):

() ()
11

11

6

11
0.25 1 0.034kk

k
P y k

k
ε −

=

≥ = − =∑
0.250.250.250.250.250.250.250.250.250.250.250.250.250.250.250.25

Combining Different Models for Ensemble Learning

[�����]

As we can see, the error rate of the ensemble (0.034) is much lower than the error
UDWH�RI�HDFK�LQGLYLGXDO�FODVVLÀHU��������LI�DOO�WKH�DVVXPSWLRQV�DUH�PHW��1RWH�WKDW��LQ�
WKLV�VLPSOLÀHG�LOOXVWUDWLRQ��D�������VSOLW�E\�DQ�HYHQ�QXPEHU�RI�FODVVLÀHUV�n is treated
as an error, whereas this is only true half of the time. To compare such an idealistic
HQVHPEOH�FODVVLÀHU�WR�D�EDVH�FODVVLÀHU�RYHU�D�UDQJH�RI�GLIIHUHQW�EDVH�HUURU�UDWHV��OHW
V�
implement the probability mass function in Python:

>>> from scipy.misc import comb
>>> import math
>>> def ensemble_error(n_classifier, error):
... k_start = math.ceil(n_classifier / 2.0)
... probs = [comb(n_classifier, k) *
... error**k *
... (1-error)**(n_classifier - k)
... for k in range(k_start, n_classifier + 1)]
... return sum(probs)
>>> ensemble_error(n_classifier=11, error=0.25)
0.034327507019042969

After we've implemented the ensemble_error function, we can compute the
ensemble error rates for a range of different base errors from 0.0 to 1.0 to visualize
the relationship between ensemble and base errors in a line graph:

>>> import numpy as np
>>> error_range = np.arange(0.0, 1.01, 0.01)
>>> ens_errors = [ensemble_error(n_classifier=11, error=error)
... for error in error_range]
>>> import matplotlib.pyplot as plt
>>> plt.plot(error_range, ens_errors,
... label='Ensemble error',
... linewidth=2)
>>> plt.plot(error_range, error_range,
... linestyle='--', label='Base error',
... linewidth=2)
>>> plt.xlabel('Base error')
>>> plt.ylabel('Base/Ensemble error')
>>> plt.legend(loc='upper left')
>>> plt.grid()
>>> plt.show()

As we can see in the resulting plot, the error probability of an ensemble is always
EHWWHU�WKDQ�WKH�HUURU�RI�DQ�LQGLYLGXDO�EDVH�FODVVLÀHU�DV�ORQJ�DV�WKH�EDVH�FODVVLÀHUV�
perform better than random guessing (0.5ε <). Note that the y-axis depicts the base
error (dotted line) as well as the ensemble error (continuous line):

For	historical	reasons,	Python	2.7's	
`math.ceil`	returns	a	`float`	instead	of	an	
integer	like	in	Python	3.x.	Although	Although	
this	book	was	written	for	Python	>3.4,	let's	
make	it	compatible	to	Python	2.7	by	casting	it	
to	an	it	explicitely:

int()

For	historical	reasons,	Python	2.7's	
`math.ceil`	returns	a	`float`	instead	of	an	
integer	like	in	Python	3.x.	Although	Although	
this	book	was	written	for	Python	>3.4,	let's	
make	it	compatible	to	Python	2.7	by	casting	it	
to	an	it	explicitely:

int()

For	historical	reasons,	Python	2.7's	
`math.ceil`	returns	a	`float`	instead	of	an	
integer	like	in	Python	3.x.	Although	Although	
this	book	was	written	for	Python	>3.4,	let's	
make	it	compatible	to	Python	2.7	by	casting	it	
to	an	it	explicitely:

int()

For	historical	reasons,	Python	2.7's	
`math.ceil`	returns	a	`float`	instead	of	an	
integer	like	in	Python	3.x.	Although	Although	
this	book	was	written	for	Python	>3.4,	let's	
make	it	compatible	to	Python	2.7	by	casting	it	
to	an	it	explicitely:

int()

For	historical	reasons,	Python	2.7's	
`math.ceil`	returns	a	`float`	instead	of	an	
integer	like	in	Python	3.x.	Although	Although	
this	book	was	written	for	Python	>3.4,	let's	
make	it	compatible	to	Python	2.7	by	casting	it	
to	an	it	explicitely:

int()

For	historical	reasons,	Python	2.7's	
`math.ceil`	returns	a	`float`	instead	of	an	
integer	like	in	Python	3.x.	Although	Although	
this	book	was	written	for	Python	>3.4,	let's	
make	it	compatible	to	Python	2.7	by	casting	it	
to	an	it	explicitely:

int()

For	historical	reasons,	Python	2.7's	
`math.ceil`	returns	a	`float`	instead	of	an	
integer	like	in	Python	3.x.	Although	Although	
this	book	was	written	for	Python	>3.4,	let's	
make	it	compatible	to	Python	2.7	by	casting	it	
to	an	it	explicitely:

int()

For	historical	reasons,	Python	2.7's	
`math.ceil`	returns	a	`float`	instead	of	an	
integer	like	in	Python	3.x.	Although	Although	
this	book	was	written	for	Python	>3.4,	let's	
make	it	compatible	to	Python	2.7	by	casting	it	
to	an	it	explicitely:

int()

Chapter 7

[�����]

To translate the concept of the weighted majority vote into Python code, we can use
NumPy's convenient argmax and bincount functions:

>>> import numpy as np
>>> np.argmax(np.bincount([0, 0, 1],
... weights=[0.2, 0.2, 0.6]))
1

As discussed in Chapter 3, $�7RXU�RI�0DFKLQH�/HDUQLQJ�&ODVVLÀHUV�8VLQJ�6FLNLW�OHDUQ,
FHUWDLQ�FODVVLÀHUV�LQ�VFLNLW�OHDUQ�FDQ�DOVR�UHWXUQ�WKH�SUREDELOLW\�RI�D�SUHGLFWHG�FODVV�
label via the predict_proba method. Using the predicted class probabilities instead
RI�WKH�FODVV�ODEHOV�IRU�PDMRULW\�YRWLQJ�FDQ�EH�XVHIXO�LI�WKH�FODVVLÀHUV�LQ�RXU�HQVHPEOH�
are well calibrated. The�PRGLÀHG�YHUVLRQ�RI�WKH�PDMRULW\�YRWH�IRU�SUHGLFWLQJ�FODVV�
labels from probabilities can be written as follows:

1

ˆ arg max
m

j iji j
y w p

=

= ∑

Here, ijp is the predicted probability of the jth�FODVVLÀHU�IRU�FODVV�ODEHO�i.

To continue with our previous example, let's assume that we have a binary
FODVVLÀFDWLRQ�SUREOHP�ZLWK�FODVV�ODEHOV� { }0,1i∈ �DQG�DQ�HQVHPEOH�RI�WKUHH�FODVVLÀHUV� jC

({ }1,2, 3j∈ ���/HW
V�DVVXPH�WKDW�WKH�FODVVLÀHU� jC returns the following class membership
probabilities for a particular sample x :

() [] () [] () []1 2 30.9 ,0.1 , 0.8 ,0.2 , 0.4 ,0.6C C C→ → →x x x

We can then calculate the individual class probabilities as follows:

()0 | 0.2 0.9 0.2 0.8 0.6 0.4 0.58p i = × + × + × =x

()1 | 0.2 0.1 0.2 0.2 0.6 0.06 0.42p i = × + × + × =x

() ()0 1ˆ arg max | , | 0
i

y p i p i= =⎡ ⎤⎣ ⎦x x

Combining Different Models for Ensemble Learning

[�����]

To walk WKURXJK�WKH�$GD%RRVW�LOOXVWUDWLRQ�VWHS�E\�VWHS��ZH�VWDUW�ZLWK�VXEÀJXUH�1,
ZKLFK�UHSUHVHQWV�D�WUDLQLQJ�VHW�IRU�ELQDU\�FODVVLÀFDWLRQ�where all training samples
are assigned equal weights. Based on this training set, we train a decision stump
(shown as a dashed line) that tries to classify the samples of the two classes (triangles
and circles) as well as possible by minimizing the cost function (or the impurity score
LQ�WKH�VSHFLDO�FDVH�RI�GHFLVLRQ�WUHH�HQVHPEOHV���)RU�WKH�QH[W�URXQG��VXEÀJXUH�2),
ZH�DVVLJQ�D�ODUJHU�ZHLJKW�WR�WKH�WZR�SUHYLRXVO\�PLVFODVVLÀHG�VDPSOHV��FLUFOHV���
)XUWKHUPRUH��ZH�ORZHU�WKH�ZHLJKW�RI�WKH�FRUUHFWO\�FODVVLÀHG�VDPSOHV��7KH�QH[W�
decision stump will now be more focused on the training samples that have the
largest weights, that is, the training samples that are supposedly hard to classify.
7KH�ZHDN�OHDUQHU�VKRZQ�LQ�VXEÀJXUH�2�PLVFODVVLÀHV�WKUHH�GLIIHUHQW�VDPSOHV�IURP�
WKH�FLUFOH�FODVV��ZKLFK�DUH�WKHQ�DVVLJQHG�D�ODUJHU�ZHLJKW�DV�VKRZQ�LQ�VXEÀJXUH�3.
Assuming that our AdaBoost ensemble only consists of three rounds of boosting, we
would then combine the three weak learners trained on different reweighted training
VXEVHWV�E\�D�ZHLJKWHG�PDMRULW\�YRWH��DV�VKRZQ�LQ�VXEÀJXUH�4.

Now that have a better understanding behind the basic concept of AdaBoost, let's
take a more detailed look at the algorithm using pseudo code. For clarity, we will
denote element-wise multiplication by the cross symbol ()× and the dot product
between two vectors by a dot symbol ()⋅ , respectively. The steps are as follows:

1. Set weight vector w to uniform weights where 1ii
w =∑

2. For j in m boosting rounds, do the following:
3. Train a weighted weak learner: (train , ,jC = X y w).
4. Predict class labels: ()ˆ predict ,jy C= X .
5. Compute weighted error rate: ()ˆε = ⋅ ==w y y .

6. &RPSXWH�FRHIÀFLHQW�� 10.5logj
εα
ε
−= .

7. Update weights: ()ˆ: exp jα= × − × ×w w y y .

8. Normalize weights to sum to 1: : ii
w= ∑w w / .

9. &RPSXWH�ÀQDO�SUHGLFWLRQ�� ()()()1
ˆ predict , 0m

j jj
C

=
= × >∑y Xα .

Note that the expression ()ˆ ==y y in step 5 refers to a vector of 1s and 0s, where a 1 is
assigned if the prediction is incorrect and 0 is assigned otherwise.

“not	equal”	sign

Layout	issue.
This	was	supposed
to	be	indented
for	better
clarity

“not	equal”	sign

Layout	issue.
This	was	supposed
to	be	indented
for	better
clarity

“not	equal”	sign

Layout	issue.
This	was	supposed
to	be	indented
for	better
clarity

“not	equal”	sign

Layout	issue.
This	was	supposed
to	be	indented
for	better
clarity

“not	equal”	sign

Layout	issue.
This	was	supposed
to	be	indented
for	better
clarity

“not	equal”	sign

Layout	issue.
This	was	supposed
to	be	indented
for	better
clarity

“not	equal”	sign

Layout	issue.
This	was	supposed
to	be	indented
for	better
clarity

“not	equal”	sign

Layout	issue.
This	was	supposed
to	be	indented
for	better
clarity

Chapter 7

[�����]

This was AdaBoost in a nutshell. Skipping to the more practical part, let's now train
DQ�$GD%RRVW�HQVHPEOH�FODVVLÀHU�YLD�VFLNLW�OHDUQ��:H�ZLOO�XVH�WKH�VDPH�:LQH�VXEVHW�
WKDW�ZH�XVHG�LQ�WKH�SUHYLRXV�VHFWLRQ�WR�WUDLQ�WKH�EDJJLQJ�PHWD�FODVVLÀHU��9LD�WKH�
base_estimator attribute, we will train the AdaBoostClassifier on 500 decision
tree stumps:

>>> from sklearn.ensemble import AdaBoostClassifier
>>> tree = DecisionTreeClassifier(criterion='entropy',
... max_depth=None,
... random_state=0)
>>> ada = AdaBoostClassifier(base_estimator=tree,
... n_estimators=500,
... learning_rate=0.1,
... random_state=0)
>>> tree = tree.fit(X_train, y_train)
>>> y_train_pred = tree.predict(X_train)
>>> y_test_pred = tree.predict(X_test)
>>> tree_train = accuracy_score(y_train, y_train_pred)
>>> tree_test = accuracy_score(y_test, y_test_pred)
>>> print('Decision tree train/test accuracies %.3f/%.3f'
... % (tree_train, tree_test))
Decision tree train/test accuracies 0.845/0.854

$V�ZH�FDQ�VHH��WKH�GHFLVLRQ�WUHH�VWXPS�WHQGV�WR�XQGHUÀW�WKH�WUDLQLQJ�GDWD�LQ�FRQWUDVW�
with the unpruned decision tree that we saw in the previous section:

>>> ada = ada.fit(X_train, y_train)
>>> y_train_pred = ada.predict(X_train)
>>> y_test_pred = ada.predict(X_test)
>>> ada_train = accuracy_score(y_train, y_train_pred)
>>> ada_test = accuracy_score(y_test, y_test_pred)
>>> print('AdaBoost train/test accuracies %.3f/%.3f'
... % (ada_train, ada_test))
AdaBoost train/test accuracies 1.000/0.875

As we can see, the AdaBoost model predicts all class labels of the training set
correctly and also shows a slightly improved test set performance compared to the
decision tree stump. However, we also see that we introduced additional variance by
our attempt to reduce the model bias.

Text

That’s	a	typo	(or	copy	&	paste	
failure).	The	actual	results
were	correctly	produced	by	setting	
`max_depth=1`	since	we	are	
“boosting”	weak	learners	(i.e.,	
decision	tree	stumps)

Text

That’s	a	typo	(or	copy	&	paste	
failure).	The	actual	results
were	correctly	produced	by	setting	
`max_depth=1`	since	we	are	
“boosting”	weak	learners	(i.e.,	
decision	tree	stumps)

Text

That’s	a	typo	(or	copy	&	paste	
failure).	The	actual	results
were	correctly	produced	by	setting	
`max_depth=1`	since	we	are	
“boosting”	weak	learners	(i.e.,	
decision	tree	stumps)

Text

That’s	a	typo	(or	copy	&	paste	
failure).	The	actual	results
were	correctly	produced	by	setting	
`max_depth=1`	since	we	are	
“boosting”	weak	learners	(i.e.,	
decision	tree	stumps)

Text

That’s	a	typo	(or	copy	&	paste	
failure).	The	actual	results
were	correctly	produced	by	setting	
`max_depth=1`	since	we	are	
“boosting”	weak	learners	(i.e.,	
decision	tree	stumps)

Text

That’s	a	typo	(or	copy	&	paste	
failure).	The	actual	results
were	correctly	produced	by	setting	
`max_depth=1`	since	we	are	
“boosting”	weak	learners	(i.e.,	
decision	tree	stumps)

Text

That’s	a	typo	(or	copy	&	paste	
failure).	The	actual	results
were	correctly	produced	by	setting	
`max_depth=1`	since	we	are	
“boosting”	weak	learners	(i.e.,	
decision	tree	stumps)

Text

That’s	a	typo	(or	copy	&	paste	
failure).	The	actual	results
were	correctly	produced	by	setting	
`max_depth=1`	since	we	are	
“boosting”	weak	learners	(i.e.,	
decision	tree	stumps)

Text

That’s	a	typo	(or	copy	&	paste	
failure).	The	actual	results
were	correctly	produced	by	setting	
`max_depth=1`	since	we	are	
“boosting”	weak	learners	(i.e.,	
decision	tree	stumps)

Text

That’s	a	typo	(or	copy	&	paste	
failure).	The	actual	results
were	correctly	produced	by	setting	
`max_depth=1`	since	we	are	
“boosting”	weak	learners	(i.e.,	
decision	tree	stumps)

Text

That’s	a	typo	(or	copy	&	paste	
failure).	The	actual	results
were	correctly	produced	by	setting	
`max_depth=1`	since	we	are	
“boosting”	weak	learners	(i.e.,	
decision	tree	stumps)

Text

That’s	a	typo	(or	copy	&	paste	
failure).	The	actual	results
were	correctly	produced	by	setting	
`max_depth=1`	since	we	are	
“boosting”	weak	learners	(i.e.,	
decision	tree	stumps)

Text

That’s	a	typo	(or	copy	&	paste	
failure).	The	actual	results
were	correctly	produced	by	setting	
`max_depth=1`	since	we	are	
“boosting”	weak	learners	(i.e.,	
decision	tree	stumps)

Text

That’s	a	typo	(or	copy	&	paste	
failure).	The	actual	results
were	correctly	produced	by	setting	
`max_depth=1`	since	we	are	
“boosting”	weak	learners	(i.e.,	
decision	tree	stumps)

Text

That’s	a	typo	(or	copy	&	paste	
failure).	The	actual	results
were	correctly	produced	by	setting	
`max_depth=1`	since	we	are	
“boosting”	weak	learners	(i.e.,	
decision	tree	stumps)

Text

That’s	a	typo	(or	copy	&	paste	
failure).	The	actual	results
were	correctly	produced	by	setting	
`max_depth=1`	since	we	are	
“boosting”	weak	learners	(i.e.,	
decision	tree	stumps)

Applying Machine Learning to Sentiment Analysis

[�����]

Introducing the bag-of-words model
We remember from Chapter 4, Building Good Training Sets – Data Preprocessing, that
we have to convert categorical data, such as text or words, into a numerical form
before we can pass it on to a machine learning algorithm. In this section, we will
introduce the bag-of-words model that allows us to represent text as numerical
feature vectors. The idea behind the bag-of-words model is quite simple and can be
summarized as follows:

1. We create a vocabulary of unique tokens—for example, words—from the
entire set of documents.

2. We construct a feature vector from each document that contains the counts of
how often each word occurs in the particular document.

Since the unique words in each document represent only a small subset of all the
words in the bag-of-words vocabulary, the feature vectors will consist of mostly
zeros, which is why we call them sparse. Do not worry if this sounds too abstract; in
the following subsections, we will walk through the process of creating a simple bag-
of-words model step-by-step.

Transforming words into feature vectors
To construct a bag-of-words model based on the word counts in the respective
documents, we can use the CountVectorizer class implemented in scikit-learn. As
we will see in the following code section, the CountVectorizer class takes an array
of text data, which can be documents or just sentences, and constructs the bag-of-
words model for us:

>>> import numpy as np
>>> from sklearn.feature_extraction.text import CountVectorizer
>>> count = CountVectorizer()
>>> docs = np.array([
... 'The sun is shining',
... 'The weather is sweet',
... 'The sun is shining and the weather is sweet'])
>>> bag = count.fit_transform(docs)

By calling the fit_transform method on CountVectorizer, we just constructed
the vocabulary of the bag-of-words model and transformed the following three
sentences into sparse feature vectors:

1. The sun is shining

2. The weather is sweet

3. The sun is shining and the weather is sweet
The	sun	is	shining,	the	weather	is	sweet,	and	one	and	one	is	two

[A	better	example	suggested	by	Claude	Coulombe]

The	sun	is	shining,	the	weather	is	sweet,	and	one	and	one	is	two

[A	better	example	suggested	by	Claude	Coulombe]

The	sun	is	shining,	the	weather	is	sweet,	and	one	and	one	is	two

[A	better	example	suggested	by	Claude	Coulombe]

The	sun	is	shining,	the	weather	is	sweet,	and	one	and	one	is	two

[A	better	example	suggested	by	Claude	Coulombe]

The	sun	is	shining,	the	weather	is	sweet,	and	one	and	one	is	two

[A	better	example	suggested	by	Claude	Coulombe]

The	sun	is	shining,	the	weather	is	sweet,	and	one	and	one	is	two

[A	better	example	suggested	by	Claude	Coulombe]

The	sun	is	shining,	the	weather	is	sweet,	and	one	and	one	is	two

[A	better	example	suggested	by	Claude	Coulombe]

The	sun	is	shining,	the	weather	is	sweet,	and	one	and	one	is	two

[A	better	example	suggested	by	Claude	Coulombe]

The	sun	is	shining,	the	weather	is	sweet,	and	one	and	one	is	two

[A	better	example	suggested	by	Claude	Coulombe]

The	sun	is	shining,	the	weather	is	sweet,	and	one	and	one	is	two

[A	better	example	suggested	by	Claude	Coulombe]

The	sun	is	shining,	the	weather	is	sweet,	and	one	and	one	is	two

[A	better	example	suggested	by	Claude	Coulombe]

The	sun	is	shining,	the	weather	is	sweet,	and	one	and	one	is	two

[A	better	example	suggested	by	Claude	Coulombe]

The	sun	is	shining,	the	weather	is	sweet,	and	one	and	one	is	two

[A	better	example	suggested	by	Claude	Coulombe]

The	sun	is	shining,	the	weather	is	sweet,	and	one	and	one	is	two

[A	better	example	suggested	by	Claude	Coulombe]

The	sun	is	shining,	the	weather	is	sweet,	and	one	and	one	is	two

[A	better	example	suggested	by	Claude	Coulombe]

The	sun	is	shining,	the	weather	is	sweet,	and	one	and	one	is	two

[A	better	example	suggested	by	Claude	Coulombe]

Chapter 8

[�����]

Now let us print the contents of the vocabulary to get a better understanding of the
underlying concepts:

>>> print(count.vocabulary_)
{'the': 5, 'shining': 2, 'weather': 6, 'sun': 3, 'is': 1, 'sweet': 4,
'and': 0}

As we can see from executing the preceding command, the vocabulary is stored in a
Python dictionary, which maps the unique words that are mapped to integer indices.
Next let us print the feature vectors that we just created:

>>> print(bag.toarray())
[[0 1 1 1 0 1 0]
 [0 1 0 0 1 1 1]
 [1 2 1 1 1 2 1]]

Each index position in the feature vectors shown here corresponds to the integer
values that are stored as dictionary items in the CountVectorizer vocabulary. For
H[DPSOH��WKH�ÀUVW�IHDWXUH�DW�LQGH[�SRVLWLRQ�0 resembles the count of the word and,
which only occurs in the last document, and the word is at index position 1 (the 2nd
feature in the document vectors) occurs in all three sentences. Those values in the
feature vectors are also called the raw term frequencies: tf (t,d)—the number of times
a term t occurs in a document d.

The sequence of items in the bag-of-words model that we just created
is also called the 1-gram or unigram model—each item or token in the
vocabulary represents a single word. More generally, the contiguous
sequences of items in NLP—words, letters, or symbols—is also called an
n-gram. The choice of the number n in the n-gram model depends on the
particular application; for example, a study by Kanaris et al. revealed that
Q�JUDPV�RI�VL]H���DQG���\LHOG�JRRG�SHUIRUPDQFHV�LQ�DQWL�VSDP�ÀOWHULQJ�
of e-mail messages (Ioannis Kanaris, Konstantinos Kanaris, Ioannis
Houvardas, and Efstathios Stamatatos. :RUGV�YV�&KDUDFWHU�1�*UDPV�
IRU�$QWL�6SDP�)LOWHULQJ��,QWHUQDWLRQDO�-RXUQDO�RQ�$UWLÀFLDO�,QWHOOLJHQFH�
Tools, 16(06):1047–1067, 2007). To summarize the concept of the n-gram
UHSUHVHQWDWLRQ��WKH���JUDP�DQG���JUDP�UHSUHVHQWDWLRQV�RI�RXU�ÀUVW�
document "the sun is shining" would be constructed as follows:

�� 1-gram: "the", "sun", "is", "shining"
�� 2-gram: "the sun", "sun is", "is shining"

The CountVectorizer class in scikit-learn allows us to use different
n-gram models via its ngram_range parameter. While a 1-gram
representation is used by default, we could switch to a 2-gram
representation by initializing a new CountVectorizer instance with
ngram_range=(2,2).

{'sun':	4,	'and':	0,	'is':	1,	'the':	6,	'shining':	3,	'two':	7,	'sweet':	5,	'weather':	8,	'one':	2}

[[0	1	0	1	1	0	1	0	0]
	[0	1	0	0	0	1	1	0	1]
	[2	3	2	1	1	1	2	1	1]]

{'sun':	4,	'and':	0,	'is':	1,	'the':	6,	'shining':	3,	'two':	7,	'sweet':	5,	'weather':	8,	'one':	2}

[[0	1	0	1	1	0	1	0	0]
	[0	1	0	0	0	1	1	0	1]
	[2	3	2	1	1	1	2	1	1]]

{'sun':	4,	'and':	0,	'is':	1,	'the':	6,	'shining':	3,	'two':	7,	'sweet':	5,	'weather':	8,	'one':	2}

[[0	1	0	1	1	0	1	0	0]
	[0	1	0	0	0	1	1	0	1]
	[2	3	2	1	1	1	2	1	1]]

{'sun':	4,	'and':	0,	'is':	1,	'the':	6,	'shining':	3,	'two':	7,	'sweet':	5,	'weather':	8,	'one':	2}

[[0	1	0	1	1	0	1	0	0]
	[0	1	0	0	0	1	1	0	1]
	[2	3	2	1	1	1	2	1	1]]

{'sun':	4,	'and':	0,	'is':	1,	'the':	6,	'shining':	3,	'two':	7,	'sweet':	5,	'weather':	8,	'one':	2}

[[0	1	0	1	1	0	1	0	0]
	[0	1	0	0	0	1	1	0	1]
	[2	3	2	1	1	1	2	1	1]]

{'sun':	4,	'and':	0,	'is':	1,	'the':	6,	'shining':	3,	'two':	7,	'sweet':	5,	'weather':	8,	'one':	2}

[[0	1	0	1	1	0	1	0	0]
	[0	1	0	0	0	1	1	0	1]
	[2	3	2	1	1	1	2	1	1]]

{'sun':	4,	'and':	0,	'is':	1,	'the':	6,	'shining':	3,	'two':	7,	'sweet':	5,	'weather':	8,	'one':	2}

[[0	1	0	1	1	0	1	0	0]
	[0	1	0	0	0	1	1	0	1]
	[2	3	2	1	1	1	2	1	1]]

{'sun':	4,	'and':	0,	'is':	1,	'the':	6,	'shining':	3,	'two':	7,	'sweet':	5,	'weather':	8,	'one':	2}

[[0	1	0	1	1	0	1	0	0]
	[0	1	0	0	0	1	1	0	1]
	[2	3	2	1	1	1	2	1	1]]

{'sun':	4,	'and':	0,	'is':	1,	'the':	6,	'shining':	3,	'two':	7,	'sweet':	5,	'weather':	8,	'one':	2}

[[0	1	0	1	1	0	1	0	0]
	[0	1	0	0	0	1	1	0	1]
	[2	3	2	1	1	1	2	1	1]]

{'sun':	4,	'and':	0,	'is':	1,	'the':	6,	'shining':	3,	'two':	7,	'sweet':	5,	'weather':	8,	'one':	2}

[[0	1	0	1	1	0	1	0	0]
	[0	1	0	0	0	1	1	0	1]
	[2	3	2	1	1	1	2	1	1]]

{'sun':	4,	'and':	0,	'is':	1,	'the':	6,	'shining':	3,	'two':	7,	'sweet':	5,	'weather':	8,	'one':	2}

[[0	1	0	1	1	0	1	0	0]
	[0	1	0	0	0	1	1	0	1]
	[2	3	2	1	1	1	2	1	1]]

{'sun':	4,	'and':	0,	'is':	1,	'the':	6,	'shining':	3,	'two':	7,	'sweet':	5,	'weather':	8,	'one':	2}

[[0	1	0	1	1	0	1	0	0]
	[0	1	0	0	0	1	1	0	1]
	[2	3	2	1	1	1	2	1	1]]

{'sun':	4,	'and':	0,	'is':	1,	'the':	6,	'shining':	3,	'two':	7,	'sweet':	5,	'weather':	8,	'one':	2}

[[0	1	0	1	1	0	1	0	0]
	[0	1	0	0	0	1	1	0	1]
	[2	3	2	1	1	1	2	1	1]]

{'sun':	4,	'and':	0,	'is':	1,	'the':	6,	'shining':	3,	'two':	7,	'sweet':	5,	'weather':	8,	'one':	2}

[[0	1	0	1	1	0	1	0	0]
	[0	1	0	0	0	1	1	0	1]
	[2	3	2	1	1	1	2	1	1]]

{'sun':	4,	'and':	0,	'is':	1,	'the':	6,	'shining':	3,	'two':	7,	'sweet':	5,	'weather':	8,	'one':	2}

[[0	1	0	1	1	0	1	0	0]
	[0	1	0	0	0	1	1	0	1]
	[2	3	2	1	1	1	2	1	1]]

{'sun':	4,	'and':	0,	'is':	1,	'the':	6,	'shining':	3,	'two':	7,	'sweet':	5,	'weather':	8,	'one':	2}

[[0	1	0	1	1	0	1	0	0]
	[0	1	0	0	0	1	1	0	1]
	[2	3	2	1	1	1	2	1	1]]

{'sun':	4,	'and':	0,	'is':	1,	'the':	6,	'shining':	3,	'two':	7,	'sweet':	5,	'weather':	8,	'one':	2}

[[0	1	0	1	1	0	1	0	0]
	[0	1	0	0	0	1	1	0	1]
	[2	3	2	1	1	1	2	1	1]]

{'sun':	4,	'and':	0,	'is':	1,	'the':	6,	'shining':	3,	'two':	7,	'sweet':	5,	'weather':	8,	'one':	2}

[[0	1	0	1	1	0	1	0	0]
	[0	1	0	0	0	1	1	0	1]
	[2	3	2	1	1	1	2	1	1]]

{'sun':	4,	'and':	0,	'is':	1,	'the':	6,	'shining':	3,	'two':	7,	'sweet':	5,	'weather':	8,	'one':	2}

[[0	1	0	1	1	0	1	0	0]
	[0	1	0	0	0	1	1	0	1]
	[2	3	2	1	1	1	2	1	1]]

{'sun':	4,	'and':	0,	'is':	1,	'the':	6,	'shining':	3,	'two':	7,	'sweet':	5,	'weather':	8,	'one':	2}

[[0	1	0	1	1	0	1	0	0]
	[0	1	0	0	0	1	1	0	1]
	[2	3	2	1	1	1	2	1	1]]

{'sun':	4,	'and':	0,	'is':	1,	'the':	6,	'shining':	3,	'two':	7,	'sweet':	5,	'weather':	8,	'one':	2}

[[0	1	0	1	1	0	1	0	0]
	[0	1	0	0	0	1	1	0	1]
	[2	3	2	1	1	1	2	1	1]]

{'sun':	4,	'and':	0,	'is':	1,	'the':	6,	'shining':	3,	'two':	7,	'sweet':	5,	'weather':	8,	'one':	2}

[[0	1	0	1	1	0	1	0	0]
	[0	1	0	0	0	1	1	0	1]
	[2	3	2	1	1	1	2	1	1]]

{'sun':	4,	'and':	0,	'is':	1,	'the':	6,	'shining':	3,	'two':	7,	'sweet':	5,	'weather':	8,	'one':	2}

[[0	1	0	1	1	0	1	0	0]
	[0	1	0	0	0	1	1	0	1]
	[2	3	2	1	1	1	2	1	1]]

{'sun':	4,	'and':	0,	'is':	1,	'the':	6,	'shining':	3,	'two':	7,	'sweet':	5,	'weather':	8,	'one':	2}

[[0	1	0	1	1	0	1	0	0]
	[0	1	0	0	0	1	1	0	1]
	[2	3	2	1	1	1	2	1	1]]

{'sun':	4,	'and':	0,	'is':	1,	'the':	6,	'shining':	3,	'two':	7,	'sweet':	5,	'weather':	8,	'one':	2}

[[0	1	0	1	1	0	1	0	0]
	[0	1	0	0	0	1	1	0	1]
	[2	3	2	1	1	1	2	1	1]]

{'sun':	4,	'and':	0,	'is':	1,	'the':	6,	'shining':	3,	'two':	7,	'sweet':	5,	'weather':	8,	'one':	2}

[[0	1	0	1	1	0	1	0	0]
	[0	1	0	0	0	1	1	0	1]
	[2	3	2	1	1	1	2	1	1]]

{'sun':	4,	'and':	0,	'is':	1,	'the':	6,	'shining':	3,	'two':	7,	'sweet':	5,	'weather':	8,	'one':	2}

[[0	1	0	1	1	0	1	0	0]
	[0	1	0	0	0	1	1	0	1]
	[2	3	2	1	1	1	2	1	1]]

{'sun':	4,	'and':	0,	'is':	1,	'the':	6,	'shining':	3,	'two':	7,	'sweet':	5,	'weather':	8,	'one':	2}

[[0	1	0	1	1	0	1	0	0]
	[0	1	0	0	0	1	1	0	1]
	[2	3	2	1	1	1	2	1	1]]

{'sun':	4,	'and':	0,	'is':	1,	'the':	6,	'shining':	3,	'two':	7,	'sweet':	5,	'weather':	8,	'one':	2}

[[0	1	0	1	1	0	1	0	0]
	[0	1	0	0	0	1	1	0	1]
	[2	3	2	1	1	1	2	1	1]]

{'sun':	4,	'and':	0,	'is':	1,	'the':	6,	'shining':	3,	'two':	7,	'sweet':	5,	'weather':	8,	'one':	2}

[[0	1	0	1	1	0	1	0	0]
	[0	1	0	0	0	1	1	0	1]
	[2	3	2	1	1	1	2	1	1]]

{'sun':	4,	'and':	0,	'is':	1,	'the':	6,	'shining':	3,	'two':	7,	'sweet':	5,	'weather':	8,	'one':	2}

[[0	1	0	1	1	0	1	0	0]
	[0	1	0	0	0	1	1	0	1]
	[2	3	2	1	1	1	2	1	1]]

{'sun':	4,	'and':	0,	'is':	1,	'the':	6,	'shining':	3,	'two':	7,	'sweet':	5,	'weather':	8,	'one':	2}

[[0	1	0	1	1	0	1	0	0]
	[0	1	0	0	0	1	1	0	1]
	[2	3	2	1	1	1	2	1	1]]

Applying Machine Learning to Sentiment Analysis

[�����]

Assessing word relevancy via term
frequency-inverse document frequency
When we are analyzing text data, we often encounter words that occur across
multiple documents from both classes. Those frequently occurring words typically
don't contain useful or discriminatory information. In this subsection, we will learn
about a useful technique called term frequency-inverse document frequency
(tf-idf) that can be used to downweight those frequently occurring words in the
IHDWXUH�YHFWRUV��7KH�WI�LGI�FDQ�EH�GHÀQHG�DV�the product of the term frequency and
the inverse document frequency:

() () ()tf-idf t,d , idf t,dtf t d= ×

Here the tf(t, d) is the term frequency that we introduced in the previous section,
and the inverse document frequency idf(t, d) can be calculated as:

() ()
idf t,d ,

1+df d,t
dnlog=

where dn is the total number of documents, and df(d, t) is the number of documents
d that contain the term t. Note that adding the constant 1 to the denominator is
optional and serves the purpose of assigning a non-zero value to terms that occur in
all training samples; the log is used to ensure that low document frequencies are not
given too much weight.

Scikit-learn implements yet another transformer, the TfidfTransformer, that
takes the raw term frequencies from CountVectorizer as input and transforms
them into tf-idfs:

>>> from sklearn.feature_extraction.text import TfidfTransformer
>>> tfidf = TfidfTransformer()
>>> np.set_printoptions(precision=2)
>>> print(tfidf.fit_transform(count.fit_transform(docs)).toarray())
[[0. 0.43 0.56 0.56 0. 0.43 0.]
 [0. 0.43 0. 0. 0.56 0.43 0.56]
 [0.4 0.48 0.31 0.31 0.31 0.48 0.31]]

[[0.				0.43		0.				0.56		0.56		0.				0.43		0.				0.]
	[0.				0.43		0.				0.				0.				0.56		0.43		0.				0.56]
	[0.5			0.45		0.5			0.19		0.19		0.19		0.3			0.25		0.19]]

[[0.				0.43		0.				0.56		0.56		0.				0.43		0.				0.]
	[0.				0.43		0.				0.				0.				0.56		0.43		0.				0.56]
	[0.5			0.45		0.5			0.19		0.19		0.19		0.3			0.25		0.19]]

[[0.				0.43		0.				0.56		0.56		0.				0.43		0.				0.]
	[0.				0.43		0.				0.				0.				0.56		0.43		0.				0.56]
	[0.5			0.45		0.5			0.19		0.19		0.19		0.3			0.25		0.19]]

[[0.				0.43		0.				0.56		0.56		0.				0.43		0.				0.]
	[0.				0.43		0.				0.				0.				0.56		0.43		0.				0.56]
	[0.5			0.45		0.5			0.19		0.19		0.19		0.3			0.25		0.19]]

[[0.				0.43		0.				0.56		0.56		0.				0.43		0.				0.]
	[0.				0.43		0.				0.				0.				0.56		0.43		0.				0.56]
	[0.5			0.45		0.5			0.19		0.19		0.19		0.3			0.25		0.19]]

[[0.				0.43		0.				0.56		0.56		0.				0.43		0.				0.]
	[0.				0.43		0.				0.				0.				0.56		0.43		0.				0.56]
	[0.5			0.45		0.5			0.19		0.19		0.19		0.3			0.25		0.19]]

[[0.				0.43		0.				0.56		0.56		0.				0.43		0.				0.]
	[0.				0.43		0.				0.				0.				0.56		0.43		0.				0.56]
	[0.5			0.45		0.5			0.19		0.19		0.19		0.3			0.25		0.19]]

[[0.				0.43		0.				0.56		0.56		0.				0.43		0.				0.]
	[0.				0.43		0.				0.				0.				0.56		0.43		0.				0.56]
	[0.5			0.45		0.5			0.19		0.19		0.19		0.3			0.25		0.19]]

[[0.				0.43		0.				0.56		0.56		0.				0.43		0.				0.]
	[0.				0.43		0.				0.				0.				0.56		0.43		0.				0.56]
	[0.5			0.45		0.5			0.19		0.19		0.19		0.3			0.25		0.19]]

[[0.				0.43		0.				0.56		0.56		0.				0.43		0.				0.]
	[0.				0.43		0.				0.				0.				0.56		0.43		0.				0.56]
	[0.5			0.45		0.5			0.19		0.19		0.19		0.3			0.25		0.19]]

[[0.				0.43		0.				0.56		0.56		0.				0.43		0.				0.]
	[0.				0.43		0.				0.				0.				0.56		0.43		0.				0.56]
	[0.5			0.45		0.5			0.19		0.19		0.19		0.3			0.25		0.19]]

[[0.				0.43		0.				0.56		0.56		0.				0.43		0.				0.]
	[0.				0.43		0.				0.				0.				0.56		0.43		0.				0.56]
	[0.5			0.45		0.5			0.19		0.19		0.19		0.3			0.25		0.19]]

[[0.				0.43		0.				0.56		0.56		0.				0.43		0.				0.]
	[0.				0.43		0.				0.				0.				0.56		0.43		0.				0.56]
	[0.5			0.45		0.5			0.19		0.19		0.19		0.3			0.25		0.19]]

[[0.				0.43		0.				0.56		0.56		0.				0.43		0.				0.]
	[0.				0.43		0.				0.				0.				0.56		0.43		0.				0.56]
	[0.5			0.45		0.5			0.19		0.19		0.19		0.3			0.25		0.19]]

[[0.				0.43		0.				0.56		0.56		0.				0.43		0.				0.]
	[0.				0.43		0.				0.				0.				0.56		0.43		0.				0.56]
	[0.5			0.45		0.5			0.19		0.19		0.19		0.3			0.25		0.19]]

[[0.				0.43		0.				0.56		0.56		0.				0.43		0.				0.]
	[0.				0.43		0.				0.				0.				0.56		0.43		0.				0.56]
	[0.5			0.45		0.5			0.19		0.19		0.19		0.3			0.25		0.19]]

Chapter 8

[�����]

As we saw in the previous subsection, the word is had the largest term frequency
in the 3rd document, being the most frequently occurring word. However, after
transforming the same feature vector into tf-idfs, we see that the word is is
now associated with a relatively small tf-idf (0.31) in document 3 since it is
also contained in documents 1 and 2 and thus is unlikely to contain any useful,
discriminatory information.

However, if we'd manually calculated the tf-idfs of the individual terms in our
feature vectors, we'd have noticed that the TfidfTransformer calculates the tf-idfs
slightly differently compared to the standard�WH[WERRN�HTXDWLRQV�WKDW�ZH�GHÀQHG�
earlier. The equations for the idf and tf-idf that were implemented in scikit-learn are:

() ()
1idf t,d

1 df d,t
dnlog +=

+

The tf-idf equation that was implemented in scikit-learn is as follows:

() () ()()tf-idf t,d t,d idf t,d 1tf= × +

While it is also more typical to normalize the raw term frequencies before
calculating the tf-idfs, the TfidfTransformer normalizes the tf-idfs directly.
By default (norm='l2'), scikit-learn's TfidfTransformer applies the
L2-normalization, which returns a vector of length 1 by dividing an
un-normalized feature vector v by its L2-norm:

()1/22 2 2 22 1 2
1

norm n
n ii

v v vv
v v v v v

=

= = =
+ + + ∑!

To make sure that we understand how TfidfTransformer works, let us walk
through an example and calculate the tf-idf of the word is in the 3rd document.

The word is has a term frequency of 2 (tf = 2) in document 3, and the document
frequency of this term is 3 since the term is occurs in all three documents (df = 3).
Thus, we can calculate the idf as follows:

() 1 3"is",d3 log 0
1 3

idf += =
+

0.45

At	contrary	the	word	«one»	(3rd	element	of	each	frequency	vector)	has	a	
frequency	of	2	in	the	3rd	document	but	has	a	greater	tf-idf	(0.5)	since	it	
is	only	present	in	the	3rd	document,	thus	more	discriminatory.	

33

0.45

At	contrary	the	word	«one»	(3rd	element	of	each	frequency	vector)	has	a	
frequency	of	2	in	the	3rd	document	but	has	a	greater	tf-idf	(0.5)	since	it	
is	only	present	in	the	3rd	document,	thus	more	discriminatory.	

33

0.45

At	contrary	the	word	«one»	(3rd	element	of	each	frequency	vector)	has	a	
frequency	of	2	in	the	3rd	document	but	has	a	greater	tf-idf	(0.5)	since	it	
is	only	present	in	the	3rd	document,	thus	more	discriminatory.	

33

0.45

At	contrary	the	word	«one»	(3rd	element	of	each	frequency	vector)	has	a	
frequency	of	2	in	the	3rd	document	but	has	a	greater	tf-idf	(0.5)	since	it	
is	only	present	in	the	3rd	document,	thus	more	discriminatory.	

33

0.45

At	contrary	the	word	«one»	(3rd	element	of	each	frequency	vector)	has	a	
frequency	of	2	in	the	3rd	document	but	has	a	greater	tf-idf	(0.5)	since	it	
is	only	present	in	the	3rd	document,	thus	more	discriminatory.	

33

0.45

At	contrary	the	word	«one»	(3rd	element	of	each	frequency	vector)	has	a	
frequency	of	2	in	the	3rd	document	but	has	a	greater	tf-idf	(0.5)	since	it	
is	only	present	in	the	3rd	document,	thus	more	discriminatory.	

33

0.45

At	contrary	the	word	«one»	(3rd	element	of	each	frequency	vector)	has	a	
frequency	of	2	in	the	3rd	document	but	has	a	greater	tf-idf	(0.5)	since	it	
is	only	present	in	the	3rd	document,	thus	more	discriminatory.	

33

0.45

At	contrary	the	word	«one»	(3rd	element	of	each	frequency	vector)	has	a	
frequency	of	2	in	the	3rd	document	but	has	a	greater	tf-idf	(0.5)	since	it	
is	only	present	in	the	3rd	document,	thus	more	discriminatory.	

33

0.45

At	contrary	the	word	«one»	(3rd	element	of	each	frequency	vector)	has	a	
frequency	of	2	in	the	3rd	document	but	has	a	greater	tf-idf	(0.5)	since	it	
is	only	present	in	the	3rd	document,	thus	more	discriminatory.	

33

0.45

At	contrary	the	word	«one»	(3rd	element	of	each	frequency	vector)	has	a	
frequency	of	2	in	the	3rd	document	but	has	a	greater	tf-idf	(0.5)	since	it	
is	only	present	in	the	3rd	document,	thus	more	discriminatory.	

33

0.45

At	contrary	the	word	«one»	(3rd	element	of	each	frequency	vector)	has	a	
frequency	of	2	in	the	3rd	document	but	has	a	greater	tf-idf	(0.5)	since	it	
is	only	present	in	the	3rd	document,	thus	more	discriminatory.	

33

0.45

At	contrary	the	word	«one»	(3rd	element	of	each	frequency	vector)	has	a	
frequency	of	2	in	the	3rd	document	but	has	a	greater	tf-idf	(0.5)	since	it	
is	only	present	in	the	3rd	document,	thus	more	discriminatory.	

33

0.45

At	contrary	the	word	«one»	(3rd	element	of	each	frequency	vector)	has	a	
frequency	of	2	in	the	3rd	document	but	has	a	greater	tf-idf	(0.5)	since	it	
is	only	present	in	the	3rd	document,	thus	more	discriminatory.	

33

0.45

At	contrary	the	word	«one»	(3rd	element	of	each	frequency	vector)	has	a	
frequency	of	2	in	the	3rd	document	but	has	a	greater	tf-idf	(0.5)	since	it	
is	only	present	in	the	3rd	document,	thus	more	discriminatory.	

33

0.45

At	contrary	the	word	«one»	(3rd	element	of	each	frequency	vector)	has	a	
frequency	of	2	in	the	3rd	document	but	has	a	greater	tf-idf	(0.5)	since	it	
is	only	present	in	the	3rd	document,	thus	more	discriminatory.	

33

0.45

At	contrary	the	word	«one»	(3rd	element	of	each	frequency	vector)	has	a	
frequency	of	2	in	the	3rd	document	but	has	a	greater	tf-idf	(0.5)	since	it	
is	only	present	in	the	3rd	document,	thus	more	discriminatory.	

33

0.45

At	contrary	the	word	«one»	(3rd	element	of	each	frequency	vector)	has	a	
frequency	of	2	in	the	3rd	document	but	has	a	greater	tf-idf	(0.5)	since	it	
is	only	present	in	the	3rd	document,	thus	more	discriminatory.	

33

0.45

At	contrary	the	word	«one»	(3rd	element	of	each	frequency	vector)	has	a	
frequency	of	2	in	the	3rd	document	but	has	a	greater	tf-idf	(0.5)	since	it	
is	only	present	in	the	3rd	document,	thus	more	discriminatory.	

33

0.45

At	contrary	the	word	«one»	(3rd	element	of	each	frequency	vector)	has	a	
frequency	of	2	in	the	3rd	document	but	has	a	greater	tf-idf	(0.5)	since	it	
is	only	present	in	the	3rd	document,	thus	more	discriminatory.	

33

0.45

At	contrary	the	word	«one»	(3rd	element	of	each	frequency	vector)	has	a	
frequency	of	2	in	the	3rd	document	but	has	a	greater	tf-idf	(0.5)	since	it	
is	only	present	in	the	3rd	document,	thus	more	discriminatory.	

33

0.45

At	contrary	the	word	«one»	(3rd	element	of	each	frequency	vector)	has	a	
frequency	of	2	in	the	3rd	document	but	has	a	greater	tf-idf	(0.5)	since	it	
is	only	present	in	the	3rd	document,	thus	more	discriminatory.	

33

0.45

At	contrary	the	word	«one»	(3rd	element	of	each	frequency	vector)	has	a	
frequency	of	2	in	the	3rd	document	but	has	a	greater	tf-idf	(0.5)	since	it	
is	only	present	in	the	3rd	document,	thus	more	discriminatory.	

33

0.45

At	contrary	the	word	«one»	(3rd	element	of	each	frequency	vector)	has	a	
frequency	of	2	in	the	3rd	document	but	has	a	greater	tf-idf	(0.5)	since	it	
is	only	present	in	the	3rd	document,	thus	more	discriminatory.	

33

0.45

At	contrary	the	word	«one»	(3rd	element	of	each	frequency	vector)	has	a	
frequency	of	2	in	the	3rd	document	but	has	a	greater	tf-idf	(0.5)	since	it	
is	only	present	in	the	3rd	document,	thus	more	discriminatory.	

33

0.45

At	contrary	the	word	«one»	(3rd	element	of	each	frequency	vector)	has	a	
frequency	of	2	in	the	3rd	document	but	has	a	greater	tf-idf	(0.5)	since	it	
is	only	present	in	the	3rd	document,	thus	more	discriminatory.	

33

0.45

At	contrary	the	word	«one»	(3rd	element	of	each	frequency	vector)	has	a	
frequency	of	2	in	the	3rd	document	but	has	a	greater	tf-idf	(0.5)	since	it	
is	only	present	in	the	3rd	document,	thus	more	discriminatory.	

33

0.45

At	contrary	the	word	«one»	(3rd	element	of	each	frequency	vector)	has	a	
frequency	of	2	in	the	3rd	document	but	has	a	greater	tf-idf	(0.5)	since	it	
is	only	present	in	the	3rd	document,	thus	more	discriminatory.	

33

0.45

At	contrary	the	word	«one»	(3rd	element	of	each	frequency	vector)	has	a	
frequency	of	2	in	the	3rd	document	but	has	a	greater	tf-idf	(0.5)	since	it	
is	only	present	in	the	3rd	document,	thus	more	discriminatory.	

33

0.45

At	contrary	the	word	«one»	(3rd	element	of	each	frequency	vector)	has	a	
frequency	of	2	in	the	3rd	document	but	has	a	greater	tf-idf	(0.5)	since	it	
is	only	present	in	the	3rd	document,	thus	more	discriminatory.	

33

0.45

At	contrary	the	word	«one»	(3rd	element	of	each	frequency	vector)	has	a	
frequency	of	2	in	the	3rd	document	but	has	a	greater	tf-idf	(0.5)	since	it	
is	only	present	in	the	3rd	document,	thus	more	discriminatory.	

33

0.45

At	contrary	the	word	«one»	(3rd	element	of	each	frequency	vector)	has	a	
frequency	of	2	in	the	3rd	document	but	has	a	greater	tf-idf	(0.5)	since	it	
is	only	present	in	the	3rd	document,	thus	more	discriminatory.	

33

0.45

At	contrary	the	word	«one»	(3rd	element	of	each	frequency	vector)	has	a	
frequency	of	2	in	the	3rd	document	but	has	a	greater	tf-idf	(0.5)	since	it	
is	only	present	in	the	3rd	document,	thus	more	discriminatory.	

33

Applying Machine Learning to Sentiment Analysis

[�����]

Now in order to calculate the tf-idf, we simply need to add 1 to the inverse document
frequency and multiply it by the term frequency:

() ()tf-idf " ",d3 2 0 1 2is = × + =

If we repeated these calculations for all terms in the 3rd document, we'd obtain the
following tf-idf vectors: [1.69, 2.00, 1.29, 1.29, 1.29, 2.00, and 1.29]. However, we
notice that the values in this feature vector are different from the values that we
obtained from the TfidfTransformer that we used�SUHYLRXVO\��7KH�ÀQDO�VWHS�WKDW�
we are missing in this tf-idf calculation is the L2-normalization, which can be applied
as follows:

()tf-idf " ",d3 0.48is =

As we can see, the results now match the results returned by scikit-learn's
TfidfTransformer. Since we now understand how tf-idfs are calculated, let us
proceed to the next sections and apply those concepts to the movie review dataset.

Cleaning text data
In the previous subsections, we learned about the bag-of-words model, term
IUHTXHQFLHV��DQG�WI�LGIV��+RZHYHU��WKH�ÀUVW�LPSRUWDQW�VWHS³EHIRUH�ZH�EXLOG�RXU�
bag-of-words model—is to clean the text data by stripping it of all unwanted
characters. To illustrate why this is important, let us display the last 50 characters
IURP�WKH�ÀUVW�GRFXPHQW�LQ�WKH�UHVKXIÁHG�PRYLH�UHYLHZ�GDWDVHW�

>>> df.loc[0, 'review'][-50:]
'is seven.

Title (Brazil): Not Available'

As we can see here, the text contains HTML markup as well as punctuation and
other non-letter characters. While HTML markup does not contain much useful
semantics, punctuation marks can represent useful, additional information in certain
NLP contexts. However, for simplicity, we will now remove all punctuation marks
but only keep emoticon characters such as ":)" since those are certainly useful for
sentiment analysis. To accomplish this task, we will use Python's regular expression
(regex) library, re, as shown here:

>>> import re
>>> def preprocessor(text):

3 3

[3.39,	3.0,	3.39,	1.29,	1.29,	1.29,	2.0	,	1.69,	1.29]

[3.39,	3.0,	3.39,	1.29,	1.29,	1.29,	2.0	,	1.69,	1.29]
__

sqrt	([3.39**2,	3.0**2,	3.39**2,	1.29**2,	1.29**2,	1.29**2,	2.0**2,	1.69**2,	1.29**2])

tf-idf_norm	=

=			[0.5,	0.45,	0.5,	0.19,	0.19,	0.19,	0.3,	0.25,	0.19]

tf-idf_norm("is",d3)=	0.45

0.45

3 3

[3.39,	3.0,	3.39,	1.29,	1.29,	1.29,	2.0	,	1.69,	1.29]

[3.39,	3.0,	3.39,	1.29,	1.29,	1.29,	2.0	,	1.69,	1.29]
__

sqrt	([3.39**2,	3.0**2,	3.39**2,	1.29**2,	1.29**2,	1.29**2,	2.0**2,	1.69**2,	1.29**2])

tf-idf_norm	=

=			[0.5,	0.45,	0.5,	0.19,	0.19,	0.19,	0.3,	0.25,	0.19]

tf-idf_norm("is",d3)=	0.45

0.45

3 3

[3.39,	3.0,	3.39,	1.29,	1.29,	1.29,	2.0	,	1.69,	1.29]

[3.39,	3.0,	3.39,	1.29,	1.29,	1.29,	2.0	,	1.69,	1.29]
__

sqrt	([3.39**2,	3.0**2,	3.39**2,	1.29**2,	1.29**2,	1.29**2,	2.0**2,	1.69**2,	1.29**2])

tf-idf_norm	=

=			[0.5,	0.45,	0.5,	0.19,	0.19,	0.19,	0.3,	0.25,	0.19]

tf-idf_norm("is",d3)=	0.45

0.45

3 3

[3.39,	3.0,	3.39,	1.29,	1.29,	1.29,	2.0	,	1.69,	1.29]

[3.39,	3.0,	3.39,	1.29,	1.29,	1.29,	2.0	,	1.69,	1.29]
__

sqrt	([3.39**2,	3.0**2,	3.39**2,	1.29**2,	1.29**2,	1.29**2,	2.0**2,	1.69**2,	1.29**2])

tf-idf_norm	=

=			[0.5,	0.45,	0.5,	0.19,	0.19,	0.19,	0.3,	0.25,	0.19]

tf-idf_norm("is",d3)=	0.45

0.45

3 3

[3.39,	3.0,	3.39,	1.29,	1.29,	1.29,	2.0	,	1.69,	1.29]

[3.39,	3.0,	3.39,	1.29,	1.29,	1.29,	2.0	,	1.69,	1.29]
__

sqrt	([3.39**2,	3.0**2,	3.39**2,	1.29**2,	1.29**2,	1.29**2,	2.0**2,	1.69**2,	1.29**2])

tf-idf_norm	=

=			[0.5,	0.45,	0.5,	0.19,	0.19,	0.19,	0.3,	0.25,	0.19]

tf-idf_norm("is",d3)=	0.45

0.45

3 3

[3.39,	3.0,	3.39,	1.29,	1.29,	1.29,	2.0	,	1.69,	1.29]

[3.39,	3.0,	3.39,	1.29,	1.29,	1.29,	2.0	,	1.69,	1.29]
__

sqrt	([3.39**2,	3.0**2,	3.39**2,	1.29**2,	1.29**2,	1.29**2,	2.0**2,	1.69**2,	1.29**2])

tf-idf_norm	=

=			[0.5,	0.45,	0.5,	0.19,	0.19,	0.19,	0.3,	0.25,	0.19]

tf-idf_norm("is",d3)=	0.45

0.45

3 3

[3.39,	3.0,	3.39,	1.29,	1.29,	1.29,	2.0	,	1.69,	1.29]

[3.39,	3.0,	3.39,	1.29,	1.29,	1.29,	2.0	,	1.69,	1.29]
__

sqrt	([3.39**2,	3.0**2,	3.39**2,	1.29**2,	1.29**2,	1.29**2,	2.0**2,	1.69**2,	1.29**2])

tf-idf_norm	=

=			[0.5,	0.45,	0.5,	0.19,	0.19,	0.19,	0.3,	0.25,	0.19]

tf-idf_norm("is",d3)=	0.45

0.45

3 3

[3.39,	3.0,	3.39,	1.29,	1.29,	1.29,	2.0	,	1.69,	1.29]

[3.39,	3.0,	3.39,	1.29,	1.29,	1.29,	2.0	,	1.69,	1.29]
__

sqrt	([3.39**2,	3.0**2,	3.39**2,	1.29**2,	1.29**2,	1.29**2,	2.0**2,	1.69**2,	1.29**2])

tf-idf_norm	=

=			[0.5,	0.45,	0.5,	0.19,	0.19,	0.19,	0.3,	0.25,	0.19]

tf-idf_norm("is",d3)=	0.45

0.45

3 3

[3.39,	3.0,	3.39,	1.29,	1.29,	1.29,	2.0	,	1.69,	1.29]

[3.39,	3.0,	3.39,	1.29,	1.29,	1.29,	2.0	,	1.69,	1.29]
__

sqrt	([3.39**2,	3.0**2,	3.39**2,	1.29**2,	1.29**2,	1.29**2,	2.0**2,	1.69**2,	1.29**2])

tf-idf_norm	=

=			[0.5,	0.45,	0.5,	0.19,	0.19,	0.19,	0.3,	0.25,	0.19]

tf-idf_norm("is",d3)=	0.45

0.45

3 3

[3.39,	3.0,	3.39,	1.29,	1.29,	1.29,	2.0	,	1.69,	1.29]

[3.39,	3.0,	3.39,	1.29,	1.29,	1.29,	2.0	,	1.69,	1.29]
__

sqrt	([3.39**2,	3.0**2,	3.39**2,	1.29**2,	1.29**2,	1.29**2,	2.0**2,	1.69**2,	1.29**2])

tf-idf_norm	=

=			[0.5,	0.45,	0.5,	0.19,	0.19,	0.19,	0.3,	0.25,	0.19]

tf-idf_norm("is",d3)=	0.45

0.45

3 3

[3.39,	3.0,	3.39,	1.29,	1.29,	1.29,	2.0	,	1.69,	1.29]

[3.39,	3.0,	3.39,	1.29,	1.29,	1.29,	2.0	,	1.69,	1.29]
__

sqrt	([3.39**2,	3.0**2,	3.39**2,	1.29**2,	1.29**2,	1.29**2,	2.0**2,	1.69**2,	1.29**2])

tf-idf_norm	=

=			[0.5,	0.45,	0.5,	0.19,	0.19,	0.19,	0.3,	0.25,	0.19]

tf-idf_norm("is",d3)=	0.45

0.45

3 3

[3.39,	3.0,	3.39,	1.29,	1.29,	1.29,	2.0	,	1.69,	1.29]

[3.39,	3.0,	3.39,	1.29,	1.29,	1.29,	2.0	,	1.69,	1.29]
__

sqrt	([3.39**2,	3.0**2,	3.39**2,	1.29**2,	1.29**2,	1.29**2,	2.0**2,	1.69**2,	1.29**2])

tf-idf_norm	=

=			[0.5,	0.45,	0.5,	0.19,	0.19,	0.19,	0.3,	0.25,	0.19]

tf-idf_norm("is",d3)=	0.45

0.45

3 3

[3.39,	3.0,	3.39,	1.29,	1.29,	1.29,	2.0	,	1.69,	1.29]

[3.39,	3.0,	3.39,	1.29,	1.29,	1.29,	2.0	,	1.69,	1.29]
__

sqrt	([3.39**2,	3.0**2,	3.39**2,	1.29**2,	1.29**2,	1.29**2,	2.0**2,	1.69**2,	1.29**2])

tf-idf_norm	=

=			[0.5,	0.45,	0.5,	0.19,	0.19,	0.19,	0.3,	0.25,	0.19]

tf-idf_norm("is",d3)=	0.45

0.45

3 3

[3.39,	3.0,	3.39,	1.29,	1.29,	1.29,	2.0	,	1.69,	1.29]

[3.39,	3.0,	3.39,	1.29,	1.29,	1.29,	2.0	,	1.69,	1.29]
__

sqrt	([3.39**2,	3.0**2,	3.39**2,	1.29**2,	1.29**2,	1.29**2,	2.0**2,	1.69**2,	1.29**2])

tf-idf_norm	=

=			[0.5,	0.45,	0.5,	0.19,	0.19,	0.19,	0.3,	0.25,	0.19]

tf-idf_norm("is",d3)=	0.45

0.45

3 3

[3.39,	3.0,	3.39,	1.29,	1.29,	1.29,	2.0	,	1.69,	1.29]

[3.39,	3.0,	3.39,	1.29,	1.29,	1.29,	2.0	,	1.69,	1.29]
__

sqrt	([3.39**2,	3.0**2,	3.39**2,	1.29**2,	1.29**2,	1.29**2,	2.0**2,	1.69**2,	1.29**2])

tf-idf_norm	=

=			[0.5,	0.45,	0.5,	0.19,	0.19,	0.19,	0.3,	0.25,	0.19]

tf-idf_norm("is",d3)=	0.45

0.45

3 3

[3.39,	3.0,	3.39,	1.29,	1.29,	1.29,	2.0	,	1.69,	1.29]

[3.39,	3.0,	3.39,	1.29,	1.29,	1.29,	2.0	,	1.69,	1.29]
__

sqrt	([3.39**2,	3.0**2,	3.39**2,	1.29**2,	1.29**2,	1.29**2,	2.0**2,	1.69**2,	1.29**2])

tf-idf_norm	=

=			[0.5,	0.45,	0.5,	0.19,	0.19,	0.19,	0.3,	0.25,	0.19]

tf-idf_norm("is",d3)=	0.45

0.45

3 3

[3.39,	3.0,	3.39,	1.29,	1.29,	1.29,	2.0	,	1.69,	1.29]

[3.39,	3.0,	3.39,	1.29,	1.29,	1.29,	2.0	,	1.69,	1.29]
__

sqrt	([3.39**2,	3.0**2,	3.39**2,	1.29**2,	1.29**2,	1.29**2,	2.0**2,	1.69**2,	1.29**2])

tf-idf_norm	=

=			[0.5,	0.45,	0.5,	0.19,	0.19,	0.19,	0.3,	0.25,	0.19]

tf-idf_norm("is",d3)=	0.45

0.45

3 3

[3.39,	3.0,	3.39,	1.29,	1.29,	1.29,	2.0	,	1.69,	1.29]

[3.39,	3.0,	3.39,	1.29,	1.29,	1.29,	2.0	,	1.69,	1.29]
__

sqrt	([3.39**2,	3.0**2,	3.39**2,	1.29**2,	1.29**2,	1.29**2,	2.0**2,	1.69**2,	1.29**2])

tf-idf_norm	=

=			[0.5,	0.45,	0.5,	0.19,	0.19,	0.19,	0.3,	0.25,	0.19]

tf-idf_norm("is",d3)=	0.45

0.45

3 3

[3.39,	3.0,	3.39,	1.29,	1.29,	1.29,	2.0	,	1.69,	1.29]

[3.39,	3.0,	3.39,	1.29,	1.29,	1.29,	2.0	,	1.69,	1.29]
__

sqrt	([3.39**2,	3.0**2,	3.39**2,	1.29**2,	1.29**2,	1.29**2,	2.0**2,	1.69**2,	1.29**2])

tf-idf_norm	=

=			[0.5,	0.45,	0.5,	0.19,	0.19,	0.19,	0.3,	0.25,	0.19]

tf-idf_norm("is",d3)=	0.45

0.45

3 3

[3.39,	3.0,	3.39,	1.29,	1.29,	1.29,	2.0	,	1.69,	1.29]

[3.39,	3.0,	3.39,	1.29,	1.29,	1.29,	2.0	,	1.69,	1.29]
__

sqrt	([3.39**2,	3.0**2,	3.39**2,	1.29**2,	1.29**2,	1.29**2,	2.0**2,	1.69**2,	1.29**2])

tf-idf_norm	=

=			[0.5,	0.45,	0.5,	0.19,	0.19,	0.19,	0.3,	0.25,	0.19]

tf-idf_norm("is",d3)=	0.45

0.45

3 3

[3.39,	3.0,	3.39,	1.29,	1.29,	1.29,	2.0	,	1.69,	1.29]

[3.39,	3.0,	3.39,	1.29,	1.29,	1.29,	2.0	,	1.69,	1.29]
__

sqrt	([3.39**2,	3.0**2,	3.39**2,	1.29**2,	1.29**2,	1.29**2,	2.0**2,	1.69**2,	1.29**2])

tf-idf_norm	=

=			[0.5,	0.45,	0.5,	0.19,	0.19,	0.19,	0.3,	0.25,	0.19]

tf-idf_norm("is",d3)=	0.45

0.45

3 3

[3.39,	3.0,	3.39,	1.29,	1.29,	1.29,	2.0	,	1.69,	1.29]

[3.39,	3.0,	3.39,	1.29,	1.29,	1.29,	2.0	,	1.69,	1.29]
__

sqrt	([3.39**2,	3.0**2,	3.39**2,	1.29**2,	1.29**2,	1.29**2,	2.0**2,	1.69**2,	1.29**2])

tf-idf_norm	=

=			[0.5,	0.45,	0.5,	0.19,	0.19,	0.19,	0.3,	0.25,	0.19]

tf-idf_norm("is",d3)=	0.45

0.45

3 3

[3.39,	3.0,	3.39,	1.29,	1.29,	1.29,	2.0	,	1.69,	1.29]

[3.39,	3.0,	3.39,	1.29,	1.29,	1.29,	2.0	,	1.69,	1.29]
__

sqrt	([3.39**2,	3.0**2,	3.39**2,	1.29**2,	1.29**2,	1.29**2,	2.0**2,	1.69**2,	1.29**2])

tf-idf_norm	=

=			[0.5,	0.45,	0.5,	0.19,	0.19,	0.19,	0.3,	0.25,	0.19]

tf-idf_norm("is",d3)=	0.45

0.45

3 3

[3.39,	3.0,	3.39,	1.29,	1.29,	1.29,	2.0	,	1.69,	1.29]

[3.39,	3.0,	3.39,	1.29,	1.29,	1.29,	2.0	,	1.69,	1.29]
__

sqrt	([3.39**2,	3.0**2,	3.39**2,	1.29**2,	1.29**2,	1.29**2,	2.0**2,	1.69**2,	1.29**2])

tf-idf_norm	=

=			[0.5,	0.45,	0.5,	0.19,	0.19,	0.19,	0.3,	0.25,	0.19]

tf-idf_norm("is",d3)=	0.45

0.45

3 3

[3.39,	3.0,	3.39,	1.29,	1.29,	1.29,	2.0	,	1.69,	1.29]

[3.39,	3.0,	3.39,	1.29,	1.29,	1.29,	2.0	,	1.69,	1.29]
__

sqrt	([3.39**2,	3.0**2,	3.39**2,	1.29**2,	1.29**2,	1.29**2,	2.0**2,	1.69**2,	1.29**2])

tf-idf_norm	=

=			[0.5,	0.45,	0.5,	0.19,	0.19,	0.19,	0.3,	0.25,	0.19]

tf-idf_norm("is",d3)=	0.45

0.45

3 3

[3.39,	3.0,	3.39,	1.29,	1.29,	1.29,	2.0	,	1.69,	1.29]

[3.39,	3.0,	3.39,	1.29,	1.29,	1.29,	2.0	,	1.69,	1.29]
__

sqrt	([3.39**2,	3.0**2,	3.39**2,	1.29**2,	1.29**2,	1.29**2,	2.0**2,	1.69**2,	1.29**2])

tf-idf_norm	=

=			[0.5,	0.45,	0.5,	0.19,	0.19,	0.19,	0.3,	0.25,	0.19]

tf-idf_norm("is",d3)=	0.45

0.45

3 3

[3.39,	3.0,	3.39,	1.29,	1.29,	1.29,	2.0	,	1.69,	1.29]

[3.39,	3.0,	3.39,	1.29,	1.29,	1.29,	2.0	,	1.69,	1.29]
__

sqrt	([3.39**2,	3.0**2,	3.39**2,	1.29**2,	1.29**2,	1.29**2,	2.0**2,	1.69**2,	1.29**2])

tf-idf_norm	=

=			[0.5,	0.45,	0.5,	0.19,	0.19,	0.19,	0.3,	0.25,	0.19]

tf-idf_norm("is",d3)=	0.45

0.45

3 3

[3.39,	3.0,	3.39,	1.29,	1.29,	1.29,	2.0	,	1.69,	1.29]

[3.39,	3.0,	3.39,	1.29,	1.29,	1.29,	2.0	,	1.69,	1.29]
__

sqrt	([3.39**2,	3.0**2,	3.39**2,	1.29**2,	1.29**2,	1.29**2,	2.0**2,	1.69**2,	1.29**2])

tf-idf_norm	=

=			[0.5,	0.45,	0.5,	0.19,	0.19,	0.19,	0.3,	0.25,	0.19]

tf-idf_norm("is",d3)=	0.45

0.45

3 3

[3.39,	3.0,	3.39,	1.29,	1.29,	1.29,	2.0	,	1.69,	1.29]

[3.39,	3.0,	3.39,	1.29,	1.29,	1.29,	2.0	,	1.69,	1.29]
__

sqrt	([3.39**2,	3.0**2,	3.39**2,	1.29**2,	1.29**2,	1.29**2,	2.0**2,	1.69**2,	1.29**2])

tf-idf_norm	=

=			[0.5,	0.45,	0.5,	0.19,	0.19,	0.19,	0.3,	0.25,	0.19]

tf-idf_norm("is",d3)=	0.45

0.45

3 3

[3.39,	3.0,	3.39,	1.29,	1.29,	1.29,	2.0	,	1.69,	1.29]

[3.39,	3.0,	3.39,	1.29,	1.29,	1.29,	2.0	,	1.69,	1.29]
__

sqrt	([3.39**2,	3.0**2,	3.39**2,	1.29**2,	1.29**2,	1.29**2,	2.0**2,	1.69**2,	1.29**2])

tf-idf_norm	=

=			[0.5,	0.45,	0.5,	0.19,	0.19,	0.19,	0.3,	0.25,	0.19]

tf-idf_norm("is",d3)=	0.45

0.45

3 3

[3.39,	3.0,	3.39,	1.29,	1.29,	1.29,	2.0	,	1.69,	1.29]

[3.39,	3.0,	3.39,	1.29,	1.29,	1.29,	2.0	,	1.69,	1.29]
__

sqrt	([3.39**2,	3.0**2,	3.39**2,	1.29**2,	1.29**2,	1.29**2,	2.0**2,	1.69**2,	1.29**2])

tf-idf_norm	=

=			[0.5,	0.45,	0.5,	0.19,	0.19,	0.19,	0.3,	0.25,	0.19]

tf-idf_norm("is",d3)=	0.45

0.45

3 3

[3.39,	3.0,	3.39,	1.29,	1.29,	1.29,	2.0	,	1.69,	1.29]

[3.39,	3.0,	3.39,	1.29,	1.29,	1.29,	2.0	,	1.69,	1.29]
__

sqrt	([3.39**2,	3.0**2,	3.39**2,	1.29**2,	1.29**2,	1.29**2,	2.0**2,	1.69**2,	1.29**2])

tf-idf_norm	=

=			[0.5,	0.45,	0.5,	0.19,	0.19,	0.19,	0.3,	0.25,	0.19]

tf-idf_norm("is",d3)=	0.45

0.45

Chapter 8

[241]

... text = re.sub('<[^>]*>', '', text)

... emoticons = re.findall('(?::|;|=)(?:-)?(?:\)|\(|D|P)', text)

... text = re.sub('[\W]+', ' ', text.lower()) + \
 '.join(emoticons).replace('-', '')
... return text

Via the first regex <[^>]*> in the preceding code section, we tried to remove the
entire HTML markup that was contained in the movie reviews. Although many
programmers generally advise against the use of regex to parse HTML, this regex
should be sufficient to clean this particular dataset. After we removed the HTML
markup, we used a slightly more complex regex to find emoticons, which we
temporarily stored as emoticons. Next we removed all non-word characters from
the text via the regex [\W]+, converted the text into lowercase characters, and
eventually added the temporarily stored emoticons to the end of the processed
document string. Additionally, we removed the nose character (-) from the emoticons
for consistency.

Although regular expressions offer an efficient and convenient
approach to searching for characters in a string, they also come with
a steep learning curve. Unfortunately, an in-depth discussion of
regular expressions is beyond the scope of this book. However, you
can find a great tutorial on the Google Developers portal at https://
developers.google.com/edu/python/regular-expressions or
check out the official documentation of Python's re module at https://
docs.python.org/3.4/library/re.html.

Although the addition of the emoticon characters to the end of the cleaned document
strings may not look like the most elegant approach, the order of the words doesn't
matter in our bag-of-words model if our vocabulary only consists of 1-word tokens.
But before we talk more about splitting documents into individual terms, words, or
tokens, let us confirm that our preprocessor works correctly:

>>> preprocessor(df.loc[0, 'review'][-50:])
'is seven title brazil not available'
>>> preprocessor("This :) is :(a test :-)!")
'this is a test :) :(:)'

Lastly, since we will make use of the cleaned text data over and over again during the
next sections, let us now apply our preprocessor function to all movie reviews in
our DataFrame:

>>> df['review'] = df['review'].apply(preprocessor)

'

Predicting Continuous Target Variables with Regression Analysis

[�����]

However, a limitation of the LASSO is that it selects at most n variables if m > n . A
compromise between Ridge regression and the LASSO is the Elastic Net, which has a
L1 penalty to generate sparsity and a L2 penalty to overcome some of the limitations
of the LASSO, such as the number of selected variables.

() () ()()2 2
1 2

1 1 1

ˆ
n m m

i i
j jElasticNet

i j j
J w y y w wλ λ

= = =

= − + +∑ ∑ ∑

Those regularized regression models are all available via scikit-learn, and the
usage is similar to the regular regression model except that we have to specify the
regularization strength via the parameter λ , for example, optimized via k-fold
cross-validation.

A Ridge Regression model can be initialized as follows:

>>> from sklearn.linear_model import Ridge
>>> ridge = Ridge(alpha=1.0)

Note that the regularization strength is regulated by the parameter alpha, which is
similar to the parameter λ . Likewise, we can initialize a LASSO regressor from the
linear_model submodule:

>>> from sklearn.linear_model import Lasso
>>> lasso = Lasso(alpha=1.0)

Lastly, the ElasticNet implementation allows us to vary the L1 to L2 ratio:

>>> from sklearn.linear_model import ElasticNet
>>> lasso = ElasticNet(alpha=1.0, l1_ratio=0.5)

For example, if we set l1_ratio to 1.0, the ElasticNet regressor would be
equal to LASSO regression. For more detailed information about the different
implementations of linear regression, please see the documentation at
http://scikit-learn.org/stable/modules/linear_model.html.

Turning a linear regression model into a
FXUYH�±�SRO\QRPLDO�UHJUHVVLRQ
In the previous sections, we assumed a linear relationship between explanatory and
response variables. One way to account for the violation of linearity assumption is
to use a polynomial regression model by adding polynomial terms:

2 2
0 1 2 ... d

dy w w x w x x w x= + + + +

Chapter 10

[305]

Here, tN is the number of training samples at node t , tD is the training subset
at node t , ()iy is the true target value, and ˆty is the predicted target value
(sample mean):

()ˆ 1

t

i
t

i D
y

N
y

∈

= ∑

In the context of decision tree regression, the MSE is often also referred to as
within-node variance, which is why the splitting criterion is also better known
as variance reduction��7R�VHH�ZKDW�WKH�OLQH�ÀW�RI�D�GHFLVLRQ�WUHH�ORRNV�OLNH��OHW
V�XVH�
the DecisionTreeRegressor implemented in scikit-learn to model the nonlinear
relationship between the MEDV and LSTAT variables:

>>> from sklearn.tree import DecisionTreeRegressor
>>> X = df[['LSTAT']].values
>>> y = df['MEDV'].values
>>> tree = DecisionTreeRegressor(max_depth=3)
>>> tree.fit(X, y)
>>> sort_idx = X.flatten().argsort()
 >>> lin_regplot(X[sort_idx], y[sort_idx], tree)
>>> plt.xlabel('% lower status of the population [LSTAT]')
>>> plt.ylabel('Price in $1000\'s [MEDV]')
>>> plt.show()

As we can see from the resulting plot, the decision tree captures the general
trend in the data. However, a limitation of this model is that it does not capture
the continuity and differentiability of the desired prediction. In addition, we
need to be careful about choosing an appropriate value for the depth of the tree
WR�QRW�RYHUÀW�RU�XQGHUÀW�WKH�GDWD��KHUH��D�GHSWK�RI���VHHPV�WR�EH�D�JRRG�FKRLFH�

Chapter 11

[�����]

However, note that the membership indicator (),i jw is not a binary value as in
k-means () { }, 0,1i jw ∈) but a real value that denotes the cluster membership probability

() [],(0,1i jw ∈ ���<RX�DOVR�PD\�KDYH�QRWLFHG�WKDW�ZH�DGGHG�DQ�DGGLWLRQDO�H[SRQHQW�
to (),i jw ; the exponent m, any number greater or equal to 1 (typically m = 2), is the
so-called IX]]LQHVV�FRHIÀFLHQW (or simply IX]]LÀHU) that controls the degree of
fuzziness. The larger the value of m , the smaller the cluster membership (),i jw
becomes, which leads to fuzzier clusters. The cluster membership probability
itself is calculated as follows:

()
() ()

() ()

12
1

, 2

1
2

i j m
k

i j
i p

p
w

−

−

=

⎡ ⎤⎛ ⎞−⎢ ⎥⎜ ⎟= ⎢ ⎥⎜ ⎟−⎢ ⎥⎝ ⎠⎢ ⎥⎣ ⎦

∑
x

x

µ

µ

For example, if we chose three cluster centers as in the previous k-means example,
we could calculate the membership of the ()ix sample belonging to the ()jµ cluster as:

()
() ()

() ()

() ()

() ()

() ()

() ()

12 2 2
1 1 1

, 2 2 2
1 2 3

2 2 2

i j i j i jm m m
i j

i i i
w

−

− − −
⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞− − −⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟= + +⎢ ⎥⎜ ⎟ ⎜ ⎟ ⎜ ⎟− − −⎢ ⎥⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦

x x x

x x x

µ µ µ

µ µ µ

The center ()jµ of a cluster itself is calculated as the mean of all samples in the cluster
weighted by the membership degree of belonging to its own cluster:

()
() ()

()

,
1

,
1

n m i j i
j i

n m i j
i

w

w
=

=

=∑
∑

x
µ

Just by looking at the equation to calculate the cluster memberships, it is intuitive
to say that each iteration in FCM is more expensive than an iteration in k-means.
However, FCM typically requires fewer iterations overall to reach convergence.
Unfortunately, the FCM algorithm is currently not implemented in scikit-learn.
However, it has been found in practice that both k-means and FCM produce very
similar clustering outputs, as described in a study by Soumi Ghosh and Sanjay K.
Dubey (S. Ghosh and S. K. Dubey. &RPSDUDWLYH�$QDO\VLV�RI�N�PHDQV�DQG�)X]]\�F�PHDQV�
Algorithms. IJACSA, 4:35–38, 2013).

()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()()

Working with Unlabeled Data – Clustering Analysis

[�����]

The silhouette FRHIÀFLHQW�LV�ERXQGHG�LQ the range -1 to 1. Based on the preceding
IRUPXOD��ZH�FDQ�VHH�WKDW�WKH�VLOKRXHWWH�FRHIÀFLHQW�LV���LI�WKH�FOXVWHU�VHSDUDWLRQ�
and cohesion are equal (() ()i ib a=). Furthermore, we get close to an ideal silhouette
FRHIÀFLHQW�RI���LI� () ()i ib a>> , since ()ib �TXDQWLÀHV�KRZ�GLVVLPLODU�D�VDPSOH�LV�WR�RWKHU�
clusters, and ()ia tells us how similar it is to the other samples in its own cluster,
respectively.

7KH�VLOKRXHWWH�FRHIÀFLHQW�LV�DYDLODEOH�DV�silhouette_samples from scikit-learn's
metric module, and optionally the silhouette_scores can be imported. This
FDOFXODWHV�WKH�DYHUDJH�VLOKRXHWWH�FRHIÀFLHQW�DFURVV�DOO�VDPSOHV��ZKLFK�LV�HTXLYDOHQW�WR�
numpy.mean(silhouette_samples(…)). By executing the following code, we will
QRZ�FUHDWH�D�SORW�RI�WKH�VLOKRXHWWH�FRHIÀFLHQWV�IRU�D�N�PHDQV�FOXVWHULQJ�ZLWK� 3k = :

>>> km = KMeans(n_clusters=3,
... init='k-means++',
... n_init=10,
... max_iter=300,
... tol=1e-04,
... random_state=0)
>>> y_km = km.fit_predict(X)

>>> import numpy as np
>>> from matplotlib import cm
>>> from sklearn.metrics import silhouette_samples
>>> cluster_labels = np.unique(y_km)
>>> n_clusters = cluster_labels.shape[0]
>>> silhouette_vals = silhouette_samples(X,
... y_km,
... metric='euclidean')
>>> y_ax_lower, y_ax_upper = 0, 0
>>> yticks = []
>>> for i, c in enumerate(cluster_labels):
... c_silhouette_vals = silhouette_vals[y_km == c]
... c_silhouette_vals.sort()
... y_ax_upper += len(c_silhouette_vals)
... color = cm.jet(i / n_clusters)
... plt.barh(range(y_ax_lower, y_ax_upper),
... c_silhouette_vals,
... height=1.0,
... edgecolor='none',
... color=color)
... yticks.append((y_ax_lower + y_ax_upper) / 2)
... y_ax_lower += len(c_silhouette_vals)
>>> silhouette_avg = np.mean(silhouette_vals)
>>> plt.axvline(silhouette_avg,
... color="red",
... linestyle="--")
>>> plt.yticks(yticks, cluster_labels + 1)

use	float(i)	to	make	it	Python	2.7	compatibleuse	float(i)	to	make	it	Python	2.7	compatibleuse	float(i)	to	make	it	Python	2.7	compatibleuse	float(i)	to	make	it	Python	2.7	compatibleuse	float(i)	to	make	it	Python	2.7	compatibleuse	float(i)	to	make	it	Python	2.7	compatibleuse	float(i)	to	make	it	Python	2.7	compatibleuse	float(i)	to	make	it	Python	2.7	compatibleuse	float(i)	to	make	it	Python	2.7	compatibleuse	float(i)	to	make	it	Python	2.7	compatibleuse	float(i)	to	make	it	Python	2.7	compatibleuse	float(i)	to	make	it	Python	2.7	compatibleuse	float(i)	to	make	it	Python	2.7	compatibleuse	float(i)	to	make	it	Python	2.7	compatibleuse	float(i)	to	make	it	Python	2.7	compatibleuse	float(i)	to	make	it	Python	2.7	compatibleuse	float(i)	to	make	it	Python	2.7	compatibleuse	float(i)	to	make	it	Python	2.7	compatibleuse	float(i)	to	make	it	Python	2.7	compatibleuse	float(i)	to	make	it	Python	2.7	compatibleuse	float(i)	to	make	it	Python	2.7	compatibleuse	float(i)	to	make	it	Python	2.7	compatibleuse	float(i)	to	make	it	Python	2.7	compatibleuse	float(i)	to	make	it	Python	2.7	compatibleuse	float(i)	to	make	it	Python	2.7	compatibleuse	float(i)	to	make	it	Python	2.7	compatibleuse	float(i)	to	make	it	Python	2.7	compatibleuse	float(i)	to	make	it	Python	2.7	compatibleuse	float(i)	to	make	it	Python	2.7	compatibleuse	float(i)	to	make	it	Python	2.7	compatibleuse	float(i)	to	make	it	Python	2.7	compatibleuse	float(i)	to	make	it	Python	2.7	compatible

Chapter 11

[�����]

... y_km,

... metric='euclidean')
>>> y_ax_lower, y_ax_upper = 0, 0
yticks = []
>>> for i, c in enumerate(cluster_labels):
... c_silhouette_vals = silhouette_vals[y_km == c]
... c_silhouette_vals.sort()
... y_ax_upper += len(c_silhouette_vals)
... color = cm.jet(i / n_clusters)
... plt.barh(range(y_ax_lower, y_ax_upper),
... c_silhouette_vals,
... height=1.0,
... edgecolor='none',
... color=color)
... yticks.append((y_ax_lower + y_ax_upper) / 2)
... y_ax_lower += len(c_silhouette_vals)
>>> silhouette_avg = np.mean(silhouette_vals)
>>> plt.axvline(silhouette_avg, color="red", linestyle="--")
>>> plt.yticks(yticks, cluster_labels + 1)
>>> plt.ylabel('Cluster')
>>> plt.xlabel('Silhouette coefficient')
>>> plt.show()

As we can see in the resulting plot, the silhouettes now have visibly different lengths
and width, which yields further evidence for a suboptimal clustering:

7UDLQLQJ�$UWLÀFLDO�1HXUDO�1HWZRUNV�IRU�,PDJH�5HFRJQLWLRQ

[�����]

In Chapter 2, 7UDLQLQJ�0DFKLQH�/HDUQLQJ�$OJRULWKPV�IRU�&ODVVLÀFDWLRQ, we implemented
WKH�$GDOLQH�DOJRULWKP�WR�SHUIRUP�ELQDU\�FODVVLÀFDWLRQ��DQG�ZH�XVHG�D�gradient
descent�RSWLPL]DWLRQ�DOJRULWKP�WR�OHDUQ�WKH�ZHLJKW�FRHIÀFLHQWV�RI�WKH�PRGHO��,Q�
every epoch (pass over the training set), we updated the weight vector w using
the following update rule:

(): , where Jη= + ∆ ∆ = − ∇w w w w w

In other words, we computed the gradient based on the whole training set and
updated the weights of the model by taking a step into the opposite direction of the
gradient ()J∇ w ��,Q�RUGHU�WR�ÀQG�WKH�RSWLPDO�ZHLJKWV�RI�WKH�PRGHO��ZH�RSWLPL]HG�DQ�
REMHFWLYH�IXQFWLRQ�WKDW�ZH�GHÀQHG�DV�WKH�Sum of Squared Errors (SSE) cost function
()J w . Furthermore, we multiplied the gradient by a factor, the learning rate η , which

we chose carefully to balance the speed of learning against the risk of overshooting
the global minimum of the cost function.

In gradient descent optimization, we updated all weights simultaneously after each
HSRFK��DQG�ZH�GHÀQHG�WKH�SDUWLDO�GHULYDWLYH�IRU�HDFK�ZHLJKW� jw in the weight vector
w as follows:

() () ()() ()ii i
j

ij

J y a x
w
∂ = −
∂ ∑w

Here ()iy is the target class label of a particular sample ()ix , and ()ia is the activation
of the neuron, which is a linear function in the special case of Adaline. Furthermore,
ZH�GHÀQHG�WKH�activation function ()φ ⋅ as follows:

()z z aφ = =

Here, the net input is a linear combination of the weights that are connecting the
input to the output layer:

j jj
z w x= =∑ Tw x

While we used the activation ()zφ to compute the gradient update, we implemented
a threshold function (Heaviside function) to squash the continuous-valued output
into binary class labels for prediction:

()1 0ˆ
1
if g zy
otherwise

⎧ ≥
= ⎨ −⎩

-

Missing “minus” sign, e.g., see pg. 36

-

Missing “minus” sign, e.g., see pg. 36

-

Missing “minus” sign, e.g., see pg. 36

-

Missing “minus” sign, e.g., see pg. 36

Chapter 12

[�����]

Note that although Adaline consists of two layers, one input layer
and one output layer, it is called a single-layer network because of
its single link between the input and output layers.

Introducing the multi-layer neural network
architecture
In this section, we will see how to connect multiple single neurons to a multi-layer
feedforward neural network; this special type of network is also called a multi-layer
perceptron (MLP���7KH�IROORZLQJ�ÀJXUH�H[SODLQV�WKH�FRQFHSW�RI�DQ�0/3�FRQVLVWLQJ�
of three layers: one input layer, one hidden layer, and one output layer. The units in
the hidden layer are fully connected to the input layer, and the output layer is fully
connected to the hidden layer, respectively. If such a network has more than one
hidden layer, we also call it a deep�DUWLÀFLDO�QHXUDO�QHWZRUN�

We could add an arbitrary number of hidden layers to the MLP to create
deeper network architectures. Practically, we can think of the number of
layers and units in a neural network as additional hyperparameters that
we want to optimize for a given problem task using the cross-validation
that we discussed in Chapter 6, Learning Best Practices for Model Evaluation
and Hyperparameter Tuning.
However, the error gradients that we will calculate later via
backpropagation would become increasingly small as more layers are
added to a network. This vanishing gradient problem makes the model
learning more challenging. Therefore, special algorithms have been
developed to pretrain such deep neural network structures, which is
called GHHS�OHDUQLQJ�

1 0

1 3

1 0

7UDLQLQJ�$UWLÀFLDO�1HXUDO�1HWZRUNV�IRU�,PDJH�5HFRJQLWLRQ

[358]

 X_new = np.ones((X.shape[0]+1, X.shape[1]))
 X_new[1:, :] = X
 else:
 raise AttributeError('`how` must be `column` or `row`')
 return X_new

 def _feedforward(self, X, w1, w2):
 a1 = self._add_bias_unit(X, how='column')
 z2 = w1.dot(a1.T)
 a2 = self._sigmoid(z2)
 a2 = self._add_bias_unit(a2, how='row')
 z3 = w2.dot(a2)
 a3 = self._sigmoid(z3)
 return a1, z2, a2, z3, a3

 def _L2_reg(self, lambda_, w1, w2):
 return (lambda_/2.0) * (np.sum(w1[:, 1:] ** 2)\
 + np.sum(w2[:, 1:] ** 2))

 def _L1_reg(self, lambda_, w1, w2):
 return (lambda_/2.0) * (np.abs(w1[:, 1:]).sum()\
 + np.abs(w2[:, 1:]).sum())

 def _get_cost(self, y_enc, output, w1, w2):
 term1 = -y_enc * (np.log(output))
 term2 = (1 - y_enc) * np.log(1 - output)
 cost = np.sum(term1 - term2)
 L1_term = self._L1_reg(self.l1, w1, w2)
 L2_term = self._L2_reg(self.l2, w1, w2)
 cost = cost + L1_term + L2_term
 return cost

 def _get_gradient(self, a1, a2, a3, z2, y_enc, w1, w2):
 # backpropagation
 sigma3 = a3 - y_enc
 z2 = self._add_bias_unit(z2, how='row')
 sigma2 = w2.T.dot(sigma3) * self._sigmoid_gradient(z2)
 sigma2 = sigma2[1:, :]
 grad1 = sigma2.dot(a1)
 grad2 = sigma3.dot(a2.T)

 # regularize
 grad1[:, 1:] += (w1[:, 1:] * (self.l1 + self.l2))

grad1[:, 1:] += self.l2 * w1[:, 1:]
grad1[:, 1:] += self.l1 * np.sign(w1[:, 1:])

Chapter 12

[�����]

 grad2[:, 1:] += (w2[:, 1:] * (self.l1 + self.l2))

 return grad1, grad2

 def predict(self, X):
 a1, z2, a2, z3, a3 = self._feedforward(X, self.w1, self.w2)
 y_pred = np.argmax(z3, axis=0)
 return y_pred

 def fit(self, X, y, print_progress=False):
 self.cost_ = []
 X_data, y_data = X.copy(), y.copy()
 y_enc = self._encode_labels(y, self.n_output)

 delta_w1_prev = np.zeros(self.w1.shape)
 delta_w2_prev = np.zeros(self.w2.shape)

 for i in range(self.epochs):

 # adaptive learning rate
 self.eta /= (1 + self.decrease_const*i)

 if print_progress:
 sys.stderr.write(
 '\rEpoch: %d/%d' % (i+1, self.epochs))
 sys.stderr.flush()

 if self.shuffle:
 idx = np.random.permutation(y_data.shape[0])
 X_data, y_enc = X_data[idx], y_enc[:,idx]

 mini = np.array_split(range(
 y_data.shape[0]), self.minibatches)
 for idx in mini:

 # feedforward
 a1, z2, a2, z3, a3 = self._feedforward(
 X_data[idx], self.w1, self.w2)
 cost = self._get_cost(y_enc=y_enc[:, idx],
 output=a3,
 w1=self.w1,
 w2=self.w2)
 self.cost_.append(cost)

grad2[:, 1:] += self.l2 * w2[:, 1:]
grad2[:, 1:] += self.l1 * np.sign(w2[:, 1:])

Training Artificial Neural Networks for Image Recognition

[370]

Although, it is not important to follow the next equations, you may be
curious as to how I obtained the derivative of the activation function. I
summarized the derivation step by step here:

() 1
1 zz

z e
φ −

∂ ⎛ ⎞= ⎜ ⎟∂ +⎝ ⎠
′

()2
1

z

z

e
e

−

−
=

+

()
2

2
1 1

11

z

zz

e
ee

−

−−

+ ⎛ ⎞= −⎜ ⎟+⎝ ⎠+

()
21 1

11 zz ee −−

⎛ ⎞= −⎜ ⎟++ ⎝ ⎠

() ()()2z zφ φ= −

() ()()1z zφ φ= −

()1a a= −

To better understand how we compute the ()3δ term, let's walk through it in more
detail. In the preceding equation, we multiplied the transpose ()()2 T

W of the t h×
dimensional matrix ()2W ; t is the number of output class labels and h is the number
of hidden units. Now, ()()2 T

W becomes an h t× dimensional matrix with ()3δ , which
is a 1t× dimensional vector. We then performed a pair-wise multiplication between

()() ()2 3T
δW and () ()()()2 21a a∗ − , which is also a 1t× dimensional vector. Eventually,

after obtaining the δ terms, we can now write the derivation of the cost function
as follows:

() () () ()1

,

l l
j il

i j

J a
w

δ +∂ =
∂

W

hx1

That’s a bit confusing, maybe it’s more clear to say:

“We multiplied (W^(2))^T, an h×t dimensional matrix with Sigma^(3), which is a t x 1 dimensional vector, resulting in a hx1 dimensional vector.”

Chapter 13

[�����]

If we calculate the net input and use it to activate a logistic neuron with those
SDUWLFXODU�IHDWXUH�YDOXHV�DQG�ZHLJKW�FRHIÀFLHQWV��ZH�JHW�EDFN�D�YDOXH�RI��������
which we can interpret as a 70.7 percent probability that this particular sample x
belongs to the positive class. In Chapter 12, 7UDLQLQJ�$UWLÀFLDO�1HXUDO�1HWZRUNV�IRU�
,PDJH�5HFRJQLWLRQ, we used the one-hot encoding technique to compute the values
in the output layer consisting of multiple logistic activation units. However, as
we will demonstrate with the following code example, an output layer consisting
of multiple logistic activation units does not produce meaningful, interpretable
probability values:

W : array, shape = [n_output_units, n_hidden_units+1]
Weight matrix for hidden layer -> output layer.
note that first column (A[:][0] = 1) are the bias units
>>> W = np.array([[1.1, 1.2, 1.3, 0.5],
... [0.1, 0.2, 0.4, 0.1],
... [0.2, 0.5, 2.1, 1.9]])

A : array, shape = [n_hidden+1, n_samples]
Activation of hidden layer.
note that first element (A[0][0] = 1) is the bias unit
>>> A = np.array([[1.0],
... [0.1],
... [0.3],
... [0.7]])

Z : array, shape = [n_output_units, n_samples]
Net input of the output layer.
>>> Z = W.dot(A)
>>> y_probas = logistic(Z)
>>> print('Probabilities:\n', y_probas)
Probabilities:
 [[0.87653295]
 [0.57688526]
 [0.90114393]]

As we can see in the output, the probability that the particular sample belongs to the
ÀUVW�FODVV�LV�DOPRVW����SHUFHQW��WKH�SUREDELOLW\�WKDW�WKH�SDUWLFXODU�VDPSOH�EHORQJV�WR�
the second class is almost 58 percent, and the probability that the particular sample
belongs to the third class is 90 percent, respectively. This is clearly confusing, since
we all know that a percentage should intuitively be expressed as a fraction of 100.
However, this is in fact not a big concern if we only use our model to predict the
class labels, not the class membership probabilities.

>>> y_class = np.argmax(Z, axis=0)
>>> print('predicted class label: %d' % y_class[0])
predicted class label: 2

(W[:][0]) contains the bias units

