
Giving Computers the Ability to Learn from Data

[6]

Solving interactive problems with
reinforcement learning
Another type of machine learning is reinforcement learning. In reinforcement
learning, the goal is to develop a system (agent) that improves its performance
based on interactions with the environment. Since the information about the current
state of the environment typically also includes a so-called reward signal, we can
think of reinforcement learning as a field related to supervised learning. However, in
reinforcement learning this feedback is not the correct ground truth label or value,
but a measure of how well the action was measured by a reward function. Through
the interaction with the environment, an agent can then use reinforcement learning
to learn a series of actions that maximizes this reward via an exploratory
trial-and-error approach or deliberative planning.

A popular example of reinforcement learning is a chess engine. Here, the agent decides
upon a series of moves depending on the state of the board (the environment), and the
reward can be defined as win or lose at the end of the game:

Discovering hidden structures with
unsupervised learning
In supervised learning, we know the right answer beforehand when we train
our model, and in reinforcement learning, we define a measure of reward for
particular actions by the agent. In unsupervised learning, however, we are dealing
with unlabeled data or data of unknown structure. Using unsupervised learning
techniques, we are able to explore the structure of our data to extract meaningful
information without the guidance of a known outcome variable or reward function.

State

Action

State

Action

Giving Computers the Ability to Learn from Data

[10]

For the rest of this book, we will use the superscript (i) to refer to the ith
training sample, and the subscript j to refer to the jth dimension of the
training dataset.

We use lower-case, bold-face letters to refer to vectors ()1×∈Rnx and
upper-case, bold-face letters to refer to matrices, respectively ()×∈!n mX .
To refer to single elements in a vector or matrix, we write the letters in
italics (()nx or ()

()n
mx , respectively).

For example, 150
1x refers to the first dimension of flower sample 150, the

sepal width. Thus, each row in this feature matrix represents one flower
instance and can be written as four-dimensional column vector ()i ×∈ 1 4!x ,

() () () () ()
1 2 3 4

i i i i ix x x x⎡ ⎤= ⎣ ⎦x .

Each feature dimension is a 150-dimensional row vector () 50i ×∈ 1 1!x ,
for example:

()

()

()

1

2

150

j

j
j

j

x
x

x

⎡ ⎤
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

!
x

.

Similarly, we store the target variables (here: class labels) as a

150-dimensional column vector

()

()
{ }()

1

150

 Setosa, Versicolor, Virginica

y
y

y

⎡ ⎤
⎢ ⎥

= … ∈⎢ ⎥
⎢ ⎥
⎣ ⎦

y .

A roadmap for building machine learning
systems
In the previous sections, we discussed the basic concepts of machine learning and the
three different types of learning. In this section, we will discuss other important parts
of a machine learning system accompanying the learning algorithm. The diagram
below shows a typical workflow diagram for using machine learning in predictive
modeling, which we will discuss in the following subsections:

length

jx

remove	
parenthesis	
around	“m”	
subscript

Training Machine Learning Algorithms for Classification

[20]

For simplicity, we can bring the threshold θ to the left side of the equation and
define a weight-zero as 0w θ= − and 0 1x = , so that we write z in a more compact

form 0 0 1 1
T

m mz w x w x w x= + + + =… w x and () 1
1
if z

z
otherwise

θ
φ

≥⎧
= ⎨−⎩ .

In the following sections, we will often make use of basic notations from
linear algebra. For example, we will abbreviate the sum of the products
of the values in x and w using a vector dot product, whereas superscript
T stands for transpose, which is an operation that transforms a column
vector into a row vector and vice versa:

0 0 1 1 0

m T
m m j jj

z w x w x w x
=

= + + + = =∑! x w w x

For example: []
 4

1 2 3 5 1 4 2 5 3 6 32
 6

⎡ ⎤
⎢ ⎥× = × + × + × =⎢ ⎥
⎢ ⎥⎣ ⎦

.

Furthermore, the transpose operation can also be applied to a matrix to
reflect it over its diagonal, for example:

1 2
1 3 5

3 4
2 4 6

5 6

T
⎡ ⎤

⎡ ⎤⎢ ⎥ = ⎢ ⎥⎢ ⎥ ⎣ ⎦⎢ ⎥⎣ ⎦
In this book, we will only use the very basic concepts from linear algebra.
However, if you need a quick refresher, please take a look at Zico Kolter's
excellent Linear Algebra Review and Reference, which is freely available
at http://www.cs.cmu.edu/~zkolter/course/linalg/linalg_
notes.pdf.

The following figure illustrates how the net input Tz = w x is squashed into a binary
output (-1 or 1) by the activation function of the perceptron (left subfigure) and how it
can be used to discriminate between two linearly separable classes (right subfigure):

≥ 0

Training Machine Learning Algorithms for Classification

[22]

Where η is the learning rate (a constant between 0.0 and 1.0), ()iy is the true class
label of the i th training sample, and ()ˆ iy is the predicted class label. It is important to
note that all weights in the weight vector are being updated simultaneously, which
means that we don't recompute the ()ˆ iy before all of the weights jw∆ were updated.
Concretely, for a 2D dataset, we would write the update as follows:

() ()()0
i iw y outputη∆ = −

() ()() ()

1 1

ii iw y output xη∆ = −

() ()() ()

2 2

ii iw y output xη∆ = −

Before we implement the perceptron rule in Python, let us make a simple thought
experiment to illustrate how beautifully simple this learning rule really is. In the
two scenarios where the perceptron predicts the class label correctly, the weights
remain unchanged:

() ()
1 1 0

i

j jw xη∆ = − − − =

() ()
1 1 0

i

j jw xη∆ = − =

However, in the case of a wrong prediction, the weights are being pushed towards
the direction of the positive or negative target class, respectively:

() () () ()
1 1 2

i i

j j jw x xη η∆ = − − =

() () () ()
1 1 2

i i

j j jw x xη η∆ = − − = −

To get a better intuition for the multiplicative factor
()i

jx , let us go through another
simple example, where:

() ()ˆ1, 1, 1
i i

jy y η= + = − =

Training Machine Learning Algorithms for Classification

[22]

Where η is the learning rate (a constant between 0.0 and 1.0), ()iy is the true class
label of the i th training sample, and ()ˆ iy is the predicted class label. It is important to
note that all weights in the weight vector are being updated simultaneously, which
means that we don't recompute the ()ˆ iy before all of the weights jw∆ were updated.
Concretely, for a 2D dataset, we would write the update as follows:

() ()()0
i iw y outputη∆ = −

() ()() ()

1 1

ii iw y output xη∆ = −

() ()() ()

2 2

ii iw y output xη∆ = −

Before we implement the perceptron rule in Python, let us make a simple thought
experiment to illustrate how beautifully simple this learning rule really is. In the
two scenarios where the perceptron predicts the class label correctly, the weights
remain unchanged:

() ()() ()
1 1 0

ii i
j jw xη∆ = − − − =

() ()() ()
1 1 0

ii i
j jw xη∆ = − =

However, in the case of a wrong prediction, the weights are being pushed towards
the direction of the positive or negative target class, respectively:

() ()() () () ()
1 1 2

i ii i
j j jw x xη η∆ = − − =

() ()() () () ()
1 1 2

i ii i
j j jw x xη η∆ = − − = −

To get a better intuition for the multiplicative factor
()i

jx , let us go through another
simple example, where:

() ()ˆ 1, 1, 1
i i
jy y η= + = − =

Chapter 2

[23]

Let's assume that
()

0.5
i

jx = , and we misclassify this sample as -1. In this case, we

would increase the corresponding weight by 1 so that the activation
() ()i i

j jx w= will be
more positive the next time we encounter this sample and thus will be more likely to
be above the threshold of the unit step function to classify the sample as +1:

() () ()() () () ()1 1 0.5 2 0.5 1
i i i i i
jw∆ = − − = =

The weight update is proportional to the value of
()i

jx . For example, if we have

another sample
()

2
i

jx = that is incorrectly classified as -1, we'd push the decision
boundary by an even larger extend to classify this sample correctly the next time:

() ()() () () ()1 1 2 2 2 4i i i i
jw∆ = − − = =

It is important to note that the convergence of the perceptron is only guaranteed if
the two classes are linearly separable and the learning rate is sufficiently small. If the
two classes can't be separated by a linear decision boundary, we can set a maximum
number of passes over the training dataset (epochs) and/or a threshold for the
number of tolerated misclassifications—the perceptron would never stop updating
the weights otherwise:

Downloading the example code
You can download the example code files from your account at
http://www.packtpub.com for all the Packt Publishing books
you have purchased. If you purchased this book elsewhere, you
can visit http://www.packtpub.com/support and register to
have the files e-mailed directly to you.

××××××××

net input

Chapter 2

[25]

If you are not yet familiar with Python's scientific libraries or need a
refresher, please see the following resources:
NumPy: http://wiki.scipy.org/Tentative_NumPy_Tutorial
Pandas: http://pandas.pydata.org/pandas-docs/stable/
tutorials.html

Matplotlib: http://matplotlib.org/ussers/beginner.html
Also, to better follow the code examples, I recommend you download
the IPython notebooks from the Packt website. For a general
introduction to IPython notebooks, please visit https://ipython.
org/ipython-doc/3/notebook/index.html.

import numpy as np
class Perceptron(object):
 """Perceptron classifier.

 Parameters

 eta : float
 Learning rate (between 0.0 and 1.0)
 n_iter : int
 Passes over the training dataset.

 Attributes

 w_ : 1d-array
 Weights after fitting.
 errors_ : list
 Number of misclassifications in every epoch.

 """
 def __init__(self, eta=0.01, n_iter=10):
 self.eta = eta
 self.n_iter = n_iter

 def fit(self, X, y):
 """Fit training data.

 Parameters

 X : {array-like}, shape = [n_samples, n_features]
 Training vectors, where n_samples
 is the number of samples and

users

Chapter 2

[27]

After the weights have been initialized, the fit method loops over all individual
samples in the training set and updates the weights according to the perceptron
learning rule that we discussed in the previous section. The class labels are predicted
by the predict method, which is also called in the fit method to predict the class
label for the weight update, but predict can also be used to predict the class labels
of new data after we have fitted our model. Furthermore, we also collect the number
of misclassifications during each epoch in the list self.errors_ so that we can
later analyze how well our perceptron performed during the training. The np.dot
function that is used in the net_input method simply calculates the vector dot
product Tw x .

Instead of using NumPy to calculate the vector dot product
between two arrays a and b via a.dot(b) or np.dot(a, b),
we could also perform the calculation in pure Python via
sum([j*j for i,j in zip(a, b)]. However, the advantage of
using NumPy over classic Python for-loop structures is that its arithmetic
operations are vectorized. Vectorization means that an elemental
arithmetic operation is automatically applied to all elements in an array.
By formulating our arithmetic operations as a sequence of instructions
on an array rather than performing a set of operations for each element
one at a time, we can make better use of our modern CPU architectures
with Single Instruction, Multiple Data (SIMD) support. Furthermore,
NumPy uses highly optimized linear algebra libraries, such as Basic
Linear Algebra Subprograms (BLAS) and Linear Algebra Package
(LAPACK) that have been written in C or Fortran. Lastly, NumPy also
allows us to write our code in a more compact and intuitive way using
the basics of linear algebra, such as vector and matrix dot products.

Training a perceptron model on the Iris
dataset
To test our perceptron implementation, we will load the two flower classes Setosa
and Versicolor from the Iris dataset. Although, the perceptron rule is not restricted to
two dimensions, we will only consider the two features sepal length and petal length
for visualization purposes. Also, we only chose the two flower classes Setosa and
Versicolor for practical reasons. However, the perceptron algorithm can be extended
to multi-class classification—for example, through the One-vs.-All technique.

i

Chapter 2

[29]

>>> y = np.where(y == 'Iris-setosa', -1, 1)

>>> X = df.iloc[0:100, [0, 2]].values

>>> plt.scatter(X[:50, 0], X[:50, 1],

... color='red', marker='o', label='setosa')

>>> plt.scatter(X[50:100, 0], X[50:100, 1],

... color='blue', marker='x', label='versicolor')

>>> plt.xlabel('petal length')

>>> plt.ylabel('sepal length')

>>> plt.legend(loc='upper left')

>>> plt.show()

After executing the preceding code example we should now see the
following scatterplot:

Now it's time to train our perceptron algorithm on the Iris data subset that we just
extracted. Also, we will plot the misclassification error for each epoch to check
if the algorithm converged and found a decision boundary that separates the two Iris
flower classes:

>>> ppn = Perceptron(eta=0.1, n_iter=10)

>>> ppn.fit(X, y)

>>> plt.plot(range(1, len(ppn.errors_) + 1), ppn.errors_,

Chapter 2

[35]

Using gradient descent, we can now update the weights by taking a step away from
the gradient ()J∇ w of our cost function ()J w :

:= + ∆w w w

Here, the weight change ∆w is defined as the negative gradient multiplied by the
learning rate η :

()Jη∆ = − ∆w w
.

To compute the gradient of the cost function, we need to compute the partial

derivative of the cost function with respect to each weight jw
() ()()() ()i i i

j
ij

J y z x
w

φ∂ = − −
∂ ∑

so that we can write the update of weight jw as:
() ()()() ()i i i

j j
ij

Jw y z x
w

η µ φ∂∆ = − = −
∂ ∑ :

Since we update all weights simultaneously, our Adaline learning rule becomes
:= + ∆w w w .

η
(Greek "eta")

∇

, ,

η
(Greek "eta")

∇

, ,

η
(Greek "eta")

∇

, ,

η
(Greek "eta")

∇

, ,

Training Machine Learning Algorithms for Classification

[36]

For those who are familiar with calculus, the partial derivative of the SSE
cost function with respect to the jth weight in can be obtained as follows:

() ()()()21
2

i i

ij j

J y z
w w

φ∂ ∂= −
∂ ∂ ∑

() ()()()21
2

i i

ij

y z
w

φ∂= −
∂ ∑

() ()()() () ()()()1 2
2

i i i i

i j

y z y z
w

φ φ∂= − −
∂∑

() ()()() () () ()() i i i i i
j j

i ij

y z y w x
w

φ ⎛ ⎞∂= − −⎜ ⎟∂ ⎝ ⎠
∑ ∑

() ()()() ()()i i i
j

i
y z xφ= − −∑

() ()()() ()i i i
j

i
y z xφ= − −∑

Although the Adaline learning rule looks identical to the perceptron rule, the ()()izφ

with ()iz = ()iTw x is a real number and not an integer class label. Furthermore,
the weight update is calculated based on all samples in the training set (instead of
updating the weights incrementally after each sample), which is why this approach
is also referred to as "batch" gradient descent.

Implementing an Adaptive Linear Neuron in
Python
Since the perceptron rule and Adaline are very similar, we will take the perceptron
implementation that we defined earlier and change the fit method so that the
weights are updated by minimizing the cost function via gradient descent:

class AdalineGD(object):
 """ADAptive LInear NEuron classifier.

 Parameters

k
k

kk
k

kk
k

kk
k

k

A Tour of Machine Learning Classifiers Using Scikit-learn

[54]

 markers = ('s', 'x', 'o', '^', 'v')
 colors = ('red', 'blue', 'lightgreen', 'gray', 'cyan')
 cmap = ListedColormap(colors[:len(np.unique(y))])

 # plot the decision surface
 x1_min, x1_max = X[:, 0].min() - 1, X[:, 0].max() + 1
 x2_min, x2_max = X[:, 1].min() - 1, X[:, 1].max() + 1
 xx1, xx2 = np.meshgrid(np.arange(x1_min, x1_max, resolution),
 np.arange(x2_min, x2_max, resolution))
 Z = classifier.predict(np.array([xx1.ravel(), xx2.ravel()]).T)
 Z = Z.reshape(xx1.shape)
 plt.contourf(xx1, xx2, Z, alpha=0.4, cmap=cmap)
 plt.xlim(xx1.min(), xx1.max())
 plt.ylim(xx2.min(), xx2.max())

 # plot all samples
 X_test, y_test = X[test_idx, :], y[test_idx]
 for idx, cl in enumerate(np.unique(y)):
 plt.scatter(x=X[y == cl, 0], y=X[y == cl, 1],
 alpha=0.8, c=cmap(idx),
 marker=markers[idx], label=cl)

 # highlight test samples
 if test_idx:
 X_test, y_test = X[test_idx, :], y[test_idx]
 plt.scatter(X_test[:, 0], X_test[:, 1], c='',
 alpha=1.0, linewidth=1, marker='o',
 s=55, label='test set')

With the slight modification that we made to the plot_decision_regions function
(highlighted in the preceding code), we can now specify the indices of the samples
that we want to mark on the resulting plots. The code is as follows:

>>> X_combined_std = np.vstack((X_train_std, X_test_std))
>>> y_combined = np.hstack((y_train, y_test))
>>> plot_decision_regions(X=X_combined_std,
... y=y_combined,
... classifier=ppn,
... test_idx=range(105,150))
>>> plt.xlabel('petal length [standardized]')
>>> plt.ylabel('petal width [standardized]')
>>> plt.legend(loc='upper left')
>>> plt.show()

A Tour of Machine Learning Classifiers Using Scikit-learn

[54]

 markers = ('s', 'x', 'o', '^', 'v')
 colors = ('red', 'blue', 'lightgreen', 'gray', 'cyan')
 cmap = ListedColormap(colors[:len(np.unique(y))])

 # plot the decision surface
 x1_min, x1_max = X[:, 0].min() - 1, X[:, 0].max() + 1
 x2_min, x2_max = X[:, 1].min() - 1, X[:, 1].max() + 1
 xx1, xx2 = np.meshgrid(np.arange(x1_min, x1_max, resolution),
 np.arange(x2_min, x2_max, resolution))
 Z = classifier.predict(np.array([xx1.ravel(), xx2.ravel()]).T)
 Z = Z.reshape(xx1.shape)
 plt.contourf(xx1, xx2, Z, alpha=0.4, cmap=cmap)
 plt.xlim(xx1.min(), xx1.max())
 plt.ylim(xx2.min(), xx2.max())

 # plot all samples
 X_test, y_test = X[test_idx, :], y[test_idx]
 for idx, cl in enumerate(np.unique(y)):
 plt.scatter(x=X[y == cl, 0], y=X[y == cl, 1],
 alpha=0.8, c=cmap(idx),
 marker=markers[idx], label=cl)

 # highlight test samples
 if test_idx:
 X_test, y_test = X[test_idx, :], y[test_idx]
 plt.scatter(X_test[:, 0], X_test[:, 1], c='',
 alpha=1.0, linewidth=1, marker='o',
 s=55, label='test set')

With the slight modification that we made to the plot_decision_regions function
(highlighted in the preceding code), we can now specify the indices of the samples
that we want to mark on the resulting plots. The code is as follows:

>>> X_combined_std = np.vstack((X_train_std, X_test_std))
>>> y_combined = np.hstack((y_train, y_test))
>>> plot_decision_regions(X=X_combined_std,
... y=y_combined,
... classifier=ppn,
... test_idx=range(105,150))
>>> plt.xlabel('petal length [standardized]')
>>> plt.ylabel('petal width [standardized]')
>>> plt.legend(loc='upper left')
>>> plt.show()

s
It should be “linewidths” with an
“s” instead of “linewidth”

Chapter 3

[57]

The logit function takes input values in the range 0 to 1 and transforms them to
values over the entire real number range, which we can use to express a linear
relationship between feature values and the log-odds:

()()
0

1|
n

T
m m m m

i
logit p y w x w x w x w x

=

= = + + + = =∑0 0 1 1 !x w x

Here, ()1|p y = x is the conditional probability that a particular sample belongs to
class 1 given its features x.

Now what we are actually interested in is predicting the probability that a certain
sample belongs to a particular class, which is the inverse form of the logit function. It
is also called the logistic function, sometimes simply abbreviated as sigmoid function
due to its characteristic S-shape.

() 1
1 zz
e

φ −=
+

Here, z is the net input, that is, the linear combination of weights and sample features
and can be calculated as 0

Tz w w x w x= = + + +1 1 ! m mw x .

Now let's simply plot the sigmoid function for some values in the range -7 to 7 to see
what it looks like:

>>> import matplotlib.pyplot as plt
>>> import numpy as np
>>> def sigmoid(z):
... return 1.0 / (1.0 + np.exp(-z))
>>> z = np.arange(-7, 7, 0.1)
>>> phi_z = sigmoid(z)
>>> plt.plot(z, phi_z)
>>> plt.axvline(0.0, color='k')
>>> plt.axhspan(0.0, 1.0, facecolor='1.0', alpha=1.0, ls='dotted')
>>> plt.axhline(y=0.5, ls='dotted', color='k')
>>> plt.yticks([0.0, 0.5, 1.0])
>>> plt.ylim(-0.1, 1.1)
>>> plt.xlabel('z')
>>> plt.ylabel('$\phi (z)$')
>>> plt.show()

m

i i

m

i i

m

i i

m

i i

A Tour of Machine Learning Classifiers Using Scikit-learn

[60]

We minimized this in order to learn the weights w for our Adaline classification
model. To explain how we can derive the cost function for logistic regression,
let's first define the likelihood L that we want to maximize when we build a
logistic regression model, assuming that the individual samples in our dataset are
independent of one another. The formula is as follows:

() () () ()() ()()()
()

()()()
()1

1 1
| ; | ; 1

i in n y y
i i i i

i i
L P P y x z zφ φ

−

= =

= = = −∏ ∏w y x w w

In practice, it is easier to maximize the (natural) log of this equation, which is called
the log-likelihood function:

() () ()()() ()() ()()()
1

log log 1 log 1
n

i i i

i
l L z y zφ φ

=

= = + − −∑w w

Firstly, applying the log function reduces the potential for numerical underflow,
which can occur if the likelihoods are very small. Secondly, we can convert the
product of factors into a summation of factors, which makes it easier to obtain
the derivative of this function via the addition trick, as you may remember
from calculus.

Now we could use an optimization algorithm such as gradient ascent to maximize
this log-likelihood function. Alternatively, let's rewrite the log-likelihood as a cost
function J that can be minimized using gradient descent as in Chapter 2, Training
Machine Learning Algorithms for Classification:

() ()()() ()() ()()()
1

log 1 log 1
n

i i i

i
J z y zφ φ

=

= − − − −∑w

To get a better grasp on this cost function, let's take a look at the cost that we
calculate for one single-sample instance:

()() ()() () ()()log 1 log 1J z , y; y z y zφ φ φ= − − − −w

(i)y

[]

[]

(i)y

[]

[]

(i)y

[]

[]

(i)y

[]

[]

A Tour of Machine Learning Classifiers Using Scikit-learn

[64]

The preceding array tells us that the model predicts a chance of 93.7 percent that the
sample belongs to the Iris-Virginica class, and a 6.3 percent chance that the sample is
a Iris-Versicolor flower.

We can show that the weight update in logistic regression via gradient descent is
indeed equal to the equation that we used in Adaline in Chapter 2, Training Machine
Learning Algorithms for Classification. Let's start by calculating the partial derivative of
the log-likelihood function with respect to the jth weight:

() () () () ()1 11
1j j

l y y z
w z z w

φ
φ φ

⎛ ⎞∂ ∂= − −⎜ ⎟⎜ ⎟∂ − ∂⎝ ⎠
w

Before we continue, let's calculate the partial derivative of the sigmoid function first:

()
()

() ()()

2
1 1 1 11

1 1 11

1

z
z z zz

j

z e
w z e e ee

z z

φ

φ φ

−
− − −−

∂ ∂ ⎛ ⎞= = = −⎜ ⎟∂ ∂ + + +⎝ ⎠+

= −

Now we can resubstitute ()
j

z
w
φ∂

∂ = () ()()1z zφ φ− in our first equation to obtain
the following:

() () () ()

() () () () ()()

()() () ()()
()()

1 11
1

1 11 1
1

1 1

j

j

j

j

y y z
z z w

y y z z z
z z w

y z y z x

y z x

φ
φ φ

φ φ
φ φ

φ φ

φ

⎛ ⎞ ∂− −⎜ ⎟⎜ ⎟− ∂⎝ ⎠
⎛ ⎞ ∂= − − −⎜ ⎟⎜ ⎟− ∂⎝ ⎠

= − − −

= −

∂z

∂z

∂z

∂z

∂z

∂z

∂z

∂z

∂z

∂z

∂z

∂z

∂z

∂z

∂z

∂z

∂z

∂z

∂z

∂z

∂z

∂z

∂z

∂z

∂z

∂z

∂z

∂z

∂z

∂z

∂z

∂z

∂z

∂z

∂z

∂z

∂z

∂z

∂z

∂z

∂z

∂z

∂z

∂z

∂z

∂z

∂z

∂z

∂z

∂z

∂z

∂z

∂z

∂z

∂z

∂z

∂z

∂z

∂z

∂z

∂z

∂z

∂z

∂z

∂z

∂z

∂z

∂z

∂z

∂z

∂z

∂z

∂z

∂z

∂z

∂z

∂z

∂z

∂z

∂z

∂z

∂z

∂z

∂z

∂z

∂z

∂z

∂z

∂z

∂z

∂z

∂z

∂z

∂z

∂z

∂z

∂z

∂z

∂z

∂z

∂z

∂z

∂z

∂z

∂z

∂z

∂z

∂z

∂z

∂z

∂z

∂z

∂z

∂z

∂z

∂z

∂z

∂z

∂z

∂z

∂z

∂z

∂z

∂z

∂z

∂z

∂z

∂z

Chapter 3

[65]

Remember that the goal is to find the weights that maximize the log-likelihood so
that we would perform the update for each weight as follows:

() ()()() ()

1
:

n
i i i

j j
i

w w y z xη φ
=

= + −∑

Since we update all weights simultaneously, we can write the general update rule
as follows:

:= + ∆w w w

We define ∆w as follows:

()lη∆ ∇w = w

Since maximizing the log-likelihood is equal to minimizing the cost function J that
we defined earlier, we can write the gradient descent update rule as follows:

() ()() ()()
1

n
i i i

j
ij

Jw y z x
w

η η φ
=

∂∆ = − = −
∂ ∑

(): , Jη= + ∆ ∆ = − ∇w w w w w

This is equal to the gradient descent rule in Adaline in Chapter 2, Training Machine
Learning Algorithms for Classification.

Tackling overfitting via regularization
Overfitting is a common problem in machine learning, where a model performs well
on training data but does not generalize well to unseen data (test data). If a model
suffers from overfitting, we also say that the model has a high variance, which can
be caused by having too many parameters that lead to a model that is too complex
given the underlying data. Similarly, our model can also suffer from underfitting
(high bias), which means that our model is not complex enough to capture the
pattern in the training data well and therefore also suffers from low performance
on unseen data.

j

j

x should be outside the parentheses
like in the equation on top of that
page

missing	“y”

lower	one	prob.	easier	to	read	and	more	
consistent	w.	page	60

missing	“y”

like	above,	also	consider	this	alt.	form	for	readability

missing	“y”

lower	one	prob.	easier	to	read	and	more	
consistent	w.	page	60

missing	“y”

like	above,	also	consider	this	alt.	form	for	readability

A Tour of Machine Learning Classifiers Using Scikit-learn

[72]

The positive-values slack variable is simply added to the linear constraints:

() () ()1 1i i iT if y ξ≥ = −w x

() () ()1 1i i iT if y ξ< − = +w x

So the new objective to be minimized (subject to the preceding constraints) becomes:

()21
2

i

i
C ξ⎛ ⎞+ ⎜ ⎟
⎝ ⎠
∑w

Using the variable C, we can then control the penalty for misclassification. Large
values of C correspond to large error penalties whereas we are less strict about
misclassification errors if we choose smaller values for C. We can then we use the
parameter C to control the width of the margin and therefore tune the bias-variance
trade-off as illustrated in the following figure:

This concept is related to regularization, which we discussed previously in the
context of regularized regression where increasing the value of C increases the bias
and lowers the variance of the model.

Should be:

wT x(i) ≥1 − ξ (i) if y(i) = 1
wT x(i) ≤ −1 + ξ (i) if y(i) = -1

It should be: “increasing the value of lambda increases the bias …” (lambda instead of C) or “decreasing the value of C increases the bias”

It should be: “increasing the value of lambda increases the bias …” (lambda instead of C) or “decreasing the value of C increases the bias”

A Tour of Machine Learning Classifiers Using Scikit-learn

[82]

Maximizing information gain – getting the
most bang for the buck
In order to split the nodes at the most informative features, we need to define an
objective function that we want to optimize via the tree learning algorithm. Here,
our objective function is to maximize the information gain at each split, which we
define as follows:

() () ()
1

,
m

j
p p j

j p

N
IG D f I D I D

N=

= −∑

Here, f is the feature to perform the split, pD and jD are the dataset of the parent
and jth child node, I is our impurity measure, pN is the total number of samples at
the parent node, and jN is the number of samples in the jth child node. As we can
see, the information gain is simply the difference between the impurity of the parent
node and the sum of the child node impurities—the lower the impurity of the child
nodes, the larger the information gain. However, for simplicity and to reduce the
combinatorial search space, most libraries (including scikit-learn) implement binary
decision trees. This means that each parent node is split into two child nodes, leftD
and rightD :

() () () (), left right
p p left right

p p

N N
IG D a I D I D I D

N N
= − −

Now, the three impurity measures or splitting criteria that are commonly used in
binary decision trees are Gini index (GI), entropy (HI), and the classification error
(EI). Let's start with the definition of entropy for all non-empty classes (()| 0p i t ≠):

() () ()2
1

| log |
c

H
i

I t p i t p i t
=

= −∑

Gini impurity

f

Chapter 3

[83]

Here, ()|p i t is the proportion of the samples that belongs to class c for a particular
node t. The entropy is therefore 0 if all samples at a node belong to the same class,
and the entropy is maximal if we have a uniform class distribution. For example, in
a binary class setting, the entropy is 0 if ()1| 1p i t= = or ()0 | 0p i t= = . If the classes are
distributed uniformly with ()1| 0.5p i t= = and ()0 | 0.5p i t= = , the entropy is 1. Therefore,
we can say that the entropy criterion attempts to maximize the mutual information
in the tree.

Intuitively, the Gini index can be understood as a criterion to minimize the
probability of misclassification:

() () ()() ()2

1 1
| | 1 |

c c

G
i i

I t p i t p i t p i t
= =

= − = −∑ ∑

Similar to entropy, the Gini index is maximal if the classes are perfectly mixed,
for example, in a binary class setting (2c =):

2

1
1 0.5 0.5

c

i=
− =∑

However, in practice both the Gini index and entropy typically yield very similar
results and it is often not worth spending much time on evaluating trees using
different impurity criteria rather than experimenting with different pruning cut-offs.

Another impurity measure is the classification error:

(){ }1 max |EI p i t= −

Gini impurity

Gini impurity

Gini impurity

(1 - p(i | t))

i
—

Gini impurity

Gini impurity

Gini impurity

(1 - p(i | t))

i
—

Gini impurity

Gini impurity

Gini impurity

(1 - p(i | t))

i
—

Gini impurity

Gini impurity

Gini impurity

(1 - p(i | t))

i
—

I (t)=

G

I (t)=

E

Chapter 3

[85]

However, the Gini index would favor the split in scenario ()0.16GB IG = over scenario
()0.125GA IG = , which is indeed more pure:

() ()2 21 0.5 0.5 0.5G pI D = − + =

()
2 23 1 3: 1 0.375

4 4 8G leftA I D
⎛ ⎞⎛ ⎞ ⎛ ⎞= − + = =⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

()
2 21 3 3: 1 0.375

4 4 8G rightA I D
⎛ ⎞⎛ ⎞ ⎛ ⎞= − + = =⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

4 4: 0.5 0.375 0.375 0.125
8 8GA I = − − =

()
2 22 4 4: 1 0.4

6 6 9G leftB I D
⎛ ⎞⎛ ⎞ ⎛ ⎞= − + = =⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

() ()2 2: 1 1 0 0G rightB I D = − + =

6: 0.5 0.4 0 0.16
8GB IG = − − =

Similarly, the entropy criterion would favor scenario ()0.19HB IG = over
scenario ()0.31HA IG = :

() () ()()2 20.5 log 0.5 0.5 log 0.5 1H pI D = − + =

() 2 2
3 3 1 1: log log 0.81
4 4 4 4H leftA I D ⎛ ⎞⎛ ⎞ ⎛ ⎞= − + =⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

number swap

Gini impurity

IG_G

A Tour of Machine Learning Classifiers Using Scikit-learn

[86]

() 2 2
1 1 3 3: log log 0.81
4 4 4 4H rightA I D ⎛ ⎞⎛ ⎞ ⎛ ⎞= − + =⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

4 4: 1 0.81 0.81 0.19
8 8HA IG = − − =

() 2 2
2 2 4 4: log log 0.92
6 6 6 6H leftB I D ⎛ ⎞⎛ ⎞ ⎛ ⎞= − + + + =⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠

(): 0H rightB I D =

6: 1 0.92 0 0.31
8HB IG = − − =

For a more visual comparison of the three different impurity criteria that we
discussed previously, let's plot the impurity indices for the probability range [0, 1]
for class 1. Note that we will also add in a scaled version of the entropy (entropy/2)
to observe that the Gini index is an intermediate measure between entropy and the
classification error. The code is as follows:

>>> import matplotlib.pyplot as plt
>>> import numpy as np
>>> def gini(p):
... return (p)*(1 - (p)) + (1 - p)*(1 - (1-p))
>>> def entropy(p):
... return - p*np.log2(p) - (1 - p)*np.log2((1 - p))
>>> def error(p):
... return 1 - np.max([p, 1 - p])
>>> x = np.arange(0.0, 1.0, 0.01)
>>> ent = [entropy(p) if p != 0 else None for p in x]
>>> sc_ent = [e*0.5 if e else None for e in ent]
>>> err = [error(i) for i in x]
>>> fig = plt.figure()
>>> ax = plt.subplot(111)
>>> for i, lab, ls, c, in zip([ent, sc_ent, gini(x), err],
... ['Entropy', 'Entropy (scaled)',
... 'Gini Impurity',

Gini impurity

Chapter 3

[95]

In the case of a tie, the scikit-learn implementation of the KNN
algorithm will prefer the neighbors with a closer distance to the
sample. If the neighbors have a similar distance, the algorithm will
choose the class label that comes first in the training dataset.

The right choice of k is crucial to find a good balance between over- and underfitting.
We also have to make sure that we choose a distance metric that is appropriate for
the features in the dataset. Often, a simple Euclidean distance measure is used for
real-valued samples, for example, the flowers in our Iris dataset, which have features
measured in centimeters. However, if we are using a Euclidean distance measure, it
is also important to standardize the data so that each feature contributes equally to
the distance. The 'minkowski' distance that we used in the previous code is just a
generalization of the Euclidean and Manhattan distance that can be written as follows:

() ()() () (),
pi i i jp

k k
k

d x x= ∑x x -
j

Chapter 4

[103]

The classifiers that we used in Chapter 3, A Tour of Machine Learning Classifiers Using
Scikit-Learn, belong to the so-called estimators in scikit-learn with an API that is
conceptually very similar to the transformer class. Estimators have a predict
method but can also have a transform method, as we will see later. As you may
recall, we also used the fit method to learn the parameters of a model when we
trained those estimators for classification. However, in supervised learning tasks, we
additionally provide the class labels for fitting the model, which can then be used to
make predictions about new data samples via the predict method, as illustrated in
the following figure:

.fit

Chapter 4

[111]

Although normalization via min-max scaling is a commonly used technique that
is useful when we need values in a bounded interval, standardization can be more
practical for many machine learning algorithms. The reason is that many linear
models, such as the logistic regression and SVM that we remember from Chapter 3,
A Tour of Machine Learning Classifiers Using Scikit-learn, initialize the weights to 0 or
small random values close to 0. Using standardization, we center the feature columns
at mean 0 with standard deviation 1 so that the feature columns take the form of
a normal distribution, which makes it easier to learn the weights. Furthermore,
standardization maintains useful information about outliers and makes the
algorithm less sensitive to them in contrast to min-max scaling, which scales
the data to a limited range of values.

The procedure of standardization can be expressed by the following equation:

()
()i

i x
std

x

xx µ
σ
−=

Here, xµ is the sample mean of a particular feature column and xσ the corresponding
standard deviation, respectively.

The following table illustrates the difference between the two commonly used
feature scaling techniques, standardization and normalization on a simple sample
dataset consisting of numbers 0 to 5:

input standardized normalized
0.0 -1.336306 0.0
1.0 -0.801784 0.2
2.0 -0.267261 0.4
3.0 0.267261 0.6
4.0 0.801784 0.8
5.0 1.336306 1.0

Similar to MinMaxScaler, scikit-learn also implements a class for standardization:

>>> from sklearn.preprocessing import StandardScaler
>>> stdsc = StandardScaler()
>>> X_train_std = stdsc.fit_transform(X_train)
>>> X_test_std = stdsc.transform(X_test)

standardized
-1.46385
-0.87831
-0.29277
0.29277 0
0.87831 0
1.46385 1

standardized
-1.46385
-0.87831
-0.29277
0.29277 0
0.87831 0
1.46385 1

Building Good Training Sets – Data Preprocessing

[116]

Applied to the standardized Wine data, the L1 regularized logistic regression would
yield the following sparse solution:

>>> lr = LogisticRegression(penalty='l1', C=0.1)
>>> lr.fit(X_train_std, y_train)
>>> print('Training accuracy:', lr.score(X_train_std, y_train))
Training accuracy: 0.983870967742
>>> print('Test accuracy:', lr.score(X_test_std, y_test))
Test accuracy: 0.981481481481

Both training and test accuracies (both 98 percent) do not indicate any overfitting
of our model. When we access the intercept terms via the lr.intercept_ attribute,
we can see that the array returns three values:

>>> lr.intercept_
array([-0.38379237, -0.1580855 , -0.70047966])

Since we the fit the LogisticRegression object on a multiclass dataset, it uses the
One-vs-Rest (OvR) approach by default where the first intercept belongs to the
model that fits class 1 versus class 2 and 3; the second value is the intercept of the
model that fits class 2 versus class 1 and 3; and the third value is the intercept of the
model that fits class 3 versus class 1 and 2, respectively:

>>> lr.coef_
array([[0.280, 0.000, 0.000, -0.0282, 0.000,
 0.000, 0.710, 0.000, 0.000, 0.000,
 0.000, 0.000, 1.236],
 [-0.644, -0.0688 , -0.0572, 0.000, 0.000,
 0.000, 0.000, 0.000, 0.000, -0.927,
 0.060, 0.000, -0.371],
 [0.000, 0.061, 0.000, 0.000, 0.000,
 0.000, -0.637, 0.000, 0.000, 0.499,
 -0.358, -0.570, 0.000
]])

The weight array that we accessed via the lr.coef_ attribute contains three rows of
weight coefficients, one weight vector for each class. Each row consists of 13 weights
where each weight is multiplied by the respective feature in the 13-dimensional
Wine dataset to calculate the net input:

1 1 0

m T
m m j jj

z w x w x x w
=

= + + = =∑! w x

To include the bias unit, the “1”s should
be changed to a 0 (like in chapter 2). However, please note that
scikit learn stores the bias and the weights
separately; so, it’s maybe better to write

z = w_{1}x_{1} + … w_{m}x_{m} + b = \sum^{m}_j=1 x_{j}w_{j} + b = w^{T} x + b

Chapter 4

[119]

Greedy algorithms make locally optimal choices at each stage of
a combinatorial search problem and generally yield a suboptimal
solution to the problem in contrast to exhaustive search algorithms,
which evaluate all possible combinations and are guaranteed to find
the optimal solution. However, in practice, an exhaustive search is
often computationally not feasible, whereas greedy algorithms allow
for a less complex, computationally more efficient solution.

The idea behind the SBS algorithm is quite simple: SBS sequentially removes features
from the full feature subset until the new feature subspace contains the desired
number of features. In order to determine which feature is to be removed at each
stage, we need to define criterion function J that we want to minimize. The criterion
calculated by the criterion function can simply be the difference in performance of
the classifier after and before the removal of a particular feature. Then the feature
to be removed at each stage can simply be defined as the feature that maximizes
this criterion; or, in more intuitive terms, at each stage we eliminate the feature that
causes the least performance loss after removal. Based on the preceding definition of
SBS, we can outline the algorithm in 4 simple steps:

1. Initialize the algorithm with k d= , where d is the dimensionality of the full
feature space dX .

2. Determine the feature x− that maximizes the criterion ()kargmaxJ− = −x X x
where k∈x X .

3. Remove the feature x− from the feature set: kX – 1 = 1 , 1k k k k−− = −X - = X x .
4. Terminate if k equals the number of desired features, if not, go to step 2.

You can find a detailed evaluation of several sequential
feature algorithms in Comparative Study of Techniques for Large
Scale Feature Selection, F. Ferri, P. Pudil, M. Hatef, and J. Kittler.
Comparative study of techniques for large-scale feature selection.
Pattern Recognition in Practice IV, pages 403–413, 1994.

Unfortunately, the SBS algorithm is not implemented in scikit-learn, yet. But since it
is so simple, let's go ahead and implement it in Python from scratch:

from sklearn.base import clone
from itertools import combinations
import numpy as np
from sklearn.cross_validation import train_test_split
from sklearn.metrics import accuracy_score

X := X - x ; k:= k -1k-1 k
-

Building Good Training Sets – Data Preprocessing

[124]

Assessing feature importance with
random forests
In the previous sections, you learned how to use L1 regularization to zero out
irrelevant features via logistic regression and use the SBS algorithm for feature
selection. Another useful approach to select relevant features from a dataset is to
use a random forest, an ensemble technique that we introduced in Chapter 3,
A Tour of Machine Learning Classifiers Using Scikit-learn. Using a random forest, we
can measure feature importance as the averaged impurity decrease computed from
all decision trees in the forest without making any assumptions whether our data is
linearly separable or not. Conveniently, the random forest implementation in scikit-
learn already collects feature importances for us so that we can access them via
the feature_importances_ attribute after fitting a RandomForestClassifier. By
executing the following code, we will now train a forest of 10,000 trees on the Wine
dataset and rank the 13 features by their respective importance measures. Remember
(from our discussion in Chapter 3, A Tour of Machine Learning Classifiers Using
Scikit-learn) that we don't need to use standardized or normalized tree-based
models. The code is as follows:

>>> from sklearn.ensemble import RandomForestClassifier
>>> feat_labels = df_wine.columns[1:]
>>> forest = RandomForestClassifier(n_estimators=10000,
... random_state=0,
... n_jobs=-1)
>>> forest.fit(X_train, y_train)
>>> importances = forest.feature_importances_
>>> indices = np.argsort(importances)[::-1]
>>> for f in range(X_train.shape[1]):
... print("%2d) %-*s %f" % (f + 1, 30,
... feat_labels[f],
... importances[indices[f]]))
1) Alcohol 0.182508
2) Malic acid 0.158574
3) Ash 0.150954
4) Alcalinity of ash 0.131983
5) Magnesium 0.106564
6) Total phenols 0.078249
7) Flavanoids 0.060717
8) Nonflavanoid phenols 0.032039
9) Proanthocyanins 0.025385
10) Color intensity 0.022369
11) Hue 0.022070

	1)	Color	intensity																0.182483
	2)	Proline																								0.158610
	3)	Flavanoids																					0.150948
	4)	OD280/OD315	of	diluted	wines			0.131987
	5)	Alcohol																								0.106589
	6)	Hue																												0.078243
	7)	Total	phenols																		0.060718
	8)	Alcalinity	of	ash														0.032033
	9)	Malic	acid																					0.025400
10)	Proanthocyanins																0.022351
11)	Magnesium																						0.022078
12)	Nonflavanoid	phenols											0.014645
13)	Ash																												0.013916

feat_labels[indices[f]],

	1)	Color	intensity																0.182483
	2)	Proline																								0.158610
	3)	Flavanoids																					0.150948
	4)	OD280/OD315	of	diluted	wines			0.131987
	5)	Alcohol																								0.106589
	6)	Hue																												0.078243
	7)	Total	phenols																		0.060718
	8)	Alcalinity	of	ash														0.032033
	9)	Malic	acid																					0.025400
10)	Proanthocyanins																0.022351
11)	Magnesium																						0.022078
12)	Nonflavanoid	phenols											0.014645
13)	Ash																												0.013916

feat_labels[indices[f]],

	1)	Color	intensity																0.182483
	2)	Proline																								0.158610
	3)	Flavanoids																					0.150948
	4)	OD280/OD315	of	diluted	wines			0.131987
	5)	Alcohol																								0.106589
	6)	Hue																												0.078243
	7)	Total	phenols																		0.060718
	8)	Alcalinity	of	ash														0.032033
	9)	Malic	acid																					0.025400
10)	Proanthocyanins																0.022351
11)	Magnesium																						0.022078
12)	Nonflavanoid	phenols											0.014645
13)	Ash																												0.013916

feat_labels[indices[f]],

	1)	Color	intensity																0.182483
	2)	Proline																								0.158610
	3)	Flavanoids																					0.150948
	4)	OD280/OD315	of	diluted	wines			0.131987
	5)	Alcohol																								0.106589
	6)	Hue																												0.078243
	7)	Total	phenols																		0.060718
	8)	Alcalinity	of	ash														0.032033
	9)	Malic	acid																					0.025400
10)	Proanthocyanins																0.022351
11)	Magnesium																						0.022078
12)	Nonflavanoid	phenols											0.014645
13)	Ash																												0.013916

feat_labels[indices[f]],

feat_labels[indices]feat_labels[indices]

Building Good Training Sets – Data Preprocessing

[126]

We can conclude that the alcohol content of wine is the most discriminative feature
in the dataset based on the average impurity decrease in the 10,000 decision trees.
Interestingly, the three top-ranked features in the preceding plot are also among the
top five features in the selection by the SBS algorithm that we implemented in the
previous section. However, as far as interpretability is concerned, the random forest
technique comes with an important gotcha that is worth mentioning. For instance, if
two or more features are highly correlated, one feature may be ranked very highly
while the information of the other feature(s) may not be fully captured. On the other
hand, we don't need to be concerned about this problem if we are merely interested
in the predictive performance of a model rather than the interpretation of feature
importances. To conclude this section about feature importances and random forests,
it is worth mentioning that scikit-learn also implements a transform method that
selects features based on a user-specified threshold after model fitting, which is
useful if we want to use the RandomForestClassifier as a feature selector and
intermediate step in a scikit-learn pipeline, which allows us to connect different
preprocessing steps with an estimator, as we will see in Chapter 6, Learning Best
Practices for Model Evaluation and Hyperparameter Tuning. For example, we could set
the threshold to 0.15 to reduce the dataset to the 3 most important features, Alcohol,
Malic acid, and Ash using the following code:

>>> X_selected = forest.transform(X_train, threshold=0.15)
>>> X_selected.shape
(124, 3)

Summary
We started this chapter by looking at useful techniques to make sure that we handle
missing data correctly. Before we feed data to a machine learning algorithm, we also
have to make sure that we encode categorical variables correctly, and we have seen
how we can map ordinal and nominal features values to integer representations.

Moreover, we briefly discussed L1 regularization, which can help us to avoid
overfitting by reducing the complexity of a model. As an alternative approach for
removing irrelevant features, we used a sequential feature selection algorithm to
select meaningful features from a dataset.

In the next chapter, you will learn about yet another useful approach to
dimensionality reduction: feature extraction. It allows us to compress features
onto a lower dimensional subspace rather than removing features entirely as in
feature selection.

Color	intensity

Color	intensity,	Proline,	and	Flavonoids

Color	intensity

Color	intensity,	Proline,	and	Flavonoids

Color	intensity

Color	intensity,	Proline,	and	Flavonoids

Color	intensity

Color	intensity,	Proline,	and	Flavonoids

Compressing Data via Dimensionality Reduction

[130]

First, we will start by loading the Wine dataset that we have been working with
in Chapter 4, Building Good Training Sets – Data Preprocessing:

>>> import pandas as pd
>>> df_wine = pd.read_csv('https://archive.ics.uci.edu/ml/machine-
learning-databases/wine/wine.data', header=None)

Next, we will process the Wine data into separate training and test sets—using 70
percent and 30 percent of the data, respectively—and standardize it to unit variance.

>>> from sklearn.cross_validation import train_test_split
>>> from sklearn.preprocessing import StandardScaler
>>> X, y = df_wine.iloc[:, 1:].values, df_wine.iloc[:, 0].values
>>> X_train, X_test, y_train, y_test = \
... train_test_split(X, y,
... test_size=0.3, random_state=0)
>>> sc = StandardScaler()
>>> X_train_std = sc.fit_transform(X_train)
>>> X_test_std = sc.fit_transform(X_test)

After completing the mandatory preprocessing steps by executing the preceding
code, let's advance to the second step: constructing the covariance matrix. The
symmetric d d× -dimensional covariance matrix, where d is the number of
dimensions in the dataset, stores the pairwise covariances between the different
features. For example, the covariance between two features jx and xk on the
population level can be calculated via the following equation:

()() ()()
1

1 n
i i

jk j j k k
i

x x
n

σ µ µ
=

= − −∑

Here, jµ and kµ are the sample means of feature and k , respectively. Note that
the sample means are zero if we standardize the dataset. A positive covariance
between two features indicates that the features increase or decrease together,
whereas a negative covariance indicates that the features vary in opposite directions.
For example, a covariance matrix of three features can then be written as (note that ∑
stands for the Greek letter sigma, which is not to be confused with the sum symbol):

2
1 12 13

2
21 2 23

2
31 32 3

σ σ σ
σ σ σ
σ σ σ

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

∑

The eigenvectors of the covariance matrix represent the principal components
(the directions of maximum variance), whereas the corresponding eigenvalues
will define their magnitude. In the case of the Wine dataset, we would obtain 13
eigenvectors and eigenvalues from the 13 13× -dimensional covariance matrix.

Note that we want
to re-use the
training set
parameters to
transform any
new data (or test
data) as discussed
in Chapter 3. I am
sorry about this
typo.
Please also see

https://github.com/
rasbt/python-
machine-learning-
book/blob/master/
faq/standardize-
param-reuse.md

for an example
why this can be a
problem.

Note that we want
to re-use the
training set
parameters to
transform any
new data (or test
data) as discussed
in Chapter 3. I am
sorry about this
typo.
Please also see

https://github.com/
rasbt/python-
machine-learning-
book/blob/master/
faq/standardize-
param-reuse.md

for an example
why this can be a
problem.

Note that we want
to re-use the
training set
parameters to
transform any
new data (or test
data) as discussed
in Chapter 3. I am
sorry about this
typo.
Please also see

https://github.com/
rasbt/python-
machine-learning-
book/blob/master/
faq/standardize-
param-reuse.md

for an example
why this can be a
problem.

Note that we want
to re-use the
training set
parameters to
transform any
new data (or test
data) as discussed
in Chapter 3. I am
sorry about this
typo.
Please also see

https://github.com/
rasbt/python-
machine-learning-
book/blob/master/
faq/standardize-
param-reuse.md

for an example
why this can be a
problem.

Compressing Data via Dimensionality Reduction

[130]

First, we will start by loading the Wine dataset that we have been working with
in Chapter 4, Building Good Training Sets – Data Preprocessing:

>>> import pandas as pd
>>> df_wine = pd.read_csv('https://archive.ics.uci.edu/ml/machine-
learning-databases/wine/wine.data', header=None)

Next, we will process the Wine data into separate training and test sets—using 70
percent and 30 percent of the data, respectively—and standardize it to unit variance.

>>> from sklearn.cross_validation import train_test_split
>>> from sklearn.preprocessing import StandardScaler
>>> X, y = df_wine.iloc[:, 1:].values, df_wine.iloc[:, 0].values
>>> X_train, X_test, y_train, y_test = \
... train_test_split(X, y,
... test_size=0.3, random_state=0)
>>> sc = StandardScaler()
>>> X_train_std = sc.fit_transform(X_train)
>>> X_test_std = sc.fit_transform(X_test)

After completing the mandatory preprocessing steps by executing the preceding
code, let's advance to the second step: constructing the covariance matrix. The
symmetric d d× -dimensional covariance matrix, where d is the number of
dimensions in the dataset, stores the pairwise covariances between the different
features. For example, the covariance between two features jx and xk on the
population level can be calculated via the following equation:

()() ()()
1

1 n
i i

jk j j k k
i
x x

n
σ µ µ

=

= − −∑

Here, jµ and kµ are the sample means of feature and k , respectively. Note that
the sample means are zero if we standardize the dataset. A positive covariance
between two features indicates that the features increase or decrease together,
whereas a negative covariance indicates that the features vary in opposite directions.
For example, a covariance matrix of three features can then be written as (note that ∑
stands for the Greek letter sigma, which is not to be confused with the sum symbol):

2
1 12 13

2
21 2 23

2
31 32 3

σ σ σ
σ σ σ
σ σ σ

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

∑

The eigenvectors of the covariance matrix represent the principal components
(the directions of maximum variance), whereas the corresponding eigenvalues
will define their magnitude. In the case of the Wine dataset, we would obtain 13
eigenvectors and eigenvalues from the 13 13× -dimensional covariance matrix.

This should be just
“transform”, not
“fit_transform”

Chapter 5

[131]

2
1 12 13

2
21 2 23

2
31 32 3

σ σ σ
σ σ σ
σ σ σ

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

∑

The eigenvectors of the covariance matrix represent the principal components
(the directions of maximum variance), whereas the corresponding eigenvalues
will define their magnitude. In the case of the Wine dataset, we would obtain 13
eigenvectors and eigenvalues from the 13 13× -dimensional covariance matrix.

Now, let's obtain the eigenpairs of the covariance matrix. As we surely remember
from our introductory linear algebra or calculus classes, an eigenvalue v satisfies
the following condition:

λΣ =v v

Here, λ is a scalar: the eigenvalue. Since the manual computation of eigenvectors
and eigenvalues is a somewhat tedious and elaborate task, we will use the
linalg.eig function from NumPy to obtain the eigenpairs of the Wine
covariance matrix:

>>> import numpy as np
>>> cov_mat = np.cov(X_train_std.T)
>>> eigen_vals, eigen_vecs = np.linalg.eig(cov_mat)
>>> print('\nEigenvalues \n%s' % eigen_vals)
Eigenvalues
[4.8923083 2.46635032 1.42809973 1.01233462 0.84906459
0.60181514
0.52251546 0.08414846 0.33051429 0.29595018 0.16831254 0.21432212
0.2399553]

Using the numpy.cov function, we computed the covariance matrix of the
standardized training dataset. Using the linalg.eig function, we performed the
eigendecomposition that yielded a vector (eigen_vals) consisting of 13 eigenvalues
and the corresponding eigenvectors stored as columns in a 13 13× -dimensional
matrix (eigen_vecs).

Since we want to reduce the dimensionality of our dataset by compressing it onto
a new feature subspace, we only select the subset of the eigenvectors (principal
components) that contains most of the information (variance). Since the eigenvalues
define the magnitude of the eigenvectors, we have to sort the eigenvalues by
decreasing magnitude; we are interested in the top k eigenvectors based on the
values of their corresponding eigenvalues. But before we collect those k most
informative eigenvectors, let's plot the variance explained ratios of the eigenvalues.

"Although the numpy.linalg.eig function was designed to decompose
nonsymmetric square matrices, you may find that it returns complex
eigenvalues in certain cases.
A related function, numpy.linalg.eigh, has been implemented to decompose
Hermetian matrices, which is a numerically more stable approach to work
with symmetric matrices such as the covariance matrix; numpy.linalg.eigh
always returns real eigenvalues."

Insert
this
note

vector

Chapter 5

[131]

2
1 12 13

2
21 2 23

2
31 32 3

σ σ σ
σ σ σ
σ σ σ

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

∑

The eigenvectors of the covariance matrix represent the principal components
(the directions of maximum variance), whereas the corresponding eigenvalues
will define their magnitude. In the case of the Wine dataset, we would obtain 13
eigenvectors and eigenvalues from the 13 13× -dimensional covariance matrix.

Now, let's obtain the eigenpairs of the covariance matrix. As we surely remember
from our introductory linear algebra or calculus classes, an eigenvalue v satisfies
the following condition:

λΣ =v v

Here, λ is a scalar: the eigenvalue. Since the manual computation of eigenvectors
and eigenvalues is a somewhat tedious and elaborate task, we will use the
linalg.eig function from NumPy to obtain the eigenpairs of the Wine
covariance matrix:

>>> import numpy as np
>>> cov_mat = np.cov(X_train_std.T)
>>> eigen_vals, eigen_vecs = np.linalg.eig(cov_mat)
>>> print('\nEigenvalues \n%s' % eigen_vals)
Eigenvalues
[4.8923083 2.46635032 1.42809973 1.01233462 0.84906459
0.60181514
0.52251546 0.08414846 0.33051429 0.29595018 0.16831254 0.21432212
0.2399553]

Using the numpy.cov function, we computed the covariance matrix of the
standardized training dataset. Using the linalg.eig function, we performed the
eigendecomposition that yielded a vector (eigen_vals) consisting of 13 eigenvalues
and the corresponding eigenvectors stored as columns in a 13 13× -dimensional
matrix (eigen_vecs).

Since we want to reduce the dimensionality of our dataset by compressing it onto
a new feature subspace, we only select the subset of the eigenvectors (principal
components) that contains most of the information (variance). Since the eigenvalues
define the magnitude of the eigenvectors, we have to sort the eigenvalues by
decreasing magnitude; we are interested in the top k eigenvectors based on the
values of their corresponding eigenvalues. But before we collect those k most
informative eigenvectors, let's plot the variance explained ratios of the eigenvalues.

"Although the numpy.linalg.eig function was designed to decompose
nonsymmetric square matrices, you may find that it returns complex
eigenvalues in certain cases.
A related function, numpy.linalg.eigh, has been implemented to decompose
Hermetian matrices, which is a numerically more stable approach to work
with symmetric matrices such as the covariance matrix; numpy.linalg.eigh
always returns real eigenvalues."

Insert
this
note

"Although the numpy.linalg.eig function was designed to decompose
nonsymmetric square matrices, you may find that it returns complex
eigenvalues in certain cases.
A related function, numpy.linalg.eigh, has been implemented to decompose
Hermetian matrices, which is a numerically more stable approach to work
with symmetric matrices such as the covariance matrix; numpy.linalg.eigh
always returns real eigenvalues."

Insert
this
note

Chapter 5

[133]

Although the explained variance plot reminds us of the feature importance that we
computed in Chapter 4, Building Good Training Sets – Data Preprocessing, via random
forests, we shall remind ourselves that PCA is an unsupervised method, which
means that information about the class labels is ignored. Whereas a random forest
uses the class membership information to compute the node impurities, variance
measures the spread of values along a feature axis.

Feature transformation
After we have successfully decomposed the covariance matrix into eigenpairs,
let's now proceed with the last three steps to transform the Wine dataset onto
the new principal component axes. In this section, we will sort the eigenpairs
by descending order of the eigenvalues, construct a projection matrix from the
selected eigenvectors, and use the projection matrix to transform the data onto
the lower-dimensional subspace.

We start by sorting the eigenpairs by decreasing order of the eigenvalues:

>>> eigen_pairs =[(np.abs(eigen_vals[i]),eigen_vecs[:,i])
... for i inrange(len(eigen_vals))]
>>> eigen_pairs.sort(reverse=True)

Next, we collect the two eigenvectors that correspond to the two largest values to
capture about 60 percent of the variance in this dataset. Note that we only chose two
eigenvectors for the purpose of illustration, since we are going to plot the data via
a two-dimensional scatter plot later in this subsection. In practice, the number of
principal components has to be determined from a trade-off between computational
efficiency and the performance of the classifier:

>>> w= np.hstack((eigen_pairs[0][1][:, np.newaxis],
... eigen_pairs[1][1][:, np.newaxis]))
>>> print('Matrix W:\n',w)
Matrix W:
[[0.14669811 0.50417079]
[-0.24224554 0.24216889]
[-0.02993442 0.28698484]
[-0.25519002 -0.06468718]
[0.12079772 0.22995385]
[0.38934455 0.09363991]
[0.42326486 0.01088622]
[-0.30634956 0.01870216]
[0.30572219 0.03040352]
[-0.09869191 0.54527081]

There’s	a	missing	whitespace	
between	“in”	and	“range”

Compressing Data via Dimensionality Reduction

[140]

4. Compute the eigenvectors and corresponding eigenvalues of the
matrix 1

w B
−S S .

5. Choose the k eigenvectors that correspond to the k largest eigenvalues to
construct a d k× -dimensional transformation matrix W ; the eigenvectors are
the columns of this matrix.

6. Project the samples onto the new feature subspace using the transformation
matrix W .

The assumptions that we make when we are using LDA are that the
features are normally distributed and independent of each other.
Also, the LDA algorithm assumes that the covariance matrices for the
individual classes are identical. However, even if we violate those
assumptions to a certain extent, LDA may still work reasonably well in
dimensionality reduction and classification tasks (R. O. Duda, P. E. Hart,
and D. G. Stork. Pattern Classification. 2nd. Edition. New York, 2001).

Computing the scatter matrices
Since we have already standardized the features of the Wine dataset in the PCA
section at the beginning of this chapter, we can skip the first step and proceed with
the calculation of the mean vectors, which we will use to construct the within-class
scatter matrix and between-class scatter matrix, respectively. Each mean vector im
stores the mean feature value mµ with respect to the samples of class i :

1

i

c

i m
Din ∈

= ∑
x

m x

This results in three mean vectors:

{ }

,

,

,

 1, 2, 3

i alcohol

i malic acid
i

i proline

i

µ
µ

µ

⎡ ⎤
⎢ ⎥
⎢ ⎥= ∈⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

!m

T

Note the “T” for “transpose” above. Although, NumPy would handle this case, it would be mathematically wrong to subtract a column vector (m_i) from row vectors (samples). I remember that I displayed the mean vectors as a column vector for visual purposes since the row-vector representation looked a bit ugly. Somehow, the superscript “T” must have gone missing during the layout stage.tor in the later sections

Chapter 5

[141]

>>> np.set_printoptions(precision=4)
>>> mean_vecs = []
>>> for label in range(1,4):
... mean_vecs.append(np.mean(
... X_train_std[y_train==label], axis=0))
... print('MV %s: %s\n' %(label, mean_vecs[label-1]))
MV 1: [0.9259 -0.3091 0.2592 -0.7989 0.3039 0.9608 1.0515 -0.6306
0.5354
 0.2209 0.4855 0.798 1.2017]

MV 2: [-0.8727 -0.3854 -0.4437 0.2481 -0.2409 -0.1059 0.0187 -0.0164
0.1095
 -0.8796 0.4392 0.2776 -0.7016]

MV 3: [0.1637 0.8929 0.3249 0.5658 -0.01 -0.9499 -1.228 0.7436
-0.7652
 0.979 -1.1698 -1.3007 -0.3912]

Using the mean vectors, we can now compute the within-class scatter matrix WS :

1

c

W i
i=

=∑S S

This is calculated by summing up the individual scatter matrices iS of each
individual class i :

()()
i

c
T

i i i
D∈

= − −∑
x

S x m x m

>>> d = 13 # number of features
>>> S_W = np.zeros((d, d))
>>> for label,mv in zip(range(1,4), mean_vecs):
... class_scatter = np.zeros((d, d))
... for row in X[y == label]:
... row, mv = row.reshape(d, 1), mv.reshape(d, 1)
... class_scatter += (row-mv).dot((row-mv).T)
... S_W += class_scatter
>>> print('Within-class scatter matrix: %sx%s'
... % (S_W.shape[0], S_W.shape[1]))
Within-class scatter matrix: 13x13

for	row	in	X_train_std[y_train	==	label]:

Should be “X_train” instead of “X”
also, it should be “y_train” instead of “y”

Compressing Data via Dimensionality Reduction

[142]

The assumption that we are making when we are computing the scatter matrices
is that the class labels in the training set are uniformly distributed. However, if
we print the number of class labels, we see that this assumption is violated:

>>> print('Class label distribution: %s'
... % np.bincount(y_train)[1:])
Class label distribution: [40 49 35]

Thus, we want to scale the individual scatter matrices iS before we sum them up
as scatter matrix wS . When we divide the scatter matrices by the number of class
samples iN , we can see that computing the scatter matrix is in fact the same as
computing the covariance matrix i∑ . The covariance matrix is a normalized
version of the scatter matrix:

()()1 1

i

c
T

i W i i
Di iN N ∈

∑ = = − −∑
x

S x m x m

>>> d = 13 # number of features
>>> S_W = np.zeros((d, d))
>>> for label,mv in zip(range(1, 4), mean_vecs):
... class_scatter = np.cov(X_train_std[y_train==label].T)
... S_W += class_scatter
>>> print('Scaled within-class scatter matrix: %sx%s'
... % (S_W.shape[0], S_W.shape[1]))
Scaled within-class scatter matrix: 13x13

After we have computed the scaled within-class scatter matrix (or covariance
matrix), we can move on to the next step and compute the between-class scatter
matrix BS :

()()
1

T
i i i

i
N

=

= − −∑
c

BS m m m m

Here, m is the overall mean that is computed, including samples from all classes.

>>> mean_overall = np.mean(X_train_std, axis=0)
>>> d = 13 # number of features
>>> S_B = np.zeros((d, d))
>>> for i,mean_vec in enumerate(mean_vecs):
... n = X[y==i+1, :].shape[0]
... mean_vec = mean_vec.reshape(d, 1)
... mean_overall = mean_overall.reshape(d, 1)
 S_B += n * (mean_vec - mean_overall).dot(

n = X_train[y_train==i+1, :].shape[0]

Should be “X_train” instead of “X” and “y_train” instead of “y”

The three dots must have gone lost during the layout; the S_B should be within the for-loop
of course!

...

Chapter 5

[143]

... (mean_vec - mean_overall).T)
print('Between-class scatter matrix: %sx%s'
... % (S_B.shape[0], S_B.shape[1]))
Between-class scatter matrix: 13x13

Selecting linear discriminants for the new
feature subspace
The remaining steps of the LDA are similar to the steps of the PCA. However,
instead of performing the eigendecomposition on the covariance matrix, we solve
the generalized eigenvalue problem of the matrix 1

w B
−S S :

>>>eigen_vals, eigen_vecs =\
...np.linalg.eig(np.linalg.inv(S_W).dot(S_B))

After we computed the eigenpairs, we can now sort the eigenvalues in
descending order:

>>> eigen_pairs = [(np.abs(eigen_vals[i]), eigen_vecs[:,i])
... for i in range(len(eigen_vals))]
>>> eigen_pairs = sorted(eigen_pairs,
... key=lambda k: k[0], reverse=True)
>>> print('Eigenvalues in decreasing order:\n')
>>> for eigen_val in eigen_pairs:
... print(eigen_val[0])

Eigenvalues in decreasing order:

643.015384346
225.086981854
1.37146633984e-13
5.68434188608e-14
4.16877714935e-14
4.16877714935e-14
3.76733516161e-14
3.7544790902e-14
3.7544790902e-14
2.30295239559e-14
2.30295239559e-14
1.9101018959e-14
3.86601693797e-16

452.721581245
156.43636122
8.11327596465e-14
2.78687384543e-14
2.78687384543e-14
2.27622032758e-14
2.27622032758e-14
1.97162599817e-14
1.32484714652e-14
1.32484714652e-14
1.03791501611e-14
5.94140664834e-15
2.12636975748e-16

Compressing Data via Dimensionality Reduction

[144]

Those who are a little more familiar with linear algebra may know that the rank of
the d d× -dimensional covariance matrix can be at most 1d − , and we can indeed see
that we only have two nonzero eigenvalues (the eigenvalues 3-13 are not exactly
zero, but this is due to the floating point arithmetic in NumPy). Note that in the
rare case of perfect collinearity (all aligned sample points fall on a straight line),
the covariance matrix would have rank one, which would result in only one
eigenvector with a nonzero eigenvalue.

To measure how much of the class-discriminatory information is captured by the
linear discriminants (eigenvectors), let's plot the linear discriminants by decreasing
eigenvalues similar to the explained variance plot that we created in the PCA section.
For simplicity, we will call the content of the class-discriminatory information
discriminability.

>>> tot = sum(eigen_vals.real)
>>> discr = [(i / tot) for i in sorted(eigen_vals.real, reverse=True)]
>>> cum_discr = np.cumsum(discr)
>>> plt.bar(range(1, 14), discr, alpha=0.5, align='center',
... label='individual "discriminability"')
>>> plt.step(range(1, 14), cum_discr, where='mid',
... label='cumulative "discriminability"')
>>> plt.ylabel('"discriminability" ratio')
>>> plt.xlabel('Linear Discriminants')
>>> plt.ylim([-0.1, 1.1])
>>> plt.legend(loc='best')
>>> plt.show()

As we can see in the resulting figure, the first two linear discriminants capture
about 100 percent of the useful information in the Wine training dataset:

 "In LDA, the number of linear discriminants is at most c-1 where c is
the number of class labels, since the in-between class scatter matrix
S is the sum of c matrices with rank 1 or less. We can indeed
see ..."

B

Replace text with

 "In LDA, the number of linear discriminants is at most c-1 where c is
the number of class labels, since the in-between class scatter matrix
S is the sum of c matrices with rank 1 or less. We can indeed
see ..."

B

Replace text with

Chapter 5

[145]

Let's now stack the two most discriminative eigenvector columns to create the
transformation matrix W :

>>> w = np.hstack((eigen_pairs[0][1][:, np.newaxis].real,
... eigen_pairs[1][1][:, np.newaxis].real))
>>> print('Matrix W:\n', w)
Matrix W:
 [[-0.0707 -0.3778]
 [0.0359 -0.2223]
 [-0.0263 -0.3813]
 [0.1875 0.2955]
 [-0.0033 0.0143]
 [0.2328 0.0151]
 [-0.7719 0.2149]
 [-0.0803 0.0726]
 [0.0896 0.1767]
 [0.1815 -0.2909]
 [-0.0631 0.2376]
 [-0.3794 0.0867]
 [-0.3355 -0.586]]

Projecting samples onto the new feature
space
Using the transformation matrix W that we created in the previous subsection,
we can now transform the training data set by multiplying the matrices:

′ =X XW

>>> X_train_lda = X_train_std.dot(w)
>>> colors = ['r', 'b', 'g']
>>> markers = ['s', 'x', 'o']
>>> for l, c, m in zip(np.unique(y_train), colors, markers):
... plt.scatter(X_train_lda[y_train==l, 0],
... X_train_lda[y_train==l, 1],
... c=c, label=l, marker=m)
>>> plt.xlabel('LD 1')
>>> plt.ylabel('LD 2')
>>> plt.legend(loc='upper right')
>>> plt.show()

Matrix	W:
	[[0.0662	-0.3797]
	[-0.0386	-0.2206]
	[0.0217	-0.3816]
	[-0.184			0.3018]
	[0.0034		0.0141]
	[-0.2326		0.0234]
	[0.7747		0.1869]
	[0.0811		0.0696]
	[-0.0875		0.1796]
	[-0.185		-0.284]
	[0.066			0.2349]
	[0.3805		0.073]
	[0.3285	-0.5971]]

*	(-1),
*	(-1),

lower	right

Compressing Data via Dimensionality Reduction

[146]

As we can see in the resulting plot, the three wine classes are now linearly separable
in the new feature subspace:

LDA via scikit-learn
The step-by-step implementation was a good exercise for understanding the inner
workings of LDA and understanding the differences between LDA and PCA.
Now, let's take a look at the LDA class implemented in scikit-learn:

>>> from sklearn.lda import LDA
>>> lda = LDA(n_components=2)
>>> X_train_lda = lda.fit_transform(X_train_std, y_train)

Next, let's see how the logistic regression classifier handles the lower-dimensional
training dataset after the LDA transformation:

>>> lr = LogisticRegression()
>>> lr = lr.fit(X_train_lda, y_train)
>>> plot_decision_regions(X_train_lda, y_train, classifier=lr)
>>> plt.xlabel('LD 1')
>>> plt.ylabel('LD 2')
>>> plt.legend(loc='lower left')
>>> plt.show()

Please	replace	this	
figure	by	
05_lda2.png

Please	see	the
IPython	notebook
for	an	updated	figure

Chapter 5

[147]

Looking at the resulting plot, we see that the logistic regression model misclassifies
one of the samples from class 2:

By lowering the regularization strength, we could probably shift the decision
boundaries so that the logistic regression models classify all samples in the training
dataset correctly. However, let's take a look at the results on the test set:

>>> X_test_lda = lda.transform(X_test_std)
>>> plot_decision_regions(X_test_lda, y_test, classifier=lr)
>>> plt.xlabel('LD 1')
>>> plt.ylabel('LD 2')
>>> plt.legend(loc='lower left')
>>> plt.show()

As we can see in the resulting plot, the logistic regression classifier is able to get a
perfect accuracy score for classifying the samples in the test dataset by only using a
two-dimensional feature subspace instead of the original 13 Wine features:

Please	replace	this	figure	by	
05_lda3.png

Please	replace	this	figure	by	
05_lda4.png

Please	see	the
IPython	notebook
for	an	updated	figure

Please	see	the
IPython	notebook
for	an	updated	figure

Chapter 5

[�����]

We can think of φ as a function that creates nonlinear combinations of the original
features to map the original d -dimensional dataset onto a larger, k -dimensional
feature space. For example, if we had feature vector d∈Rx (x is a column vector
consisting of d features) with two dimensions ()2d = , a potential mapping onto
a 3D space could be as follows:

[]1 2 , Tx x=x

φ↓

2 2
1 1 2 2 , 2 ,

T
x x x x⎡ ⎤= ⎣ ⎦z

In other words, via kernel PCA we perform a nonlinear mapping that
transforms the data onto a higher-dimensional space and use standard PCA in this
higher-dimensional space to project the data back onto a lower-dimensional space
ZKHUH�WKH�VDPSOHV�FDQ�EH�VHSDUDWHG�E\�D�OLQHDU�FODVVLÀHU��XQGHU�WKH�FRQGLWLRQ�WKDW�WKH�
samples can be separated by density in the input space). However, one downside of
this approach is that it is computationally very expensive, and this is where we use
the kernel trick. Using the kernel trick, we can compute the similarity between two
high-dimension feature vectors in the original feature space.

Before we proceed with more details about using the kernel trick to tackle this
computationally expensive problem, let's look back at the standard PCA approach
that we implemented at the beginning of this chapter. We computed the covariance
between two features k and j as follows:

()() ()()
1

1 n
i i

jk j j k k
i
x x

n
σ µ µ

=

= − −∑

Since the standardizing of features centers them at mean zero, for instance, ()1 0i

i
x

n
=∑ j ,

we can simplify this equation as follows:

() ()

1

1 n
i i

jk j k
i
x x

n
σ

=

= ∑
This is of course also true for x_k. Maybe it’s
better to write µ = 0 and µ = 0.

j k

Compressing Data via Dimensionality Reduction

[150]

Note that the preceding equation refers to the covariance between two features;

now, let's write the general equation to calculate the covariance matrix ∑ :

() ()

1

1
n

T

in =

=∑ ∑ i ix x

Bernhard Scholkopf generalized this approach (B. Scholkopf, A. Smola, and
K.-R. Muller. Kernel Principal Component Analysis. pages 583–588, 1997) so that we
can replace the dot products between samples in the original feature space by the
nonlinear feature combinations via φ :

()() ()

1
()1 T

n

in
φ φ

=

=∑ ∑ i ix x

To obtain the eigenvectors—the principal components—from this covariance matrix,
we have to solve the following equation:

λΣ =v v

()() ()()
1

1
T

i

i
n

i

n
φ φ λ

=

⇒ =∑ x x v v

()() ()() () ()()
1 1

1 1 i i
n nT i i

i i
v
n n

φ φ φ
λ = =

⇒ = =∑ ∑x x v a x

Here, λ and v are the eigenvalues and eigenvectors of the covariance matrix , and
a can be obtained by extracting the eigenvectors of the kernel (similarity) matrix K
as we will see in the following paragraphs.

The derivation of the kernel matrix is as follows:

First, let's write the covariance matrix as in matrix notation, where ()Xφ is an
n k× -dimensional matrix:

()() ()() () ()
1

1 1
n T T

in n
φ φ φ φ

=

= =∑ ∑ i ix x X X

Sebastian Raschka

Chapter 5

[151]

Now, we can write the eigenvector equation as follows:

() ()() ()
1

1 n
T

i
v a
n

φ λφ
=

= =∑ i ix X a

Since λΣ =v v , we get:

() () () ()1 T T T

n
φ φ φ λφ=X X X a X a

Multiplying it by ()φ X on both sides yields the following result:

() () () () () ()1 T T T

n
φ φ φ φ λφ φ=X X X X a X X a

() ()1 T

n
φ φ λ⇒ =X X a a

1
n

λ⇒ =Ka a

Here, K is the similarity (kernel) matrix:

() ()Tφ φ=K X X

As we recall from the SVM section in Chapter 3, A Tour of Machine Learning Classifiers
Using Scikit-learn, we use the kernel trick to avoid calculating the pairwise dot
products of the samples x under φ explicitly by using a kernel function K so that
we don't need to calculate the eigenvectors explicitly:

() ()() ()() ()(),
Ti j i jk φ φ=x x x x

In other words, what we obtain after kernel PCA are the samples already projected
onto the respective components rather than constructing a transformation matrix as
in the standard PCA approach. Basically, the kernel function (or simply kernel) can
be understood as a function that calculates a dot product between two vectors—a
measure of similarity.

Sebastian Raschka

Sebastian Raschka

Chapter 5

[153]

We do this for each pair of samples:

() ()() () ()() () ()()
() ()() () ()() () ()()

() ()() () ()() () ()()

1 1 1 2 1

2 1 2 2 2

1 2

, , ,

, , ,

, , ,

n

n

n d n n

κ κ κ

κ κ

κ κ κ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

!

!

" " # "

!

x x x x x x

x x x x x x
K

x x x x x x

For example, if our dataset contains 100 training samples, the symmetric
kernel matrix of the pair-wise similarities would be 100 100× dimensional.

2. We center the kernel matrix k using the following equation:

1 1 1 1= − − +′ n n n nK K K K K

Here, 1n is an n n× - dimensional matrix (the same dimensions as the kernel
matrix) where all values are equal to 1

n
.

3. We collect the top k eigenvectors of the centered kernel matrix based on
their corresponding eigenvalues, which are ranked by decreasing magnitude.
In contrast to standard PCA, the eigenvectors are not the principal
component axes but the samples projected onto those axes.

At this point, you may be wondering why we need to center the kernel matrix in the
second step. We previously assumed that we are working with standardized data,
where all features have mean zero when we formulated the covariance matrix and
replaced the dot products by the nonlinear feature combinations via φ .Thus, the
centering of the kernel matrix in the second step becomes necessary, since we do
not compute the new feature space explicitly and we cannot guarantee that the new
feature space is also centered at zero.

In the next section, we will put those three steps into action by implementing a
kernel PCA in Python.

(n)(n)

Learning Best Practices for Model Evaluation and Hyperparameter Tuning

[188]

In nested cross-validation, we have an outer k-fold cross-validation loop to split the
data into training and test folds, and an inner loop is used to select the model using
k-fold cross-validation on the training fold. After model selection, the test fold is then
used to evaluate the model performance. The following figure explains the concept
of nested cross-validation with five outer and two inner folds, which can be useful
for large data sets where computational performance is important; this particular
type of nested cross-validation is also known as 5x2 cross-validation:

In scikit-learn, we can perform nested cross-validation as follows:

>>> gs = GridSearchCV(estimator=pipe_svc,
... param_grid=param_grid,
... scoring='accuracy',
 ... cv=10,
 ... n_jobs=-1)
>>> scores = cross_val_score(gs, X, y, scoring='accuracy', cv=5)
>>> print('CV accuracy: %.3f +/- %.3f' % (
... np.mean(scores), np.std(scores)))
CV accuracy: 0.978 +/- 0.012

remove indent 5,

note that the CV accuracy score is still
correct (e.g., see code in the ipynb file)

X_train,	y_train

Note:	Optionally,	you	
could	use	cv=2	here	to	
produce
the	5	x	2	nested	CV	
that	is	shown	in	the	
figure.

remove indent 5,

note that the CV accuracy score is still
correct (e.g., see code in the ipynb file)

X_train,	y_train

Note:	Optionally,	you	
could	use	cv=2	here	to	
produce
the	5	x	2	nested	CV	
that	is	shown	in	the	
figure.

remove indent 5,

note that the CV accuracy score is still
correct (e.g., see code in the ipynb file)

X_train,	y_train

Note:	Optionally,	you	
could	use	cv=2	here	to	
produce
the	5	x	2	nested	CV	
that	is	shown	in	the	
figure.

remove indent 5,

note that the CV accuracy score is still
correct (e.g., see code in the ipynb file)

X_train,	y_train

Note:	Optionally,	you	
could	use	cv=2	here	to	
produce
the	5	x	2	nested	CV	
that	is	shown	in	the	
figure.

Learning Best Practices for Model Evaluation and Hyperparameter Tuning

[188]

In nested cross-validation, we have an outer k-fold cross-validation loop to split the
data into training and test folds, and an inner loop is used to select the model using
k-fold cross-validation on the training fold. After model selection, the test fold is then
used to evaluate the model performance. The following figure explains the concept
of nested cross-validation with five outer and two inner folds, which can be useful
for large data sets where computational performance is important; this particular
type of nested cross-validation is also known as 5x2 cross-validation:

In scikit-learn, we can perform nested cross-validation as follows:

>>> gs = GridSearchCV(estimator=pipe_svc,
... param_grid=param_grid,
... scoring='accuracy',
... cv=2,
... n_jobs=-1)
>>> scores = cross_val_score(gs, X_train, y_train, scoring='accuracy',
cv=5)
>>> print('CV accuracy: %.3f +/- %.3f' % (
... np.mean(scores), np.std(scores)))
CV accuracy: 0.978 +/- 0.012

0.965 +/- 0.025

Chapter 6

[189]

The returned average cross-validation accuracy gives us a good estimate of what
to expect if we tune the hyperparameters of a model and then use it on unseen data.
For example, we can use the nested cross-validation approach to compare an
SVM model to a simple decision tree classifier; for simplicity, we will only tune
its depth parameter:

>>> from sklearn.tree import DecisionTreeClassifier
>>> gs = GridSearchCV(
... estimator=DecisionTreeClassifier(random_state=0),
... param_grid=[
... {'max_depth': [1, 2, 3, 4, 5, 6, 7, None]}],
... scoring='accuracy',
... cv=5)
>>> scores = cross_val_score(gs,
... X_train,
... y_train,
... scoring='accuracy',
... cv=5)
>>> print('CV accuracy: %.3f +/- %.3f' % (
... np.mean(scores), np.std(scores)))
CV accuracy: 0.908 +/- 0.045

As we can see here, the nested cross-validation performance of the SVM
model (97.8 percent) is notably better than the performance of the decision tree
(90.8 percent). Thus, we'd expect that it might be the better choice for classifying
new data that comes from the same population as this particular dataset.

Looking at different performance
evaluation metrics
In the previous sections and chapters, we evaluated our models using the model
accuracy, which is a useful metric to quantify the performance of a model in general.
However, there are several other performance metrics that can be used to measure a
model's relevance, such as precision, recall, and the F1-score.

2

0.921 +/- 0.029

Chapter 6

[191]

>>> plt.xlabel('predicted label')
>>> plt.ylabel('true label')
>>> plt.show()

Now, the confusion matrix plot as shown here should make the results a little bit
easier to interpret:

Assuming that class 1 (malignant) is the positive class in this example, our model
correctly classified 71 of the samples that belong to class 0 (false negatives) and 40
samples that belong to class 1 (true positives), respectively. However, our model
also incorrectly misclassified 2 samples from class 0 as class 1 (false negatives), and it
predicted that 1 sample is benign although it is a malignant tumor (false positive). In
the next section, we will learn how we can use this information to calculate various
different error metrics.

Optimizing the precision and recall of a
classification model
Both the prediction error (ERR) and accuracy (ACC) provide general information
about how many samples are misclassified. The error can be understood as the
sum of all false predictions divided by the number of total predications, and the
accuracy is calculated as the sum of correct predictions divided by the total number
of predictions, respectively:

FP FNERR
FP FN TP TN

+=
+ + +

However, our model also incorrectly misclassified 1 sample from class
0 as class 1 (false positive), and it predicted that 2 samples are benign
although it is a malignant tumor (false negatives).

true

Learning Best Practices for Model Evaluation and Hyperparameter Tuning

[196]

In the preceding code example, we used the already familiar StratifiedKFold class
from scikit-learn and calculated the ROC performance of the LogisticRegression
classifier in our pipe_lr pipeline using the roc_curve function from the
sklearn.metrics module separately for each iteration. Furthermore, we
interpolated the average ROC curve from the three folds via the interp function
that we imported from SciPy and calculated the area under the curve via the auc
function. The resulting ROC curve indicates that there is a certain degree of variance
between the different folds, and the average ROC AUC (0.75) falls between a perfect
score (1.0) and random guessing (0.5):

If we are just interested in the ROC AUC score, we could also directly import the
roc_auc_score function from the sklearn.metrics submodule. The following code
calculates the classifier's ROC AUC score on the independent test dataset after fitting
it on the two-feature training set:

>>> pipe_svc = pipe_svc.fit(X_train2, y_train)
>>> y_pred2 = pipe_svc.predict(X_test[:, [4, 14]])

All	“pipe_svc”	should	be	
replaced	by	“pipe_lr”

Chapter 6

[197]

>>> from sklearn.metrics import roc_auc_score
>>> from sklearn.metrics import accuracy_score
>>> print('ROC AUC: %.3f' % roc_auc_score(
... y_true=y_test, y_score=y_pred2))
ROC AUC: 0.671

>>> print('Accuracy: %.3f' % accuracy_score(
... y_true=y_test, y_pred=y_pred2))
Accuracy: 0.728

Reporting the performance of a classifier as the ROC AUC can yield further insights
in a classifier's performance with respect to imbalanced samples. However, while
the accuracy score can be interpreted as a single cut-off point on a ROC curve, A. P.
Bradley showed that the ROC AUC and accuracy metrics mostly agree with each
other (A. P. Bradley. The Use of the Area Under the ROC Curve in the Evaluation of
Machine Learning Algorithms. Pattern recognition, 30(7):1145–1159, 1997).

The scoring metrics for multiclass
classification
The scoring metrics that we discussed in this section are specific to binary
classification systems. However, scikit-learn also implements macro and micro
averaging methods to extend those scoring metrics to multiclass problems via
One vs. All (OvA) classification. The micro-average is calculated from the individual
true positives, true negatives, false positives, and false negatives of the system.
For example, the micro-average of the precision score in a k-class system can be
calculated as follows:

1

1 1

k
micro

k k

TP TPPRE
TP TP FP FP

+ +=
+ + + + +

...
... ...

The macro-average is simply calculated as the average scores of the different systems:

1 k
macro

PRE PREPRE
k

+ +=
...

Micro-averaging is useful if we want to weight each instance or prediction equally,
whereas macro-averaging weights all classes equally to evaluate the overall
performance of a classifier with regard to the most frequent class labels.

0.711

0.662

Learning Best Practices for Model Evaluation and Hyperparameter Tuning

[198]

If we are using binary performance metrics to evaluate multiclass classification
models in scikit-learn, a normalized or weighted variant of the macro-average is
used by default. The weighted macro-average is calculated by weighting the score of
each class label by the number of true instances when calculating the average. The
weighted macro-average is useful if we are dealing with class imbalances, that is,
different numbers of instances for each label.

While the weighted macro-average is the default for multiclass problems in
scikit-learn, we can specify the averaging method via the average parameter
inside the different scoring functions that we import from the sklean.metrics
module, for example, the precision_score or make_scorer functions:

>>> pre_scorer = make_scorer(score_func=precision_score,
... pos_label=1,
... greater_is_better=True,
... average='micro')

Summary
In the beginning of this chapter, we discussed how to chain different transformation
techniques and classifiers in convenient model pipelines that helped us to train and
evaluate machine learning models more efficiently. We then used those pipelines to
perform k-fold cross-validation, one of the essential techniques for model selection
and evaluation. Using k-fold cross-validation, we plotted learning and validation
curves to diagnose the common problems of learning algorithms, such as overfitting
and underfitting. Using grid search, we further fine-tuned our model. We concluded
this chapter by looking at a confusion matrix and various different performance
metrics that can be useful to further optimize a model's performance for a specific
problem task. Now, we should be well-equipped with the essential techniques to
build supervised machine learning models for classification successfully.

In the next chapter, we will take a look at ensemble methods, methods that allow
us to combine multiple models and classification algorithms to boost the predictive
performance of a machine learning system even further.

“sklearn”	instead	of	
“sklean”

Learning Best Practices for Model Evaluation and Hyperparameter Tuning

[194]

Similar to ROC curves, we can compute precision-recall curves for the
different probability thresholds of a classifier. A function for plotting
those precision-recall curves is also implemented in scikit-learn and is
documented at http://scikit-learn.org/stable/modules/
generated/sklearn.metrics.precision_recall_curve.html.

By executing the following code example, we will plot an ROC curve of a classifier
that only uses two features from the Breast Cancer Wisconsin dataset to predict
whether a tumor is benign or malignant. Although we are going to use the
same logistic regression pipeline that we defined previously, we are making the
classification task more challenging for the classifier so that the resulting ROC curve
becomes visually more interesting. For similar reasons, we are also reducing the
number of folds in the StratifiedKFold validator to three. The code is as follows:

>>> from sklearn.metrics import roc_curve, auc
>>> from scipy import interp
>>> X_train2 = X_train[:, [4, 14]]
>>> cv = StratifiedKFold(y_train,
... n_folds=3,
... random_state=1)
>>> fig = plt.figure(figsize=(7, 5))
>>> mean_tpr = 0.0
>>> mean_fpr = np.linspace(0, 1, 100)
>>> all_tpr = []

>>> for i, (train, test) in enumerate(cv):
... probas = pipe_lr.fit(X_train2[train],
>>> y_train[train]).predict_proba(X_train2[test])
... fpr, tpr, thresholds = roc_curve(y_train[test],

>>>	pipe_lr	=	Pipeline([('scl',	StandardScaler()),
...																			('pca',	PCA(n_components=2)),
...																			('clf',	LogisticRegression(penalty='l2',	
...																																														random_state=0,	
...																																														C=100.0))])

Please	insert	these	
lines	here

Chapter 7

[221]

To see bagging in action, let's create a more complex classification problem using
the Wine dataset that we introduced in Chapter 4, Building Good Training Sets – Data
Preprocessing. Here, we will only consider the Wine classes 2 and 3, and we select two
features: Alcohol and Hue.

>>> import pandas as pd
>>> df_wine = pd.read_csv('https://archive.ics.uci.edu/ml/machine-
learning-databases/wine/wine.data', header=None)
>>> df_wine.columns = ['Class label', 'Alcohol',
... 'Malic acid', 'Ash',
... 'Alcalinity of ash',
... 'Magnesium', 'Total phenols',
... 'Flavanoids', 'Nonflavanoid phenols',
... 'Proanthocyanins',
... 'Color intensity', 'Hue',
... 'OD280/OD315 of diluted wines',
... 'Proline']
>>> df_wine = df_wine[df_wine['Class label'] != 1]
>>> y = df_wine['Class label'].values
>>> X = df_wine[['Alcohol', 'Hue']].values

Next we encode the class labels into binary format and split the dataset into
60 percent training and 40 percent test set, respectively:

>>> from sklearn.preprocessing import LabelEncoder
>>> from sklearn.cross_validation import train_test_split
>>> le = LabelEncoder()
>>> y = le.fit_transform(y)
>>> X_train, X_test, y_train, y_test =\
... train_test_split(X, y,
... test_size=0.40,
... random_state=1)

A BaggingClassifier algorithm is already implemented in scikit-learn, which we
can import from the ensemble submodule. Here, we will use an unpruned decision
tree as the base classifier and create an ensemble of 500 decision trees fitted on
different bootstrap samples of the training dataset:

>>> from sklearn.ensemble import BaggingClassifier
>>> tree = DecisionTreeClassifier(criterion='entropy',
... max_depth=None)
>>> bag = BaggingClassifier(base_estimator=tree,

I	forgot	a	
“random_state=1”	
here,	this	should	be	
like	shown	below:

>>>	tree	=	DecisionTreeClassifier(criterion='entropy',
...																																max_depth=None,
...																																random_state=1)

Combining Different Models for Ensemble Learning

[222]

... n_estimators=500,

... max_samples=1.0,

... max_features=1.0,

... bootstrap=True,

... bootstrap_features=False,

... n_jobs=1,

... random_state=1)

Next we will calculate the accuracy score of the prediction on the training and test
dataset to compare the performance of the bagging classifier to the performance of a
single unpruned decision tree:

>>> from sklearn.metrics import accuracy_score
>>> tree = tree.fit(X_train, y_train)
>>> y_train_pred = tree.predict(X_train)
>>> y_test_pred = tree.predict(X_test)
>>> tree_train = accuracy_score(y_train, y_train_pred)
>>> tree_test = accuracy_score(y_test, y_test_pred)
>>> print('Decision tree train/test accuracies %.3f/%.3f'
... % (tree_train, tree_test))
Decision tree train/test accuracies 1.000/0.854

Based on the accuracy values that we printed by executing the preceding
code snippet, the unpruned decision tree predicts all class labels of the training
samples correctly; however, the substantially lower test accuracy indicates high
variance (overfitting) of the model:

>>> bag = bag.fit(X_train, y_train)
>>> y_train_pred = bag.predict(X_train)
>>> y_test_pred = bag.predict(X_test)
>>> bag_train = accuracy_score(y_train, y_train_pred)
>>> bag_test = accuracy_score(y_test, y_test_pred)
>>> print('Bagging train/test accuracies %.3f/%.3f'
... % (bag_train, bag_test))
Bagging train/test accuracies 1.000/0.896

Although the training accuracies of the decision tree and bagging classifier are
similar on the training set (both 1.0), we can see that the bagging classifier has a
slightly better generalization performance as estimated on the test set. Next let's
compare the decision regions between the decision tree and bagging classifier:

>>> x_min = X_train[:, 0].min() - 1
>>> x_max = X_train[:, 0].max() + 1
>>> y_min = X_train[:, 1].min() - 1
>>> y_max = X_train[:, 1].max() + 1
>>> xx, yy = np.meshgrid(np.arange(x_min, x_max, 0.1),
... np.arange(y_min, y_max, 0.1))

0.833

Combining Different Models for Ensemble Learning

[226]

To walk through the AdaBoost illustration step by step, we start with subfigure 1,
which represents a training set for binary classification where all training samples
are assigned equal weights. Based on this training set, we train a decision stump
(shown as a dashed line) that tries to classify the samples of the two classes (triangles
and circles) as well as possible by minimizing the cost function (or the impurity score
in the special case of decision tree ensembles). For the next round (subfigure 2),
we assign a larger weight to the two previously misclassified samples (circles).
Furthermore, we lower the weight of the correctly classified samples. The next
decision stump will now be more focused on the training samples that have the
largest weights, that is, the training samples that are supposedly hard to classify.
The weak learner shown in subfigure 2 misclassifies three different samples from
the circle-class, which are then assigned a larger weight as shown in subfigure 3.
Assuming that our AdaBoost ensemble only consists of three rounds of boosting, we
would then combine the three weak learners trained on different reweighted training
subsets by a weighted majority vote, as shown in subfigure 4.

Now that have a better understanding behind the basic concept of AdaBoost, let's
take a more detailed look at the algorithm using pseudo code. For clarity, we will
denote element-wise multiplication by the cross symbol ()× and the dot product
between two vectors by a dot symbol ()⋅ , respectively. The steps are as follows:

1. Set weight vector w to uniform weights where 1ii
w =∑

2. For j in m boosting rounds, do the following:
3. Train a weighted weak learner: (train , ,jC = X y w).
4. Predict class labels: ()ˆ predict ,jy C= X .
5. Compute weighted error rate: ()ˆε = ⋅ ==w y y .

6. Compute coefficient: 10.5logj
εα
ε
−= .

7. Update weights: ()ˆ: exp jα= × − × ×w w y y .

8. Normalize weights to sum to 1: : ii
w= ∑w w / .

9. Compute final prediction: ()()()1
ˆ predict , 0m

j jj
C

=
= × >∑y Xα .

Note that the expression ()ˆ ==y y in step 5 refers to a vector of 1s and 0s, where a 1 is
assigned if the prediction is correct and 0 is assigned otherwise.

“incorrect” instead of “correct”

No
No
No

ε = 0.1 × 0 + 0.1 × 0 + 0.1 × 0 + 0.1 × 0 + 0.1 × 0 + 0.1 × 0 + 0.1 × 1 + 0.1 × 1 + 0.1 × 1 + 0.1 × 0 = 3/10 = 0.3

No
No
No

ε = 0.1 × 0 + 0.1 × 0 + 0.1 × 0 + 0.1 × 0 + 0.1 × 0 + 0.1 × 0 + 0.1 × 1 + 0.1 × 1 + 0.1 × 1 + 0.1 × 0 = 3/10 = 0.3

Combining Different Models for Ensemble Learning

[228]

After we have computed the coefficient jα we can now update the weight vector
using the following equation:

()ˆ: exp jα= × − × ×w w y y

Here, ˆ ×y y is an element-wise multiplication between the vectors of the predicted
and true class labels, respectively. Thus, if a prediction ˆiy is correct, ˆi iy y× will have a
positive sign so that we decrease the ith weight since jα is a positive number as well:

()0.1 exp 0.424 1 1 0.066× − × × ≈

Similarly, we will downweight the ith weight if ˆiy predicted the label incorrectly
like this:

()()0.1 exp 0.424 1 1 0.153× − × × − ≈

Or like this:

() ()()0.1 exp 0.424 1 1 0.153× − × − × ≈

After we update each weight in the weight vector, we normalize the weights so
that they sum up to 1 (step 8):

:
ii
w

=
∑

ww

Here, 7 0.065 3 0.153 0.914ii
w = × + × =∑ .

Thus, each weight that corresponds to a correctly classified sample will be
reduced from the initial value of 0.1 to 0.066 / 0.914 0.072≈ for the next round
of boosting. Similarly, the weights of each incorrectly classified sample will
increase from 0.1 to 0.153 / 0.914 0.167≈ .

increase

0.065

0.065/0.914	≈	0.071

Chapter 7

[229]

This was AdaBoost in a nutshell. Skipping to the more practical part, let's now train
an AdaBoost ensemble classifier via scikit-learn. We will use the same Wine subset
that we used in the previous section to train the bagging meta-classifier. Via the
base_estimator attribute, we will train the AdaBoostClassifier on 500 decision
tree stumps:

>>> from sklearn.ensemble import AdaBoostClassifier
>>> tree = DecisionTreeClassifier(criterion='entropy',
... max_depth=1)
>>> ada = AdaBoostClassifier(base_estimator=tree,
... n_estimators=500,
... learning_rate=0.1,
... random_state=0)
>>> tree = tree.fit(X_train, y_train)
>>> y_train_pred = tree.predict(X_train)
>>> y_test_pred = tree.predict(X_test)
>>> tree_train = accuracy_score(y_train, y_train_pred)
>>> tree_test = accuracy_score(y_test, y_test_pred)
>>> print('Decision tree train/test accuracies %.3f/%.3f'
... % (tree_train, tree_test))
Decision tree train/test accuracies 0.845/0.854

As we can see, the decision tree stump seems to overfit the training data in contrast
with the unpruned decision tree that we saw in the previous section:

>>> ada = ada.fit(X_train, y_train)
>>> y_train_pred = ada.predict(X_train)
>>> y_test_pred = ada.predict(X_test)
>>> ada_train = accuracy_score(y_train, y_train_pred)
>>> ada_test = accuracy_score(y_test, y_test_pred)
>>> print('AdaBoost train/test accuracies %.3f/%.3f'
... % (ada_train, ada_test))
AdaBoost train/test accuracies 1.000/0.875

As we can see, the AdaBoost model predicts all class labels of the training set
correctly and also shows a slightly improved test set performance compared to the
decision tree stump. However, we also see that we introduced additional variance by
our attempt to reduce the model bias.

I	forgot	a	
“random_state=0”	
here,	this	should	be	
like	shown	below:

>>>	tree	=	DecisionTreeClassifier(criterion='entropy',
...																																max_depth=None,
...																																random_state=0)

tends	to	underfit

Applying Machine Learning to Sentiment Analysis

[234]

In this chapter, we will be working with a large dataset of movie reviews from the
Internet Movie Database (IMDb) that has been collected by Maas et al. (A. L. Maas,
R. E. Daly, P. T. Pham, D. Huang, A. Y. Ng, and C. Potts. Learning Word Vectors for
Sentiment Analysis. In the proceedings of the 49th Annual Meeting of the Association
for Computational Linguistics: Human Language Technologies, pages 142–150,
Portland, Oregon, USA, June 2011. Association for Computational Linguistics). The
movie review dataset consists of 50,000 polar movie reviews that are labeled as either
positive or negative; here, positive means that a movie was rated with more than six
stars on IMDb, and negative means that a movie was rated with fewer than five
stars on IMDb. In the following sections, we will learn how to extract meaningful
information from a subset of these movie reviews to build a machine learning
model that can predict whether a certain reviewer liked or disliked a movie.

A compressed archive of the movie review dataset (84.1 MB) can be downloaded
from http://ai.stanford.edu/~amaas/data/sentiment/ as a gzip-compressed
tarball archive:

• If you are working with Linux or Mac OS X, you can open a new terminal
window, use cd to go into the download directory, and execute tar -zxf
aclImdb_v1.tar.gz to decompress the dataset

• If you are working with Windows, you can download a free archiver
such as 7-Zip (http://www.7-zip.org) to extract the files from the
download archive

Having successfully extracted the dataset, we will now assemble the individual
text documents from the decompressed download archive into a single CSV file.
In the following code section, we will be reading the movie reviews into a pandas
DataFrame object, which can take up to 10 minutes on a standard desktop computer.
To visualize the progress and estimated time until completion, we will use the
PyPrind (Python Progress Indicator, https://pypi.python.org/pypi/PyPrind/)
package that I developed several years ago for such purposes. PyPrind can be
installed by executing the command: pip install pyprind.

>>> import pyprind
>>> import pandas as pd
>>> import os
>>> pbar = pyprind.ProgBar(50000)
>>> labels = {'pos':1, 'neg':0}
>>> df = pd.DataFrame()
>>> for s in ('test', 'train'):
... for l in ('pos', 'neg'):
... path ='./aclImdb/%s/%s' % (s, l)
... for file in os.listdir(path):
... with open(os.path.join(path, file), 'r') as infile:
...								with	open(os.path.join(path,	file),	‘r’,	encoding=‘utf-8’)	as	infile:

Applying Machine Learning to Sentiment Analysis

[238]

Assessing word relevancy via term
frequency-inverse document frequency
When we are analyzing text data, we often encounter words that occur across
multiple documents from both classes. Those frequently occurring words typically
don't contain useful or discriminatory information. In this subsection, we will learn
about a useful technique called term frequency-inverse document frequency
(tf-idf) that can be used to downweight those frequently occurring words in the
feature vectors. The tf-idf can be defined as the product of the term frequency and
the inverse document frequency:

() () ()tf-idf t,d , idf t,dtf t d= ×

Here the tf(t, d) is the term frequency that we introduced in the previous section,
and the inverse document frequency idf(t, d) can be calculated as:

() ()
idf t,d ,

1+df d,t
dnlog=

where dn is the total number of documents, and df(d, t) is the number of documents
d that contain the term t. Note that adding the constant 1 to the denominator is
optional and serves the purpose of assigning a non-zero value to terms that occur in
all training samples; the log is used to ensure that low document frequencies are not
given too much weight.

Scikit-learn implements yet another transformer, the TfidfTransformer, that
takes the raw term frequencies from CountVectorizer as input and transforms
them into tf-idfs:

>>> from sklearn.feature_extraction.text import TfidfTransformer
>>> tfidf = TfidfTransformer()
>>> np.set_printoptions(precision=2)
>>> print(tfidf.fit_transform(count.fit_transform(docs)).toarray())
[[0. 0.43 0.56 0.56 0. 0.43 0.]
 [0. 0.43 0. 0. 0.56 0.43 0.56]
 [0.4 0.48 0.31 0.31 0.31 0.48 0.31]]

Chapter 8

[239]

As we saw in the previous subsection, the word is had the largest term frequency
in the 3rd document, being the most frequently occurring word. However, after
transforming the same feature vector into tf-idfs, we see that the word is is
now associated with a relatively small tf-idf (0.31) in document 3 since it is
also contained in documents 1 and 2 and thus is unlikely to contain any useful,
discriminatory information.

However, if we'd manually calculated the tf-idfs of the individual terms in our
feature vectors, we'd have noticed that the TfidfTransformer calculates the tf-idfs
slightly differently compared to the standard textbook equations that we defined
earlier. The equations for the idf and tf-idf that were implemented in scikit-learn are:

() ()
1idf t,d

1 df d,t
dnlog +=

+

The tf-idf equation that was implemented in scikit-learn is as follows:

() () ()()tf-idf t,d t,d idf t,d 1tf= × +

While it is also more typical to normalize the raw term frequencies before
calculating the tf-idfs, the TfidfTransformer normalizes the tf-idfs directly.
By default (norm='l2'), scikit-learn's TfidfTransformer applies the
L2-normalization, which returns a vector of length 1 by dividing an
un-normalized feature vector v by its L2-norm:

()1/22 2 2 22 1 2
1

norm n
n ii

v v vv
v v v v v

=

= = =
+ + + ∑!

To make sure that we understand how TfidfTransformer works, let us walk
through an example and calculate the tf-idf of the word is in the 3rd document.

The word is has a term frequency of 2 (tf = 2) in document 3, and the document
frequency of this term is 3 since the term is occurs in all three documents (df = 3).
Thus, we can calculate the idf as follows:

() 1 3"is",d3 log 0
1 3

idf += =
+

should be 0.48,
like we
manually compute
it on the following
page

Applying Machine Learning to Sentiment Analysis

[240]

Now in order to calculate the tf-idf, we simply need to add 1 to the inverse document
frequency and multiply it by the term frequency:

() ()tf-idf " ",d3 2 0 1 2is = × + =

If we repeated these calculations for all terms in the 3rd document, we'd obtain the
following tf-idf vectors: [1.69, 2.00, 1.29, 1.29, 1.29, 2.00, and 1.29]. However, we
notice that the values in this feature vector are different from the values that we
obtained from the TfidfTransformer that we used previously. The final step that
we are missing in this tf-idf calculation is the L2-normalization, which can be applied
as follows:

() []

[]

2 2 2 2 2 2 2

1.69, 2.00, 1.29, 1.29, 1.29, 2.00, 1.29
tf-idf " ",d3

1.69 2.00 1.29 1.29 1.29 2.00 1.29
0.40, 0.48, 0.31, 0.31, 0.31, 0.48, 0.31

normis
+ + + + + +

=

As we can see, the results now match the results returned by scikit-learn's
TfidfTransformer. Since we now understand how tf-idfs are calculated, let us
proceed to the next sections and apply those concepts to the movie review dataset.

Cleaning text data
In the previous subsections, we learned about the bag-of-words model, term
frequencies, and tf-idfs. However, the first important step—before we build our
bag-of-words model—is to clean the text data by stripping it of all unwanted
characters. To illustrate why this is important, let us display the last 50 characters
from the first document in the reshuffled movie review dataset:

>>> df.loc[0, 'review'][-50:]
'is seven.

Title (Brazil): Not Available'

As we can see here, the text contains HTML markup as well as punctuation and
other non-letter characters. While HTML markup does not contain much useful
semantics, punctuation marks can represent useful, additional information in certain
NLP contexts. However, for simplicity, we will now remove all punctuation marks
but only keep emoticon characters such as ":)" since those are certainly useful for
sentiment analysis. To accomplish this task, we will use Python's regular expression
(regex) library, re, as shown here:

>>> import re
>>> def preprocessor(text):

Here,	it	should	be	either	
tf-idf(“is”,	d3)	=	0.48
or	
tf-idf(d3)	=	[0.40,	0.48,	0.31,	0.31,	0.31,	0.48,	0.31]	

Here,	it	should	be	either	
tf-idf(“is”,	d3)	=	0.48
or	
tf-idf(d3)	=	[0.40,	0.48,	0.31,	0.31,	0.31,	0.48,	0.31]	

Here,	it	should	be	either	
tf-idf(“is”,	d3)	=	0.48
or	
tf-idf(d3)	=	[0.40,	0.48,	0.31,	0.31,	0.31,	0.48,	0.31]	

Here,	it	should	be	either	
tf-idf(“is”,	d3)	=	0.48
or	
tf-idf(d3)	=	[0.40,	0.48,	0.31,	0.31,	0.31,	0.48,	0.31]	

Chapter 8

[241]

... text = re.sub('<[^>]*>', '', text)

... emoticons = re.findall('(?::|;|=)(?:-)?(?:\)|\(|D|P)', text)

... text = re.sub('[\W]+', ' ', text.lower()) + \
 '.join(emoticons).replace('-', '')
... return text

Via the first regex <[^>]*> in the preceding code section, we tried to remove the
entire HTML markup that was contained in the movie reviews. Although many
programmers generally advise against the use of regex to parse HTML, this regex
should be sufficient to clean this particular dataset. After we removed the HTML
markup, we used a slightly more complex regex to find emoticons, which we
temporarily stored as emoticons. Next we removed all non-word characters from
the text via the regex [\W]+, converted the text into lowercase characters, and
eventually added the temporarily stored emoticons to the end of the processed
document string. Additionally, we removed the nose character (-) from the emoticons
for consistency.

Although regular expressions offer an efficient and convenient
approach to searching for characters in a string, they also come with
a steep learning curve. Unfortunately, an in-depth discussion of
regular expressions is beyond the scope of this book. However, you
can find a great tutorial on the Google Developers portal at https://
developers.google.com/edu/python/regular-expressions or
check out the official documentation of Python's re module at https://
docs.python.org/3.4/library/re.html.

Although the addition of the emoticon characters to the end of the cleaned document
strings may not look like the most elegant approach, the order of the words doesn't
matter in our bag-of-words model if our vocabulary only consists of 1-word tokens.
But before we talk more about splitting documents into individual terms, words, or
tokens, let us confirm that our preprocessor works correctly:

>>> preprocessor(df.loc[0, 'review'][-50:])
'is seven title brazil not available'
>>> preprocessor("This :) is :(a test :-)!")
'this is a test :) :(:)'

Lastly, since we will make use of the cleaned text data over and over again during the
next sections, let us now apply our preprocessor function to all movie reviews in
our DataFrame:

>>> df['review'] = df['review'].apply(preprocessor)

should	be	2	
quotation	
marks:	‘’

should	be	2	
quotation	
marks:	‘’

should	be	2	
quotation	
marks:	‘’

should	be	2	
quotation	
marks:	‘’

should	be	2	
quotation	
marks:	‘’

should	be	2	
quotation	
marks:	‘’

should	be	2	
quotation	
marks:	‘’

should	be	2	
quotation	
marks:	‘’

should	be	2	
quotation	
marks:	‘’

should	be	2	
quotation	
marks:	‘’

should	be	2	
quotation	
marks:	‘’

should	be	2	
quotation	
marks:	‘’

should	be	2	
quotation	
marks:	‘’

should	be	2	
quotation	
marks:	‘’

should	be	2	
quotation	
marks:	‘’

should	be	2	
quotation	
marks:	‘’

should	be	2	
quotation	
marks:	‘’

should	be	2	
quotation	
marks:	‘’

should	be	2	
quotation	
marks:	‘’

should	be	2	
quotation	
marks:	‘’

should	be	2	
quotation	
marks:	‘’

should	be	2	
quotation	
marks:	‘’

should	be	2	
quotation	
marks:	‘’

should	be	2	
quotation	
marks:	‘’

should	be	2	
quotation	
marks:	‘’

should	be	2	
quotation	
marks:	‘’

should	be	2	
quotation	
marks:	‘’

should	be	2	
quotation	
marks:	‘’

should	be	2	
quotation	
marks:	‘’

should	be	2	
quotation	
marks:	‘’

should	be	2	
quotation	
marks:	‘’

should	be	2	
quotation	
marks:	‘’

Chapter 8

[245]

When we initialized the GridSearchCV object and its parameter grid using
the preceding code, we restricted ourselves to a limited number of parameter
combinations since the number of feature vectors, as well as the large vocabulary,
can make the grid search computationally quite expensive; using a standard Desktop
computer, our grid search may take up to 40 minutes to complete.

In the previous code example, we replaced the CountVectorizer and
TfidfTransformer from the previous subsection with the TfidfVectorizer,
which combines the latter transformer objects. Our param_grid consisted of two
parameter dictionaries. In the first dictionary, we used the TfidfVectorizer
with its default settings (use_idf=True, smooth_idf=True, and norm='l2') to
calculate the tf-idfs; in the second dictionary, we set those parameters to
use_idf=False, smooth_idf=False, and norm=None in order to train a model
based on raw term frequencies. Furthermore, for the logistic regression classifier
itself, we trained models using L2 and L1 regularization via the penalty parameter
and compared different regularization strengths by defining a range of values for
the inverse-regularization parameter C.

After the grid search has finished, we can print the best parameter set:

>>> print('Best parameter set: %s ' % gs_lr_tfidf.best_params_)
Best parameter set: {'clf__C': 10.0, 'vect__stop_words': None,
'clf__penalty': 'l2', 'vect__tokenizer': <function tokenizer at
0x7f6c704948c8>, 'vect__ngram_range': (1, 1)}

As we can see here, we obtained the best grid search results using the regular
tokenizer without Porter stemming, no stop-word library, and tf-idfs in combination
with a logistic regression classifier that uses L2 regularization with the regularization
strength C=10.0.

Using the best model from this grid search, let us print the 5-fold cross-validation
accuracy scores on the training set and the classification accuracy on the test dataset:

>>> print('CV Accuracy: %.3f'
... % gs_lr_tfidf.best_score_)
CV Accuracy: 0.897
>>> clf = gs_lr_tfidf.best_estimator_
>>> print('Test Accuracy: %.3f'
... % clf.score(X_test, y_test))
Test Accuracy: 0.899

The results reveal that our machine learning model can predict whether a movie
review is positive or negative with 90 percent accuracy.

average

Chapter 8

[247]

... + ' '.join(emoticons).replace('-', '')

... tokenized = [w for w in text.split() if w not in stop]

... return tokenized

Next we define a generator function, stream_docs, that reads in and returns one
document at a time:

>>> def stream_docs(path):
... with open(path, 'r') as csv:
... next(csv) # skip header
... for line in csv:
... text, label = line[:-3], int(line[-2])
... yield text, label

To verify that our stream_docs function works correctly, let us read in the first
document from the movie_data.csv file, which should return a tuple consisting of
the review text as well as the corresponding class label:

>>> next(stream_docs(path='./movie_data.csv'))
('"In 1974, the teenager Martha Moxley ... ',1)

We will now define a function, get_minibatch, that will take a document stream
from the stream_docs function and return a particular number of documents
specified by the size parameter:

>>> def get_minibatch(doc_stream, size):
... docs, y = [], []
... try:
... for _ in range(size):
... text, label = next(doc_stream)
... docs.append(text)
... y.append(label)
... except StopIteration:
... return None, None
... return docs, y

Unfortunately, we can't use the CountVectorizer for out-of-core learning since it
requires holding the complete vocabulary in memory. Also, the TfidfVectorizer
needs to keep the all feature vectors of the training dataset in memory to calculate
the inverse document frequencies. However, another useful vectorizer for text
processing implemented in scikit-learn is HashingVectorizer. HashingVectorizer
is data-independent and makes use of the Hashing trick via the 32-bit MurmurHash3
algorithm by Austin Appleby (https://sites.google.com/site/murmurhash/).

>>> from sklearn.feature_extraction.text import HashingVectorizer
>>> from sklearn.linear_model import SGDClassifier

with	open(path,	‘r’,	encoding=‘utf-8’)	as	csv:

Chapter 9

[259]

Now, let's take a look at the contents of the first_app.html file. If you are not
familiar with the HTML syntax yet, I recommend you visit http://www.w3schools.
com/html/default.asp for useful tutorials for learning the basics of HTML.

<!doctype html>
<html>
 <head>
 <title>First app</title>
 </head>
 <body>
 <div>Hi, this is my first Flask web app!</div>
 </body>
</html>

Here, we have simply filled an empty HTML template file with a div element
(a block level element) that contains the sentence: Hi, this is my first Flask
web app!. Conveniently, Flask allows us to run our apps locally, which is useful
for developing and testing web applications before we deploy them on a public
web server. Now, let's start our web application by executing the command from
the terminal inside the 1st_flask_app_1 directory:

python3 app.py

We should now see a line such as the following displayed in the terminal:

* Running on http://127.0.0.1:5000/

This line contains the address of our local server. We can now enter this address in
our web browser to see the web application in action. If everything has executed
correctly, we should now see a simple website with the content: Hi, this is my first
Flask web app!.

Form validation and rendering
In this subsection, we will extend our simple Flask web application with HTML
form elements to learn how to collect data from a user using the WTForms library
(https://wtforms.readthedocs.org/en/latest/), which can be installed via pip:

pip install wtforms

https://developer.mozilla.org/en-US/docs/Web/HTML

Chapter 9

[261]

app = Flask(__name__)

class HelloForm(Form):
 sayhello = TextAreaField('',[validators.DataRequired()])

@app.route('/')
def index():
 form = HelloForm(request.form)
 return render_template('first_app.html', form=form)

@app.route('/hello', methods=['POST'])
def hello():
 form = HelloForm(request.form)
 if request.method == 'POST' and form.validate():
 name = request.form['sayhello']
 return render_template('hello.html', name=name)
 return render_template('first_app.html', form=form)

if __name__ == '__main__':
 app.run(debug=True)

Using wtforms, we extended the index function with a text field that we will
embed in our start page using the TextAreaField class, which automatically checks
whether a user has provided valid input text or not. Furthermore, we defined a
new function, hello, which will render an HTML page hello.html if the form has
been validated. Here, we used the POST method to transport the form data to the
server in the message body. Finally, by setting the argument debug=True inside the
app.run method, we further activated Flask's debugger. This is a useful feature for
developing new web applications.

Now, we will implement a generic macro in the file _formhelpers.html via the
Jinja2 templating engine, which we will later import in our first_app.html file
to render the text field:

{% macro render_field(field) %}
 <dt>{{ field.label }}
 <dd>{{ field(**kwargs)|safe }}
 {% if field.errors %}
 <ul class=errors>
 {% for error in field.errors %}
 {{ error }}
 {% endfor %}

 {% endif %}
 </dd>
{% endmacro %}

</dd>
</dt>

Chapter 9

[267]

import HashingVectorizer from local dir
from vectorizer import vect

app = Flask(__name__)

######## Preparing the Classifier
cur_dir = os.path.dirname(__file__)
clf = pickle.load(open(os.path.join(cur_dir,
 'pkl_objects/classifier.pkl'), 'rb'))
db = os.path.join(cur_dir, 'reviews.sqlite')

def classify(document):
 label = {0: 'negative', 1: 'positive'}
 X = vect.transform([document])
 y = clf.predict(X)[0]
 proba = np.max(clf.predict_proba(X))
 return label[y], proba

def train(document, y):
 X = vect.transform([document])
 clf.partial_fit(X, [y])

def sqlite_entry(path, document, y):
 conn = sqlite3.connect(path)
 c = conn.cursor()
 c.execute("INSERT INTO review_db (review, sentiment, date)"\
 " VALUES (?, ?, DATETIME('now'))", (document, y))
 conn.commit()
 conn.close()

This first part of the app.py script should look very familiar to us by now. We simply
imported the HashingVectorizer and unpickled the logistic regression classifier.
Next, we defined a classify function to return the predicted class label as well
as the corresponding probability prediction of a given text document. The train
function can be used to update the classifier given that a document and a class label
are provided. Using the sqlite_entry function, we can store a submitted movie
review in our SQLite database along with its class label and timestamp for our
personal records. Note that the clf object will be reset to its original, pickled state if
we restart the web application. At the end of this chapter, you will learn how to use
the data that we collect in the SQLite database to update the classifier permanently.

	clf.predict_proba(X).max()

Embedding a Machine Learning Model into a Web Application

[270]

Here, we simply imported the same _formhelpers.html template that we defined
in the Form validation and rendering section earlier in this chapter. The render_field
function of this macro is used to render a TextAreaField where a user can provide a
movie review and submit it via the Submit review button displayed at the bottom of
the page. This TextAreaField is 30 columns wide and 10 rows tall.

Our next template, results.html, looks a little bit more interesting:

<!doctype html>
<html>
 <head>
 <title>Movie Classification</title>
 <link rel="stylesheet" href="{{ url_for('static',
 filename='style.css') }}">
 </head>
 <body>

<h3>Your movie review:</h3>
<div>{{ content }}</div>

<h3>Prediction:</h3>
<div>This movie review is {{ prediction }}
 (probability: {{ probability }}%).</div>

<div id='button'>
 <form action="/thanks" method="post">
 <input type=submit value='Correct' name='feedback_button'>
 <input type=submit value='Incorrect' name='feedback_button'>
 <input type=hidden value='{{ prediction }}' name='prediction'>
 <input type=hidden value='{{ content }}' name='review'>
 </form>
</div>

<div id='button'>
 <form action="/">
 <input type=submit value='Submit another review'>
 </form>
</div>

 </body>
</html>

class

class

Chapter 9

[271]

First, we inserted the submitted review as well as the results of the prediction in the
corresponding fields {{ content }}, {{ prediction }}, and {{ probability }}.
You may notice that we used the {{ content }} and {{ prediction }} placeholder
variables a second time in the form that contains the Correct and Incorrect buttons.
This is a workaround to POST those values back to the server to update the classifier
and store the review in case the user clicks on one of those two buttons. Furthermore,
we imported a CSS file (style.css) at the beginning of the results.html file. The
setup of this file is quite simple; it limits the width of the contents of this web app to
600 pixels and moves the Incorrect and Correct buttons labeled with the div id
button down by 20 pixels:

body{
 width:600px;
}
#button{
 padding-top: 20px;
}

This CSS file is merely a placeholder, so please feel free to adjust it to adjust the look
and feel of the web app to your liking.

The last HTML file we will implement for our web application is the thanks.html
template. As the name suggests, it simply provides a nice thank you message to the
user after providing feedback via the Correct or Incorrect button. Furthermore, we
put a Submit another review button at the bottom of this page, which will redirect
the user to the starting page. The contents of the thanks.html file are as follows:

<!doctype html>
<html>
 <head>
 <title>Movie Classification</title>
</head>
 <body>

<h3>Thank you for your feedback!</h3>
<div id='button'>
 <form action="/">
 <input type=submit value='Submit another review'>
 </form>
</div>

 </body>
</html>

.button	{

Embedding a Machine Learning Model into a Web Application

[274]

Updating the movie review classifier
While our predictive model is updated on-the-fly whenever a user provides
feedback about the classification, the updates to the clf object will be reset if the
web server crashes or restarts. If we reload the web application, the clf object
will be reinitialized from the classifier.pkl pickle file. One option to apply
the updates permanently would be to pickle the clf object once again after each
update. However, this would become computationally very inefficient with a
growing number of users and could corrupt the pickle file if users provide feedback
simultaneously. An alternative solution is to update the predictive model from the
feedback data that is being collected in the SQLite database. One option would be
to download the SQLite database from the PythonAnywhere server, update the clf
object locally on our computer, and upload the new pickle file to PythonAnywhere.
To update the classifier locally on our computer, we create an update.py script file
in the movieclassifier directory with the following contents:

import pickle
import sqlite3
import numpy as np
import os

import HashingVectorizer from local dir
from vectorizer import vect

def update_model(db_path, model, batch_size=10000):

 conn = sqlite3.connect(db_path)
 c = conn.cursor()
 c.execute('SELECT * from review_db')

 results = c.fetchmany(batch_size)
 while results:
 data = np.array(results)
 X = data[:, 0]
 y = data[:, 1].astype(int)

 classes = np.array([0, 1])
 X_train = vect.transform(X)
 clf.partial_fit(X_train, y, classes=classes)
 results = c.fetchmany(batch_size)

 conn.close()
 return None

model.partial_fit

return	model

Chapter 9

[275]

cur_dir = os.path.dirname(__file__)

clf = pickle.load(open(os.path.join(cur_dir,
 'pkl_objects',
 'classifier.pkl'), 'rb'))
db = os.path.join(cur_dir, 'reviews.sqlite')

update_model(db_path=db, model=clf, batch_size=10000)

Uncomment the following lines if you are sure that
you want to update your classifier.pkl file
permanently.

pickle.dump(clf, open(os.path.join(cur_dir,
'pkl_objects', 'classifier.pkl'), 'wb')
, protocol=4)

The update_model function will fetch entries from the SQLite database in batches of
10,000 entries at a time unless the database contains fewer entries. Alternatively, we
could also fetch one entry at a time by using fetchone instead of fetchmany, which
would be computationally very inefficient. Using the alternative fetchall method
could be a problem if we are working with large datasets that exceed the computer
or server's memory capacity.

Now that we have created the update.py script, we could also upload it to the
movieclassifier directory on PythonAnywhere and import the update_model
function in the main application script app.py to update the classifier from the
SQLite database every time we restart the web application. In order to do so, we just
need to add a line of code to import the update_model function from the update.py
script at the top of app.py:

import update function from local dir
from update import update_model

We then need to call the update_model function in the main application body:

…
if __name__ == '__main__':
 update_model(filepath=db, model=clf, batch_size=10000)
…

clf=update_model

clf	=	update_model(db_path=“db”

Chapter 10

[279]

The special case of one explanatory variable is also called simple linear regression,
but of course we can also generalize the linear regression model to multiple
explanatory variables. Hence, this process is called multiple linear regression:

0 0 1 1
0

n
T

m m i i
i

y w x w x w x w x w x
=

= + +…+ = =∑

Here, 0w is the y axis intercept with 0 1x = .

Exploring the Housing Dataset
Before we implement our first linear regression model, we will introduce a new
dataset, the Housing Dataset, which contains information about houses in the
suburbs of Boston collected by D. Harrison and D.L. Rubinfeld in 1978. The Housing
Dataset has been made freely available and can be downloaded from the UCI machine
learning repository at https://archive.ics.uci.edu/ml/datasets/Housing.

The features of the 506 samples may be summarized as shown in the excerpt of the
dataset description:

• CRIM: This is the per capita crime rate by town
• ZN: This is the proportion of residential land zoned for lots larger than

25,000 sq.ft.
• INDUS: This is the proportion of non-retail business acres per town
• CHAS: This is the Charles River dummy variable (this is equal to 1 if tract

bounds river; 0 otherwise)
• NOX: This is the nitric oxides concentration (parts per 10 million)
• RM: This is the average number of rooms per dwelling
• AGE: This is the proportion of owner-occupied units built prior to 1940
• DIS: This is the weighted distances to five Boston employment centers
• RAD: This is the index of accessibility to radial highways
• TAX: This is the full-value property-tax rate per $10,000
• PTRATIO: This is the pupil-teacher ratio by town
• B: This is calculated as 1000(Bk - 0.63)^2, where Bk is the proportion of

people of African American descent by town
• LSTAT: This is the percentage lower status of the population
• MEDV: This is the median value of owner-occupied homes in $1000s

mm

Chapter 10

[281]

>>> cols = ['LSTAT', 'INDUS', 'NOX', 'RM', 'MEDV']
>>> sns.pairplot(df[cols], size=2.5);
>>> plt.show()

As we can see in the following figure, the scatterplot matrix provides us with a
useful graphical summary of the relationships in a dataset:

Importing the seaborn library modifies the default aesthetics of
matplotlib for the current Python session. If you do not want to
use seaborn's style settings, you can reset the matplotlib settings
by executing the following command:

>>> sns.reset_orig()

remove	unnecessary	semicolon

Predicting Continuous Target Variables with Regression Analysis

[284]

In the following code example, we will use NumPy's corrcoef function on the five
feature columns that we previously visualized in the scatterplot matrix, and we will
use seaborn's heatmap function to plot the correlation matrix array as a heat map:

>>> import numpy as np
>>> cm = np.corrcoef(df[cols].values.T)
>>> sns.set(font_scale=1.5)
>>> hm = sns.heatmap(cm,
... cbar=True,
... annot=True,
... square=True,
... fmt='.2f',
... annot_kws={'size': 15},
... yticklabels=cols,
... xticklabels=cols)
>>> plt.show()

As we can see in the resulting figure, the correlation matrix provides us with another
useful summary graphic that can help us to select features based on their respective
linear correlations:

To fit a linear regression model, we are interested in those features that have a high
correlation with our target variable MEDV. Looking at the preceding correlation
matrix, we see that our target variable MEDV shows the largest correlation with
the LSTAT variable (-0.74). However, as you might remember from the scatterplot
matrix, there is a clear nonlinear relationship between LSTAT and MEDV. On the
other hand, the correlation between RM and MEDV is also relatively high (0.70) and
given the linear relationship between those two variables that we observed in the
scatterplot, RM seems to be a good choice for an exploratory variable to introduce
the concepts of a simple linear regression model in the following section.

explanatory

Predicting Continuous Target Variables with Regression Analysis

[288]

As we can see in the following plot, the linear regression line reflects the general
trend that house prices tend to increase with the number of rooms:

Although this observation makes intuitive sense, the data also tells us that the
number of rooms does not explain the house prices very well in many cases. Later
in this chapter, we will discuss how to quantify the performance of a regression
model. Interestingly, we also observe a curious line 3y = , which suggests that the
prices may have been clipped. In certain applications, it may also be important to
report the predicted outcome variables on its original scale. To scale the predicted
price outcome back on the Price in $1000's axes, we can simply apply the
inverse_transform method of the StandardScaler:

>>> num_rooms_std = sc_x.transform([5.0])
>>> price_std = lr.predict(num_rooms_std)
>>> print("Price in $1000's: %.3f" % \
... sc_y.inverse_transform(price_std))
Price in $1000's: 10.840

In the preceding code example, we used the previously trained linear regression
model to predict the price of a house with five rooms. According to our model,
such a house is worth $10,840.

“their”	
instead	of	
“its”

Chapter 10

[289]

On a side note, it is also worth mentioning that we technically don't have to update
the weights of the intercept if we are working with standardized variables since the
y axis intercept is always 0 in those cases. We can quickly confirm this by printing
the weights:

>>> print('Slope: %.3f' % lr.w_[1])
Slope: 0.695
>>> print('Intercept: %.3f' % lr.w_[0])
Intercept: -0.000

Estimating the coefficient of a regression
model via scikit-learn
In the previous section, we implemented a working model for regression
analysis. However, in a real-world application, we may be interested in more
efficient implementations, for example, scikit-learn's LinearRegression object
that makes use of the LIBLINEAR library and advanced optimization algorithms
that work better with unstandardized variables. This is sometimes desirable for
certain applications:

>>> from sklearn.linear_model import LinearRegression
>>> slr = LinearRegression()
>>> slr.fit(X, y)
>>> print('Slope: %.3f' % slr.coef_[0])
Slope: 9.102
>>> print('Intercept: %.3f' % slr.intercept_)
Intercept: -34.671

As we can see by executing the preceding code, scikit-learn's LinearRegression
model fitted with the unstandardized RM and MEDV variables yielded different
model coefficients. Let's compare it to our own GD implementation by plotting
MEDV against RM:

>>> lin_regplot(X, y, slr)
>>> plt.xlabel('Average number of rooms [RM] (standardized)')
>>> plt.ylabel('Price in $1000\'s [MEDV] (standardized)')
>>> plt.show()

Chapter 10

[289]

On a side note, it is also worth mentioning that we technically don't have to update
the weights of the intercept if we are working with standardized variables since the
y axis intercept is always 0 in those cases. We can quickly confirm this by printing
the weights:

>>> print('Slope: %.3f' % lr.w_[1])
Slope: 0.695
>>> print('Intercept: %.3f' % lr.w_[0])
Intercept: -0.000

Estimating the coefficient of a regression
model via scikit-learn
In the previous section, we implemented a working model for regression
analysis. However, in a real-world application, we may be interested in more
efficient implementations, for example, scikit-learn's LinearRegression object
that makes use of the LIBLINEAR library and advanced optimization algorithms
that work better with unstandardized variables. This is sometimes desirable for
certain applications:

>>> from sklearn.linear_model import LinearRegression
>>> slr = LinearRegression()
>>> slr.fit(X, y)
>>> print('Slope: %.3f' % slr.coef_[0])
Slope: 9.102
>>> print('Intercept: %.3f' % slr.intercept_)
Intercept: -34.671

As we can see by executing the preceding code, scikit-learn's LinearRegression
model fitted with the unstandardized RM and MEDV variables yielded different
model coefficients. Let's compare it to our own GD implementation by plotting
MEDV against RM:

>>> lin_regplot(X, y, slr)
>>> plt.xlabel('Average number of rooms [RM] (standardized)')
>>> plt.ylabel('Price in $1000\'s [MEDV] (standardized)')
>>> plt.show()

Delete	words	“standardized”

Predicting Continuous Target Variables with Regression Analysis

[300]

In the resulting plot, we can see that the polynomial fit captures the relationship
between the response and explanatory variable much better than the linear fit:

>>> y_lin_pred = lr.predict(X)
>>> y_quad_pred = pr.predict(X_quad)
>>> print('Training MSE linear: %.3f, quadratic: %.3f' % (
... mean_squared_error(y, y_lin_pred),
... mean_squared_error(y, y_quad_pred)))
Training MSE linear: 569.780, quadratic: 61.330
>>> print('Training R^2 linear: %.3f, quadratic: %.3f' % (
... r2_score(y, y_lin_pred),
... r2_score(y, y_quad_pred)))
Training R^2 linear: 0.832, quadratic: 0.982

As we can see after executing the preceding code, the MSE decreased from 570
(linear fit) to 61 (quadratic fit), and the coefficient of determination reflects a closer
fit to the quadratic model (2 0.982R =) as opposed to the linear fit (2 0.832R =) in
this particular toy problem.

Modeling nonlinear relationships in the
Housing Dataset
After we discussed how to construct polynomial features to fit nonlinear relationships
in a toy problem, let's now take a look at a more concrete example and apply those
concepts to the data in the Housing Dataset. By executing the following code, we will
model the relationship between house prices and LSTAT (percent lower status of the
population) using second degree (quadratic) and third degree (cubic) polynomials
and compare it to a linear fit.

Delete	
extra	
space	
between	
“Training”	
and	“R^2”

Predicting Continuous Target Variables with Regression Analysis

[304]

Dealing with nonlinear relationships using
random forests
In this section, we are going to take a look at random forest regression, which is
conceptually different from the previous regression models in this chapter. A random
forest, which is an ensemble of multiple decision trees, can be understood as the sum
of piecewise linear functions in contrast to the global linear and polynomial regression
models that we discussed previously. In other words, via the decision tree algorithm,
we are subdividing the input space into smaller regions that become more manageable.

Decision tree regression
An advantage of the decision tree algorithm is that it does not require any
transformation of the features if we are dealing with nonlinear data. We remember
from Chapter 3, A Tour of Machine Learning Classifiers Using Scikit-learn, that we grow
a decision tree by iteratively splitting its nodes until the leaves are pure or a stopping
criterion is satisfied. When we used decision trees for classification, we defined
entropy as a measure of impurity to determine which feature split maximizes the
Information Gain (IG), which can be defined as follows for a binary split:

() (),
1

p p
p

IG D x I D I
N

= −

Here, x is the feature to perform the split, pN is the number of samples in the
parent node, I is the impurity function, pD is the subset of training samples in
the parent node, and D and D are the subsets of training samples in the left and
right child node after the split. Remember that our goal is to find the feature split
that maximizes the information gain, or in other words, we want to find the feature
split that reduces the impurities in the child nodes. In Chapter 3, A Tour of Machine
Learning Classifiers Using Scikit-learn, we used entropy as a measure of impurity,
which is a useful criterion for classification. To use a decision tree for regression,
we will replace entropy as the impurity measure of a node t by the MSE:

() () ()()21 ˆ
t

i
t

i Dt

I t MSE t y y
N ∈

= = −∑

Comment	by	a	reader:	“In	the	Kindle	
edition,
the	first	D	is	weirdly	angled	backwards.	
In	the	print	edition,	it	looks
offset.	I'm	not	sure	what	you	are	
referring	to	here.”

Chapter 10

[307]

>>> print('MSE train: %.3f, test: %.3f' % (
... mean_squared_error(y_train, y_train_pred),
... mean_squared_error(y_test, y_test_pred)))
>>> print('R^2 train: %.3f, test: %.3f' % (
... r2_score(y_train, y_train_pred),
... r2_score(y_test, y_test_pred)))
MSE train: 3.235, test: 11.635
R^2 train: 0.960, test: 0.871

Unfortunately, we see that the random forest tends to overfit the training data.
However, it's still able to explain the relationship between the target and
explanatory variables relatively well (2 0.871R = on the test dataset).

Lastly, let's also take a look at the residuals of the prediction:

>>> plt.scatter(y_train_pred,
... y_train_pred - y_train,
... c='black',
... marker='o',
... s=35,
... alpha=0.5,
... label='Training data')
>>> plt.scatter(y_test_pred,
... y_test_pred - y_test,
... c='lightgreen',
... marker='s',
... s=35,
... alpha=0.7,
... label='Test data')
>>> plt.xlabel('Predicted values')
>>> plt.ylabel('Residuals')
>>> plt.legend(loc='upper left')
>>> plt.hlines(y=0, xmin=-10, xmax=50, lw=2, color='red')
>>> plt.xlim([-10, 50])
>>> plt.show()

1.642

Working with Unlabeled Data – Clustering Analysis

[316]

Another problem with k-means is that one or more clusters can be empty. Note that
this problem does not exist for k-medoids or fuzzy C-means, an algorithm that we
will discuss in the next subsection. However, this problem is accounted for in the
current k-means implementation in scikit-learn. If a cluster is empty, the algorithm
will search for the sample that is farthest away from the centroid of the empty
cluster. Then it will reassign the centroid to be this farthest point.

When we are applying k-means to real-world data using a Euclidean
distance metric, we want to make sure that the features are measured
on the same scale and apply z-score standardization or min-max
scaling if necessary.

After we predicted the cluster labels y_km and discussed the challenges of the
k-means algorithm, let's now visualize the clusters that k-means identified in
the dataset together with the cluster centroids. These are stored under the
centers_ attribute of the fitted KMeans object:

>>> plt.scatter(X[y_km==0,0],
... X[y_km ==0,1],
... s=50,
... c='lightgreen',
... marker='s',
... label='cluster 1')
>>> plt.scatter(X[y_km ==1,0],
... X[y_km ==1,1],
... s=50,
... c='orange',
... marker='o',
... label='cluster 2')
>>> plt.scatter(X[y_km ==2,0],
... X[y_km ==2,1],
... s=50,
... c='lightblue',
... marker='v',
... label='cluster 3')
>>> plt.scatter(km.cluster_centers_[:,0],
... km.cluster_centers_[:,1],
... s=250,
... marker='*',
... c='red',
... label='centroids')
>>> plt.legend()
>>> plt.grid()
>>> plt.show()

remove	whitespace	before	“==“

Chapter 11

[327]

Other commonly used algorithms for agglomerative hierarchical
clustering include average linkage and Ward's linkage. In average
linkage, we merge the cluster pairs based on the minimum average
distances between all group members in the two clusters. In Ward's
method, those two clusters that lead to the minimum increase of the
total within-cluster SSE are merged.

In this section, we will focus on agglomerative clustering using the complete
linkage approach. This is an iterative procedure that can be summarized by the
following steps:

1. Compute the distance matrix of all samples.
2. Represent each data point as a singleton cluster.
3. Merge the two closest clusters based on the distance of the most dissimilar

(distant) members.
4. Update the similarity matrix.
5. Repeat steps 2 to 4 until one single cluster remains.

Now we will discuss how to compute the distance matrix (step 1). But first, let's
generate some random sample data to work with. The rows represent different
observations (IDs 0 to 4), and the columns are the different features (X, Y, Z) of
those samples:

>>> import pandas as pd
>>> import numpy as np
>>> np.random.seed(123)
>>> variables = ['X', 'Y', 'Z']
>>> labels = ['ID_0','ID_1','ID_2','ID_3','ID_4']
>>> X = np.random.random_sample([5,3])*10
>>> df = pd.DataFrame(X, columns=variables, index=labels)
>>> df

“distance	matrix”

Working with Unlabeled Data – Clustering Analysis

[328]

After executing the preceding code, we should now see the following
distance matrix:

Performing hierarchical clustering on a
distance matrix
To calculate the distance matrix as input for the hierarchical clustering algorithm,
we will use the pdist function from SciPy's spatial.distance submodule:

>>> from scipy.spatial.distance import pdist, squareform
>>> row_dist = pd.DataFrame(squareform(
... pdist(df, metric='euclidean')),
... columns=labels, index=labels)
>>> row_dist

Using the preceding code, we calculated the Euclidean distance between each pair
of sample points in our dataset based on the features X, Y, and Z. We provided
the condensed distance matrix—returned by pdist—as input to the squareform
function to create a symmetrical matrix of the pair-wise distances, as shown here:

DataFrame containing
the randomly
generated samples:

DataFrame containing
the randomly
generated samples:

DataFrame containing
the randomly
generated samples:

DataFrame containing
the randomly
generated samples:

DataFrame containing
the randomly
generated samples:

DataFrame containing
the randomly
generated samples:

DataFrame containing
the randomly
generated samples:

DataFrame containing
the randomly
generated samples:

DataFrame containing
the randomly
generated samples:

DataFrame containing
the randomly
generated samples:

DataFrame containing
the randomly
generated samples:

DataFrame containing
the randomly
generated samples:

DataFrame containing
the randomly
generated samples:

DataFrame containing
the randomly
generated samples:

DataFrame containing
the randomly
generated samples:

DataFrame containing
the randomly
generated samples:

Working with Unlabeled Data – Clustering Analysis

[332]

Attaching dendrograms to a heat map
In practical applications, hierarchical clustering dendrograms are often used in
combination with a heat map, which allows us to represent the individual values in
the sample matrix with a color code. In this section, we will discuss how to attach a
dendrogram to a heat map plot and order the rows in the heat map correspondingly.

However, attaching a dendrogram to a heat map can be a little bit tricky, so let's go
through this procedure step by step:

1. We create a new figure object and define the x axis position, y axis
position, width, and height of the dendrogram via the add_axes attribute.
Furthermore, we rotate the dendrogram 90 degrees counter-clockwise.
The code is as follows:
>>> fig = plt.figure(figsize=(8,8))
>>> axd = fig.add_axes([0.09,0.1,0.2,0.6])
>>> row_dendr = dendrogram(row_clusters, orientation='right')

2. Next we reorder the data in our initial DataFrame according to the clustering
labels that can be accessed from the dendrogram object, which is essentially a
Python dictionary, via the leaves key. The code is as follows:
>>> df_rowclust = df.ix[row_dendr['leaves'][::-1]]

3. Now we construct the heat map from the reordered DataFrame and position
it right next to the dendrogram:
>>> axm = fig.add_axes([0.23,0.1,0.6,0.6])
>>> cax = axm.matshow(df_rowclust,
... interpolation='nearest', cmap='hot_r')

4. Finally we will modify the aesthetics of the heat map by removing the axis
ticks and hiding the axis spines. Also, we will add a color bar and assign
the feature and sample names to the x and y axis tick labels, respectively.
The code is as follows:

>>> axd.set_xticks([])
>>> axd.set_yticks([])
>>> for i in axd.spines.values():
... i.set_visible(False)
>>> fig.colorbar(cax)
>>> axm.set_xticklabels([''] + list(df_rowclust.columns))
>>> axm.set_yticklabels([''] + list(df_rowclust.index))
>>> plt.show()

Insert	the	following	line	
in	code	formatting: #	note:	for	matplotlib	>=	v1.5.1,	please	use	orientation=‘left’

figsize=(8,8),	facecolor='white')

Chapter 12

[347]

If you are new to neural network representations, the terminology around the indices
(subscripts and superscripts) may look a little bit confusing at first. You may wonder
why we wrote ()

,
l
j kw and not ()

,
l
k jw to refer to the weight coefficient that connects the

k th unit in layer l to the j th unit in layer 1l + . What may seem a little bit quirky
at first will make much more sense in later sections when we vectorize the neural
network representation. For example, we will summarize the weights that connect
the input and hidden layer by a matrix () []11 h m× +∈!W , where h is the number of
hidden units and 1m + is the number of hidden units plus bias unit. Since it is
important to internalize this notation to follow the concepts later in this chapter, let's
summarize what we just discussed in a descriptive illustration of a simplified 3-4-3
multi-layer perceptron:

Activating a neural network via forward
propagation
In this section, we will describe the process of forward propagation to calculate the
output of an MLP model. To understand how it fits into the context of learning an
MLP model, let's summarize the MLP learning procedure in three simple steps:

1. Starting at the input layer, we forward propagate the patterns of the training
data through the network to generate an output.

2. Based on the network's output, we calculate the error that we want to
minimize using a cost function that we will describe later.

3. We backpropagate the error, find its derivative with respect to each weight in
the network, and update the model.

input units

Training Artificial Neural Networks for Image Recognition

[348]

Finally, after repeating the steps for multiple epochs and learning the weights of
the MLP, we use forward propagation to calculate the network output and apply a
threshold function to obtain the predicted class labels in the one-hot representation,
which we described in the previous section.

Now, let's walk through the individual steps of forward propagation to generate
an output from the patterns in the training data. Since each unit in the hidden unit
is connected to all units in the input layers, we first calculate the activation ()2

1a
as follows:

() () () () () () ()2 1 1 1 1 1 1
1 0 1,0 1 1,1 1,m mz a w a w a w= + + +!

() ()()2 2
1 1a zφ=

Here, ()2
1z is the net input and ()φ ⋅ is the activation function, which has to be

differentiable to learn the weights that connect the neurons using a gradient-based
approach. To be able to solve complex problems such as image classification, we
need nonlinear activation functions in our MLP model, for example, the sigmoid
(logistic) activation function that we used in logistic regression in Chapter 3, A Tour
of Machine Learning Classifiers Using Scikit-learn:

() 1
1 zz
e

φ −=
+

As we can remember, the sigmoid function is an S-shaped curve that maps the net
input onto a logistic distribution in the range 0 to 1, which cuts the y axis at z=0,
as shown in the following graph:

layer

Training Artificial Neural Networks for Image Recognition

[348]

Finally, after repeating the steps for multiple epochs and learning the weights of
the MLP, we use forward propagation to calculate the network output and apply a
threshold function to obtain the predicted class labels in the one-hot representation,
which we described in the previous section.

Now, let's walk through the individual steps of forward propagation to generate
an output from the patterns in the training data. Since each unit in the hidden unit
is connected to all units in the input layers, we first calculate the activation ()2

1a
as follows:

() () () () () () ()2 1 1 1 1 1 1
1 0 1,0 1 1,1 1,m mz a w a w a w= + + +!

() ()()2 2
1 1a zφ=

Here, ()2
1z is the net input and ()φ ⋅ is the activation function, which has to be

differentiable to learn the weights that connect the neurons using a gradient-based
approach. To be able to solve complex problems such as image classification, we
need nonlinear activation functions in our MLP model, for example, the sigmoid
(logistic) activation function that we used in logistic regression in Chapter 3, A Tour
of Machine Learning Classifiers Using Scikit-learn:

() 1
1 zz

e
φ −=

+

As we can remember, the sigmoid function is an S-shaped curve that maps the net
input onto a logistic distribution in the range 0 to 1, which passes the origin at
z = 0.5, as shown in the following graph:

[...], which cuts the y-axis at z=0, [...]

Training Artificial Neural Networks for Image Recognition

[350]

Here, ()1a is our []1 1m + × dimensional feature vector of a sample ()ix plus bias unit.
()1W is an []1h m× + dimensional weight matrix where h is the number of hidden

units in our neural network. After matrix-vector multiplication, we obtain the 1h×
dimensional net input vector ()2z to calculate the activation ()2a (where ()2 1h×∈!a).
Furthermore, we can generalize this computation to all n samples in the training set:

() () ()2 1 1 T
⎡ ⎤= ⎣ ⎦Z W A

Here, ()1A is now an []1n m× + matrix, and the matrix-matrix multiplication will result
in a h n× dimensional net input matrix ()2Z . Finally, we apply the activation function
()φ ⋅ to each value in the net input matrix to get the h n× activation matrix ()2A for the

next layer (here, output layer):

() ()()2 2φ=A Z

Similarly, we can rewrite the activation of the output layer in the vectorized form:

() () ()3 2 2Z = W A

Here, we multiply the t h× matrix ()2W (t is the number of output units) by the h n×
dimensional matrix ()2A to obtain the t n× dimensional matrix ()3Z (the columns in this
matrix represent the outputs for each sample).

Lastly, we apply the sigmoid activation function to obtain the continuous valued
output of our network:

() ()() (), t nφ ×∈3 3 3 !A = Z A

Classifying handwritten digits
In the previous section, we covered a lot of the theory around neural networks,
which can be a little bit overwhelming if you are new to this topic. Before we
continue with the discussion of the algorithm for learning the weights of the MLP
model, backpropagation, let's take a short break from the theory and see a neural
network in action.

Everywhere	you	read	“h”	on	this	page,	you	can	think	of	“h”	as	“h+1”	to	include	the	bias	unit	
(and	in	order	to	get	the	dimensions	right)
Everywhere	you	read	“h”	on	this	page,	you	can	think	of	“h”	as	“h+1”	to	include	the	bias	unit	
(and	in	order	to	get	the	dimensions	right)

Chapter 12

[353]

The way we read in the image might seem a little bit strange at first:

magic, n = struct.unpack('>II', lbpath.read(8))
labels = np.fromfile(lbpath, dtype=np.int8)

To understand how these two lines of code work, let's take a look at the dataset
description from the MNIST website:

 [offset] [type] [value] [description]

0000 32 bit integer 0x00000801(2049) magic number (MSB first)

0004 32 bit integer 60000 number of items

0008 unsigned byte ?? label

0009 unsigned byte ?? label

........

xxxx unsigned byte ?? label

Using the two lines of the preceding code, we first read in the magic number, which is
a description of the file protocol as well as the number of items (n) from the file buffer
before we read the following bytes into a NumPy array using the fromfile method.
The fmt parameter value >II that we passed as an argument to struct.unpack has
two parts:

• >: This is the big-endian (defines the order in which a sequence of bytes is
stored); if you are unfamiliar with the terms big-endian and small-endian,
you can find an excellent article about Endianness on Wikipedia
(https://en.wikipedia.org/wiki/Endianness).

• I: This is an unsigned integer.

By executing the following code, we will now load the 60,000 training instances as
well as the 10,000 test samples from the mnist directory where we unzipped the
MNIST dataset:

>>> X_train, y_train = load_mnist('mnist', kind='train')
>>> print('Rows: %d, columns: %d'
... % (X_train.shape[0], X_train.shape[1]))
Rows: 60000, columns: 784

>>> X_test, y_test = load_mnist('mnist', kind='t10k')
>>> print('Rows: %d, columns: %d'
... % (X_test.shape[0], X_test.shape[1]))
Rows: 10000, columns: 784

delete	“the”

Chapter 12

[355]

After executing the code, we should now see the first 25 variants of the digit 7.

Optionally, we can save the MNIST image data and labels as CSV files to open them
in programs that do not support their special byte format. However, we should be
aware that the CSV file format will take up substantially more space on your local
drive, as listed here:

• train_img.csv: 109.5 MB
• train_labels.csv: 120 KB
• test_img.csv: 18.3 MB
• test_labels: 20 KB

If we decide to save those CSV files, we can execute the following code in our Python
session after loading the MNIST data into NumPy arrays:

>>> np.savetxt('train_img.csv', X_train,
... fmt='%i', delimiter=',')
>>> np.savetxt('train_labels.csv', y_train,
... fmt='%i', delimiter=',')
>>> np.savetxt('test_img.csv', X_test,
... fmt='%i', delimiter=',')
>>> np.savetxt('test_labels.csv', y_test,
... fmt='%i', delimiter=',')

test_labels.csv

Chapter 12

[359]

 grad2[:, 1:] += (w2[:, 1:] * (self.l1 + self.l2))

 return grad1, grad2

 def predict(self, X):
 a1, z2, a2, z3, a3 = self._feedforward(X, self.w1, self.w2)
 y_pred = np.argmax(z3, axis=0)
 return y_pred

 def fit(self, X, y, print_progress=False):
 self.cost_ = []
 X_data, y_data = X.copy(), y.copy()
 y_enc = self._encode_labels(y, self.n_output)

 delta_w1_prev = np.zeros(self.w1.shape)
 delta_w2_prev = np.zeros(self.w2.shape)

 for i in range(self.epochs):

 # adaptive learning rate
 self.eta /= (1 + self.decrease_const*i)

 if print_progress:
 sys.stderr.write(
 '\rEpoch: %d/%d' % (i+1, self.epochs))
 sys.stderr.flush()

 if self.shuffle:
 idx = np.random.permutation(y_data.shape[0])
 X_data, y_data = X_data[idx], y_data[idx]

 mini = np.array_split(range(
 y_data.shape[0]), self.minibatches)
 for idx in mini:

 # feedforward
 a1, z2, a2, z3, a3 = self._feedforward(
 X[idx], self.w1, self.w2)
 cost = self._get_cost(y_enc=y_enc[:, idx],
 output=a3,
 w1=self.w1,
 w2=self.w2)
 self.cost_.append(cost)

 >>> nn = NeuralNetMLP([...],
 ... [...],
 ... shuffle=False,
 ... random_state=1)

X_data[idx]

X_data, y_enc = X_data[idx], y_enc[:,idx]

These line changes above enable shuffling if the setting
is `shuffle=True`.
To match the original output in the book (no shuffling)
after applying this patch, the `shuffle=False` setting
needs to be added when the NeuralNetMLP is
initialized (next page) as shown on the left.

 >>> nn = NeuralNetMLP([...],
 ... [...],
 ... shuffle=False,
 ... random_state=1)

X_data[idx]

X_data, y_enc = X_data[idx], y_enc[:,idx]

These line changes above enable shuffling if the setting
is `shuffle=True`.
To match the original output in the book (no shuffling)
after applying this patch, the `shuffle=False` setting
needs to be added when the NeuralNetMLP is
initialized (next page) as shown on the left.

Training Artificial Neural Networks for Image Recognition

[362]

As we see in the following plot, the graph of the cost function looks very noisy.
This is due to the fact that we trained our neural network with mini-batch learning,
a variant of stochastic gradient descent.

Although we can already see in the plot that the optimization algorithm converged
after approximately 800 epochs (40,000/50 = 800), let's plot a smoother version of
the cost function against the number of epochs by averaging over the mini-batch
intervals. The code is as follows:

>>> batches = np.array_split(range(len(nn.cost_)), 1000)
>>> cost_ary = np.array(nn.cost_)
>>> cost_avgs = [np.mean(cost_ary[i]) for i in batches]

>>> plt.plot(range(len(cost_avgs)),
... cost_avgs,
... color='red')
>>> plt.ylim([0, 2000])
>>> plt.ylabel('Cost')
>>> plt.xlabel('Epochs')
>>> plt.tight_layout()
>>> plt.show()

Sorry,	due	to	the	fixes	
in	the	code
on	the	previous	pages,	
this	image	and	some	
following
lines	and	images	changed	
a	little	bit.	Please	
replace
this	image	with	
12_cost_1.png

Please	see	the
IPython	notebook
for	an	updated	figure

Chapter 12

[363]

The following plot gives us a clearer picture indicating that the training algorithm
converged shortly after the 800th epoch:

Now, let's evaluate the performance of the model by calculating the
prediction accuracy:

>>> y_train_pred = nn.predict(X_train)
>>> acc = np.sum(y_train == y_train_pred, axis=0) / X_train.shape[0]
>>> print('Training accuracy: %.2f%%' % (acc * 100))
Training accuracy: 97.74%

As we can see, the model classifies most of the training digits correctly, but how does
it generalize to data that it has not seen before? Let's calculate the accuracy on 10,000
images in the test dataset:

>>> y_test_pred = nn.predict(X_test)
>>> acc = np.sum(y_test == y_test_pred, axis=0) / X_test.shape[0]
>>> print('Test accuracy: %.2f%%' % (acc * 100))
Test accuracy: 96.18%

Based on the small discrepancy between training and test accuracy, we can conclude
that the model only slightly overfits the training data. To further fine-tune the
model, we could change the number of hidden units, values of the regularization
parameters, learning rate, values of the decrease constant, or the adaptive learning
using the techniques that we discussed in Chapter 6, Learning Best Practices for Model
Evaluation and Hyperparameter Tuning (this is left as an exercise for the reader).

Please	replace	this	
image	with	
12_cost_2.png

97.59%

95.62%

Please	see	the
IPython	notebook
for	an	updated	figure

Training Artificial Neural Networks for Image Recognition

[364]

Now, let's take a look at some of the images that our MLP struggles with:

>>> miscl_img = X_test[y_test != y_test_pred][:25]
>>> correct_lab = y_test[y_test != y_test_pred][:25]
>>> miscl_lab= y_test_pred[y_test != y_test_pred][:25]

>>> fig, ax = plt.subplots(nrows=5,
... ncols=5,
... sharex=True,
... sharey=True,)
>>> ax = ax.flatten()
>>> for i in range(25):
... img = miscl_img[i].reshape(28, 28)
... ax[i].imshow(img,
... cmap='Greys',
... interpolation='nearest')
... ax[i].set_title('%d) t: %d p: %d'
... % (i+1, correct_lab[i], miscl_lab[i]))
>>> ax[0].set_xticks([])
>>> ax[0].set_yticks([])
>>> plt.tight_layout()
>>> plt.show()

We should now see a 5 5× subplot matrix where the first number in the subtitles
indicates the plot index, the second number indicates the true class label (t), and the
third number stands for the predicted class label (p).

please	replace		
this	image	with	
12_mnist_1.png

Please	see	the
IPython	notebook
for	an	updated	figure

Chapter 12

[365]

As we can see in the preceding figure, some of those images are even challenging
for us humans to classify correctly. For example, we can see that the digit 9 is
classified as a 3 or 8 if the lower part of the digit has a hook-like curvature
(subplots 3, 16, and 17).

Training an artificial neural network
Now that we have seen a neural network in action and have gained a basic
understanding of how it works by looking over the code, let's dig a little bit deeper
into some of the concepts, such as the logistic cost function and the backpropagation
algorithm that we implemented to learn the weights.

Computing the logistic cost function
The logistic cost function that we implemented as the _get_cost method is actually
pretty simple to follow since it is the same cost function that we described in the
logistic regression section in Chapter 3, A Tour of Machine Learning Classifiers
Using Scikit-learn.

() () ()() ()() ()()
1

log 1 log 1
n

i i i i

i
J y a y a

=

= − + − −∑w

Here, ()ia is the sigmoid activation of the i th unit in one of the layers which we
compute in the forward propagation step:

() ()()i ia zφ=

Now, let's add a regularization term, which allows us to reduce the degree of
overfitting. As you will recall from earlier chapters, the L2 and L1 regularization
terms are defined as follows (remember that we don't regularize the bias units):

2 12
2 1

1 1
2 and 1

m m

j j
j j

L w L wλ λ λ λ
= =

= = = =∑ ∑w w

0
6

“in	subplot	15.”

Training Artificial Neural Networks for Image Recognition

[366]

Although our MLP implementation supports both L1 and L2 regularization, we will
now only focus on the L2 regularization term for simplicity. However, the same
concepts apply to the L1 regularization term. By adding the L2 regularization term
to our logistic cost function, we obtain the following equation:

() () ()() ()() ()() 2
2

1
log 1 log 1

2

n
i i i i

i
J y a y a λ

=

⎡ ⎤= + − − +⎢ ⎥⎣ ⎦
∑w w

Since we implemented an MLP for multi-class classification, this returns an output
vector of t elements, which we need to compare with the 1t× dimensional target
vector in the one-hot encoding representation. For example, the activation of the
third layer and the target class (here: class 2) for a particular sample may look
like this:

()3

0.1 0
0.9 1

,

0.3 0

a y

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= =
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

! !

Thus, we need to generalize the logistic cost function to all activation units j in our
network. So our cost function (without the regularization term) becomes:

() () ()() ()() ()()
1 1

log 1 log 1
n t

i i i i
j j j j

i k
J y a y a

= =

= − + − −∑∑w

Here, the superscript i is the index of a particular sample in our training set.

The following generalized regularization term may look a little bit complicated at
first, but here we are just calculating the sum of all weights of a layer l (without the
bias term) that we added to the first column:

() () ()()() ()() ()()()
()()

1 1

1 1 2

,
1 1 1

lo g 1 lo g 1

2

n t
i i i i
j j

i j

L u l u l
l
j i

l i j

J y z j y z j

w

φ φ

λ
= =

− +

= = =

⎡ ⎤
= − + − −⎢ ⎥

⎣ ⎦

+

∑∑

∑∑∑

w

j=1

j j

j=1

j j

j=1

j j

j=1

j j

-

There should be a minus sign in front of the opening bracket

Chapter 12

[367]

The following equation represents the L2-penalty term:

()()11 2

,
1 1 12

l lu uL
l
j i

l i j
wλ +−

= = =
∑∑∑

Remember that our goal is to minimize the cost function ()J w . Thus, we need to
calculate the partial derivative of matrix W with respect to each weight for every
layer in the network:

() ()
,
l
j i

J
w
∂

∂
W

In the next section, we will talk about the backpropagation algorithm, which allows
us to calculate these partial derivatives to minimize the cost function.

Note that W consists of multiple matrices. In a multi-layer perceptron with one
hidden unit, we have the weight matrix ()1W , which connects the input to the hidden
layer, and ()2W , which connects the hidden layer to the output layer. An intuitive
visualization of the matrix W is provided in the following figure:

In this simplified figure, it may seem that both ()1W and ()2W have the same number
of rows and columns, which is typically not the case unless we initialize an MLP
with the same number of hidden units, output units, and input features.

expression

layer

Chapter 12

[369]

Concisely, we just forward propagate the input features through the connection in
the network as shown here:

In backpropagation, we propagate the error from right to left. We start by calculating
the error vector of the output layer:

() ()3 3a yδ = −

Here, y is the vector of the true class labels.

Next, we calculate the error term of the hidden layer:

() ()() ()
()()

()

2
2 2 3

2

T z

z

φ∂
= ∗

∂
Wδ δ

Here,
()()

()

2

2

z

z

φ∂

∂ is simply the derivative of the sigmoid activation function, which we
implemented as _sigmoid_gradient:

() () ()()()2 21
z

a a
z

φ∂
= ∗ −

∂

Note that the asterisk symbol ()∗ means element-wise multiplication in this context.

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

(2)

Training Artificial Neural Networks for Image Recognition

[374]

Remember that we are updating the weights by taking an opposite step towards the
direction of the gradient. In gradient checking, we compare this analytical solution to
a numerically approximated gradient:

() ()
()() ()(), ,

,

 l l
i j i j

l
i j

J w J w
J

w

ε

ε

+ −∂ ≈
∂

W

Here, ε is typically a very small number, for example 1e-5 (note that 1e-5 is just
a more convenient notation for 0.00001). Intuitively, we can think of this finite
difference approximation as the slope of the secant line connecting the points of the
cost function for the two weights w and w ε+ (both are scalar values), as shown in
the following figure. We are omitting the superscripts and subscripts for simplicity.

An even better approach that yields a more accurate approximation of the
gradient is to compute the symmetric (or centered) difference quotient given
by the two-point formula:

()() ()(), ,

2

l l
i j i jJ w J wε ε

ε

+ − −

please	replace	figure	
with	
“12_gradient_checking.png
”

Please	see	the
IPython	notebook
for	an	updated	figure

J(w	=	0.1	+	eps)	-
	J(w	=	0.1)

Parallelizing Neural Network Training with Theano

[394]

Working with array structures
In this section, we will discuss how to use array structures in Theano using its
tensor module. By executing the following code, we will create a simple 2 x 3
matrix, and calculate the column sums using Theano's optimized tensor expressions:

>>> import numpy as np

initialize
>>> x = T.fmatrix(name='x')
>>> x_sum = T.sum(x, axis=0)

compile
>>> calc_sum = theano.function(inputs=[x], outputs=x_sum)

execute (Python list)
>>> ary = [[1, 2, 3], [1, 2, 3]]
>>> print('Column sum:', calc_sum(ary))
Column sum: [2. 4. 6.]

execute (NumPy array)
>>> ary = np.array([[1, 2, 3], [1, 2, 3]],
... dtype=theano.config.floatX)
>>> print('Column sum:', calc_sum(ary))
Column sum: [2. 4. 6.]

As we saw earlier, there are just three basic steps that we have to follow when we
are using Theano: defining the variable, compiling the code, and executing it. The
preceding example shows that Theano can work with both Python and NumPy
types: list and numpy.ndarray.

Note that we used the optional name argument (here, x) when we created
the fmatrix TensorVariable, which can be helpful to debug our code
or print the Theano graph. For example, if we'd print the fmatrix
symbol x without giving it a name, the print function would return its
TensorType:

>>> print(x)
<TensorType(float32, matrix)>

However, if the TensorVariable was initialized with a name
argument x as in our preceding example, it would be returned by
the print function:

>>> print(x)
x

The TensorType can be accessed via the type method:
>>> print(x.type())
<TensorType(float32, matrix)>

Add	the	following	lines:

#	if	you	are	running	Theano	on	64	bit	mode,	
#	you	need	to	use	dmatrix	instead	of	fmatrix

Chapter 13

[397]

Wrapping things up – a linear regression
example
Now that we familiarized ourselves with Theano, let's take a look at a really practical
example and implement Ordinary Least Squares (OLS) regression. For a quick
refresher on regression analysis, please refer to Chapter 10, Predicting Continuous
Target Variables with Regression Analysis.

Let's start by creating a small one-dimensional toy dataset with five training samples:

>>> X_train = np.asarray([[0.0], [1.0],
... [2.0], [3.0],
... [4.0], [5.0],
... [6.0], [7.0],
... [8.0], [9.0]],
... dtype=theano.config.floatX)
>>> y_train = np.asarray([1.0, 1.3,
... 3.1, 2.0,
... 5.0, 6.3,
... 6.6, 7.4,
... 8.0, 9.0],
... dtype=theano.config.floatX)

Note that we are using theano.config.floatX when we construct the NumPy
arrays, so we can optionally toggle back and forth between CPU and GPU
if we want.

Next, let's implement a training function to learn the weights of the linear regression
model, using the sum of squared errors cost function. Note that 0w is the bias unit
(the y axis intercept at 0x =). The code is as follows:

import theano
from theano import tensor as T
import numpy as np

def train_linreg(X_train, y_train, eta, epochs):

 costs = []
 # Initialize arrays
 eta0 = T.fscalar('eta0')
 y = T.fvector(name='y')
 X = T.fmatrix(name='X')

ten

Chapter 13

[405]

As we can see, the predicted class probabilities now sum up to one, as we would
expect. It is also notable that the probability for the second class is close to zero, since
there is a large gap between 1z and ()max z . However, note that the predicted class
label is the same as in the logistic function. Intuitively, it may help to think of the
softmax function as a normalized logistic function that is useful to obtain meaningful
class-membership predictions in multi-class settings.

>>> y_class = np.argmax(Z, axis=0)
>>> print('predicted class label:
... %d' % y_class[0])
predicted class label: 2

Broadening the output spectrum by using a
hyperbolic tangent
Another sigmoid function that is often used in the hidden layers of artificial neural
networks is the hyperbolic tangent (tanh), which can be interpreted as a rescaled
version of the logistic function.

() ()tanh 2 2 1
z z

logistic z z
e ez z
e e

φ φ
−

−

−= × × − =
+

() 1
1logistic zz
e

φ −=
+

()logistic 2 2 1z× × −

Parallelizing Neural Network Training with Theano

[406]

The advantage of the hyperbolic tangent over the logistic function is that it has a
broader output spectrum and ranges the open interval (-1, 1), which can improve the
convergence of the back propagation algorithm (C. M. Bishop. Neural networks for
pattern recognition. Oxford university press, 1995, pp. 500-501). In contrast, the logistic
function returns an output signal that ranges the open interval (0, 1). For an intuitive
comparison of the logistic function and the hyperbolic tangent, let's plot two sigmoid
functions in a one-dimensional space:

>>> import matplotlib.pyplot as plt

>>> def tanh(z):
... e_p = np.exp(z)
... e_m = np.exp(-z)
... return (e_p - e_m) / (e_p + e_m)

>>> z = np.arange(-5, 5, 0.005)
>>> log_act = logistic(z)
>>> tanh_act = tanh(z)

>>> plt.ylim([-1.5, 1.5])
>>> plt.xlabel('net input z')
>>> plt.ylabel('activation $\phi(z)$')
>>> plt.axhline(1, color='black', linestyle='--')
>>> plt.axhline(0.5, color='black', linestyle='--')
>>> plt.axhline(0, color='black', linestyle='--')
>>> plt.axhline(-1, color='black', linestyle='--')

>>> plt.plot(z, tanh_act,
... linewidth=2,
... color='black',
... label='tanh')
>>> plt.plot(z, log_act,
... linewidth=2,
... color='lightgreen',
... label='logistic')

>>> plt.legend(loc='lower right')
>>> plt.tight_layout()
>>> plt.show()

this	is	incorrect:

3DUDOOHOL]LQJ�1HXUDO�1HWZRUN�7UDLQLQJ�ZLWK�7KHDQR

[�����]

However, in certain contexts, it can be useful to return meaningful class probabilities
for multi-class predictions. In the next section, we will take a look at a generalization
of the logistic function, the softmax function, which can help us with this task.

Estimating probabilities in multi-class
FODVVL¿FDWLRQ�YLD�WKH�VRIWPD[�IXQFWLRQ
The softmax function is a generalization of the logistic function that allows us
to compute meaningful class-probabilities in multi-class settings (multinomial
logistic regression). In softmax, the probability of a particular sample with net
input z belongs to the i th class can be computed with a normalization term in the
denominator that is the sum of all M linear functions:

() ()
1

|
z
i

softmax M z
mm

eP y i z z
e

φ
=

= = =
∑

To see softmax in action, let's code it up in Python:

>>> def softmax(z):
... return np.exp(z) / np.sum(np.exp(z))

>>> def softmax_activation(X, w):
... z = net_input(X, w)
... return sigmoid(z)

>>> y_probas = softmax(Z)
>>> print('Probabilities:\n', y_probas)
Probabilities:
 [[0.40386493]
 [0.07756222]
 [0.51857284]]
>>> y_probas.sum()
1.0

softmax(z)softmax(z)

