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Solving interactive problems with 
reinforcement learning
Another type of machine learning is reinforcement learning. In reinforcement 
learning, the goal is to develop a system (agent) that improves its performance 
based on interactions with the environment. Since the information about the current 
state of the environment typically also includes a so-called reward signal, we can 
think of reinforcement learning as a field related to supervised learning. However, in 
reinforcement learning this feedback is not the correct ground truth label or value, 
but a measure of how well the action was measured by a reward function. Through 
the interaction with the environment, an agent can then use reinforcement learning 
to learn a series of actions that maximizes this reward via an exploratory  
trial-and-error approach or deliberative planning.

A popular example of reinforcement learning is a chess engine. Here, the agent decides 
upon a series of moves depending on the state of the board (the environment), and the 
reward can be defined as win or lose at the end of the game:

Discovering hidden structures with 
unsupervised learning
In supervised learning, we know the right answer beforehand when we train 
our model, and in reinforcement learning, we define a measure of reward for 
particular actions by the agent. In unsupervised learning, however, we are dealing 
with unlabeled data or data of unknown structure. Using unsupervised learning 
techniques, we are able to explore the structure of our data to extract meaningful 
information without the guidance of a known outcome variable or reward function.
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For the rest of this book, we will use the superscript (i) to refer to the ith 
training sample, and the subscript j to refer to the jth dimension of the 
training dataset.

We use lower-case, bold-face letters to refer to vectors ( )1×∈Rnx  and  
upper-case, bold-face letters to refer to matrices, respectively ( )×∈!n mX .  
To refer to single elements in a vector or matrix, we write the letters in 
italics ( ( )nx  or ( )

( )n
mx , respectively).

For example, 150
1x  refers to the first dimension of flower sample 150, the 

sepal width. Thus, each row in this feature matrix represents one flower 
instance and can be written as four-dimensional column vector ( )i ×∈ 1 4!x , 

( ) ( ) ( ) ( ) ( )
1 2 3 4

i i i i ix x x x⎡ ⎤= ⎣ ⎦x .

Each feature dimension is a 150-dimensional row vector ( ) 50i ×∈ 1 1!x ,  
for example:
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Similarly, we store the target variables (here: class labels) as a 

150-dimensional column vector 
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A roadmap for building machine learning 
systems
In the previous sections, we discussed the basic concepts of machine learning and the 
three different types of learning. In this section, we will discuss other important parts 
of a machine learning system accompanying the learning algorithm. The diagram 
below shows a typical workflow diagram for using machine learning in predictive 
modeling, which we will discuss in the following subsections:
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For simplicity, we can bring the threshold θ  to the left side of the equation and 
define a weight-zero as 0w θ= −  and 0 1x = , so that we write z  in a more compact 

form 0 0 1 1
T

m mz w x w x w x= + + + =… w x  and ( ) 1
1
if z

z
otherwise

θ
φ

≥⎧
= ⎨−⎩ .

In the following sections, we will often make use of basic notations from 
linear algebra. For example, we will abbreviate the sum of the products 
of the values in x  and w  using a vector dot product, whereas superscript 
T stands for transpose, which is an operation that transforms a column 
vector into a row vector and vice versa:

0 0 1 1 0

m T
m m j jj

z w x w x w x
=

= + + + = =∑! x w w x

For example: [ ]
 4 

1 2 3     5  1 4 2 5  3 6 32
 6 

⎡ ⎤
⎢ ⎥× = × + × + × =⎢ ⎥
⎢ ⎥⎣ ⎦

.

Furthermore, the transpose operation can also be applied to a matrix to 
reflect it over its diagonal, for example:

1 2
1 3 5

3 4  
2 4 6

5 6

T
⎡ ⎤

⎡ ⎤⎢ ⎥ = ⎢ ⎥⎢ ⎥ ⎣ ⎦⎢ ⎥⎣ ⎦
In this book, we will only use the very basic concepts from linear algebra. 
However, if you need a quick refresher, please take a look at Zico Kolter's 
excellent Linear Algebra Review and Reference, which is freely available 
at http://www.cs.cmu.edu/~zkolter/course/linalg/linalg_
notes.pdf.

The following figure illustrates how the net input Tz = w x  is squashed into a binary 
output (-1 or 1) by the activation function of the perceptron (left subfigure) and how it 
can be used to discriminate between two linearly separable classes (right subfigure):
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Where η  is the learning rate (a constant between 0.0 and 1.0), ( )iy  is the true class 
label of the i th training sample, and ( )ˆ iy  is the predicted class label. It is important to 
note that all weights in the weight vector are being updated simultaneously, which 
means that we don't recompute the ( )ˆ iy  before all of the weights jw∆  were updated. 
Concretely, for a 2D dataset, we would write the update as follows:

( ) ( )( )0
i iw y outputη∆ = −

( ) ( )( ) ( )

1 1

ii iw y output xη∆ = −

( ) ( )( ) ( )

2 2

ii iw y output xη∆ = −

Before we implement the perceptron rule in Python, let us make a simple thought 
experiment to illustrate how beautifully simple this learning rule really is. In the  
two scenarios where the perceptron predicts the class label correctly, the weights 
remain unchanged:

( ) ( )
1 1 0

i

j jw xη∆ = − − − =

( ) ( )
1 1 0

i

j jw xη∆ = − =

However, in the case of a wrong prediction, the weights are being pushed towards 
the direction of the positive or negative target class, respectively:

( ) ( ) ( ) ( )
1 1 2

i i

j j jw x xη η∆ = − − =

( ) ( ) ( ) ( )
1 1 2

i i

j j jw x xη η∆ = − − = −

To get a better intuition for the multiplicative factor 
( )i

jx , let us go through another 
simple example, where:

( ) ( )ˆ1, 1, 1
i i

jy y η= + = − =
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Let's assume that 
( )

0.5
i

jx = , and we misclassify this sample as -1. In this case, we 

would increase the corresponding weight by 1 so that the activation 
( ) ( )i i

j jx w=  will be 
more positive the next time we encounter this sample and thus will be more likely to 
be above the threshold of the unit step function to classify the sample as +1:

( ) ( ) ( )( ) ( ) ( ) ( )1 1 0.5 2 0.5 1
i i i i i
jw∆ = − − = =

The weight update is proportional to the value of 
( )i

jx . For example, if we have 

another sample 
( )

2
i

jx =  that is incorrectly classified as -1, we'd push the decision 
boundary by an even larger extend to classify this sample correctly the next time:

( ) ( )( ) ( ) ( ) ( )1 1 2 2 2 4i i i i
jw∆ = − − = =

It is important to note that the convergence of the perceptron is only guaranteed if 
the two classes are linearly separable and the learning rate is sufficiently small. If the 
two classes can't be separated by a linear decision boundary, we can set a maximum 
number of passes over the training dataset (epochs) and/or a threshold for the 
number of tolerated misclassifications—the perceptron would never stop updating 
the weights otherwise:

Downloading the example code
You can download the example code files from your account at 
http://www.packtpub.com for all the Packt Publishing books 
you have purchased. If you purchased this book elsewhere, you 
can visit http://www.packtpub.com/support and register to 
have the files e-mailed directly to you.

××××××××

net input
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If you are not yet familiar with Python's scientific libraries or need a 
refresher, please see the following resources:
NumPy: http://wiki.scipy.org/Tentative_NumPy_Tutorial
Pandas: http://pandas.pydata.org/pandas-docs/stable/
tutorials.html

Matplotlib: http://matplotlib.org/ussers/beginner.html
Also, to better follow the code examples, I recommend you download 
the IPython notebooks from the Packt website. For a general 
introduction to IPython notebooks, please visit https://ipython.
org/ipython-doc/3/notebook/index.html.

import numpy as np    
class Perceptron(object):
    """Perceptron classifier.

    Parameters
    ------------
    eta : float
        Learning rate (between 0.0 and 1.0)
    n_iter : int
        Passes over the training dataset.

    Attributes
    -----------
    w_ : 1d-array
        Weights after fitting.
    errors_ : list
        Number of misclassifications in every epoch.

    """
    def __init__(self, eta=0.01, n_iter=10):
        self.eta = eta
        self.n_iter = n_iter

    def fit(self, X, y):
        """Fit training data.

        Parameters
        ----------
        X : {array-like}, shape = [n_samples, n_features]
            Training vectors, where n_samples 
            is the number of samples and
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After the weights have been initialized, the fit method loops over all individual 
samples in the training set and updates the weights according to the perceptron 
learning rule that we discussed in the previous section. The class labels are predicted 
by the predict method, which is also called in the fit method to predict the class 
label for the weight update, but predict can also be used to predict the class labels 
of new data after we have fitted our model. Furthermore, we also collect the number 
of misclassifications during each epoch in the list self.errors_ so that we can 
later analyze how well our perceptron performed during the training. The np.dot 
function that is used in the net_input method simply calculates the vector dot 
product Tw x .

Instead of using NumPy to calculate the vector dot product  
between two arrays a and b via a.dot(b) or np.dot(a, b),  
we could also perform the calculation in pure Python via  
sum([j*j for i,j in zip(a, b)]. However, the advantage of 
using NumPy over classic Python for-loop structures is that its arithmetic 
operations are vectorized. Vectorization means that an elemental 
arithmetic operation is automatically applied to all elements in an array. 
By formulating our arithmetic operations as a sequence of instructions 
on an array rather than performing a set of operations for each element 
one at a time, we can make better use of our modern CPU architectures 
with Single Instruction, Multiple Data (SIMD) support. Furthermore, 
NumPy uses highly optimized linear algebra libraries, such as Basic 
Linear Algebra Subprograms (BLAS) and Linear Algebra Package 
(LAPACK) that have been written in C or Fortran. Lastly, NumPy also 
allows us to write our code in a more compact and intuitive way using 
the basics of linear algebra, such as vector and matrix dot products.

Training a perceptron model on the Iris 
dataset
To test our perceptron implementation, we will load the two flower classes Setosa 
and Versicolor from the Iris dataset. Although, the perceptron rule is not restricted to 
two dimensions, we will only consider the two features sepal length and petal length 
for visualization purposes. Also, we only chose the two flower classes Setosa and 
Versicolor for practical reasons. However, the perceptron algorithm can be extended 
to multi-class classification—for example, through the One-vs.-All technique.

i
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>>> y = np.where(y == 'Iris-setosa', -1, 1)

>>> X = df.iloc[0:100, [0, 2]].values

>>> plt.scatter(X[:50, 0], X[:50, 1],

...             color='red', marker='o', label='setosa')

>>> plt.scatter(X[50:100, 0], X[50:100, 1],

...             color='blue', marker='x', label='versicolor')

>>> plt.xlabel('petal length')

>>> plt.ylabel('sepal length')

>>> plt.legend(loc='upper left')

>>> plt.show()

After executing the preceding code example we should now see the  
following scatterplot:

Now it's time to train our perceptron algorithm on the Iris data subset that we just 
extracted. Also, we will plot the misclassification error for each epoch to check 
if the algorithm converged and found a decision boundary that separates the two Iris 
flower classes:

>>> ppn = Perceptron(eta=0.1, n_iter=10)

>>> ppn.fit(X, y)

>>> plt.plot(range(1, len(ppn.errors_) + 1), ppn.errors_, 
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Using gradient descent, we can now update the weights by taking a step away from 
the gradient ( )J∇ w  of our cost function ( )J w :

:= + ∆w w w

Here, the weight change ∆w  is defined as the negative gradient multiplied by the 
learning rate η :

( )Jη∆ = − ∆w w
.

To compute the gradient of the cost function, we need to compute the partial 

derivative of the cost function with respect to each weight jw  
( ) ( )( )( ) ( )i i i

j
ij

J y z x
w

φ∂ = − −
∂ ∑   

so that we can write the update of weight jw  as: 
( ) ( )( )( ) ( )i i i

j j
ij

Jw y z x
w

η µ φ∂∆ = − = −
∂ ∑ :

Since we update all weights simultaneously, our Adaline learning rule becomes 
:= + ∆w w w .

η 
(Greek "eta")

∇

, ,

η 
(Greek "eta")

∇
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For those who are familiar with calculus, the partial derivative of the SSE 
cost function with respect to the jth weight in can be obtained as follows:

( ) ( )( )( )21   
2

i i

ij j

J y z
w w

φ∂ ∂= −
∂ ∂ ∑

( ) ( )( )( )21   
2

i i

ij

y z
w

φ∂= −
∂ ∑

( ) ( )( )( ) ( ) ( )( )( )1   2  
2

i i i i

i j

y z y z
w

φ φ∂= − −
∂∑

( ) ( )( )( ) ( ) ( ) ( )( ) i i i i i
j j

i ij

y z y w x
w

φ ⎛ ⎞∂= − −⎜ ⎟∂ ⎝ ⎠
∑ ∑

( ) ( )( )( ) ( )( )i i i
j

i
y z xφ= − −∑

( ) ( )( )( ) ( )i i i
j

i
y z xφ= − −∑

Although the Adaline learning rule looks identical to the perceptron rule, the ( )( )izφ  

with ( )iz = ( )iTw x  is a real number and not an integer class label. Furthermore, 
the weight update is calculated based on all samples in the training set (instead of 
updating the weights incrementally after each sample), which is why this approach 
is also referred to as "batch" gradient descent.

Implementing an Adaptive Linear Neuron in 
Python
Since the perceptron rule and Adaline are very similar, we will take the perceptron 
implementation that we defined earlier and change the fit method so that the 
weights are updated by minimizing the cost function via gradient descent:

class AdalineGD(object):
    """ADAptive LInear NEuron classifier.

    Parameters
    ------------

k
k

kk
k

kk
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kk
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k
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    markers = ('s', 'x', 'o', '^', 'v')
    colors = ('red', 'blue', 'lightgreen', 'gray', 'cyan')
    cmap = ListedColormap(colors[:len(np.unique(y))])

    # plot the decision surface
    x1_min, x1_max = X[:, 0].min() - 1, X[:, 0].max() + 1
    x2_min, x2_max = X[:, 1].min() - 1, X[:, 1].max() + 1
    xx1, xx2 = np.meshgrid(np.arange(x1_min, x1_max, resolution),
                         np.arange(x2_min, x2_max, resolution))
    Z = classifier.predict(np.array([xx1.ravel(), xx2.ravel()]).T)
    Z = Z.reshape(xx1.shape)
    plt.contourf(xx1, xx2, Z, alpha=0.4, cmap=cmap)
    plt.xlim(xx1.min(), xx1.max())
    plt.ylim(xx2.min(), xx2.max())

    # plot all samples
    X_test, y_test = X[test_idx, :], y[test_idx]                               
    for idx, cl in enumerate(np.unique(y)):
        plt.scatter(x=X[y == cl, 0], y=X[y == cl, 1],
                    alpha=0.8, c=cmap(idx),
                    marker=markers[idx], label=cl)
        
    # highlight test samples
    if test_idx:
        X_test, y_test = X[test_idx, :], y[test_idx]   
        plt.scatter(X_test[:, 0], X_test[:, 1], c='', 
                alpha=1.0, linewidth=1, marker='o', 
                s=55, label='test set')

With the slight modification that we made to the plot_decision_regions function 
(highlighted in the preceding code), we can now specify the indices of the samples 
that we want to mark on the resulting plots. The code is as follows:

>>> X_combined_std = np.vstack((X_train_std, X_test_std))
>>> y_combined = np.hstack((y_train, y_test))
>>> plot_decision_regions(X=X_combined_std, 
...                       y=y_combined, 
...                       classifier=ppn,
...                       test_idx=range(105,150))
>>> plt.xlabel('petal length [standardized]') 
>>> plt.ylabel('petal width [standardized]') 
>>> plt.legend(loc='upper left')
>>> plt.show()
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s
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The logit function takes input values in the range 0 to 1 and transforms them to 
values over the entire real number range, which we can use to express a linear 
relationship between feature values and the log-odds:

( )( )
0

1|
n

T
m m m m

i
logit p y w x w x w x w x

=

= = + + + = =∑0 0 1 1 !x w x

Here, ( )1|p y = x  is the conditional probability that a particular sample belongs to 
class 1 given its features x.

Now what we are actually interested in is predicting the probability that a certain 
sample belongs to a particular class, which is the inverse form of the logit function. It 
is also called the logistic function, sometimes simply abbreviated as sigmoid function 
due to its characteristic S-shape.

( ) 1
1 zz
e

φ −=
+

Here, z is the net input, that is, the linear combination of weights and sample features 
and can be calculated as 0

Tz w w x w x= = + + +1 1 ! m mw x .

Now let's simply plot the sigmoid function for some values in the range -7 to 7 to see 
what it looks like:

>>> import matplotlib.pyplot as plt
>>> import numpy as np
>>> def sigmoid(z):
...     return 1.0 / (1.0 + np.exp(-z))
>>> z = np.arange(-7, 7, 0.1)
>>> phi_z = sigmoid(z)
>>> plt.plot(z, phi_z)
>>> plt.axvline(0.0, color='k')
>>> plt.axhspan(0.0, 1.0, facecolor='1.0', alpha=1.0, ls='dotted')
>>> plt.axhline(y=0.5, ls='dotted', color='k')
>>> plt.yticks([0.0, 0.5, 1.0])
>>> plt.ylim(-0.1, 1.1)
>>> plt.xlabel('z')
>>> plt.ylabel('$\phi (z)$')
>>> plt.show() 
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i i
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We minimized this in order to learn the weights w for our Adaline classification 
model. To explain how we can derive the cost function for logistic regression, 
let's first define the likelihood L that we want to maximize when we build a 
logistic regression model, assuming that the individual samples in our dataset are 
independent of one another. The formula is as follows:

( ) ( ) ( ) ( )( ) ( )( )( )
( )

( )( )( )
( )1

1 1
| ; | ; 1

i in n y y
i i i i

i i
L P P y x z zφ φ

−

= =

= = = −∏ ∏w y x w w

In practice, it is easier to maximize the (natural) log of this equation, which is called 
the log-likelihood function:

( ) ( ) ( )( )( ) ( )( ) ( )( )( )
1

log log 1 log 1
n

i i i

i
l L z y zφ φ

=

= = + − −∑w w

Firstly, applying the log function reduces the potential for numerical underflow, 
which can occur if the likelihoods are very small. Secondly, we can convert the 
product of factors into a summation of factors, which makes it easier to obtain  
the derivative of this function via the addition trick, as you may remember  
from calculus.

Now we could use an optimization algorithm such as gradient ascent to maximize 
this log-likelihood function. Alternatively, let's rewrite the log-likelihood as a cost 
function J  that can be minimized using gradient descent as in Chapter 2, Training 
Machine Learning Algorithms for Classification:

( ) ( )( )( ) ( )( ) ( )( )( )
1

log 1 log 1
n

i i i

i
J z y zφ φ

=

= − − − −∑w

To get a better grasp on this cost function, let's take a look at the cost that we 
calculate for one single-sample instance:

( )( ) ( )( ) ( ) ( )( )log 1 log 1J z , y; y z y zφ φ φ= − − − −w

(i)y

[ ]

[ ]

(i)y

[ ]

[ ]

(i)y

[ ]

[ ]

(i)y

[ ]

[ ]
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The preceding array tells us that the model predicts a chance of 93.7 percent that the 
sample belongs to the Iris-Virginica class, and a 6.3 percent chance that the sample is 
a Iris-Versicolor flower.

We can show that the weight update in logistic regression via gradient descent is 
indeed equal to the equation that we used in Adaline in Chapter 2, Training Machine 
Learning Algorithms for Classification. Let's start by calculating the partial derivative of 
the log-likelihood function with respect to the jth weight:

( ) ( ) ( ) ( ) ( )1 11
1j j

l y y z
w z z w

φ
φ φ

⎛ ⎞∂ ∂= − −⎜ ⎟⎜ ⎟∂ − ∂⎝ ⎠
w

Before we continue, let's calculate the partial derivative of the sigmoid function first:

( )
( )

( ) ( )( )

2
1 1 1 11

1 1 11

1

z
z z zz

j

z e
w z e e ee

z z

φ

φ φ

−
− − −−

∂ ∂ ⎛ ⎞= = = −⎜ ⎟∂ ∂ + + +⎝ ⎠+

= −

Now we can resubstitute ( )
j

z
w
φ∂

∂  = ( ) ( )( )1z zφ φ−  in our first equation to obtain  
the following:

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )( )

( )( ) ( ) ( )( )
( )( )

1 11
1

1 11 1
1

1 1

j

j

j
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y y z z z
z z w

y z y z x

y z x
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φ

⎛ ⎞ ∂− −⎜ ⎟⎜ ⎟− ∂⎝ ⎠
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Remember that the goal is to find the weights that maximize the log-likelihood so 
that we would perform the update for each weight as follows:

( ) ( )( )( ) ( )

1
:

n
i i i

j j
i

w w y z xη φ
=

= + −∑

Since we update all weights simultaneously, we can write the general update rule  
as follows:

:= + ∆w w w

We define ∆w  as follows:

( )lη∆ ∇w = w

Since maximizing the log-likelihood is equal to minimizing the cost function J  that 
we defined earlier, we can write the gradient descent update rule as follows:

( ) ( )( ) ( )( )
1

n
i i i

j
ij

Jw y z x
w

η η φ
=

∂∆ = − = −
∂ ∑

( ): , Jη= + ∆ ∆ = − ∇w w w w w

This is equal to the gradient descent rule in Adaline in Chapter 2, Training Machine 
Learning Algorithms for Classification.

Tackling overfitting via regularization
Overfitting is a common problem in machine learning, where a model performs well 
on training data but does not generalize well to unseen data (test data). If a model 
suffers from overfitting, we also say that the model has a high variance, which can 
be caused by having too many parameters that lead to a model that is too complex 
given the underlying data. Similarly, our model can also suffer from underfitting 
(high bias), which means that our model is not complex enough to capture the 
pattern in the training data well and therefore also suffers from low performance  
on unseen data. 

j

j

x should be outside the parentheses
like in the equation on top of that
page
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The positive-values slack variable is simply added to the linear constraints:

( ) ( ) ( )1 1i i iT if y ξ≥ = −w x

( ) ( ) ( )1 1i i iT if y ξ< − = +w x

So the new objective to be minimized (subject to the preceding constraints) becomes:

( )21
2

i

i
C ξ⎛ ⎞+ ⎜ ⎟
⎝ ⎠
∑w

Using the variable C, we can then control the penalty for misclassification. Large 
values of C correspond to large error penalties whereas we are less strict about 
misclassification errors if we choose smaller values for C. We can then we use the 
parameter C to control the width of the margin and therefore tune the bias-variance 
trade-off as illustrated in the following figure:

This concept is related to regularization, which we discussed previously in the 
context of regularized regression where increasing the value of C increases the bias 
and lowers the variance of the model.

        

        

Should be:

wT x(i) ≥1 − ξ (i)  if y(i) = 1
wT x(i) ≤ −1 + ξ (i) if y(i) = -1

It should be: “increasing the value of lambda increases the bias …” (lambda instead of C) or “decreasing the value of C increases the bias”
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Maximizing information gain – getting the 
most bang for the buck
In order to split the nodes at the most informative features, we need to define an 
objective function that we want to optimize via the tree learning algorithm. Here,  
our objective function is to maximize the information gain at each split, which we 
define as follows:

( ) ( ) ( )
1

,
m

j
p p j

j p

N
IG D f I D I D

N=

= −∑

Here, f is the feature to perform the split, pD  and jD  are the dataset of the parent 
and jth child node, I is our impurity measure, pN  is the total number of samples at 
the parent node, and jN  is the number of samples in the jth child node. As we can 
see, the information gain is simply the difference between the impurity of the parent 
node and the sum of the child node impurities—the lower the impurity of the child 
nodes, the larger the information gain. However, for simplicity and to reduce the 
combinatorial search space, most libraries (including scikit-learn) implement binary 
decision trees. This means that each parent node is split into two child nodes, leftD  
and rightD :

( ) ( ) ( ) ( ), left right
p p left right

p p

N N
IG D a I D I D I D

N N
= − −

Now, the three impurity measures or splitting criteria that are commonly used in 
binary decision trees are Gini index ( GI ), entropy ( HI ), and the classification error  
( EI ). Let's start with the definition of entropy for all non-empty classes ( ( )| 0p i t ≠ ):

( ) ( ) ( )2
1

| log |
c

H
i

I t p i t p i t
=

= −∑

Gini impurity

f
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Here, ( )|p i t  is the proportion of the samples that belongs to class c for a particular 
node t. The entropy is therefore 0 if all samples at a node belong to the same class, 
and the entropy is maximal if we have a uniform class distribution. For example, in 
a binary class setting, the entropy is 0 if ( )1| 1p i t= =  or ( )0 | 0p i t= = . If the classes are 
distributed uniformly with ( )1| 0.5p i t= =  and ( )0 | 0.5p i t= = , the entropy is 1. Therefore, 
we can say that the entropy criterion attempts to maximize the mutual information 
in the tree.

Intuitively, the Gini index can be understood as a criterion to minimize the 
probability of misclassification:

( ) ( ) ( )( ) ( )2

1 1
| | 1 |

c c

G
i i

I t p i t p i t p i t
= =

= − = −∑ ∑

Similar to entropy, the Gini index is maximal if the classes are perfectly mixed,  
for example, in a binary class setting ( 2c = ):

2

1
1 0.5 0.5

c

i=
− =∑

However, in practice both the Gini index and entropy typically yield very similar 
results and it is often not worth spending much time on evaluating trees using 
different impurity criteria rather than experimenting with different pruning cut-offs.

Another impurity measure is the classification error:

( ){ }1 max |EI p i t= −

Gini impurity

Gini impurity

Gini impurity

(1 - p(i | t))

i
—

Gini impurity

Gini impurity

Gini impurity

(1 - p(i | t))

i
—

Gini impurity

Gini impurity

Gini impurity

(1 - p(i | t))

i
—

Gini impurity

Gini impurity

Gini impurity

(1 - p(i | t))

i
—
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However, the Gini index would favor the split in scenario ( )0.16GB IG =  over scenario  
( )0.125GA IG = , which is indeed more pure:

( ) ( )2 21 0.5 0.5 0.5G pI D = − + =

( )
2 23 1 3: 1 0.375

4 4 8G leftA I D
⎛ ⎞⎛ ⎞ ⎛ ⎞= − + = =⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

( )
2 21 3 3: 1 0.375

4 4 8G rightA I D
⎛ ⎞⎛ ⎞ ⎛ ⎞= − + = =⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

4 4: 0.5 0.375 0.375 0.125
8 8GA I = − − =

( )
2 22 4 4: 1 0.4

6 6 9G leftB I D
⎛ ⎞⎛ ⎞ ⎛ ⎞= − + = =⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

( ) ( )2 2: 1 1 0 0G rightB I D = − + =

6: 0.5 0.4 0 0.16
8GB IG = − − =

Similarly, the entropy criterion would favor scenario ( )0.19HB IG =  over  
scenario ( )0.31HA IG = :

( ) ( ) ( )( )2 20.5 log 0.5 0.5 log 0.5 1H pI D = − + =

( ) 2 2
3 3 1 1: log log 0.81
4 4 4 4H leftA I D ⎛ ⎞⎛ ⎞ ⎛ ⎞= − + =⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

number swap

Gini impurity

IG_G



A Tour of Machine Learning Classifiers Using Scikit-learn

[ 86 ]

( ) 2 2
1 1 3 3: log log 0.81
4 4 4 4H rightA I D ⎛ ⎞⎛ ⎞ ⎛ ⎞= − + =⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

4 4: 1 0.81 0.81 0.19
8 8HA IG = − − =

( ) 2 2
2 2 4 4: log log 0.92
6 6 6 6H leftB I D ⎛ ⎞⎛ ⎞ ⎛ ⎞= − + + + =⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

( ): 0H rightB I D =

6: 1 0.92 0 0.31
8HB IG = − − =

For a more visual comparison of the three different impurity criteria that we 
discussed previously, let's plot the impurity indices for the probability range [0, 1] 
for class 1. Note that we will also add in a scaled version of the entropy (entropy/2) 
to observe that the Gini index is an intermediate measure between entropy and the 
classification error. The code is as follows:

>>> import matplotlib.pyplot as plt
>>> import numpy as np
>>> def gini(p):
...     return (p)*(1 - (p)) + (1 - p)*(1 - (1-p))
>>> def entropy(p):
...     return - p*np.log2(p) - (1 - p)*np.log2((1 - p))
>>> def error(p):
...     return 1 - np.max([p, 1 - p])
>>> x = np.arange(0.0, 1.0, 0.01)
>>> ent = [entropy(p) if p != 0 else None for p in x]
>>> sc_ent = [e*0.5 if e else None for e in ent]
>>> err = [error(i) for i in x]
>>> fig = plt.figure()
>>> ax = plt.subplot(111)
>>> for i, lab, ls, c, in zip([ent, sc_ent, gini(x), err], 
...                   ['Entropy', 'Entropy (scaled)', 
...                   'Gini Impurity', 

Gini impurity
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In the case of a tie, the scikit-learn implementation of the KNN 
algorithm will prefer the neighbors with a closer distance to the 
sample. If the neighbors have a similar distance, the algorithm will 
choose the class label that comes first in the training dataset.

The right choice of k is crucial to find a good balance between over- and underfitting. 
We also have to make sure that we choose a distance metric that is appropriate for 
the features in the dataset. Often, a simple Euclidean distance measure is used for 
real-valued samples, for example, the flowers in our Iris dataset, which have features 
measured in centimeters. However, if we are using a Euclidean distance measure, it 
is also important to standardize the data so that each feature contributes equally to 
the distance. The 'minkowski' distance that we used in the previous code is just a 
generalization of the Euclidean and Manhattan distance that can be written as follows:

( ) ( )( ) ( ) ( ),
pi i i jp

k k
k

d x x= ∑x x -
j
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The classifiers that we used in Chapter 3, A Tour of Machine Learning Classifiers Using 
Scikit-Learn, belong to the so-called estimators in scikit-learn with an API that is 
conceptually very similar to the transformer class. Estimators have a predict 
method but can also have a transform method, as we will see later. As you may 
recall, we also used the fit method to learn the parameters of a model when we 
trained those estimators for classification. However, in supervised learning tasks, we 
additionally provide the class labels for fitting the model, which can then be used to 
make predictions about new data samples via the predict method, as illustrated in 
the following figure:

.fit
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Although normalization via min-max scaling is a commonly used technique that 
is useful when we need values in a bounded interval, standardization can be more 
practical for many machine learning algorithms. The reason is that many linear 
models, such as the logistic regression and SVM that we remember from Chapter 3, 
A Tour of Machine Learning Classifiers Using Scikit-learn, initialize the weights to 0 or 
small random values close to 0. Using standardization, we center the feature columns 
at mean 0 with standard deviation 1 so that the feature columns take the form of 
a normal distribution, which makes it easier to learn the weights. Furthermore, 
standardization maintains useful information about outliers and makes the 
algorithm less sensitive to them in contrast to min-max scaling, which scales  
the data to a limited range of values.

The procedure of standardization can be expressed by the following equation:

( )
( )i

i x
std

x

xx µ
σ
−=

Here, xµ  is the sample mean of a particular feature column and xσ  the corresponding 
standard deviation, respectively.

The following table illustrates the difference between the two commonly used 
feature scaling techniques, standardization and normalization on a simple sample 
dataset consisting of numbers 0 to 5:

input standardized normalized
0.0 -1.336306 0.0
1.0 -0.801784 0.2
2.0 -0.267261 0.4
3.0 0.267261 0.6
4.0 0.801784 0.8
5.0 1.336306 1.0

Similar to MinMaxScaler, scikit-learn also implements a class for standardization:

>>> from sklearn.preprocessing import StandardScaler
>>> stdsc = StandardScaler()
>>> X_train_std = stdsc.fit_transform(X_train)
>>> X_test_std = stdsc.transform(X_test)

standardized
-1.46385
-0.87831
-0.29277
0.29277 0
0.87831 0
1.46385 1

standardized
-1.46385
-0.87831
-0.29277
0.29277 0
0.87831 0
1.46385 1
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Applied to the standardized Wine data, the L1 regularized logistic regression would 
yield the following sparse solution:

>>> lr = LogisticRegression(penalty='l1', C=0.1)
>>> lr.fit(X_train_std, y_train)
>>> print('Training accuracy:', lr.score(X_train_std, y_train))
Training accuracy: 0.983870967742
>>> print('Test accuracy:', lr.score(X_test_std, y_test))
Test accuracy: 0.981481481481

Both training and test accuracies (both 98 percent) do not indicate any overfitting  
of our model. When we access the intercept terms via the lr.intercept_ attribute, 
we can see that the array returns three values:

>>> lr.intercept_
array([-0.38379237, -0.1580855 , -0.70047966])

Since we the fit the LogisticRegression object on a multiclass dataset, it uses the 
One-vs-Rest (OvR) approach by default where the first intercept belongs to the 
model that fits class 1 versus class 2 and 3; the second value is the intercept of the 
model that fits class 2 versus class 1 and 3; and the third value is the intercept of the 
model that fits class 3 versus class 1 and 2, respectively:

>>> lr.coef_
array([[ 0.280, 0.000, 0.000, -0.0282, 0.000,
         0.000, 0.710, 0.000, 0.000, 0.000,
         0.000, 0.000, 1.236],
       [-0.644, -0.0688 , -0.0572, 0.000, 0.000,
         0.000, 0.000, 0.000, 0.000, -0.927,
         0.060, 0.000, -0.371],
       [ 0.000, 0.061, 0.000, 0.000, 0.000,
         0.000, -0.637, 0.000, 0.000, 0.499,
        -0.358, -0.570, 0.000
       ]])

The weight array that we accessed via the lr.coef_ attribute contains three rows of 
weight coefficients, one weight vector for each class. Each row consists of 13 weights 
where each weight is multiplied by the respective feature in the 13-dimensional 
Wine dataset to calculate the net input:

1 1 0

m T
m m j jj

z w x w x x w
=

= + + = =∑! w x



To include the bias unit, the “1”s should
be changed to a 0 (like in chapter 2). However, please note that
scikit learn stores the bias and the weights
separately; so, it’s maybe better to write

z = w_{1}x_{1} + … w_{m}x_{m} + b = \sum^{m}_j=1 x_{j}w_{j} + b = w^{T} x + b



Chapter 4

[ 119 ]

Greedy algorithms make locally optimal choices at each stage of 
a combinatorial search problem and generally yield a suboptimal 
solution to the problem in contrast to exhaustive search algorithms, 
which evaluate all possible combinations and are guaranteed to find 
the optimal solution. However, in practice, an exhaustive search is 
often computationally not feasible, whereas greedy algorithms allow 
for a less complex, computationally more efficient solution.

The idea behind the SBS algorithm is quite simple: SBS sequentially removes features 
from the full feature subset until the new feature subspace contains the desired 
number of features. In order to determine which feature is to be removed at each 
stage, we need to define criterion function J  that we want to minimize. The criterion 
calculated by the criterion function can simply be the difference in performance of 
the classifier after and before the removal of a particular feature. Then the feature 
to be removed at each stage can simply be defined as the feature that maximizes 
this criterion; or, in more intuitive terms, at each stage we eliminate the feature that 
causes the least performance loss after removal. Based on the preceding definition of 
SBS, we can outline the algorithm in 4 simple steps:

1. Initialize the algorithm with k d= , where d is the dimensionality of the full 
feature space dX .

2. Determine the feature x−  that maximizes the criterion ( )kargmaxJ− = −x X x  
where k∈x X .

3. Remove the feature x−  from the feature set: kX  – 1 = 1 , 1k k k k−− = −X - = X x .
4. Terminate if k equals the number of desired features, if not, go to step 2.

You can find a detailed evaluation of several sequential 
feature algorithms in Comparative Study of Techniques for Large 
Scale Feature Selection, F. Ferri, P. Pudil, M. Hatef, and J. Kittler. 
Comparative study of techniques for large-scale feature selection. 
Pattern Recognition in Practice IV, pages 403–413, 1994.

Unfortunately, the SBS algorithm is not implemented in scikit-learn, yet. But since it 
is so simple, let's go ahead and implement it in Python from scratch:

from sklearn.base import clone
from itertools import combinations
import numpy as np
from sklearn.cross_validation import train_test_split
from sklearn.metrics import accuracy_score

X    := X  - x  ;  k:= k -1k-1 k
-
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Assessing feature importance with 
random forests
In the previous sections, you learned how to use L1 regularization to zero out 
irrelevant features via logistic regression and use the SBS algorithm for feature 
selection. Another useful approach to select relevant features from a dataset is to  
use a random forest, an ensemble technique that we introduced in Chapter 3,  
A Tour of Machine Learning Classifiers Using Scikit-learn. Using a random forest, we  
can measure feature importance as the averaged impurity decrease computed from 
all decision trees in the forest without making any assumptions whether our data is  
linearly separable or not. Conveniently, the random forest implementation in scikit-
learn already collects feature importances for us so that we can access them via 
the feature_importances_ attribute after fitting a RandomForestClassifier. By 
executing the following code, we will now train a forest of 10,000 trees on the Wine 
dataset and rank the 13 features by their respective importance measures. Remember 
(from our discussion in Chapter 3, A Tour of Machine Learning Classifiers Using  
Scikit-learn) that we don't need to use standardized or normalized tree-based  
models. The code is as follows:

>>> from sklearn.ensemble import RandomForestClassifier
>>> feat_labels = df_wine.columns[1:]
>>> forest = RandomForestClassifier(n_estimators=10000,
...                                random_state=0,
...                                n_jobs=-1)
>>> forest.fit(X_train, y_train)
>>> importances = forest.feature_importances_
>>> indices = np.argsort(importances)[::-1]
>>> for f in range(X_train.shape[1]):
...     print("%2d) %-*s %f" % (f + 1, 30, 
...                             feat_labels[f], 
...                             importances[indices[f]]))
1) Alcohol                        0.182508
2) Malic acid                     0.158574
3) Ash                            0.150954
4) Alcalinity of ash              0.131983
5) Magnesium                      0.106564
6) Total phenols                  0.078249
7) Flavanoids                     0.060717
8) Nonflavanoid phenols           0.032039
9) Proanthocyanins                0.025385
10) Color intensity               0.022369
11) Hue                           0.022070

	1)	Color	intensity																0.182483
	2)	Proline																								0.158610
	3)	Flavanoids																					0.150948
	4)	OD280/OD315	of	diluted	wines			0.131987
	5)	Alcohol																								0.106589
	6)	Hue																												0.078243
	7)	Total	phenols																		0.060718
	8)	Alcalinity	of	ash														0.032033
	9)	Malic	acid																					0.025400
10)	Proanthocyanins																0.022351
11)	Magnesium																						0.022078
12)	Nonflavanoid	phenols											0.014645
13)	Ash																												0.013916

feat_labels[indices[f]],

	1)	Color	intensity																0.182483
	2)	Proline																								0.158610
	3)	Flavanoids																					0.150948
	4)	OD280/OD315	of	diluted	wines			0.131987
	5)	Alcohol																								0.106589
	6)	Hue																												0.078243
	7)	Total	phenols																		0.060718
	8)	Alcalinity	of	ash														0.032033
	9)	Malic	acid																					0.025400
10)	Proanthocyanins																0.022351
11)	Magnesium																						0.022078
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We can conclude that the alcohol content of wine is the most discriminative feature 
in the dataset based on the average impurity decrease in the 10,000 decision trees. 
Interestingly, the three top-ranked features in the preceding plot are also among the 
top five features in the selection by the SBS algorithm that we implemented in the 
previous section. However, as far as interpretability is concerned, the random forest 
technique comes with an important gotcha that is worth mentioning. For instance, if 
two or more features are highly correlated, one feature may be ranked very highly 
while the information of the other feature(s) may not be fully captured. On the other 
hand, we don't need to be concerned about this problem if we are merely interested 
in the predictive performance of a model rather than the interpretation of feature 
importances. To conclude this section about feature importances and random forests, 
it is worth mentioning that scikit-learn also implements a transform method that 
selects features based on a user-specified threshold after model fitting, which is 
useful if we want to use the RandomForestClassifier as a feature selector and 
intermediate step in a scikit-learn pipeline, which allows us to connect different 
preprocessing steps with an estimator, as we will see in Chapter 6, Learning Best 
Practices for Model Evaluation and Hyperparameter Tuning. For example, we could set 
the threshold to 0.15 to reduce the dataset to the 3 most important features, Alcohol, 
Malic acid, and Ash using the following code:

>>> X_selected = forest.transform(X_train, threshold=0.15)
>>> X_selected.shape
(124, 3)

Summary
We started this chapter by looking at useful techniques to make sure that we handle 
missing data correctly. Before we feed data to a machine learning algorithm, we also 
have to make sure that we encode categorical variables correctly, and we have seen 
how we can map ordinal and nominal features values to integer representations.

Moreover, we briefly discussed L1 regularization, which can help us to avoid 
overfitting by reducing the complexity of a model. As an alternative approach for 
removing irrelevant features, we used a sequential feature selection algorithm to 
select meaningful features from a dataset.

In the next chapter, you will learn about yet another useful approach to 
dimensionality reduction: feature extraction. It allows us to compress features  
onto a lower dimensional subspace rather than removing features entirely as in 
feature selection.
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First, we will start by loading the Wine dataset that we have been working with  
in Chapter 4, Building Good Training Sets – Data Preprocessing:

>>> import pandas as pd
>>> df_wine = pd.read_csv('https://archive.ics.uci.edu/ml/machine-
learning-databases/wine/wine.data', header=None)

Next, we will process the Wine data into separate training and test sets—using 70 
percent and 30 percent of the data, respectively—and standardize it to unit variance.

>>> from sklearn.cross_validation import train_test_split
>>> from sklearn.preprocessing import StandardScaler
>>> X, y = df_wine.iloc[:, 1:].values, df_wine.iloc[:, 0].values
>>> X_train, X_test, y_train, y_test = \
...              train_test_split(X, y,
...              test_size=0.3, random_state=0)
>>> sc = StandardScaler()
>>> X_train_std = sc.fit_transform(X_train)
>>> X_test_std = sc.fit_transform(X_test)

After completing the mandatory preprocessing steps by executing the preceding 
code, let's advance to the second step: constructing the covariance matrix. The 
symmetric d d× -dimensional covariance matrix, where d  is the number of 
dimensions in the dataset, stores the pairwise covariances between the different 
features. For example, the covariance between two features jx  and xk  on the 
population level can be calculated via the following equation:

( )( ) ( )( )
1

1 n
i i

jk j j k k
i

x x
n

σ µ µ
=

= − −∑

Here, jµ  and kµ  are the sample means of feature  and k , respectively. Note that 
the sample means are zero if we standardize the dataset. A positive covariance 
between two features indicates that the features increase or decrease together, 
whereas a negative covariance indicates that the features vary in opposite directions. 
For example, a covariance matrix of three features can then be written as (note that ∑  
stands for the Greek letter sigma, which is not to be confused with the sum symbol):
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The eigenvectors of the covariance matrix represent the principal components  
(the directions of maximum variance), whereas the corresponding eigenvalues 
will define their magnitude. In the case of the Wine dataset, we would obtain 13 
eigenvectors and eigenvalues from the 13 13× -dimensional covariance matrix.
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First, we will start by loading the Wine dataset that we have been working with  
in Chapter 4, Building Good Training Sets – Data Preprocessing:

>>> import pandas as pd
>>> df_wine = pd.read_csv('https://archive.ics.uci.edu/ml/machine-
learning-databases/wine/wine.data', header=None)

Next, we will process the Wine data into separate training and test sets—using 70 
percent and 30 percent of the data, respectively—and standardize it to unit variance.

>>> from sklearn.cross_validation import train_test_split
>>> from sklearn.preprocessing import StandardScaler
>>> X, y = df_wine.iloc[:, 1:].values, df_wine.iloc[:, 0].values
>>> X_train, X_test, y_train, y_test = \
...              train_test_split(X, y,
...              test_size=0.3, random_state=0)
>>> sc = StandardScaler()
>>> X_train_std = sc.fit_transform(X_train)
>>> X_test_std = sc.fit_transform(X_test)

After completing the mandatory preprocessing steps by executing the preceding 
code, let's advance to the second step: constructing the covariance matrix. The 
symmetric d d× -dimensional covariance matrix, where d  is the number of 
dimensions in the dataset, stores the pairwise covariances between the different 
features. For example, the covariance between two features jx  and xk  on the 
population level can be calculated via the following equation:
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Here, jµ  and kµ  are the sample means of feature  and k , respectively. Note that 
the sample means are zero if we standardize the dataset. A positive covariance 
between two features indicates that the features increase or decrease together, 
whereas a negative covariance indicates that the features vary in opposite directions. 
For example, a covariance matrix of three features can then be written as (note that ∑  
stands for the Greek letter sigma, which is not to be confused with the sum symbol):

2
1 12 13

2
21 2 23

2
31 32 3

  
σ σ σ
σ σ σ
σ σ σ

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

∑

The eigenvectors of the covariance matrix represent the principal components  
(the directions of maximum variance), whereas the corresponding eigenvalues 
will define their magnitude. In the case of the Wine dataset, we would obtain 13 
eigenvectors and eigenvalues from the 13 13× -dimensional covariance matrix.
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The eigenvectors of the covariance matrix represent the principal components  
(the directions of maximum variance), whereas the corresponding eigenvalues 
will define their magnitude. In the case of the Wine dataset, we would obtain 13 
eigenvectors and eigenvalues from the 13 13× -dimensional covariance matrix.

Now, let's obtain the eigenpairs of the covariance matrix. As we surely remember 
from our introductory linear algebra or calculus classes, an eigenvalue v  satisfies  
the following condition:

λΣ =v v

Here, λ  is a scalar: the eigenvalue. Since the manual computation of eigenvectors 
and eigenvalues is a somewhat tedious and elaborate task, we will use the  
linalg.eig function from NumPy to obtain the eigenpairs of the Wine  
covariance matrix:

>>> import numpy as np
>>> cov_mat = np.cov(X_train_std.T)
>>> eigen_vals, eigen_vecs = np.linalg.eig(cov_mat)
>>> print('\nEigenvalues \n%s' % eigen_vals)
Eigenvalues 
[ 4.8923083   2.46635032  1.42809973  1.01233462  0.84906459  
0.60181514
0.52251546  0.08414846  0.33051429  0.29595018  0.16831254  0.21432212
0.2399553 ]

Using the numpy.cov function, we computed the covariance matrix of the 
standardized training dataset. Using the linalg.eig function, we performed the 
eigendecomposition that yielded a vector (eigen_vals) consisting of 13 eigenvalues 
and the corresponding eigenvectors stored as columns in a 13 13× -dimensional  
matrix (eigen_vecs).

Since we want to reduce the dimensionality of our dataset by compressing it onto 
a new feature subspace, we only select the subset of the eigenvectors (principal 
components) that contains most of the information (variance). Since the eigenvalues 
define the magnitude of the eigenvectors, we have to sort the eigenvalues by 
decreasing magnitude; we are interested in the top k  eigenvectors based on the 
values of their corresponding eigenvalues. But before we collect those k  most 
informative eigenvectors, let's plot the variance explained ratios of the eigenvalues.

"Although the numpy.linalg.eig function was designed to decompose 
nonsymmetric square matrices, you may find that it returns complex 
eigenvalues in certain cases.
A related function, numpy.linalg.eigh, has been implemented to decompose 
Hermetian matrices, which is a numerically more stable approach to work 
with symmetric matrices such as the covariance matrix; numpy.linalg.eigh 
always returns real eigenvalues."

Insert 
this
note

vector
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eigenvectors and eigenvalues from the 13 13× -dimensional covariance matrix.

Now, let's obtain the eigenpairs of the covariance matrix. As we surely remember 
from our introductory linear algebra or calculus classes, an eigenvalue v  satisfies  
the following condition:
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Here, λ  is a scalar: the eigenvalue. Since the manual computation of eigenvectors 
and eigenvalues is a somewhat tedious and elaborate task, we will use the  
linalg.eig function from NumPy to obtain the eigenpairs of the Wine  
covariance matrix:
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standardized training dataset. Using the linalg.eig function, we performed the 
eigendecomposition that yielded a vector (eigen_vals) consisting of 13 eigenvalues 
and the corresponding eigenvectors stored as columns in a 13 13× -dimensional  
matrix (eigen_vecs).

Since we want to reduce the dimensionality of our dataset by compressing it onto 
a new feature subspace, we only select the subset of the eigenvectors (principal 
components) that contains most of the information (variance). Since the eigenvalues 
define the magnitude of the eigenvectors, we have to sort the eigenvalues by 
decreasing magnitude; we are interested in the top k  eigenvectors based on the 
values of their corresponding eigenvalues. But before we collect those k  most 
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Although the explained variance plot reminds us of the feature importance that we 
computed in Chapter 4, Building Good Training Sets – Data Preprocessing, via random 
forests, we shall remind ourselves that PCA is an unsupervised method, which 
means that information about the class labels is ignored. Whereas a random forest 
uses the class membership information to compute the node impurities, variance 
measures the spread of values along a feature axis.

Feature transformation
After we have successfully decomposed the covariance matrix into eigenpairs,  
let's now proceed with the last three steps to transform the Wine dataset onto  
the new principal component axes. In this section, we will sort the eigenpairs  
by descending order of the eigenvalues, construct a projection matrix from the 
selected eigenvectors, and use the projection matrix to transform the data onto  
the lower-dimensional subspace.

We start by sorting the eigenpairs by decreasing order of the eigenvalues:

>>> eigen_pairs =[(np.abs(eigen_vals[i]),eigen_vecs[:,i])
...              for i inrange(len(eigen_vals))]
>>> eigen_pairs.sort(reverse=True)

Next, we collect the two eigenvectors that correspond to the two largest values to 
capture about 60 percent of the variance in this dataset. Note that we only chose two 
eigenvectors for the purpose of illustration, since we are going to plot the data via 
a two-dimensional scatter plot later in this subsection. In practice, the number of 
principal components has to be determined from a trade-off between computational 
efficiency and the performance of the classifier:

>>> w= np.hstack((eigen_pairs[0][1][:, np.newaxis],
...               eigen_pairs[1][1][:, np.newaxis]))
>>> print('Matrix W:\n',w)
Matrix W:
[[ 0.14669811  0.50417079]
[-0.24224554  0.24216889]
[-0.02993442  0.28698484]
[-0.25519002 -0.06468718]
[ 0.12079772  0.22995385]
[ 0.38934455  0.09363991]
[ 0.42326486  0.01088622]
[-0.30634956  0.01870216]
[ 0.30572219  0.03040352]
[-0.09869191  0.54527081]

There’s	a	missing	whitespace	
between	“in”	and	“range”
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4. Compute the eigenvectors and corresponding eigenvalues of the  
matrix 1

w B
−S S .

5. Choose the k  eigenvectors that correspond to the k  largest eigenvalues to 
construct a d k× -dimensional transformation matrix W ; the eigenvectors are 
the columns of this matrix.

6. Project the samples onto the new feature subspace using the transformation 
matrix W .

The assumptions that we make when we are using LDA are that the 
features are normally distributed and independent of each other. 
Also, the LDA algorithm assumes that the covariance matrices for the 
individual classes are identical. However, even if we violate those 
assumptions to a certain extent, LDA may still work reasonably well in 
dimensionality reduction and classification tasks (R. O. Duda, P. E. Hart, 
and D. G. Stork. Pattern Classification. 2nd. Edition. New York, 2001).

Computing the scatter matrices
Since we have already standardized the features of the Wine dataset in the PCA 
section at the beginning of this chapter, we can skip the first step and proceed with 
the calculation of the mean vectors, which we will use to construct the within-class 
scatter matrix and between-class scatter matrix, respectively. Each mean vector im  
stores the mean feature value mµ  with respect to the samples of class i :
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This results in three mean vectors:
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Note the “T” for “transpose” above. Although, NumPy would handle this case, it would be mathematically wrong to subtract a column vector (m_i) from row vectors (samples). I remember that I displayed the mean vectors as a column vector for visual purposes since the row-vector representation looked a bit ugly. Somehow, the superscript “T” must have gone missing during the layout stage.tor in the later sections 
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>>> np.set_printoptions(precision=4)
>>> mean_vecs = []
>>> for label in range(1,4):
...     mean_vecs.append(np.mean(
...                X_train_std[y_train==label], axis=0))
...     print('MV %s: %s\n' %(label, mean_vecs[label-1]))
MV 1: [ 0.9259 -0.3091  0.2592 -0.7989  0.3039  0.9608  1.0515 -0.6306  
0.5354
  0.2209  0.4855  0.798   1.2017]

MV 2: [-0.8727 -0.3854 -0.4437  0.2481 -0.2409 -0.1059  0.0187 -0.0164  
0.1095
 -0.8796  0.4392  0.2776 -0.7016]

MV 3: [ 0.1637  0.8929  0.3249  0.5658 -0.01   -0.9499 -1.228   0.7436 
-0.7652
  0.979  -1.1698 -1.3007 -0.3912]

Using the mean vectors, we can now compute the within-class scatter matrix WS :

1

c

W i
i=

=∑S S

This is calculated by summing up the individual scatter matrices iS  of each 
individual class i :
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S x m x m

>>> d = 13 # number of features
>>> S_W = np.zeros((d, d))
>>> for label,mv in zip(range(1,4), mean_vecs):
...     class_scatter = np.zeros((d, d)) 
...     for row in X[y == label]:
...         row, mv = row.reshape(d, 1), mv.reshape(d, 1) 
...         class_scatter += (row-mv).dot((row-mv).T)
...     S_W += class_scatter                             
>>> print('Within-class scatter matrix: %sx%s'
...        % (S_W.shape[0], S_W.shape[1]))
Within-class scatter matrix: 13x13

for	row	in	X_train_std[y_train	==	label]:

Should be “X_train” instead of “X”
also, it should be “y_train” instead of “y”
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The assumption that we are making when we are computing the scatter matrices  
is that the class labels in the training set are uniformly distributed. However, if  
we print the number of class labels, we see that this assumption is violated:

>>> print('Class label distribution: %s' 
...       % np.bincount(y_train)[1:])
Class label distribution: [40 49 35]

Thus, we want to scale the individual scatter matrices iS  before we sum them up 
as scatter matrix wS . When we divide the scatter matrices by the number of class 
samples iN , we can see that computing the scatter matrix is in fact the same as 
computing the covariance matrix i∑ . The covariance matrix is a normalized  
version of the scatter matrix:

( )( )1 1
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c
T

i W i i
Di iN N ∈

∑ = = − −∑
x

S x m x m

>>> d = 13 # number of features
>>> S_W = np.zeros((d, d))
>>> for label,mv in zip(range(1, 4), mean_vecs):
...     class_scatter = np.cov(X_train_std[y_train==label].T)
...     S_W += class_scatter
>>> print('Scaled within-class scatter matrix: %sx%s' 
...       % (S_W.shape[0], S_W.shape[1]))
Scaled within-class scatter matrix: 13x13

After we have computed the scaled within-class scatter matrix (or covariance 
matrix), we can move on to the next step and compute the between-class scatter 
matrix BS :
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= − −∑
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BS m m m m

Here, m  is the overall mean that is computed, including samples from all classes.

>>> mean_overall = np.mean(X_train_std, axis=0)
>>> d = 13 # number of features
>>> S_B = np.zeros((d, d))
>>> for i,mean_vec in enumerate(mean_vecs):
...     n = X[y==i+1, :].shape[0]
...     mean_vec = mean_vec.reshape(d, 1)
...     mean_overall = mean_overall.reshape(d, 1) 
    S_B += n * (mean_vec - mean_overall).dot(

n = X_train[y_train==i+1, :].shape[0]

Should be “X_train” instead of “X” and “y_train” instead of “y”

The three dots must have gone lost during the layout; the S_B should be within the for-loop
of course! 

... 
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...                (mean_vec - mean_overall).T)
print('Between-class scatter matrix: %sx%s' 
...    % (S_B.shape[0], S_B.shape[1]))
Between-class scatter matrix: 13x13

Selecting linear discriminants for the new 
feature subspace
The remaining steps of the LDA are similar to the steps of the PCA. However, 
instead of performing the eigendecomposition on the covariance matrix, we solve  
the generalized eigenvalue problem of the matrix 1

w B
−S S :

>>>eigen_vals, eigen_vecs =\
...np.linalg.eig(np.linalg.inv(S_W).dot(S_B))

After we computed the eigenpairs, we can now sort the eigenvalues in  
descending order:

>>> eigen_pairs = [(np.abs(eigen_vals[i]), eigen_vecs[:,i]) 
...              for i in range(len(eigen_vals))]
>>> eigen_pairs = sorted(eigen_pairs, 
...               key=lambda k: k[0], reverse=True)
>>> print('Eigenvalues in decreasing order:\n')
>>> for eigen_val in eigen_pairs:
...     print(eigen_val[0])

Eigenvalues in decreasing order:

643.015384346
225.086981854
1.37146633984e-13
5.68434188608e-14
4.16877714935e-14
4.16877714935e-14
3.76733516161e-14
3.7544790902e-14
3.7544790902e-14
2.30295239559e-14
2.30295239559e-14
1.9101018959e-14
3.86601693797e-16

452.721581245
156.43636122
8.11327596465e-14
2.78687384543e-14
2.78687384543e-14
2.27622032758e-14
2.27622032758e-14
1.97162599817e-14
1.32484714652e-14
1.32484714652e-14
1.03791501611e-14
5.94140664834e-15
2.12636975748e-16
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Those who are a little more familiar with linear algebra may know that the rank of 
the d d× -dimensional covariance matrix can be at most 1d − , and we can indeed see 
that we only have two nonzero eigenvalues (the eigenvalues 3-13 are not exactly 
zero, but this is due to the floating point arithmetic in NumPy). Note that in the  
rare case of perfect collinearity (all aligned sample points fall on a straight line),  
the covariance matrix would have rank one, which would result in only one 
eigenvector with a nonzero eigenvalue.

To measure how much of the class-discriminatory information is captured by the 
linear discriminants (eigenvectors), let's plot the linear discriminants by decreasing 
eigenvalues similar to the explained variance plot that we created in the PCA section. 
For simplicity, we will call the content of the class-discriminatory information 
discriminability.

>>> tot = sum(eigen_vals.real)
>>> discr = [(i / tot) for i in sorted(eigen_vals.real, reverse=True)]
>>> cum_discr = np.cumsum(discr)
>>> plt.bar(range(1, 14), discr, alpha=0.5, align='center',
...         label='individual "discriminability"')
>>> plt.step(range(1, 14), cum_discr, where='mid',
...          label='cumulative "discriminability"')
>>> plt.ylabel('"discriminability" ratio')
>>> plt.xlabel('Linear Discriminants')
>>> plt.ylim([-0.1, 1.1])
>>> plt.legend(loc='best')
>>> plt.show()

As we can see in the resulting figure, the first two linear discriminants capture  
about 100 percent of the useful information in the Wine training dataset:

 "In LDA, the number of linear discriminants is at most c-1 where c is 
the number of class labels, since the in-between class scatter matrix 
S   is the sum of c matrices with rank 1 or less. We can indeed 
see ..."

B

Replace text with

 "In LDA, the number of linear discriminants is at most c-1 where c is 
the number of class labels, since the in-between class scatter matrix 
S   is the sum of c matrices with rank 1 or less. We can indeed 
see ..."

B

Replace text with



Chapter 5

[ 145 ]

Let's now stack the two most discriminative eigenvector columns to create the 
transformation matrix W :

>>> w = np.hstack((eigen_pairs[0][1][:, np.newaxis].real,
...                eigen_pairs[1][1][:, np.newaxis].real))
>>> print('Matrix W:\n', w)
Matrix W:
 [[-0.0707 -0.3778]
 [ 0.0359 -0.2223]
 [-0.0263 -0.3813]
 [ 0.1875  0.2955]
 [-0.0033  0.0143]
 [ 0.2328  0.0151]
 [-0.7719  0.2149]
 [-0.0803  0.0726]
 [ 0.0896  0.1767]
 [ 0.1815 -0.2909]
 [-0.0631  0.2376]
 [-0.3794  0.0867]
 [-0.3355 -0.586 ]]

Projecting samples onto the new feature 
space
Using the transformation matrix W  that we created in the previous subsection,  
we can now transform the training data set by multiplying the matrices:

′ =X XW

>>> X_train_lda = X_train_std.dot(w)
>>> colors = ['r', 'b', 'g']
>>> markers = ['s', 'x', 'o']
>>> for l, c, m in zip(np.unique(y_train), colors, markers):
...     plt.scatter(X_train_lda[y_train==l, 0], 
...                 X_train_lda[y_train==l, 1], 
...                 c=c, label=l, marker=m)
>>> plt.xlabel('LD 1')
>>> plt.ylabel('LD 2')
>>> plt.legend(loc='upper right')
>>> plt.show()

Matrix	W:
	[[	0.0662	-0.3797]
	[-0.0386	-0.2206]
	[	0.0217	-0.3816]
	[-0.184			0.3018]
	[	0.0034		0.0141]
	[-0.2326		0.0234]
	[	0.7747		0.1869]
	[	0.0811		0.0696]
	[-0.0875		0.1796]
	[-0.185		-0.284	]
	[	0.066			0.2349]
	[	0.3805		0.073	]
	[	0.3285	-0.5971]]

*	(-1),
*	(-1),

lower	right
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As we can see in the resulting plot, the three wine classes are now linearly separable 
in the new feature subspace:

LDA via scikit-learn
The step-by-step implementation was a good exercise for understanding the inner 
workings of LDA and understanding the differences between LDA and PCA.  
Now, let's take a look at the LDA class implemented in scikit-learn:

>>> from sklearn.lda import LDA
>>> lda = LDA(n_components=2)
>>> X_train_lda = lda.fit_transform(X_train_std, y_train)

Next, let's see how the logistic regression classifier handles the lower-dimensional 
training dataset after the LDA transformation:

>>> lr = LogisticRegression()
>>> lr = lr.fit(X_train_lda, y_train)
>>> plot_decision_regions(X_train_lda, y_train, classifier=lr)
>>> plt.xlabel('LD 1')
>>> plt.ylabel('LD 2')
>>> plt.legend(loc='lower left')
>>> plt.show()

Please	replace	this	
figure	by	
05_lda2.png

Please	see	the
IPython	notebook
for	an	updated	figure
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Looking at the resulting plot, we see that the logistic regression model misclassifies 
one of the samples from class 2:

By lowering the regularization strength, we could probably shift the decision 
boundaries so that the logistic regression models classify all samples in the training 
dataset correctly. However, let's take a look at the results on the test set:

>>> X_test_lda = lda.transform(X_test_std)
>>> plot_decision_regions(X_test_lda, y_test, classifier=lr)
>>> plt.xlabel('LD 1')
>>> plt.ylabel('LD 2')
>>> plt.legend(loc='lower left')
>>> plt.show()

As we can see in the resulting plot, the logistic regression classifier is able to get a 
perfect accuracy score for classifying the samples in the test dataset by only using a 
two-dimensional feature subspace instead of the original 13 Wine features:

Please	replace	this	figure	by	
05_lda3.png

Please	replace	this	figure	by	
05_lda4.png

Please	see	the
IPython	notebook
for	an	updated	figure

Please	see	the
IPython	notebook
for	an	updated	figure
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We can think of φ  as a function that creates nonlinear combinations of the original 
features to map the original d -dimensional dataset onto a larger, k -dimensional 
feature space. For example, if we had feature vector  d∈Rx ( x  is a column vector 
consisting of d  features) with two dimensions ( )2d = , a potential mapping onto  
a 3D space could be as follows:

[ ]1 2 ,  Tx x=x

φ↓

2 2
1 1 2 2 , 2 , 

T
x x x x⎡ ⎤= ⎣ ⎦z

In other words, via kernel PCA we perform a nonlinear mapping that  
transforms the data onto a higher-dimensional space and use standard PCA in this 
higher-dimensional space to project the data back onto a lower-dimensional space 
ZKHUH�WKH�VDPSOHV�FDQ�EH�VHSDUDWHG�E\�D�OLQHDU�FODVVLÀHU��XQGHU�WKH�FRQGLWLRQ�WKDW�WKH�
samples can be separated by density in the input space). However, one downside of 
this approach is that it is computationally very expensive, and this is where we use  
the kernel trick. Using the kernel trick, we can compute the similarity between two 
high-dimension feature vectors in the original feature space.

Before we proceed with more details about using the kernel trick to tackle this 
computationally expensive problem, let's look back at the standard PCA approach 
that we implemented at the beginning of this chapter. We computed the covariance 
between two features k  and j  as follows:

( )( ) ( )( )
1

1 n
i i

jk j j k k
i
x x

n
σ µ µ

=

= − −∑

Since the standardizing of features centers them at mean zero, for instance, ( )1  0i

i
x

n
=∑ j ,  

we can simplify this equation as follows:

( ) ( )

1

1 n
i i

jk j k
i
x x

n
σ

=

= ∑
This is of course also true for x_k. Maybe it’s 
better to write µ = 0 and µ = 0.

j k



Compressing Data via Dimensionality Reduction

[ 150 ]

Note that the preceding equation refers to the covariance between two features;  

now, let's write the general equation to calculate the covariance matrix ∑ :

( ) ( )

1

1  
n

T

in =

=∑ ∑ i ix x

Bernhard Scholkopf generalized this approach (B. Scholkopf, A. Smola, and  
K.-R. Muller. Kernel Principal Component Analysis. pages 583–588, 1997) so that we 
can replace the dot products between samples in the original feature space by the 
nonlinear feature combinations via φ :

( )( ) ( )

1
( )1 T

n

in
φ φ

=

=∑ ∑ i ix x

To obtain the eigenvectors—the principal components—from this covariance matrix, 
we have to solve the following equation:

λΣ =v v

( )( ) ( )( )
1

1  
T

i

i
n

i

n
φ φ λ

=

⇒ =∑ x x v v

( )( ) ( )( ) ( ) ( )( )
1 1

1 1 i i
n nT i i

i i
v
n n

φ φ φ
λ = =

⇒ = =∑ ∑x x v a x

Here, λ  and v  are the eigenvalues and eigenvectors of the covariance matrix , and 
a  can be obtained by extracting the eigenvectors of the kernel (similarity) matrix K  
as we will see in the following paragraphs.

The derivation of the kernel matrix is as follows:

First, let's write the covariance matrix as in matrix notation, where ( )Xφ  is an  
n k× -dimensional matrix:

( )( ) ( )( ) ( ) ( )
1

1 1  
n T T

in n
φ φ φ φ

=

= =∑ ∑ i ix x X X

Sebastian Raschka
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Now, we can write the eigenvector equation as follows:

( ) ( )( ) ( )
1

1 n
T

i
v a
n

φ λφ
=

= =∑ i ix X a

Since λΣ =v v , we get:

( ) ( ) ( ) ( )1 T T T

n
φ φ φ λφ=X X X a X a

Multiplying it by ( )φ X  on both sides yields the following result:

( ) ( ) ( ) ( ) ( ) ( )1 T T T

n
φ φ φ φ λφ φ=X X X X a X X a

( ) ( )1 T

n
φ φ λ⇒ =X X a a

1
n

λ⇒ =Ka a

Here, K  is the similarity (kernel) matrix:

( ) ( )Tφ φ=K X X

As we recall from the SVM section in Chapter 3, A Tour of Machine Learning Classifiers 
Using Scikit-learn, we use the kernel trick to avoid calculating the pairwise dot 
products of the samples x  under φ  explicitly by using a kernel function K  so that 
we don't need to calculate the eigenvectors explicitly:

( ) ( )( ) ( )( ) ( )( ),  
Ti j i jk φ φ=x x x x

In other words, what we obtain after kernel PCA are the samples already projected 
onto the respective components rather than constructing a transformation matrix as 
in the standard PCA approach. Basically, the kernel function (or simply kernel) can 
be understood as a function that calculates a dot product between two vectors—a 
measure of similarity.

Sebastian Raschka


Sebastian Raschka
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We do this for each pair of samples:

( ) ( )( ) ( ) ( )( ) ( ) ( )( )
( ) ( )( ) ( ) ( )( ) ( ) ( )( )

( ) ( )( ) ( ) ( )( ) ( ) ( )( )

1 1 1 2 1

2 1 2 2 2

1 2

, , , 

, , , 

, , , 

n

n

n d n n

κ κ κ

κ κ

κ κ κ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

!

!

" " # "

!

x x x x x x

x x x x x x
K

x x x x x x

For example, if our dataset contains 100 training samples, the symmetric 
kernel matrix of the pair-wise similarities would be 100 100×  dimensional.

2. We center the kernel matrix k  using the following equation:

1 1 1 1= − − +′ n n n nK K K K K

Here, 1n  is an n n× - dimensional matrix (the same dimensions as the kernel 
matrix) where all values are equal to 1

n
.

3. We collect the top k  eigenvectors of the centered kernel matrix based on 
their corresponding eigenvalues, which are ranked by decreasing magnitude. 
In contrast to standard PCA, the eigenvectors are not the principal 
component axes but the samples projected onto those axes.

At this point, you may be wondering why we need to center the kernel matrix in the 
second step. We previously assumed that we are working with standardized data, 
where all features have mean zero when we formulated the covariance matrix and 
replaced the dot products by the nonlinear feature combinations via φ .Thus, the 
centering of the kernel matrix in the second step becomes necessary, since we do 
not compute the new feature space explicitly and we cannot guarantee that the new 
feature space is also centered at zero.

In the next section, we will put those three steps into action by implementing a 
kernel PCA in Python.

(n)(n)
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In nested cross-validation, we have an outer k-fold cross-validation loop to split the 
data into training and test folds, and an inner loop is used to select the model using 
k-fold cross-validation on the training fold. After model selection, the test fold is then 
used to evaluate the model performance. The following figure explains the concept 
of nested cross-validation with five outer and two inner folds, which can be useful 
for large data sets where computational performance is important; this particular 
type of nested cross-validation is also known as 5x2 cross-validation:

In scikit-learn, we can perform nested cross-validation as follows:

>>> gs = GridSearchCV(estimator=pipe_svc, 
...                   param_grid=param_grid,
...                   scoring='accuracy', 
   ...                   cv=10, 
   ...                   n_jobs=-1)
>>> scores = cross_val_score(gs, X, y, scoring='accuracy', cv=5)
>>> print('CV accuracy: %.3f +/- %.3f' % (
...               np.mean(scores), np.std(scores)))
CV accuracy: 0.978 +/- 0.012

remove indent 5,

note that the CV accuracy score is still
correct (e.g., see code in the ipynb file)

X_train,	y_train

Note:	Optionally,	you	
could	use	cv=2	here	to	
produce
the	5	x	2	nested	CV	
that	is	shown	in	the	
figure.

remove indent 5,

note that the CV accuracy score is still
correct (e.g., see code in the ipynb file)

X_train,	y_train

Note:	Optionally,	you	
could	use	cv=2	here	to	
produce
the	5	x	2	nested	CV	
that	is	shown	in	the	
figure.

remove indent 5,

note that the CV accuracy score is still
correct (e.g., see code in the ipynb file)

X_train,	y_train

Note:	Optionally,	you	
could	use	cv=2	here	to	
produce
the	5	x	2	nested	CV	
that	is	shown	in	the	
figure.

remove indent 5,

note that the CV accuracy score is still
correct (e.g., see code in the ipynb file)

X_train,	y_train

Note:	Optionally,	you	
could	use	cv=2	here	to	
produce
the	5	x	2	nested	CV	
that	is	shown	in	the	
figure.
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In nested cross-validation, we have an outer k-fold cross-validation loop to split the 
data into training and test folds, and an inner loop is used to select the model using 
k-fold cross-validation on the training fold. After model selection, the test fold is then 
used to evaluate the model performance. The following figure explains the concept 
of nested cross-validation with five outer and two inner folds, which can be useful 
for large data sets where computational performance is important; this particular 
type of nested cross-validation is also known as 5x2 cross-validation:

In scikit-learn, we can perform nested cross-validation as follows:

>>> gs = GridSearchCV(estimator=pipe_svc, 
...                   param_grid=param_grid,
...                   scoring='accuracy', 
...                   cv=2, 
...                   n_jobs=-1)
>>> scores = cross_val_score(gs, X_train, y_train, scoring='accuracy', 
cv=5)
>>> print('CV accuracy: %.3f +/- %.3f' % (
...               np.mean(scores), np.std(scores)))
CV accuracy: 0.978 +/- 0.012

0.965 +/- 0.025
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The returned average cross-validation accuracy gives us a good estimate of what  
to expect if we tune the hyperparameters of a model and then use it on unseen data.  
For example, we can use the nested cross-validation approach to compare an  
SVM model to a simple decision tree classifier; for simplicity, we will only tune  
its depth parameter:

>>> from sklearn.tree import DecisionTreeClassifier
>>> gs = GridSearchCV(
...       estimator=DecisionTreeClassifier(random_state=0),
...       param_grid=[
...            {'max_depth': [1, 2, 3, 4, 5, 6, 7, None]}],
...       scoring='accuracy', 
...       cv=5)
>>> scores = cross_val_score(gs, 
...                          X_train, 
...                          y_train, 
...                          scoring='accuracy',
...                          cv=5)
>>> print('CV accuracy: %.3f +/- %.3f' % (
...                     np.mean(scores), np.std(scores)))
CV accuracy: 0.908 +/- 0.045

As we can see here, the nested cross-validation performance of the SVM  
model (97.8 percent) is notably better than the performance of the decision tree  
(90.8 percent). Thus, we'd expect that it might be the better choice for classifying  
new data that comes from the same population as this particular dataset.

Looking at different performance 
evaluation metrics
In the previous sections and chapters, we evaluated our models using the model 
accuracy, which is a useful metric to quantify the performance of a model in general. 
However, there are several other performance metrics that can be used to measure a 
model's relevance, such as precision, recall, and the F1-score.

2

0.921 +/- 0.029
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>>> plt.xlabel('predicted label')
>>> plt.ylabel('true label')
>>> plt.show()

Now, the confusion matrix plot as shown here should make the results a little bit 
easier to interpret:

Assuming that class 1 (malignant) is the positive class in this example, our model 
correctly classified 71 of the samples that belong to class 0 (false negatives) and 40 
samples that belong to class 1 (true positives), respectively. However, our model 
also incorrectly misclassified 2 samples from class 0 as class 1 (false negatives), and it 
predicted that 1 sample is benign although it is a malignant tumor (false positive). In 
the next section, we will learn how we can use this information to calculate various 
different error metrics.

Optimizing the precision and recall of a 
classification model
Both the prediction error (ERR) and accuracy (ACC) provide general information 
about how many samples are misclassified. The error can be understood as the 
sum of all false predictions divided by the number of total predications, and the 
accuracy is calculated as the sum of correct predictions divided by the total number 
of predictions, respectively:

FP FNERR
FP FN TP TN

+=
+ + +

However, our model also incorrectly misclassified 1 sample from class 
0 as class 1 (false positive), and it predicted that 2 samples are benign 
although it is a malignant tumor (false negatives).

true
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In the preceding code example, we used the already familiar StratifiedKFold class 
from scikit-learn and calculated the ROC performance of the LogisticRegression 
classifier in our pipe_lr pipeline using the roc_curve function from the  
sklearn.metrics module separately for each iteration. Furthermore, we 
interpolated the average ROC curve from the three folds via the interp function 
that we imported from SciPy and calculated the area under the curve via the auc 
function. The resulting ROC curve indicates that there is a certain degree of variance 
between the different folds, and the average ROC AUC (0.75) falls between a perfect 
score (1.0) and random guessing (0.5):

If we are just interested in the ROC AUC score, we could also directly import the 
roc_auc_score function from the sklearn.metrics submodule. The following code 
calculates the classifier's ROC AUC score on the independent test dataset after fitting 
it on the two-feature training set:

>>> pipe_svc = pipe_svc.fit(X_train2, y_train)
>>> y_pred2 = pipe_svc.predict(X_test[:, [4, 14]])

All	“pipe_svc”	should	be	
replaced	by	“pipe_lr”
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>>> from sklearn.metrics import roc_auc_score
>>> from sklearn.metrics import accuracy_score
>>> print('ROC AUC: %.3f' % roc_auc_score(
...        y_true=y_test, y_score=y_pred2))
ROC AUC: 0.671

>>> print('Accuracy: %.3f' % accuracy_score(
...        y_true=y_test, y_pred=y_pred2))
Accuracy: 0.728

Reporting the performance of a classifier as the ROC AUC can yield further insights 
in a classifier's performance with respect to imbalanced samples. However, while 
the accuracy score can be interpreted as a single cut-off point on a ROC curve, A. P. 
Bradley showed that the ROC AUC and accuracy metrics mostly agree with each 
other (A. P. Bradley. The Use of the Area Under the ROC Curve in the Evaluation of 
Machine Learning Algorithms. Pattern recognition, 30(7):1145–1159, 1997).

The scoring metrics for multiclass 
classification
The scoring metrics that we discussed in this section are specific to binary 
classification systems. However, scikit-learn also implements macro and micro 
averaging methods to extend those scoring metrics to multiclass problems via  
One vs. All (OvA) classification. The micro-average is calculated from the individual 
true positives, true negatives, false positives, and false negatives of the system. 
For example, the micro-average of the precision score in a k-class system can be 
calculated as follows:

1

1 1

k
micro

k k

TP TPPRE
TP TP FP FP

+ +=
+ + + + +

...
... ...

The macro-average is simply calculated as the average scores of the different systems:

1 k
macro

PRE PREPRE
k

+ +=
...

Micro-averaging is useful if we want to weight each instance or prediction equally, 
whereas macro-averaging weights all classes equally to evaluate the overall 
performance of a classifier with regard to the most frequent class labels.

0.711

0.662
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If we are using binary performance metrics to evaluate multiclass classification 
models in scikit-learn, a normalized or weighted variant of the macro-average is 
used by default. The weighted macro-average is calculated by weighting the score of 
each class label by the number of true instances when calculating the average. The 
weighted macro-average is useful if we are dealing with class imbalances, that is, 
different numbers of instances for each label.

While the weighted macro-average is the default for multiclass problems in  
scikit-learn, we can specify the averaging method via the average parameter  
inside the different scoring functions that we import from the sklean.metrics 
module, for example, the precision_score or make_scorer functions:

>>> pre_scorer = make_scorer(score_func=precision_score, 
...                          pos_label=1, 
...                          greater_is_better=True, 
...                          average='micro')

Summary
In the beginning of this chapter, we discussed how to chain different transformation 
techniques and classifiers in convenient model pipelines that helped us to train and 
evaluate machine learning models more efficiently. We then used those pipelines to 
perform k-fold cross-validation, one of the essential techniques for model selection 
and evaluation. Using k-fold cross-validation, we plotted learning and validation 
curves to diagnose the common problems of learning algorithms, such as overfitting 
and underfitting. Using grid search, we further fine-tuned our model. We concluded 
this chapter by looking at a confusion matrix and various different performance 
metrics that can be useful to further optimize a model's performance for a specific 
problem task. Now, we should be well-equipped with the essential techniques to 
build supervised machine learning models for classification successfully.

In the next chapter, we will take a look at ensemble methods, methods that allow 
us to combine multiple models and classification algorithms to boost the predictive 
performance of a machine learning system even further.

“sklearn”	instead	of	
“sklean”
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Similar to ROC curves, we can compute precision-recall curves for the 
different probability thresholds of a classifier. A function for plotting 
those precision-recall curves is also implemented in scikit-learn and is 
documented at http://scikit-learn.org/stable/modules/
generated/sklearn.metrics.precision_recall_curve.html.

By executing the following code example, we will plot an ROC curve of a classifier 
that only uses two features from the Breast Cancer Wisconsin dataset to predict 
whether a tumor is benign or malignant. Although we are going to use the 
same logistic regression pipeline that we defined previously, we are making the 
classification task more challenging for the classifier so that the resulting ROC curve 
becomes visually more interesting. For similar reasons, we are also reducing the 
number of folds in the StratifiedKFold validator to three. The code is as follows:

>>> from sklearn.metrics import roc_curve, auc
>>> from scipy import interp
>>> X_train2 = X_train[:, [4, 14]]
>>> cv = StratifiedKFold(y_train, 
...                      n_folds=3, 
...                      random_state=1)
>>> fig = plt.figure(figsize=(7, 5))
>>> mean_tpr = 0.0
>>> mean_fpr = np.linspace(0, 1, 100)
>>> all_tpr = []

>>> for i, (train, test) in enumerate(cv):
...     probas = pipe_lr.fit(X_train2[train],                          
>>> y_train[train]).predict_proba(X_train2[test])    
...     fpr, tpr, thresholds = roc_curve(y_train[test], 

>>>	pipe_lr	=	Pipeline([('scl',	StandardScaler()),
...																			('pca',	PCA(n_components=2)),
...																			('clf',	LogisticRegression(penalty='l2',	
...																																														random_state=0,	
...																																														C=100.0))])

Please	insert	these	
lines	here
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To see bagging in action, let's create a more complex classification problem using  
the Wine dataset that we introduced in Chapter 4, Building Good Training Sets – Data 
Preprocessing. Here, we will only consider the Wine classes 2 and 3, and we select two 
features: Alcohol and Hue.

>>> import pandas as pd
>>> df_wine = pd.read_csv('https://archive.ics.uci.edu/ml/machine-
learning-databases/wine/wine.data', header=None)
>>> df_wine.columns = ['Class label', 'Alcohol', 
...                    'Malic acid', 'Ash', 
...                    'Alcalinity of ash', 
...                    'Magnesium', 'Total phenols', 
...                    'Flavanoids', 'Nonflavanoid phenols',
...                    'Proanthocyanins', 
...                    'Color intensity', 'Hue', 
...                    'OD280/OD315 of diluted wines', 
...                    'Proline']
>>> df_wine = df_wine[df_wine['Class label'] != 1]
>>> y = df_wine['Class label'].values
>>> X = df_wine[['Alcohol', 'Hue']].values

Next we encode the class labels into binary format and split the dataset into  
60 percent training and 40 percent test set, respectively:

>>> from sklearn.preprocessing import LabelEncoder
>>> from sklearn.cross_validation import train_test_split
>>> le = LabelEncoder()
>>> y = le.fit_transform(y)
>>> X_train, X_test, y_train, y_test =\
...            train_test_split(X, y, 
...                             test_size=0.40, 
...                             random_state=1)

A BaggingClassifier algorithm is already implemented in scikit-learn, which we 
can import from the ensemble submodule. Here, we will use an unpruned decision 
tree as the base classifier and create an ensemble of 500 decision trees fitted on 
different bootstrap samples of the training dataset:

>>> from sklearn.ensemble import BaggingClassifier
>>> tree = DecisionTreeClassifier(criterion='entropy', 
...                               max_depth=None)
>>> bag = BaggingClassifier(base_estimator=tree,

I	forgot	a	
“random_state=1”	
here,	this	should	be	
like	shown	below:

>>>	tree	=	DecisionTreeClassifier(criterion='entropy',
...																																max_depth=None,
...																																random_state=1)
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...                         n_estimators=500, 

...                         max_samples=1.0, 

...                         max_features=1.0, 

...                         bootstrap=True, 

...                         bootstrap_features=False, 

...                         n_jobs=1, 

...                         random_state=1)

Next we will calculate the accuracy score of the prediction on the training and test 
dataset to compare the performance of the bagging classifier to the performance of a 
single unpruned decision tree:

>>> from sklearn.metrics import accuracy_score
>>> tree = tree.fit(X_train, y_train)
>>> y_train_pred = tree.predict(X_train)
>>> y_test_pred = tree.predict(X_test)
>>> tree_train = accuracy_score(y_train, y_train_pred)
>>> tree_test = accuracy_score(y_test, y_test_pred)
>>> print('Decision tree train/test accuracies %.3f/%.3f'
...        % (tree_train, tree_test))
Decision tree train/test accuracies 1.000/0.854

Based on the accuracy values that we printed by executing the preceding  
code snippet, the unpruned decision tree predicts all class labels of the training 
samples correctly; however, the substantially lower test accuracy indicates high 
variance (overfitting) of the model:

>>> bag = bag.fit(X_train, y_train)
>>> y_train_pred = bag.predict(X_train)
>>> y_test_pred = bag.predict(X_test)
>>> bag_train = accuracy_score(y_train, y_train_pred) 
>>> bag_test = accuracy_score(y_test, y_test_pred) 
>>> print('Bagging train/test accuracies %.3f/%.3f'
...        % (bag_train, bag_test))
Bagging train/test accuracies 1.000/0.896

Although the training accuracies of the decision tree and bagging classifier are 
similar on the training set (both 1.0), we can see that the bagging classifier has a 
slightly better generalization performance as estimated on the test set. Next let's 
compare the decision regions between the decision tree and bagging classifier:

>>> x_min = X_train[:, 0].min() - 1
>>> x_max = X_train[:, 0].max() + 1
>>> y_min = X_train[:, 1].min() - 1
>>> y_max = X_train[:, 1].max() + 1
>>> xx, yy = np.meshgrid(np.arange(x_min, x_max, 0.1),
...                      np.arange(y_min, y_max, 0.1))

0.833
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To walk through the AdaBoost illustration step by step, we start with subfigure 1, 
which represents a training set for binary classification where all training samples 
are assigned equal weights. Based on this training set, we train a decision stump 
(shown as a dashed line) that tries to classify the samples of the two classes (triangles 
and circles) as well as possible by minimizing the cost function (or the impurity score 
in the special case of decision tree ensembles). For the next round (subfigure 2),  
we assign a larger weight to the two previously misclassified samples (circles). 
Furthermore, we lower the weight of the correctly classified samples. The next 
decision stump will now be more focused on the training samples that have the 
largest weights, that is, the training samples that are supposedly hard to classify. 
The weak learner shown in subfigure 2 misclassifies three different samples from 
the circle-class, which are then assigned a larger weight as shown in subfigure 3. 
Assuming that our AdaBoost ensemble only consists of three rounds of boosting, we 
would then combine the three weak learners trained on different reweighted training 
subsets by a weighted majority vote, as shown in subfigure 4.

Now that have a better understanding behind the basic concept of AdaBoost, let's 
take a more detailed look at the algorithm using pseudo code. For clarity, we will 
denote element-wise multiplication by the cross symbol ( )×  and the dot product 
between two vectors by a dot symbol ( )⋅ , respectively. The steps are as follows:

1. Set weight vector w  to uniform weights where 1ii
w =∑

2. For j in m boosting rounds, do the following:
3. Train a weighted weak learner: (train , ,jC = X y w ).
4. Predict class labels: ( )ˆ predict ,jy C= X .
5. Compute weighted error rate: ( )ˆε = ⋅ ==w y y .

6. Compute coefficient: 10.5logj
εα
ε
−= .

7. Update weights: ( )ˆ: exp jα= × − × ×w w y y .

8. Normalize weights to sum to 1: : ii
w= ∑w w / .

9. Compute final prediction: ( )( )( )1
ˆ predict , 0m

j jj
C

=
= × >∑y Xα .

Note that the expression ( )ˆ ==y y  in step 5 refers to a vector of 1s and 0s, where a 1 is 
assigned if the prediction is correct and 0 is assigned otherwise.

“incorrect” instead of “correct”



No
No
No

ε = 0.1 × 0 + 0.1 × 0 + 0.1 × 0 + 0.1 × 0 + 0.1 × 0 + 0.1 × 0 + 0.1 × 1 + 0.1 × 1 + 0.1 × 1 + 0.1 × 0 = 3/10  = 0.3

No
No
No

ε = 0.1 × 0 + 0.1 × 0 + 0.1 × 0 + 0.1 × 0 + 0.1 × 0 + 0.1 × 0 + 0.1 × 1 + 0.1 × 1 + 0.1 × 1 + 0.1 × 0 = 3/10  = 0.3
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After we have computed the coefficient jα  we can now update the weight vector 
using the following equation:

( )ˆ: exp jα= × − × ×w w y y

Here, ˆ ×y y  is an element-wise multiplication between the vectors of the predicted 
and true class labels, respectively. Thus, if a prediction ˆiy  is correct, ˆi iy y×  will have a 
positive sign so that we decrease the ith weight since jα  is a positive number as well:

( )0.1 exp 0.424 1 1 0.066× − × × ≈

Similarly, we will downweight the ith weight if ˆiy  predicted the label incorrectly  
like this:

( )( )0.1 exp 0.424 1 1 0.153× − × × − ≈

Or like this:

( ) ( )( )0.1 exp 0.424 1 1 0.153× − × − × ≈

After we update each weight in the weight vector, we normalize the weights so  
that they sum up to 1 (step 8):

:
ii
w

=
∑

ww

Here, 7 0.065 3 0.153 0.914ii
w = × + × =∑ .

Thus, each weight that corresponds to a correctly classified sample will be  
reduced from the initial value of 0.1 to 0.066 / 0.914 0.072≈  for the next round  
of boosting. Similarly, the weights of each incorrectly classified sample will  
increase from 0.1 to 0.153 / 0.914 0.167≈ .

increase

0.065

0.065/0.914	≈	0.071
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This was AdaBoost in a nutshell. Skipping to the more practical part, let's now train 
an AdaBoost ensemble classifier via scikit-learn. We will use the same Wine subset 
that we used in the previous section to train the bagging meta-classifier. Via the 
base_estimator attribute, we will train the AdaBoostClassifier on 500 decision 
tree stumps:

>>> from sklearn.ensemble import AdaBoostClassifier
>>> tree = DecisionTreeClassifier(criterion='entropy', 
...                               max_depth=1)
>>> ada = AdaBoostClassifier(base_estimator=tree,
...                          n_estimators=500, 
...                          learning_rate=0.1,
...                          random_state=0)
>>> tree = tree.fit(X_train, y_train)
>>> y_train_pred = tree.predict(X_train)
>>> y_test_pred = tree.predict(X_test)
>>> tree_train = accuracy_score(y_train, y_train_pred)
>>> tree_test = accuracy_score(y_test, y_test_pred)
>>> print('Decision tree train/test accuracies %.3f/%.3f'
...       % (tree_train, tree_test))
Decision tree train/test accuracies 0.845/0.854

As we can see, the decision tree stump seems to overfit the training data in contrast 
with the unpruned decision tree that we saw in the previous section:

>>> ada = ada.fit(X_train, y_train)
>>> y_train_pred = ada.predict(X_train)
>>> y_test_pred = ada.predict(X_test)
>>> ada_train = accuracy_score(y_train, y_train_pred) 
>>> ada_test = accuracy_score(y_test, y_test_pred) 
>>> print('AdaBoost train/test accuracies %.3f/%.3f'
...       % (ada_train, ada_test))
AdaBoost train/test accuracies 1.000/0.875

As we can see, the AdaBoost model predicts all class labels of the training set 
correctly and also shows a slightly improved test set performance compared to the 
decision tree stump. However, we also see that we introduced additional variance by 
our attempt to reduce the model bias.

I	forgot	a	
“random_state=0”	
here,	this	should	be	
like	shown	below:

>>>	tree	=	DecisionTreeClassifier(criterion='entropy',
...																																max_depth=None,
...																																random_state=0)

tends	to	underfit
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In this chapter, we will be working with a large dataset of movie reviews from the 
Internet Movie Database (IMDb) that has been collected by Maas et al. (A. L. Maas, 
R. E. Daly, P. T. Pham, D. Huang, A. Y. Ng, and C. Potts. Learning Word Vectors for 
Sentiment Analysis. In the proceedings of the 49th Annual Meeting of the Association 
for Computational Linguistics: Human Language Technologies, pages 142–150, 
Portland, Oregon, USA, June 2011. Association for Computational Linguistics). The 
movie review dataset consists of 50,000 polar movie reviews that are labeled as either 
positive or negative; here, positive means that a movie was rated with more than six 
stars on IMDb, and negative means that a movie was rated with fewer than five 
stars on IMDb. In the following sections, we will learn how to extract meaningful 
information from a subset of these movie reviews to build a machine learning  
model that can predict whether a certain reviewer liked or disliked a movie.

A compressed archive of the movie review dataset (84.1 MB) can be downloaded 
from http://ai.stanford.edu/~amaas/data/sentiment/ as a gzip-compressed 
tarball archive:

• If you are working with Linux or Mac OS X, you can open a new terminal 
window, use cd to go into the download directory, and execute tar -zxf 
aclImdb_v1.tar.gz to decompress the dataset

• If you are working with Windows, you can download a free archiver  
such as 7-Zip (http://www.7-zip.org) to extract the files from the 
download archive

Having successfully extracted the dataset, we will now assemble the individual 
text documents from the decompressed download archive into a single CSV file. 
In the following code section, we will be reading the movie reviews into a pandas 
DataFrame object, which can take up to 10 minutes on a standard desktop computer. 
To visualize the progress and estimated time until completion, we will use the 
PyPrind (Python Progress Indicator, https://pypi.python.org/pypi/PyPrind/) 
package that I developed several years ago for such purposes. PyPrind can be 
installed by executing the command: pip install pyprind.

>>> import pyprind
>>> import pandas as pd
>>> import os
>>> pbar = pyprind.ProgBar(50000)
>>> labels = {'pos':1, 'neg':0}
>>> df = pd.DataFrame()
>>> for s in ('test', 'train'):
...    for l in ('pos', 'neg'):
...        path ='./aclImdb/%s/%s' % (s, l)
...        for file in os.listdir(path):
...            with open(os.path.join(path, file), 'r') as infile:
...								with	open(os.path.join(path,	file),	‘r’,	encoding=‘utf-8’)	as	infile:
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Assessing word relevancy via term 
frequency-inverse document frequency
When we are analyzing text data, we often encounter words that occur across 
multiple documents from both classes. Those frequently occurring words typically 
don't contain useful or discriminatory information. In this subsection, we will learn 
about a useful technique called term frequency-inverse document frequency  
(tf-idf) that can be used to downweight those frequently occurring words in the 
feature vectors. The tf-idf can be defined as the product of the term frequency and 
the inverse document frequency:

( ) ( ) ( )tf-idf t,d , idf t,dtf t d= ×

Here the tf(t, d) is the term frequency that we introduced in the previous section,  
and the inverse document frequency idf(t, d) can be calculated as:

( ) ( )
idf t,d ,

1+df d,t
dnlog=

where dn  is the total number of documents, and df(d, t) is the number of documents 
d that contain the term t. Note that adding the constant 1 to the denominator is 
optional and serves the purpose of assigning a non-zero value to terms that occur in 
all training samples; the log is used to ensure that low document frequencies are not 
given too much weight.

Scikit-learn implements yet another transformer, the TfidfTransformer, that  
takes the raw term frequencies from CountVectorizer as input and transforms  
them into tf-idfs:

>>> from sklearn.feature_extraction.text import TfidfTransformer
>>> tfidf = TfidfTransformer()
>>> np.set_printoptions(precision=2)
>>> print(tfidf.fit_transform(count.fit_transform(docs)).toarray())
[[ 0.    0.43  0.56  0.56  0.    0.43  0.  ]
 [ 0.    0.43  0.    0.    0.56  0.43  0.56]
 [ 0.4   0.48  0.31  0.31  0.31  0.48  0.31]] 
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As we saw in the previous subsection, the word is had the largest term frequency 
in the 3rd document, being the most frequently occurring word. However, after 
transforming the same feature vector into tf-idfs, we see that the word is is  
now associated with a relatively small tf-idf (0.31) in document 3 since it is 
also contained in documents 1 and 2 and thus is unlikely to contain any useful, 
discriminatory information.

However, if we'd manually calculated the tf-idfs of the individual terms in our 
feature vectors, we'd have noticed that the TfidfTransformer calculates the tf-idfs 
slightly differently compared to the standard textbook equations that we defined 
earlier. The equations for the idf and tf-idf that were implemented in scikit-learn are:

( ) ( )
1idf t,d

1 df d,t
dnlog +=

+

The tf-idf equation that was implemented in scikit-learn is as follows:

( ) ( ) ( )( )tf-idf t,d t,d idf t,d 1tf= × +

While it is also more typical to normalize the raw term frequencies before  
calculating the tf-idfs, the TfidfTransformer normalizes the tf-idfs directly.  
By default (norm='l2'), scikit-learn's TfidfTransformer applies the  
L2-normalization, which returns a vector of length 1 by dividing an  
un-normalized feature vector v by its L2-norm:

( )1/22 2 2 22 1 2
1

norm n
n ii

v v vv
v v v v v

=

= = =
+ + + ∑!

To make sure that we understand how TfidfTransformer works, let us walk 
through an example and calculate the tf-idf of the word is in the 3rd document.

The word is has a term frequency of 2 (tf = 2) in document 3, and the document 
frequency of this term is 3 since the term is occurs in all three documents (df = 3). 
Thus, we can calculate the idf as follows:

( ) 1 3"is",d3 log 0
1 3

idf += =
+

should be 0.48, 
like we
manually compute
it on the following
page 
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Now in order to calculate the tf-idf, we simply need to add 1 to the inverse document 
frequency and multiply it by the term frequency:

( ) ( )tf-idf " ",d3 2 0 1 2is = × + =

If we repeated these calculations for all terms in the 3rd document, we'd obtain the 
following tf-idf vectors: [1.69, 2.00, 1.29, 1.29, 1.29, 2.00, and 1.29]. However, we 
notice that the values in this feature vector are different from the values that we 
obtained from the TfidfTransformer that we used previously. The final step that 
we are missing in this tf-idf calculation is the L2-normalization, which can be applied 
as follows:

( ) [ ]

[ ]

2 2 2 2 2 2 2

1.69, 2.00, 1.29, 1.29, 1.29, 2.00, 1.29
tf-idf " ",d3

1.69 2.00 1.29 1.29 1.29 2.00 1.29
0.40, 0.48, 0.31, 0.31, 0.31, 0.48, 0.31

normis
+ + + + + +

=

As we can see, the results now match the results returned by scikit-learn's 
TfidfTransformer. Since we now understand how tf-idfs are calculated, let us 
proceed to the next sections and apply those concepts to the movie review dataset.

Cleaning text data
In the previous subsections, we learned about the bag-of-words model, term 
frequencies, and tf-idfs. However, the first important step—before we build our  
bag-of-words model—is to clean the text data by stripping it of all unwanted 
characters. To illustrate why this is important, let us display the last 50 characters 
from the first document in the reshuffled movie review dataset:

>>> df.loc[0, 'review'][-50:] 
'is seven.<br /><br />Title (Brazil): Not Available'

As we can see here, the text contains HTML markup as well as punctuation and 
other non-letter characters. While HTML markup does not contain much useful 
semantics, punctuation marks can represent useful, additional information in certain 
NLP contexts. However, for simplicity, we will now remove all punctuation marks 
but only keep emoticon characters such as ":)" since those are certainly useful for 
sentiment analysis. To accomplish this task, we will use Python's regular expression 
(regex) library, re, as shown here:

>>> import re
>>> def preprocessor(text):

Here,	it	should	be	either	
tf-idf(“is”,	d3)	=	0.48
or	
tf-idf(d3)	=	[0.40,	0.48,	0.31,	0.31,	0.31,	0.48,	0.31]	

Here,	it	should	be	either	
tf-idf(“is”,	d3)	=	0.48
or	
tf-idf(d3)	=	[0.40,	0.48,	0.31,	0.31,	0.31,	0.48,	0.31]	

Here,	it	should	be	either	
tf-idf(“is”,	d3)	=	0.48
or	
tf-idf(d3)	=	[0.40,	0.48,	0.31,	0.31,	0.31,	0.48,	0.31]	

Here,	it	should	be	either	
tf-idf(“is”,	d3)	=	0.48
or	
tf-idf(d3)	=	[0.40,	0.48,	0.31,	0.31,	0.31,	0.48,	0.31]	
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...     text = re.sub('<[^>]*>', '', text)

...     emoticons = re.findall('(?::|;|=)(?:-)?(?:\)|\(|D|P)', text)

...     text = re.sub('[\W]+', ' ', text.lower()) + \  
                 '.join(emoticons).replace('-', '')
...     return text

Via the first regex <[^>]*> in the preceding code section, we tried to remove the 
entire HTML markup that was contained in the movie reviews. Although many 
programmers generally advise against the use of regex to parse HTML, this regex 
should be sufficient to clean this particular dataset. After we removed the HTML 
markup, we used a slightly more complex regex to find emoticons, which we 
temporarily stored as emoticons. Next we removed all non-word characters from 
the text via the regex [\W]+, converted the text into lowercase characters, and 
eventually added the temporarily stored emoticons to the end of the processed 
document string. Additionally, we removed the nose character (-) from the emoticons 
for consistency.

Although regular expressions offer an efficient and convenient 
approach to searching for characters in a string, they also come with 
a steep learning curve. Unfortunately, an in-depth discussion of 
regular expressions is beyond the scope of this book. However, you 
can find a great tutorial on the Google Developers portal at https://
developers.google.com/edu/python/regular-expressions or 
check out the official documentation of Python's re module at https://
docs.python.org/3.4/library/re.html.

Although the addition of the emoticon characters to the end of the cleaned document 
strings may not look like the most elegant approach, the order of the words doesn't 
matter in our bag-of-words model if our vocabulary only consists of 1-word tokens. 
But before we talk more about splitting documents into individual terms, words, or 
tokens, let us confirm that our preprocessor works correctly:

>>> preprocessor(df.loc[0, 'review'][-50:])
'is seven title brazil not available'
>>> preprocessor("</a>This :) is :( a test :-)!")
'this is a test :) :( :)'

Lastly, since we will make use of the cleaned text data over and over again during the 
next sections, let us now apply our preprocessor function to all movie reviews in 
our DataFrame:

>>> df['review'] = df['review'].apply(preprocessor)
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When we initialized the GridSearchCV object and its parameter grid using 
the preceding code, we restricted ourselves to a limited number of parameter 
combinations since the number of feature vectors, as well as the large vocabulary, 
can make the grid search computationally quite expensive; using a standard Desktop 
computer, our grid search may take up to 40 minutes to complete.

In the previous code example, we replaced the CountVectorizer and 
TfidfTransformer from the previous subsection with the TfidfVectorizer,  
which combines the latter transformer objects. Our param_grid consisted of two 
parameter dictionaries. In the first dictionary, we used the TfidfVectorizer  
with its default settings (use_idf=True, smooth_idf=True, and norm='l2') to 
calculate the tf-idfs; in the second dictionary, we set those parameters to  
use_idf=False, smooth_idf=False, and norm=None in order to train a model  
based on raw term frequencies. Furthermore, for the logistic regression classifier 
itself, we trained models using L2 and L1 regularization via the penalty parameter 
and compared different regularization strengths by defining a range of values for  
the inverse-regularization parameter C.

After the grid search has finished, we can print the best parameter set:

>>> print('Best parameter set: %s ' % gs_lr_tfidf.best_params_)
Best parameter set: {'clf__C': 10.0, 'vect__stop_words': None, 
'clf__penalty': 'l2', 'vect__tokenizer': <function tokenizer at 
0x7f6c704948c8>, 'vect__ngram_range': (1, 1)} 

As we can see here, we obtained the best grid search results using the regular 
tokenizer without Porter stemming, no stop-word library, and tf-idfs in combination 
with a logistic regression classifier that uses L2 regularization with the regularization 
strength C=10.0.

Using the best model from this grid search, let us print the 5-fold cross-validation 
accuracy scores on the training set and the classification accuracy on the test dataset:

>>> print('CV Accuracy: %.3f' 
...       % gs_lr_tfidf.best_score_)
CV Accuracy: 0.897
>>> clf = gs_lr_tfidf.best_estimator_
>>> print('Test Accuracy: %.3f' 
...     % clf.score(X_test, y_test))
Test Accuracy: 0.899

The results reveal that our machine learning model can predict whether a movie 
review is positive or negative with 90 percent accuracy.

average



Chapter 8

[ 247 ]

...            + ' '.join(emoticons).replace('-', '')

...     tokenized = [w for w in text.split() if w not in stop]

...     return tokenized

Next we define a generator function, stream_docs, that reads in and returns one 
document at a time:

>>> def stream_docs(path):
...    with open(path, 'r') as csv:
...        next(csv) # skip header
...        for line in csv:
...            text, label = line[:-3], int(line[-2])
...            yield text, label

To verify that our stream_docs function works correctly, let us read in the first 
document from the movie_data.csv file, which should return a tuple consisting of 
the review text as well as the corresponding class label:

>>> next(stream_docs(path='./movie_data.csv'))
('"In 1974, the teenager Martha Moxley ... ',1)

We will now define a function, get_minibatch, that will take a document stream 
from the stream_docs function and return a particular number of documents 
specified by the size parameter:

>>> def get_minibatch(doc_stream, size):
...     docs, y = [], []
...         try:
...             for _ in range(size):
...                 text, label = next(doc_stream)
...                 docs.append(text)
...                 y.append(label)
...         except StopIteration:
...             return None, None
...         return docs, y

Unfortunately, we can't use the CountVectorizer for out-of-core learning since it 
requires holding the complete vocabulary in memory. Also, the TfidfVectorizer 
needs to keep the all feature vectors of the training dataset in memory to calculate 
the inverse document frequencies. However, another useful vectorizer for text 
processing implemented in scikit-learn is HashingVectorizer. HashingVectorizer 
is data-independent and makes use of the Hashing trick via the 32-bit MurmurHash3 
algorithm by Austin Appleby (https://sites.google.com/site/murmurhash/).

>>> from sklearn.feature_extraction.text import HashingVectorizer
>>> from sklearn.linear_model import SGDClassifier

with	open(path,	‘r’,	encoding=‘utf-8’)	as	csv:
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Now, let's take a look at the contents of the first_app.html file. If you are not 
familiar with the HTML syntax yet, I recommend you visit http://www.w3schools.
com/html/default.asp for useful tutorials for learning the basics of HTML.

<!doctype html>
<html>
  <head>
    <title>First app</title>
  </head>
  <body>
  <div>Hi, this is my first Flask web app!</div>
  </body>
</html>

Here, we have simply filled an empty HTML template file with a div element  
(a block level element) that contains the sentence: Hi, this is my first Flask 
web app!. Conveniently, Flask allows us to run our apps locally, which is useful  
for developing and testing web applications before we deploy them on a public  
web server. Now, let's start our web application by executing the command from  
the terminal inside the 1st_flask_app_1 directory:

python3 app.py

We should now see a line such as the following displayed in the terminal:

* Running on http://127.0.0.1:5000/

This line contains the address of our local server. We can now enter this address in 
our web browser to see the web application in action. If everything has executed 
correctly, we should now see a simple website with the content: Hi, this is my first 
Flask web app!.

Form validation and rendering
In this subsection, we will extend our simple Flask web application with HTML 
form elements to learn how to collect data from a user using the WTForms library 
(https://wtforms.readthedocs.org/en/latest/), which can be installed via pip:

pip install wtforms

https://developer.mozilla.org/en-US/docs/Web/HTML
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app = Flask(__name__)

class HelloForm(Form):
    sayhello = TextAreaField('',[validators.DataRequired()])

@app.route('/')
def index():
    form = HelloForm(request.form)
    return render_template('first_app.html', form=form)

@app.route('/hello', methods=['POST'])
def hello():
    form = HelloForm(request.form)
    if request.method == 'POST' and form.validate():
        name = request.form['sayhello']
        return render_template('hello.html', name=name)
    return render_template('first_app.html', form=form)

if __name__ == '__main__':
    app.run(debug=True)

Using wtforms, we extended the index function with a text field that we will 
embed in our start page using the TextAreaField class, which automatically checks 
whether a user has provided valid input text or not. Furthermore, we defined a 
new function, hello, which will render an HTML page hello.html if the form has 
been validated. Here, we used the POST method to transport the form data to the 
server in the message body. Finally, by setting the argument debug=True inside the 
app.run method, we further activated Flask's debugger. This is a useful feature for 
developing new web applications.

Now, we will implement a generic macro in the file _formhelpers.html via the 
Jinja2 templating engine, which we will later import in our first_app.html file  
to render the text field:

{% macro render_field(field) %}
  <dt>{{ field.label }}
  <dd>{{ field(**kwargs)|safe }}
  {% if field.errors %}
    <ul class=errors>
    {% for error in field.errors %}
      <li>{{ error }}</li>
    {% endfor %}
    </ul>
  {% endif %}
  </dd>
{% endmacro %}

</dd>
</dt>
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# import HashingVectorizer from local dir
from vectorizer import vect

app = Flask(__name__)

######## Preparing the Classifier
cur_dir = os.path.dirname(__file__)
clf = pickle.load(open(os.path.join(cur_dir, 
                 'pkl_objects/classifier.pkl'), 'rb'))
db = os.path.join(cur_dir, 'reviews.sqlite')

def classify(document):
    label = {0: 'negative', 1: 'positive'}
    X = vect.transform([document])
    y = clf.predict(X)[0]
    proba = np.max(clf.predict_proba(X))
    return label[y], proba

def train(document, y):
    X = vect.transform([document])
    clf.partial_fit(X, [y])

def sqlite_entry(path, document, y):
    conn = sqlite3.connect(path)
    c = conn.cursor()
    c.execute("INSERT INTO review_db (review, sentiment, date)"\
    " VALUES (?, ?, DATETIME('now'))", (document, y))
    conn.commit()
    conn.close()

This first part of the app.py script should look very familiar to us by now. We simply 
imported the HashingVectorizer and unpickled the logistic regression classifier. 
Next, we defined a classify function to return the predicted class label as well 
as the corresponding probability prediction of a given text document. The train 
function can be used to update the classifier given that a document and a class label 
are provided. Using the sqlite_entry function, we can store a submitted movie 
review in our SQLite database along with its class label and timestamp for our 
personal records. Note that the clf object will be reset to its original, pickled state if 
we restart the web application. At the end of this chapter, you will learn how to use 
the data that we collect in the SQLite database to update the classifier permanently.

	clf.predict_proba(X).max()
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Here, we simply imported the same _formhelpers.html template that we defined 
in the Form validation and rendering section earlier in this chapter. The render_field 
function of this macro is used to render a TextAreaField where a user can provide a 
movie review and submit it via the Submit review button displayed at the bottom of 
the page. This TextAreaField is 30 columns wide and 10 rows tall.

Our next template, results.html, looks a little bit more interesting:

<!doctype html>
<html>
  <head>
    <title>Movie Classification</title>
  <link rel="stylesheet" href="{{ url_for('static',  
    filename='style.css') }}">
  </head>
  <body>

<h3>Your movie review:</h3>
<div>{{ content }}</div>

<h3>Prediction:</h3>
<div>This movie review is <strong>{{ prediction }}</strong>
  (probability: {{ probability }}%).</div>

<div id='button'>
  <form action="/thanks" method="post">
    <input type=submit value='Correct' name='feedback_button'>
    <input type=submit value='Incorrect' name='feedback_button'>
    <input type=hidden value='{{ prediction }}' name='prediction'>
    <input type=hidden value='{{ content }}' name='review'>
  </form>
</div>

<div id='button'>
  <form action="/">
    <input type=submit value='Submit another review'>
  </form>
</div>

  </body>
</html>

class

class
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First, we inserted the submitted review as well as the results of the prediction in the 
corresponding fields {{ content }}, {{ prediction }}, and {{ probability }}. 
You may notice that we used the {{ content }} and {{ prediction }} placeholder 
variables a second time in the form that contains the Correct and Incorrect buttons. 
This is a workaround to POST those values back to the server to update the classifier 
and store the review in case the user clicks on one of those two buttons. Furthermore, 
we imported a CSS file (style.css) at the beginning of the results.html file. The 
setup of this file is quite simple; it limits the width of the contents of this web app to 
600 pixels and moves the Incorrect and Correct buttons labeled with the div id  
button down by 20 pixels:

body{
  width:600px;
}
#button{
  padding-top: 20px;
}

This CSS file is merely a placeholder, so please feel free to adjust it to adjust the look 
and feel of the web app to your liking.

The last HTML file we will implement for our web application is the thanks.html 
template. As the name suggests, it simply provides a nice thank you message to the 
user after providing feedback via the Correct or Incorrect button. Furthermore, we 
put a Submit another review button at the bottom of this page, which will redirect 
the user to the starting page. The contents of the thanks.html file are as follows:

<!doctype html>
<html>
  <head>
    <title>Movie Classification</title>
</head>
  <body>

<h3>Thank you for your feedback!</h3>
<div id='button'>
  <form action="/">
    <input type=submit value='Submit another review'>
  </form>
</div>

  </body>
</html>

.button	{



Embedding a Machine Learning Model into a Web Application

[ 274 ]

Updating the movie review classifier
While our predictive model is updated on-the-fly whenever a user provides 
feedback about the classification, the updates to the clf object will be reset if the 
web server crashes or restarts. If we reload the web application, the clf object 
will be reinitialized from the classifier.pkl pickle file. One option to apply 
the updates permanently would be to pickle the clf object once again after each 
update. However, this would become computationally very inefficient with a 
growing number of users and could corrupt the pickle file if users provide feedback 
simultaneously. An alternative solution is to update the predictive model from the 
feedback data that is being collected in the SQLite database. One option would be 
to download the SQLite database from the PythonAnywhere server, update the clf 
object locally on our computer, and upload the new pickle file to PythonAnywhere. 
To update the classifier locally on our computer, we create an update.py script file 
in the movieclassifier directory with the following contents:

import pickle
import sqlite3
import numpy as np
import os

# import HashingVectorizer from local dir
from vectorizer import vect

def update_model(db_path, model, batch_size=10000):

    conn = sqlite3.connect(db_path)
    c = conn.cursor()
    c.execute('SELECT * from review_db')

    results = c.fetchmany(batch_size)
    while results:
        data = np.array(results)
        X = data[:, 0]
        y = data[:, 1].astype(int)

        classes = np.array([0, 1])
        X_train = vect.transform(X)
        clf.partial_fit(X_train, y, classes=classes)
        results = c.fetchmany(batch_size)

    conn.close()
    return None

model.partial_fit

return	model
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cur_dir = os.path.dirname(__file__)

clf = pickle.load(open(os.path.join(cur_dir,
                 'pkl_objects',
                 'classifier.pkl'), 'rb'))
db = os.path.join(cur_dir, 'reviews.sqlite')

update_model(db_path=db, model=clf, batch_size=10000)

# Uncomment the following lines if you are sure that
# you want to update your classifier.pkl file
# permanently.

# pickle.dump(clf, open(os.path.join(cur_dir,
#             'pkl_objects', 'classifier.pkl'), 'wb')
#             , protocol=4)

The update_model function will fetch entries from the SQLite database in batches of 
10,000 entries at a time unless the database contains fewer entries. Alternatively, we 
could also fetch one entry at a time by using fetchone instead of fetchmany, which 
would be computationally very inefficient. Using the alternative fetchall method 
could be a problem if we are working with large datasets that exceed the computer 
or server's memory capacity.

Now that we have created the update.py script, we could also upload it to the 
movieclassifier directory on PythonAnywhere and import the update_model 
function in the main application script app.py to update the classifier from the 
SQLite database every time we restart the web application. In order to do so, we just 
need to add a line of code to import the update_model function from the update.py 
script at the top of app.py:

# import update function from local dir
from update import update_model

We then need to call the update_model function in the main application body:

…
if __name__ == '__main__':
    update_model(filepath=db, model=clf, batch_size=10000)
…

clf=update_model

clf	=	update_model(db_path=“db”
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The special case of one explanatory variable is also called simple linear regression, 
but of course we can also generalize the linear regression model to multiple 
explanatory variables. Hence, this process is called multiple linear regression:
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Here, 0w  is the y axis intercept with 0 1x = .

Exploring the Housing Dataset
Before we implement our first linear regression model, we will introduce a new 
dataset, the Housing Dataset, which contains information about houses in the 
suburbs of Boston collected by D. Harrison and D.L. Rubinfeld in 1978. The Housing 
Dataset has been made freely available and can be downloaded from the UCI machine 
learning repository at https://archive.ics.uci.edu/ml/datasets/Housing.

The features of the 506 samples may be summarized as shown in the excerpt of the 
dataset description:

• CRIM: This is the per capita crime rate by town
• ZN: This is the proportion of residential land zoned for lots larger than  

25,000 sq.ft.
• INDUS: This is the proportion of non-retail business acres per town
• CHAS: This is the Charles River dummy variable (this is equal to 1 if tract 

bounds river; 0 otherwise)
• NOX: This is the nitric oxides concentration (parts per 10 million)
• RM: This is the average number of rooms per dwelling
• AGE: This is the proportion of owner-occupied units built prior to 1940
• DIS: This is the weighted distances to five Boston employment centers
• RAD: This is the index of accessibility to radial highways
• TAX: This is the full-value property-tax rate per $10,000
• PTRATIO: This is the pupil-teacher ratio by town
• B: This is calculated as 1000(Bk - 0.63)^2, where Bk is the proportion of 

people of African American descent by town
• LSTAT: This is the percentage lower status of the population
• MEDV: This is the median value of owner-occupied homes in $1000s

mmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmmm
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>>> cols = ['LSTAT', 'INDUS', 'NOX', 'RM', 'MEDV']
>>> sns.pairplot(df[cols], size=2.5);
>>> plt.show()

As we can see in the following figure, the scatterplot matrix provides us with a 
useful graphical summary of the relationships in a dataset:

Importing the seaborn library modifies the default aesthetics of 
matplotlib for the current Python session. If you do not want to 
use seaborn's style settings, you can reset the matplotlib settings 
by executing the following command:

>>> sns.reset_orig()

remove	unnecessary	semicolon
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In the following code example, we will use NumPy's corrcoef function on the five 
feature columns that we previously visualized in the scatterplot matrix, and we will 
use seaborn's heatmap function to plot the correlation matrix array as a heat map:

>>> import numpy as np
>>> cm = np.corrcoef(df[cols].values.T)
>>> sns.set(font_scale=1.5)
>>> hm = sns.heatmap(cm, 
...            cbar=True,
...            annot=True, 
...            square=True,
...            fmt='.2f',
...            annot_kws={'size': 15},
...            yticklabels=cols,
...            xticklabels=cols)
>>> plt.show()

As we can see in the resulting figure, the correlation matrix provides us with another 
useful summary graphic that can help us to select features based on their respective 
linear correlations:

To fit a linear regression model, we are interested in those features that have a high 
correlation with our target variable MEDV. Looking at the preceding correlation 
matrix, we see that our target variable MEDV shows the largest correlation with 
the LSTAT variable (-0.74). However, as you might remember from the scatterplot 
matrix, there is a clear nonlinear relationship between LSTAT and MEDV. On the 
other hand, the correlation between RM and MEDV is also relatively high (0.70) and 
given the linear relationship between those two variables that we observed in the 
scatterplot, RM seems to be a good choice for an exploratory variable to introduce 
the concepts of a simple linear regression model in the following section.

explanatory
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As we can see in the following plot, the linear regression line reflects the general 
trend that house prices tend to increase with the number of rooms:

Although this observation makes intuitive sense, the data also tells us that the 
number of rooms does not explain the house prices very well in many cases. Later  
in this chapter, we will discuss how to quantify the performance of a regression 
model. Interestingly, we also observe a curious line 3y = , which suggests that the 
prices may have been clipped. In certain applications, it may also be important to 
report the predicted outcome variables on its original scale. To scale the predicted 
price outcome back on the Price in $1000's axes, we can simply apply the  
inverse_transform method of the StandardScaler:

>>> num_rooms_std = sc_x.transform([5.0]) 
>>> price_std = lr.predict(num_rooms_std)
>>> print("Price in $1000's: %.3f" % \
...       sc_y.inverse_transform(price_std))
Price in $1000's: 10.840

In the preceding code example, we used the previously trained linear regression 
model to predict the price of a house with five rooms. According to our model,  
such a house is worth $10,840.

“their”	
instead	of	
“its”
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On a side note, it is also worth mentioning that we technically don't have to update 
the weights of the intercept if we are working with standardized variables since the  
y axis intercept is always 0 in those cases. We can quickly confirm this by printing 
the weights:

>>> print('Slope: %.3f' % lr.w_[1])
Slope: 0.695
>>> print('Intercept: %.3f' % lr.w_[0])
Intercept: -0.000

Estimating the coefficient of a regression 
model via scikit-learn
In the previous section, we implemented a working model for regression  
analysis. However, in a real-world application, we may be interested in more 
efficient implementations, for example, scikit-learn's LinearRegression object  
that makes use of the LIBLINEAR library and advanced optimization algorithms 
that work better with unstandardized variables. This is sometimes desirable for 
certain applications:

>>> from sklearn.linear_model import LinearRegression
>>> slr = LinearRegression()
>>> slr.fit(X, y)
>>> print('Slope: %.3f' % slr.coef_[0])
Slope: 9.102
>>> print('Intercept: %.3f' % slr.intercept_)
Intercept: -34.671

As we can see by executing the preceding code, scikit-learn's LinearRegression 
model fitted with the unstandardized RM and MEDV variables yielded different 
model coefficients. Let's compare it to our own GD implementation by plotting 
MEDV against RM:

>>> lin_regplot(X, y, slr)
>>> plt.xlabel('Average number of rooms [RM] (standardized)')
>>> plt.ylabel('Price in $1000\'s [MEDV] (standardized)')
>>> plt.show()
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On a side note, it is also worth mentioning that we technically don't have to update 
the weights of the intercept if we are working with standardized variables since the  
y axis intercept is always 0 in those cases. We can quickly confirm this by printing 
the weights:

>>> print('Slope: %.3f' % lr.w_[1])
Slope: 0.695
>>> print('Intercept: %.3f' % lr.w_[0])
Intercept: -0.000

Estimating the coefficient of a regression 
model via scikit-learn
In the previous section, we implemented a working model for regression  
analysis. However, in a real-world application, we may be interested in more 
efficient implementations, for example, scikit-learn's LinearRegression object  
that makes use of the LIBLINEAR library and advanced optimization algorithms 
that work better with unstandardized variables. This is sometimes desirable for 
certain applications:

>>> from sklearn.linear_model import LinearRegression
>>> slr = LinearRegression()
>>> slr.fit(X, y)
>>> print('Slope: %.3f' % slr.coef_[0])
Slope: 9.102
>>> print('Intercept: %.3f' % slr.intercept_)
Intercept: -34.671

As we can see by executing the preceding code, scikit-learn's LinearRegression 
model fitted with the unstandardized RM and MEDV variables yielded different 
model coefficients. Let's compare it to our own GD implementation by plotting 
MEDV against RM:

>>> lin_regplot(X, y, slr)
>>> plt.xlabel('Average number of rooms [RM] (standardized)')
>>> plt.ylabel('Price in $1000\'s [MEDV] (standardized)')
>>> plt.show()

Delete	words	“standardized”
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In the resulting plot, we can see that the polynomial fit captures the relationship 
between the response and explanatory variable much better than the linear fit:

>>> y_lin_pred = lr.predict(X)
>>> y_quad_pred = pr.predict(X_quad)
>>> print('Training MSE linear: %.3f, quadratic: %.3f' % (
...         mean_squared_error(y, y_lin_pred),
...         mean_squared_error(y, y_quad_pred)))
Training MSE linear: 569.780, quadratic: 61.330
>>> print('Training  R^2 linear: %.3f, quadratic: %.3f' % (
...         r2_score(y, y_lin_pred),
...         r2_score(y, y_quad_pred)))
Training  R^2 linear: 0.832, quadratic: 0.982

As we can see after executing the preceding code, the MSE decreased from 570 
(linear fit) to 61 (quadratic fit), and the coefficient of determination reflects a closer  
fit to the quadratic model ( 2 0.982R = ) as opposed to the linear fit ( 2 0.832R = ) in  
this particular toy problem.

Modeling nonlinear relationships in the 
Housing Dataset
After we discussed how to construct polynomial features to fit nonlinear relationships 
in a toy problem, let's now take a look at a more concrete example and apply those 
concepts to the data in the Housing Dataset. By executing the following code, we will 
model the relationship between house prices and LSTAT (percent lower status of the 
population) using second degree (quadratic) and third degree (cubic) polynomials  
and compare it to a linear fit.

Delete	
extra	
space	
between	
“Training”	
and	“R^2”
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Dealing with nonlinear relationships using 
random forests
In this section, we are going to take a look at random forest regression, which is 
conceptually different from the previous regression models in this chapter. A random 
forest, which is an ensemble of multiple decision trees, can be understood as the sum 
of piecewise linear functions in contrast to the global linear and polynomial regression 
models that we discussed previously. In other words, via the decision tree algorithm, 
we are subdividing the input space into smaller regions that become more manageable.

Decision tree regression
An advantage of the decision tree algorithm is that it does not require any 
transformation of the features if we are dealing with nonlinear data. We remember 
from Chapter 3, A Tour of Machine Learning Classifiers Using Scikit-learn, that we grow 
a decision tree by iteratively splitting its nodes until the leaves are pure or a stopping 
criterion is satisfied. When we used decision trees for classification, we defined 
entropy as a measure of impurity to determine which feature split maximizes the 
Information Gain (IG), which can be defined as follows for a binary split:

( ) ( ),
1

p p
p

IG D x I D I
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Here, x  is the feature to perform the split, pN  is the number of samples in the 
parent node, I  is the impurity function, pD  is the subset of training samples in 
the parent node, and D  and D  are the subsets of training samples in the left and 
right child node after the split. Remember that our goal is to find the feature split 
that maximizes the information gain, or in other words, we want to find the feature 
split that reduces the impurities in the child nodes. In Chapter 3, A Tour of Machine 
Learning Classifiers Using Scikit-learn, we used entropy as a measure of impurity, 
which is a useful criterion for classification. To use a decision tree for regression,  
we will replace entropy as the impurity measure of a node t  by the MSE:
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>>> print('MSE train: %.3f, test: %.3f' % (
...        mean_squared_error(y_train, y_train_pred),
...        mean_squared_error(y_test, y_test_pred)))
>>> print('R^2 train: %.3f, test: %.3f' % (
...        r2_score(y_train, y_train_pred),
...        r2_score(y_test, y_test_pred)))
MSE train: 3.235, test: 11.635
R^2 train: 0.960, test: 0.871

Unfortunately, we see that the random forest tends to overfit the training data. 
However, it's still able to explain the relationship between the target and  
explanatory variables relatively well ( 2 0.871R =  on the test dataset).

Lastly, let's also take a look at the residuals of the prediction:

>>> plt.scatter(y_train_pred,  
...             y_train_pred - y_train, 
...             c='black', 
...             marker='o', 
...             s=35,
...             alpha=0.5,
...             label='Training data')
>>> plt.scatter(y_test_pred,  
...             y_test_pred - y_test, 
...             c='lightgreen', 
...             marker='s', 
...             s=35,
...             alpha=0.7,
...             label='Test data')
>>> plt.xlabel('Predicted values')
>>> plt.ylabel('Residuals')
>>> plt.legend(loc='upper left')
>>> plt.hlines(y=0, xmin=-10, xmax=50, lw=2, color='red')
>>> plt.xlim([-10, 50])
>>> plt.show()

1.642
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Another problem with k-means is that one or more clusters can be empty. Note that 
this problem does not exist for k-medoids or fuzzy C-means, an algorithm that we 
will discuss in the next subsection. However, this problem is accounted for in the 
current k-means implementation in scikit-learn. If a cluster is empty, the algorithm 
will search for the sample that is farthest away from the centroid of the empty 
cluster. Then it will reassign the centroid to be this farthest point.

When we are applying k-means to real-world data using a Euclidean 
distance metric, we want to make sure that the features are measured 
on the same scale and apply z-score standardization or min-max 
scaling if necessary.

After we predicted the cluster labels y_km and discussed the challenges of the 
k-means algorithm, let's now visualize the clusters that k-means identified in  
the dataset together with the cluster centroids. These are stored under the  
centers_ attribute of the fitted KMeans object:

>>> plt.scatter(X[y_km==0,0], 
...             X[y_km ==0,1], 
...             s=50, 
...             c='lightgreen', 
...             marker='s', 
...             label='cluster 1')
>>> plt.scatter(X[y_km ==1,0], 
...             X[y_km ==1,1], 
...             s=50, 
...             c='orange', 
...             marker='o', 
...             label='cluster 2')
>>> plt.scatter(X[y_km ==2,0], 
...             X[y_km ==2,1], 
...             s=50, 
...             c='lightblue', 
...             marker='v', 
...             label='cluster 3')
>>> plt.scatter(km.cluster_centers_[:,0],
...             km.cluster_centers_[:,1], 
...             s=250, 
...             marker='*', 
...             c='red', 
...             label='centroids')
>>> plt.legend()
>>> plt.grid()
>>> plt.show()

remove	whitespace	before	“==“
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Other commonly used algorithms for agglomerative hierarchical 
clustering include average linkage and Ward's linkage. In average 
linkage, we merge the cluster pairs based on the minimum average 
distances between all group members in the two clusters. In Ward's 
method, those two clusters that lead to the minimum increase of the  
total within-cluster SSE are merged.

In this section, we will focus on agglomerative clustering using the complete  
linkage approach. This is an iterative procedure that can be summarized by the 
following steps:

1. Compute the distance matrix of all samples.
2. Represent each data point as a singleton cluster.
3. Merge the two closest clusters based on the distance of the most dissimilar 

(distant) members.
4. Update the similarity matrix.
5. Repeat steps 2 to 4 until one single cluster remains.

Now we will discuss how to compute the distance matrix (step 1). But first, let's 
generate some random sample data to work with. The rows represent different 
observations (IDs 0 to 4), and the columns are the different features (X, Y, Z) of  
those samples:

>>> import pandas as pd
>>> import numpy as np
>>> np.random.seed(123)
>>> variables = ['X', 'Y', 'Z']
>>> labels = ['ID_0','ID_1','ID_2','ID_3','ID_4']
>>> X = np.random.random_sample([5,3])*10
>>> df = pd.DataFrame(X, columns=variables, index=labels)
>>> df

“distance	matrix”



Working with Unlabeled Data – Clustering Analysis

[ 328 ]

After executing the preceding code, we should now see the following  
distance matrix:

Performing hierarchical clustering on a 
distance matrix
To calculate the distance matrix as input for the hierarchical clustering algorithm,  
we will use the pdist function from SciPy's spatial.distance submodule:

>>> from scipy.spatial.distance import pdist, squareform
>>> row_dist = pd.DataFrame(squareform(
...            pdist(df, metric='euclidean')), 
...            columns=labels, index=labels)
>>> row_dist

Using the preceding code, we calculated the Euclidean distance between each pair 
of sample points in our dataset based on the features X, Y, and Z. We provided 
the condensed distance matrix—returned by pdist—as input to the squareform 
function to create a symmetrical matrix of the pair-wise distances, as shown here:

DataFrame containing 
the randomly 
generated samples:

DataFrame containing 
the randomly 
generated samples:

DataFrame containing 
the randomly 
generated samples:

DataFrame containing 
the randomly 
generated samples:

DataFrame containing 
the randomly 
generated samples:

DataFrame containing 
the randomly 
generated samples:

DataFrame containing 
the randomly 
generated samples:

DataFrame containing 
the randomly 
generated samples:

DataFrame containing 
the randomly 
generated samples:

DataFrame containing 
the randomly 
generated samples:

DataFrame containing 
the randomly 
generated samples:

DataFrame containing 
the randomly 
generated samples:

DataFrame containing 
the randomly 
generated samples:

DataFrame containing 
the randomly 
generated samples:

DataFrame containing 
the randomly 
generated samples:

DataFrame containing 
the randomly 
generated samples:



Working with Unlabeled Data – Clustering Analysis

[ 332 ]

Attaching dendrograms to a heat map
In practical applications, hierarchical clustering dendrograms are often used in 
combination with a heat map, which allows us to represent the individual values in 
the sample matrix with a color code. In this section, we will discuss how to attach a 
dendrogram to a heat map plot and order the rows in the heat map correspondingly.

However, attaching a dendrogram to a heat map can be a little bit tricky, so let's go 
through this procedure step by step:

1. We create a new figure object and define the x axis position, y axis 
position, width, and height of the dendrogram via the add_axes attribute. 
Furthermore, we rotate the dendrogram 90 degrees counter-clockwise.  
The code is as follows:
>>> fig = plt.figure(figsize=(8,8))
>>> axd = fig.add_axes([0.09,0.1,0.2,0.6])
>>> row_dendr = dendrogram(row_clusters, orientation='right')

2. Next we reorder the data in our initial DataFrame according to the clustering 
labels that can be accessed from the dendrogram object, which is essentially a 
Python dictionary, via the leaves key. The code is as follows:
>>> df_rowclust = df.ix[row_dendr['leaves'][::-1]]

3. Now we construct the heat map from the reordered DataFrame and position 
it right next to the dendrogram:
>>> axm = fig.add_axes([0.23,0.1,0.6,0.6])
>>> cax = axm.matshow(df_rowclust, 
...              interpolation='nearest', cmap='hot_r')

4. Finally we will modify the aesthetics of the heat map by removing the axis 
ticks and hiding the axis spines. Also, we will add a color bar and assign  
the feature and sample names to the x and y axis tick labels, respectively.  
The code is as follows:

>>> axd.set_xticks([])
>>> axd.set_yticks([])
>>> for i in axd.spines.values():
...     i.set_visible(False)
>>> fig.colorbar(cax)
>>> axm.set_xticklabels([''] + list(df_rowclust.columns))
>>> axm.set_yticklabels([''] + list(df_rowclust.index))
>>> plt.show()

Insert	the	following	line	
in	code	formatting: #	note:	for	matplotlib	>=	v1.5.1,	please	use	orientation=‘left’

figsize=(8,8),	facecolor='white')
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If you are new to neural network representations, the terminology around the indices 
(subscripts and superscripts) may look a little bit confusing at first. You may wonder 
why we wrote ( )

,
l
j kw  and not ( )

,
l
k jw  to refer to the weight coefficient that connects the  

k th unit in layer l  to the j th unit in layer 1l + . What may seem a little bit quirky 
at first will make much more sense in later sections when we vectorize the neural 
network representation. For example, we will summarize the weights that connect 
the input and hidden layer by a matrix ( ) [ ]11 h m× +∈!W , where h  is the number of 
hidden units and 1m +  is the number of hidden units plus bias unit. Since it is 
important to internalize this notation to follow the concepts later in this chapter, let's 
summarize what we just discussed in a descriptive illustration of a simplified 3-4-3 
multi-layer perceptron:

Activating a neural network via forward 
propagation
In this section, we will describe the process of forward propagation to calculate the 
output of an MLP model. To understand how it fits into the context of learning an 
MLP model, let's summarize the MLP learning procedure in three simple steps:

1. Starting at the input layer, we forward propagate the patterns of the training 
data through the network to generate an output.

2. Based on the network's output, we calculate the error that we want to 
minimize using a cost function that we will describe later.

3. We backpropagate the error, find its derivative with respect to each weight in 
the network, and update the model.

input unitsinput unitsinput unitsinput unitsinput unitsinput unitsinput unitsinput unitsinput unitsinput unitsinput unitsinput unitsinput unitsinput unitsinput unitsinput unitsinput unitsinput unitsinput unitsinput unitsinput unitsinput unitsinput unitsinput unitsinput unitsinput unitsinput unitsinput unitsinput unitsinput unitsinput unitsinput unitsinput unitsinput unitsinput unitsinput unitsinput unitsinput unitsinput unitsinput unitsinput unitsinput unitsinput unitsinput unitsinput unitsinput unitsinput unitsinput unitsinput unitsinput unitsinput unitsinput unitsinput unitsinput unitsinput unitsinput unitsinput unitsinput unitsinput unitsinput unitsinput unitsinput unitsinput unitsinput units



Training Artificial Neural Networks for Image Recognition

[ 348 ]

Finally, after repeating the steps for multiple epochs and learning the weights of 
the MLP, we use forward propagation to calculate the network output and apply a 
threshold function to obtain the predicted class labels in the one-hot representation, 
which we described in the previous section.

Now, let's walk through the individual steps of forward propagation to generate  
an output from the patterns in the training data. Since each unit in the hidden unit  
is connected to all units in the input layers, we first calculate the activation ( )2

1a   
as follows:

( ) ( ) ( ) ( ) ( ) ( ) ( )2 1 1 1 1 1 1
1 0 1,0 1 1,1 1,m mz a w a w a w= + + +!

( ) ( )( )2 2
1 1a zφ=

Here, ( )2
1z  is the net input and ( )φ ⋅  is the activation function, which has to be 

differentiable to learn the weights that connect the neurons using a gradient-based 
approach. To be able to solve complex problems such as image classification, we 
need nonlinear activation functions in our MLP model, for example, the sigmoid 
(logistic) activation function that we used in logistic regression in Chapter 3, A Tour 
of Machine Learning Classifiers Using Scikit-learn:

( ) 1
1 zz
e

φ −=
+

As we can remember, the sigmoid function is an S-shaped curve that maps the net 
input  onto a logistic distribution in the range 0 to 1, which cuts the y axis at z=0,  
as shown in the following graph:

layer
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Finally, after repeating the steps for multiple epochs and learning the weights of 
the MLP, we use forward propagation to calculate the network output and apply a 
threshold function to obtain the predicted class labels in the one-hot representation, 
which we described in the previous section.

Now, let's walk through the individual steps of forward propagation to generate  
an output from the patterns in the training data. Since each unit in the hidden unit  
is connected to all units in the input layers, we first calculate the activation ( )2

1a   
as follows:

( ) ( ) ( ) ( ) ( ) ( ) ( )2 1 1 1 1 1 1
1 0 1,0 1 1,1 1,m mz a w a w a w= + + +!

( ) ( )( )2 2
1 1a zφ=

Here, ( )2
1z  is the net input and ( )φ ⋅  is the activation function, which has to be 

differentiable to learn the weights that connect the neurons using a gradient-based 
approach. To be able to solve complex problems such as image classification, we 
need nonlinear activation functions in our MLP model, for example, the sigmoid 
(logistic) activation function that we used in logistic regression in Chapter 3, A Tour 
of Machine Learning Classifiers Using Scikit-learn:

( ) 1
1 zz

e
φ −=

+

As we can remember, the sigmoid function is an S-shaped curve that maps the net 
input  onto a logistic distribution in the range 0 to 1, which passes the origin at  
z = 0.5, as shown in the following graph:
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Here, ( )1a  is our [ ]1 1m + ×  dimensional feature vector of a sample ( )ix  plus bias unit. 
( )1W  is an [ ]1h m× +  dimensional weight matrix where h  is the number of hidden 

units in our neural network. After matrix-vector multiplication, we obtain the 1h×  
dimensional net input vector ( )2z  to calculate the activation ( )2a  (where ( )2 1h×∈!a ). 
Furthermore, we can generalize this computation to all n  samples in the training set:

( ) ( ) ( )2 1 1 T
⎡ ⎤= ⎣ ⎦Z W A

Here, ( )1A  is now an [ ]1n m× +  matrix, and the matrix-matrix multiplication will result 
in a h n×  dimensional net input matrix ( )2Z . Finally, we apply the activation function 
( )φ ⋅  to each value in the net input matrix to get the h n×  activation matrix ( )2A  for the 

next layer (here, output layer):

( ) ( )( )2 2φ=A Z

Similarly, we can rewrite the activation of the output layer in the vectorized form:

( ) ( ) ( )3 2 2Z = W A

Here, we multiply the t h×  matrix ( )2W  (t is the number of output units) by the h n×  
dimensional matrix ( )2A  to obtain the t n×  dimensional matrix ( )3Z  (the columns in this 
matrix represent the outputs for each sample).

Lastly, we apply the sigmoid activation function to obtain the continuous valued 
output of our network:

( ) ( )( ) ( ), t nφ ×∈3 3 3 !A = Z A

Classifying handwritten digits
In the previous section, we covered a lot of the theory around neural networks, 
which can be a little bit overwhelming if you are new to this topic. Before we 
continue with the discussion of the algorithm for learning the weights of the MLP 
model, backpropagation, let's take a short break from the theory and see a neural 
network in action.

Everywhere	you	read	“h”	on	this	page,	you	can	think	of	“h”	as	“h+1”	to	include	the	bias	unit	
(and	in	order	to	get	the	dimensions	right)
Everywhere	you	read	“h”	on	this	page,	you	can	think	of	“h”	as	“h+1”	to	include	the	bias	unit	
(and	in	order	to	get	the	dimensions	right)
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The way we read in the image might seem a little bit strange at first:

magic, n = struct.unpack('>II', lbpath.read(8))
labels = np.fromfile(lbpath, dtype=np.int8)

To understand how these two lines of code work, let's take a look at the dataset 
description from the MNIST website:

 [offset] [type]          [value]          [description]

0000     32 bit integer  0x00000801(2049) magic number (MSB first)

0004     32 bit integer  60000            number of items

0008     unsigned byte   ??               label

0009     unsigned byte   ??               label

........

xxxx     unsigned byte   ??               label

Using the two lines of the preceding code, we first read in the magic number, which is 
a description of the file protocol as well as the number of items (n) from the file buffer 
before we read the following bytes into a NumPy array using the fromfile method. 
The fmt parameter value >II that we passed as an argument to struct.unpack has 
two parts:

• >: This is the big-endian (defines the order in which a sequence of bytes is 
stored); if you are unfamiliar with the terms big-endian and small-endian,  
you can find an excellent article about Endianness on Wikipedia  
(https://en.wikipedia.org/wiki/Endianness).

• I: This is an unsigned integer.

By executing the following code, we will now load the 60,000 training instances as 
well as the 10,000 test samples from the mnist directory where we unzipped the 
MNIST dataset:

>>> X_train, y_train = load_mnist('mnist', kind='train')
>>> print('Rows: %d, columns: %d' 
...        % (X_train.shape[0], X_train.shape[1]))
Rows: 60000, columns: 784

>>> X_test, y_test = load_mnist('mnist', kind='t10k')
>>> print('Rows: %d, columns: %d'
...        % (X_test.shape[0], X_test.shape[1]))
Rows: 10000, columns: 784

delete	“the”
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After executing the code, we should now see the first 25 variants of the digit 7.

Optionally, we can save the MNIST image data and labels as CSV files to open them 
in programs that do not support their special byte format. However, we should be 
aware that the CSV file format will take up substantially more space on your local 
drive, as listed here:

• train_img.csv: 109.5 MB
• train_labels.csv: 120 KB
• test_img.csv: 18.3 MB
• test_labels: 20 KB

If we decide to save those CSV files, we can execute the following code in our Python 
session after loading the MNIST data into NumPy arrays:

>>> np.savetxt('train_img.csv', X_train, 
...            fmt='%i', delimiter=',')
>>> np.savetxt('train_labels.csv', y_train,
...            fmt='%i', delimiter=',')
>>> np.savetxt('test_img.csv', X_test,
...            fmt='%i', delimiter=',')
>>> np.savetxt('test_labels.csv', y_test, 
...            fmt='%i', delimiter=',')

test_labels.csv
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        grad2[:, 1:] += (w2[:, 1:] * (self.l1 + self.l2))

        return grad1, grad2

    def predict(self, X):
        a1, z2, a2, z3, a3 = self._feedforward(X, self.w1, self.w2)
        y_pred = np.argmax(z3, axis=0)
        return y_pred

    def fit(self, X, y, print_progress=False):
        self.cost_ = []
        X_data, y_data = X.copy(), y.copy()
        y_enc = self._encode_labels(y, self.n_output)

        delta_w1_prev = np.zeros(self.w1.shape)
        delta_w2_prev = np.zeros(self.w2.shape)

        for i in range(self.epochs):

            # adaptive learning rate
            self.eta /= (1 + self.decrease_const*i)

            if print_progress:
                sys.stderr.write(
                        '\rEpoch: %d/%d' % (i+1, self.epochs))
                sys.stderr.flush()

            if self.shuffle:
                idx = np.random.permutation(y_data.shape[0])
                X_data, y_data = X_data[idx], y_data[idx]

            mini = np.array_split(range(
                         y_data.shape[0]), self.minibatches)
            for idx in mini:

                # feedforward
                a1, z2, a2, z3, a3 = self._feedforward(
                                     X[idx], self.w1, self.w2)
                cost = self._get_cost(y_enc=y_enc[:, idx],
                                      output=a3,
                                      w1=self.w1,
                                      w2=self.w2)
                self.cost_.append(cost)

   >>> nn = NeuralNetMLP([...],
   ...                   [...],
   ...                   shuffle=False,
   ...                   random_state=1)

X_data[idx]

X_data, y_enc = X_data[idx],  y_enc[:,idx]

These line changes above enable shuffling if the setting 
is `shuffle=True`. 
To match the original output in the book (no shuffling) 
after applying this patch, the `shuffle=False` setting 
needs to be added when the NeuralNetMLP is
initialized (next page) as shown on the left.

   >>> nn = NeuralNetMLP([...],
   ...                   [...],
   ...                   shuffle=False,
   ...                   random_state=1)

X_data[idx]

X_data, y_enc = X_data[idx],  y_enc[:,idx]

These line changes above enable shuffling if the setting 
is `shuffle=True`. 
To match the original output in the book (no shuffling) 
after applying this patch, the `shuffle=False` setting 
needs to be added when the NeuralNetMLP is
initialized (next page) as shown on the left.
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As we see in the following plot, the graph of the cost function looks very noisy.  
This is due to the fact that we trained our neural network with mini-batch learning,  
a variant of stochastic gradient descent.

Although we can already see in the plot that the optimization algorithm converged 
after approximately 800 epochs (40,000/50 = 800), let's plot a smoother version of 
the cost function against the number of epochs by averaging over the mini-batch 
intervals. The code is as follows:

>>> batches = np.array_split(range(len(nn.cost_)), 1000)
>>> cost_ary = np.array(nn.cost_)
>>> cost_avgs = [np.mean(cost_ary[i]) for i in batches]

>>> plt.plot(range(len(cost_avgs)),
...          cost_avgs, 
...          color='red')
>>> plt.ylim([0, 2000])
>>> plt.ylabel('Cost')
>>> plt.xlabel('Epochs')
>>> plt.tight_layout()
>>> plt.show()

Sorry,	due	to	the	fixes	
in	the	code
on	the	previous	pages,	
this	image	and	some	
following
lines	and	images	changed	
a	little	bit.	Please	
replace
this	image	with	
12_cost_1.png

Please	see	the
IPython	notebook
for	an	updated	figure
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The following plot gives us a clearer picture indicating that the training algorithm 
converged shortly after the 800th epoch:

Now, let's evaluate the performance of the model by calculating the  
prediction accuracy:

>>> y_train_pred = nn.predict(X_train)
>>> acc = np.sum(y_train == y_train_pred, axis=0) / X_train.shape[0]
>>> print('Training accuracy: %.2f%%' % (acc * 100))
Training accuracy: 97.74%

As we can see, the model classifies most of the training digits correctly, but how does 
it generalize to data that it has not seen before? Let's calculate the accuracy on 10,000 
images in the test dataset:

>>> y_test_pred = nn.predict(X_test)
>>> acc = np.sum(y_test == y_test_pred, axis=0) / X_test.shape[0]
>>> print('Test accuracy: %.2f%%' % (acc * 100))
Test accuracy: 96.18%

Based on the small discrepancy between training and test accuracy, we can conclude 
that the model only slightly overfits the training data. To further fine-tune the 
model, we could change the number of hidden units, values of the regularization 
parameters, learning rate, values of the decrease constant, or the adaptive learning 
using the techniques that we discussed in Chapter 6, Learning Best Practices for Model 
Evaluation and Hyperparameter Tuning (this is left as an exercise for the reader).

Please	replace	this	
image	with	
12_cost_2.png

97.59%

95.62%

Please	see	the
IPython	notebook
for	an	updated	figure
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Now, let's take a look at some of the images that our MLP struggles with:

>>> miscl_img = X_test[y_test != y_test_pred][:25]
>>> correct_lab = y_test[y_test != y_test_pred][:25]
>>> miscl_lab= y_test_pred[y_test != y_test_pred][:25]

>>> fig, ax = plt.subplots(nrows=5, 
...                        ncols=5, 
...                        sharex=True, 
...                        sharey=True,)
>>> ax = ax.flatten()
>>> for i in range(25):
...     img = miscl_img[i].reshape(28, 28)
...     ax[i].imshow(img, 
...                  cmap='Greys', 
...                  interpolation='nearest')
...     ax[i].set_title('%d) t: %d p: %d' 
...                     % (i+1, correct_lab[i], miscl_lab[i]))
>>> ax[0].set_xticks([])
>>> ax[0].set_yticks([])
>>> plt.tight_layout()
>>> plt.show()

We should now see a 5 5×  subplot matrix where the first number in the subtitles 
indicates the plot index, the second number indicates the true class label (t), and the 
third number stands for the predicted class label (p).

please	replace		
this	image	with	
12_mnist_1.png

Please	see	the
IPython	notebook
for	an	updated	figure
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As we can see in the preceding figure, some of those images are even challenging  
for us humans to classify correctly. For example, we can see that the digit 9 is 
classified as a 3 or 8 if the lower part of the digit has a hook-like curvature  
(subplots 3, 16, and 17).

Training an artificial neural network
Now that we have seen a neural network in action and have gained a basic 
understanding of how it works by looking over the code, let's dig a little bit deeper 
into some of the concepts, such as the logistic cost function and the backpropagation 
algorithm that we implemented to learn the weights.

Computing the logistic cost function
The logistic cost function that we implemented as the _get_cost method is actually 
pretty simple to follow since it is the same cost function that we described in the 
logistic regression section in Chapter 3, A Tour of Machine Learning Classifiers  
Using Scikit-learn.

( ) ( ) ( )( ) ( )( ) ( )( )
1

log 1 log 1
n

i i i i

i
J y a y a

=

= − + − −∑w

Here, ( )ia  is the sigmoid activation of the i th unit in one of the layers which we 
compute in the forward propagation step:

( ) ( )( )i ia zφ=

Now, let's add a regularization term, which allows us to reduce the degree of 
overfitting. As you will recall from earlier chapters, the L2 and L1 regularization 
terms are defined as follows (remember that we don't regularize the bias units):

2 12
2 1

1 1
2 and 1

m m

j j
j j

L w L wλ λ λ λ
= =

= = = =∑ ∑w w

0
6

“in	subplot	15.”
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Although our MLP implementation supports both L1 and L2 regularization, we will 
now only focus on the L2 regularization term for simplicity. However, the same 
concepts apply to the L1 regularization term. By adding the L2 regularization term  
to our logistic cost function, we obtain the following equation:

( ) ( ) ( )( ) ( )( ) ( )( ) 2
2

1
log 1 log 1

2

n
i i i i

i
J y a y a λ

=

⎡ ⎤= + − − +⎢ ⎥⎣ ⎦
∑w w

Since we implemented an MLP for multi-class classification, this returns an output 
vector of t  elements, which we need to compare with the 1t×  dimensional target 
vector in the one-hot encoding representation. For example, the activation of the 
third layer and the target class (here: class 2) for a particular sample may look  
like this:

( )3

0.1 0
0.9 1

,

0.3 0

a y

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= =
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

! !

Thus, we need to generalize the logistic cost function to all activation units j  in our 
network. So our cost function (without the regularization term) becomes:

( ) ( ) ( )( ) ( )( ) ( )( )
1 1

log 1 log 1
n t

i i i i
j j j j

i k
J y a y a

= =

= − + − −∑∑w

Here, the superscript i  is the index of a particular sample in our training set.

The following generalized regularization term may look a little bit complicated at 
first, but here we are just calculating the sum of all weights of a layer l  (without the 
bias term) that we added to the first column:

( ) ( ) ( )( )( ) ( )( ) ( )( )( )
( )( )

1 1

1 1 2

,
1 1 1

lo g 1 lo g 1

2

n t
i i i i
j j
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L u l u l
l
j i

l i j

J y z j y z j

w

φ φ

λ
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− +

= = =

⎡ ⎤
= − + − −⎢ ⎥

⎣ ⎦

+

∑∑

∑∑∑

w

j=1

j j

j=1

j j

j=1

j j

j=1

j j
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The following equation represents the L2-penalty term:

( )( )11 2

,
1 1 12

l lu uL
l
j i

l i j
wλ +−

= = =
∑∑∑

Remember that our goal is to minimize the cost function ( )J w . Thus, we need to 
calculate the partial derivative of matrix W  with respect to each weight for every 
layer in the network:

( ) ( )
,
l
j i

J
w
∂

∂
W

In the next section, we will talk about the backpropagation algorithm, which allows 
us to calculate these partial derivatives to minimize the cost function.

Note that W  consists of multiple matrices. In a multi-layer perceptron with one 
hidden unit, we have the weight matrix ( )1W , which connects the input to the hidden 
layer, and ( )2W , which connects the hidden layer to the output layer. An intuitive 
visualization of the matrix W  is provided in the following figure:

In this simplified figure, it may seem that both ( )1W  and ( )2W  have the same number 
of rows and columns, which is typically not the case unless we initialize an MLP 
with the same number of hidden units, output units, and input features.

expression

layer
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Concisely, we just forward propagate the input features through the connection in 
the network as shown here:

In backpropagation, we propagate the error from right to left. We start by calculating 
the error vector of the output layer:

( ) ( )3 3a yδ = −

Here, y  is the vector of the true class labels.

Next, we calculate the error term of the hidden layer:

( ) ( )( ) ( )
( )( )

( )

2
2 2 3

2

T z

z

φ∂
= ∗

∂
Wδ δ

Here, 
( )( )

( )

2

2

z

z

φ∂

∂  is simply the derivative of the sigmoid activation function, which we 
implemented as _sigmoid_gradient:

( ) ( ) ( )( )( )2 21
z

a a
z

φ∂
= ∗ −

∂

Note that the asterisk symbol ( )∗  means element-wise multiplication in this context.

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)
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Remember that we are updating the weights by taking an opposite step towards the 
direction of the gradient. In gradient checking, we compare this analytical solution to 
a numerically approximated gradient:

( ) ( )
( )( ) ( )( ), ,

,

 l l
i j i j

l
i j

J w J w
J

w

ε

ε

+ −∂ ≈
∂

 
W

Here, ε  is typically a very small number, for example 1e-5 (note that 1e-5 is just 
a more convenient notation for 0.00001). Intuitively, we can think of this finite 
difference approximation as the slope of the secant line connecting the points of the 
cost function for the two weights w  and w ε+  (both are scalar values), as shown in 
the following figure. We are omitting the superscripts and subscripts for simplicity.

An even better approach that yields a more accurate approximation of the  
gradient is to compute the symmetric (or centered) difference quotient given  
by the two-point formula:

( )( ) ( )( ), , 
 

2

l l
i j i jJ w J wε ε

ε

+ − − 

please	replace	figure	
with	
“12_gradient_checking.png
”

Please	see	the
IPython	notebook
for	an	updated	figure

J(w	=	0.1	+	eps)	-
	J(w	=	0.1)
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Working with array structures
In this section, we will discuss how to use array structures in Theano using its 
tensor module. By executing the following code, we will create a simple 2 x 3 
matrix, and calculate the column sums using Theano's optimized tensor expressions:

>>> import numpy as np

# initialize
>>> x = T.fmatrix(name='x')
>>> x_sum = T.sum(x, axis=0)

# compile
>>> calc_sum = theano.function(inputs=[x], outputs=x_sum)

# execute (Python list)
>>> ary = [[1, 2, 3], [1, 2, 3]]
>>> print('Column sum:', calc_sum(ary))
Column sum: [ 2.  4.  6.]

# execute (NumPy array)
>>> ary = np.array([[1, 2, 3], [1, 2, 3]], 
...                dtype=theano.config.floatX)
>>> print('Column sum:', calc_sum(ary))
Column sum: [ 2.  4.  6.]

As we saw earlier, there are just three basic steps that we have to follow when we 
are using Theano: defining the variable, compiling the code, and executing it. The 
preceding example shows that Theano can work with both Python and NumPy 
types: list and numpy.ndarray.

Note that we used the optional name argument (here, x) when we created 
the fmatrix TensorVariable, which can be helpful to debug our code 
or print the Theano graph. For example, if we'd print the fmatrix 
symbol x without giving it a name, the print function would return its 
TensorType:

>>> print(x)
<TensorType(float32, matrix)>

However, if the TensorVariable was initialized with a name  
argument x as in our preceding example, it would be returned by  
the print function:

>>> print(x)
x

The TensorType can be accessed via the type method:
>>> print(x.type())
<TensorType(float32, matrix)>

Add	the	following	lines:

#	if	you	are	running	Theano	on	64	bit	mode,	
#	you	need	to	use	dmatrix	instead	of	fmatrix
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Wrapping things up – a linear regression 
example
Now that we familiarized ourselves with Theano, let's take a look at a really practical 
example and implement Ordinary Least Squares (OLS) regression. For a quick 
refresher on regression analysis, please refer to Chapter 10, Predicting Continuous 
Target Variables with Regression Analysis.

Let's start by creating a small one-dimensional toy dataset with five training samples:

>>> X_train = np.asarray([[0.0], [1.0], 
...                       [2.0], [3.0], 
...                       [4.0], [5.0], 
...                       [6.0], [7.0], 
...                       [8.0], [9.0]], 
...                      dtype=theano.config.floatX)
>>> y_train = np.asarray([1.0, 1.3, 
...                       3.1, 2.0, 
...                       5.0, 6.3, 
...                       6.6, 7.4, 
...                       8.0, 9.0], 
...                      dtype=theano.config.floatX)

Note that we are using theano.config.floatX when we construct the NumPy 
arrays, so we can optionally toggle back and forth between CPU and GPU  
if we want.

Next, let's implement a training function to learn the weights of the linear regression 
model, using the sum of squared errors cost function. Note that 0w  is the bias unit  
(the y axis intercept at 0x = ). The code is as follows:

import theano
from theano import tensor as T
import numpy as np

def train_linreg(X_train, y_train, eta, epochs):

    costs = []
    # Initialize arrays
    eta0 = T.fscalar('eta0')
    y = T.fvector(name='y') 
    X = T.fmatrix(name='X')   

ten
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As we can see, the predicted class probabilities now sum up to one, as we would 
expect. It is also notable that the probability for the second class is close to zero, since 
there is a large gap between 1z  and ( )max z . However, note that the predicted class 
label is the same as in the logistic function. Intuitively, it may help to think of the 
softmax function as a normalized logistic function that is useful to obtain meaningful 
class-membership predictions in multi-class settings.

>>> y_class = np.argmax(Z, axis=0)
>>> print('predicted class label: 
...        %d' % y_class[0])
predicted class label: 2

Broadening the output spectrum by using a 
hyperbolic tangent
Another sigmoid function that is often used in the hidden layers of artificial neural 
networks is the hyperbolic tangent (tanh), which can be interpreted as a rescaled 
version of the logistic function.

( ) ( )tanh 2 2 1
z z

logistic z z
e ez z
e e

φ φ
−

−

−= × × − =
+

( ) 1
1logistic zz
e

φ −=
+

( )logistic 2 2 1z× × −
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The advantage of the hyperbolic tangent over the logistic function is that it has a 
broader output spectrum and ranges the open interval (-1, 1), which can improve the 
convergence of the back propagation algorithm (C. M. Bishop. Neural networks for 
pattern recognition. Oxford university press, 1995, pp. 500-501). In contrast, the logistic 
function returns an output signal that ranges the open interval (0, 1). For an intuitive 
comparison of the logistic function and the hyperbolic tangent, let's plot two sigmoid 
functions in a one-dimensional space:

>>> import matplotlib.pyplot as plt

>>> def tanh(z):
...     e_p = np.exp(z) 
...     e_m = np.exp(-z)
...     return (e_p - e_m) / (e_p + e_m)  

>>> z = np.arange(-5, 5, 0.005)
>>> log_act = logistic(z)
>>> tanh_act = tanh(z)

>>> plt.ylim([-1.5, 1.5])
>>> plt.xlabel('net input $z$')
>>> plt.ylabel('activation $\phi(z)$')
>>> plt.axhline(1, color='black', linestyle='--')
>>> plt.axhline(0.5, color='black', linestyle='--')
>>> plt.axhline(0, color='black', linestyle='--')
>>> plt.axhline(-1, color='black', linestyle='--')

>>> plt.plot(z, tanh_act, 
...          linewidth=2, 
...          color='black', 
...          label='tanh')
>>> plt.plot(z, log_act, 
...          linewidth=2, 
...          color='lightgreen', 
...          label='logistic')

>>> plt.legend(loc='lower right')
>>> plt.tight_layout()
>>> plt.show()

this	is	incorrect:
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However, in certain contexts, it can be useful to return meaningful class probabilities 
for multi-class predictions. In the next section, we will take a look at a generalization 
of the logistic function, the softmax function, which can help us with this task.

Estimating probabilities in multi-class 
FODVVL¿FDWLRQ�YLD�WKH�VRIWPD[�IXQFWLRQ
The softmax function is a generalization of the logistic function that allows us 
to compute meaningful class-probabilities in multi-class settings (multinomial 
logistic regression). In softmax, the probability of a particular sample with net 
input z  belongs to the i th class can be computed with a normalization term in the 
denominator that is the sum of all M  linear functions:

( ) ( )
1

|
z
i

softmax M z
mm

eP y i z z
e

φ
=

= = =
∑

To see softmax in action, let's code it up in Python:

>>> def softmax(z): 
...     return np.exp(z) / np.sum(np.exp(z))

>>> def softmax_activation(X, w):
...     z = net_input(X, w)
...     return sigmoid(z)

>>> y_probas = softmax(Z)
>>> print('Probabilities:\n', y_probas)
Probabilities:
 [[ 0.40386493]
 [ 0.07756222]
 [ 0.51857284]]
>>> y_probas.sum()
1.0

softmax(z)softmax(z)


