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Although stochastic gradient descent can be considered as an approximation of 
gradient descent, it typically reaches convergence much faster because of the more 
frequent weight updates. Since each gradient is calculated based on a single training 
example, the error surface is noisier than in gradient descent, which can also have 
the advantage that stochastic gradient descent can escape shallow local minima more 
readily. To obtain accurate results via stochastic gradient descent, it is important to 
present it with data in a random order, which is why we want to shuffle the training 
set for every epoch to prevent cycles.

In stochastic gradient descent implementations, the fixed learning rate η  
is often replaced by an adaptive learning rate that decreases over time, 

for example, [ ]
1

2  
c

number of iterations c+  where 1c  and 2c  are constants. 
Note that stochastic gradient descent does not reach the global minimum 
but an area very close to it. By using an adaptive learning rate, we can 
achieve further annealing to a better global minimum

Another advantage of stochastic gradient descent is that we can use it for online 
learning. In online learning, our model is trained on-the-fly as new training data 
arrives. This is especially useful if we are accumulating large amounts of data—for 
example, customer data in typical web applications. Using online learning, the 
system can immediately adapt to changes and the training data can be discarded 
after updating the model if storage space in an issue.

A compromise between batch gradient descent and stochastic gradient 
descent is the so-called mini-batch learning. Mini-batch learning can be 
understood as applying batch gradient descent to smaller subsets of 
the training data—for example, 50 samples at a time. The advantage 
over batch gradient descent is that convergence is reached faster 
via mini-batches because of the more frequent weight updates. 
Furthermore, mini-batch learning allows us to replace the for-loop 
over the training samples in Stochastic Gradient Descent (SGD) by 
vectorized operations, which can further improve the computational 
efficiency of our learning algorithm.
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We will assign the petal length and petal width of the 150 flower samples to the feature 
matrix X and the corresponding class labels of the flower species to the vector y:

>>> from sklearn import datasets
>>> import numpy as np
>>> iris = datasets.load_iris()
>>> X = iris.data[:, [2, 3]]
>>> y = iris.target

If we executed np.unique(y) to return the different class labels stored in iris.
target, we would see that the Iris flower class names, Iris-Setosa, Iris-Versicolor,  
and Iris-Virginica, are already stored as integers (0, 1, 2), which is recommended  
for the optimal performance of many machine learning libraries.

To evaluate how well a trained model performs on unseen data, we will further split 
the dataset into separate training and test datasets. Later in Chapter 5, Compressing 
Data via Dimensionality Reduction, we will discuss the best practices around model 
evaluation in more detail:

>>> from sklearn.cross_validation import train_test_split
>>> X_train, X_test, y_train, y_test = train_test_split(
...           X, y, test_size=0.3, random_state=0)

Using the train_test_split function from scikit-learn's cross_validation 
module, we randomly split the X and y arrays into 30 percent test data (45 samples) 
and 70 percent training data (105 samples).

Many machine learning and optimization algorithms also require feature scaling  
for optimal performance, as we remember from the gradient descent example 
in Chapter 2, Training Machine Learning Algorithms for Classification. Here, we will 
standardize the features using the StandardScaler class from scikit-learn's 
preprocessing module:

>>> from sklearn.preprocessing import StandardScaler
>>> sc = StandardScaler()
>>> sc.fit(X_train)
>>> X_train_std = sc.transform(X_train)
>>> X_test_std = sc.transform(X_test)

Chapter 6, Chapter 6: Learning Best Practices for Model Evaluation
and Hyperparameter Tuning
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Applied to the standardized Wine data, the L1 regularized logistic regression would 
yield the following sparse solution:

>>> lr = LogisticRegression(penalty='l1', C=0.1)
>>> lr.fit(X_train_std, y_train)
>>> print('Training accuracy:', lr.score(X_train_std, y_train))
Training accuracy: 0.983870967742
>>> print('Test accuracy:', lr.score(X_test_std, y_test))
Test accuracy: 0.981481481481

Both training and test accuracies (both 98 percent) do not indicate any overfitting  
of our model. When we access the intercept terms via the lr.intercept_ attribute, 
we can see that the array returns three values:

>>> lr.intercept_
array([-0.38379237, -0.1580855 , -0.70047966])

Since we the fit the LogisticRegression object on a multiclass dataset, it uses the 
One-vs-Rest (OvR) approach by default where the first intercept belongs to the 
model that fits class 1 versus class 2 and 3; the second value is the intercept of the 
model that fits class 2 versus class 1 and 3; and the third value is the intercept of the 
model that fits class 3 versus class 1 and 2, respectively:

>>> lr.coef_
array([[ 0.280, 0.000, 0.000, -0.0282, 0.000,
         0.000, 0.710, 0.000, 0.000, 0.000,
         0.000, 0.000, 1.236],
       [-0.644, -0.0688 , -0.0572, 0.000, 0.000,
         0.000, 0.000, 0.000, 0.000, -0.927,
         0.060, 0.000, -0.371],
       [ 0.000, 0.061, 0.000, 0.000, 0.000,
         0.000, -0.637, 0.000, 0.000, 0.499,
        -0.358, -0.570, 0.000
       ]])

The weight array that we accessed via the lr.coef_ attribute contains three rows of 
weight coefficients, one weight vector for each class. Each row consists of 13 weights 
where each weight is multiplied by the respective feature in the 13-dimensional 
Wine dataset to calculate the net input:
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Scikit-learn also implements advanced techniques for 
nonlinear dimensionality reduction that are beyond the scope 
of this book. You can find a nice overview of the current 
implementations in scikit-learn complemented with illustrative 
examples at http://scikit-learn.org/stable/
modules/manifold.html.

Summary
In this chapter, you learned about three different, fundamental dimensionality 
reduction techniques for feature extraction: standard PCA, LDA, and kernel PCA. 
Using PCA, we projected data onto a lower-dimensional subspace to maximize 
the variance along the orthogonal feature axes while ignoring the class labels. 
LDA, in contrast to PCA, is a technique for supervised dimensionality reduction, 
which means that it considers class information in the training dataset to attempt to 
maximize the class-separability in a linear feature space. Lastly, you learned about a 
kernelized version of PCA, which allows you to map nonlinear datasets onto a  
lower-dimensional feature space where the classes become linearly separable.

Equipped with these essential preprocessing techniques, you are now well prepared 
to learn about the best practices for efficiently incorporating different preprocessing 
techniques and evaluating the performance of different models in the next chapter.

http://scikit-learn.org/stable/modules/manifold.html
Due to the brevity of this statement, the sentence may potentially be confusing. Maybe something along the lines of

“Lastly, you learned about a nonlinear feature extractor, kernel PCA. Using the kernel trick, and a temporary projection into a higher-dimensional feature space, you were ultimately able to compress datasets consisting of nonlinear features onto a smaller dimensional subspace where the classes became linearly separable.“

would be better?

http://scikit-learn.org/stable/modules/manifold.html
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On a side note, it is also worth mentioning that we technically don't have to update 
the weights of the intercept if we are working with standardized variables since the  
y axis intercept is always 0 in those cases. We can quickly confirm this by printing 
the weights:

>>> print('Slope: %.3f' % lr.w_[1])
Slope: 0.695
>>> print('Intercept: %.3f' % lr.w_[0])
Intercept: -0.000

Estimating the coefficient of a regression 
model via scikit-learn
In the previous section, we implemented a working model for regression  
analysis. However, in a real-world application, we may be interested in more 
efficient implementations, for example, scikit-learn's LinearRegression object  
that makes use of the LIBLINEAR library and advanced optimization algorithms 
that work better with unstandardized variables. This is sometimes desirable for 
certain applications:

>>> from sklearn.linear_model import LinearRegression
>>> slr = LinearRegression()
>>> slr.fit(X, y)
>>> print('Slope: %.3f' % slr.coef_[0])
Slope: 9.102
>>> print('Intercept: %.3f' % slr.intercept_)
Intercept: -34.671

As we can see by executing the preceding code, scikit-learn's LinearRegression 
model fitted with the unstandardized RM and MEDV variables yielded different 
model coefficients. Let's compare it to our own GD implementation by plotting 
MEDV against RM:

>>> lin_regplot(X, y, slr)
>>> plt.xlabel('Average number of rooms [RM]')
>>> plt.ylabel('Price in $1000\'s [MEDV]')
>>> plt.show()w


